Sample records for vapor lamp lighting

  1. All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy

    E-Print Network [OSTI]

    George, Steven C.

    and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury lamp recycling separates a number of materials for further use in new products. · The mercury is reused

  2. Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and

    E-Print Network [OSTI]

    Baker, Chris I.

    Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re can be recycled infinitely without losing its purity or strength. While the primary end product

  3. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

    1988-01-01T23:59:59.000Z

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  4. Portable lamp with dynamically controlled lighting distribution

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

    2001-01-01T23:59:59.000Z

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

  5. iLamp: A Sensor-Enhanced Lamp with Surface-Tracking Capability Based on Light

    E-Print Network [OSTI]

    Tseng, Yu-Chee

    . The lamp has a robot arm and some LEDs as light sources. When finding that the sensed light intensity robot arm, to a better location and then adjust its LEDs to satisfy the bookmark's need. Central to our interface. This lamp is composed of a ZigBee module, a microprocessor, and a robot arm holding four sets

  6. LED Linear Lamps and Troffer Lighting

    Broader source: Energy.gov [DOE]

    The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as well as cost-effectiveness. There is also a concise guidance document that describes the findings of the Series 21 studies and provides practical advice to manufacturers, specifiers, and consumers (Report 21.4: Summary of Linear (T8) LED Lamp Testing , 5 pages, June 2014).

  7. An In-Situ Photometric and Energy Analysis of a Sulfur LampLighting System

    SciTech Connect (OSTI)

    Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein,Francis; Siminovitch, Michael

    1995-06-01T23:59:59.000Z

    This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at the U.S. Department of Energy's Forrestal Building. This novel system couples two high lumen output, high efficiency sulfur lamps to a single 73 m (240 ft.) hollow light guide lined with a reflective prismatic film. The system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to light the space. This paper details the results of a field study that characterizes the significant energy savings and increased illumination levels that have been achieved. Comparisons to modeled HID lighting scenarios are also included.

  8. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31T23:59:59.000Z

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  9. Comparison of different light lamps for collecting diptera associated with livestock concentration areas

    E-Print Network [OSTI]

    Neeb, Charles W

    1971-01-01T23:59:59.000Z

    . , Texas Tech (Jniversity Directed by: Mr. M. A. Price The attractiveness of radrant energy emitted by blacklight (BL), blacklight-blue (BLH), strontium ? blue and argon ultraviolet lamps was compared in standard- survey omnidirectional light traps... with livestock concentration areas. Pecos County. Lrgon study area. 1967. . . . . . . . . . . 6B Field comparison of light wavelengths emitted from BL fluorescent lamp with light wavelengths emitted from BLB, strontium and argon lamps on attractiveness...

  10. Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting

    Broader source: Energy.gov [DOE]

    Following is a text version of a video about CALiPER Application Report Series 21 on LED Linear Lamps and Troffer Lighting.

  11. LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21

    ScienceCinema (OSTI)

    Beeson, Tracy; Miller, Naomi

    2014-06-23T23:59:59.000Z

    Video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.

  12. LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky Technologies and UC Davis's California Lighting Technology Center demonstrate the

    E-Print Network [OSTI]

    California at Davis, University of

    LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky the flicker and dimming requirements set by the Voluntary California Quality LED Lamp for incentivized LED replacement lamps. These criteria go beyond energy efficiency

  13. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03T23:59:59.000Z

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40?mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (?2?cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  14. Table lamp with dynamically controlled lighting distribution and uniformly illuminated luminous shade

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) or other lamps arranged vertically, i.e. one lamp above the other, with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum ensures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. In a particular configuration, the reflective septum is bowl shaped, with the upper CFL sitting in the bowl, and a luminous shade hanging down from the bowl. The lower CFL provides both task lighting and uniform shade luminance. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. However, other types of lamps, including incandescent, halogen, and LEDs can also be used in the fixture. The lighting system may be designed for the home, hospitality, office or other environments.

  15. A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard

    SciTech Connect (OSTI)

    Lin, Jiang

    2002-04-11T23:59:59.000Z

    Lighting has been one of the fastest growing electric end-uses in China over the last twenty years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting need. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8 to T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's proposed minimum efficiency standard for fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and GHG emissions.

  16. High-Intensity Discharge Lighting Basics | Department of Energy

    Energy Savers [EERE]

    lighting. Mercury vapor lamps provide about 50 lumens per watt. They cast a very cool bluegreen white light. Most indoor mercury vapor lamps in arenas and gymnasiums have been...

  17. LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21

    Broader source: Energy.gov [DOE]

    View the video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.

  18. ISSUANCE 2015-06-25: Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

  19. A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp

    SciTech Connect (OSTI)

    Siminovitch, M.; Gould, C.; Page, E.

    1997-06-01T23:59:59.000Z

    High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

  20. LED lamp

    DOE Patents [OSTI]

    Galvez, Miguel; Grossman, Kenneth; Betts, David

    2013-11-12T23:59:59.000Z

    There is herein described a lamp for providing white light comprising a plurality of light sources positioned on a substrate. Each of said light sources comprises a blue light emitting diode (LED) and a dome that substantially covers said LED. A first portion of said blue light from said LEDs is transmitted through said domes and a second portion of said blue light is converted into a red light by a first phosphor contained in said domes. A cover is disposed over all of said light sources that transmits at least a portion of said red and blue light emitted by said light sources. The cover contains a second phosphor that emits a yellow light in response to said blue light. The red, blue and yellow light combining to form the white light and the white light having a color rendering index (CRI) of at least about 80.

  1. Aperture lamp

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD)

    2003-01-01T23:59:59.000Z

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  2. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA)

    1993-01-01T23:59:59.000Z

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  3. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16T23:59:59.000Z

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  4. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    light emitting diode (LED) lamps will eventually come toare also looking to make LED lamps compatible with standardelectronics design, an LED lamp can be made dimmable over a

  5. Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis' California Lighting Technology Center will utilize Jade Sky Technologies' driver ICs to help spur

    E-Print Network [OSTI]

    California at Davis, University of

    Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis and power factor. "JST shares our goal of making the transition to LED lamps a satisfying experience of cost-effective, easy-to-use LED lighting solutions Milpitas, Calif. ­ October 15, 2013 ­ Jade Sky

  6. Max Tech and Beyond: High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    Pressure Sodium Light Emitting Diode Lamp Lumen Depreciationit is expected that light emitting diode (LED) lamps willLED Technology Light emitting diodes (LEDs) are an emerging

  7. Storage and Retrieval of Thermal Light in Warm Atomic Vapor

    E-Print Network [OSTI]

    Young-Wook Cho; Yoon-Ho Kim

    2010-07-12T23:59:59.000Z

    We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically-induced transparency (EIT). We first demonstrate slowed-propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown$-$Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics is preserved during the storage and retrieval process.

  8. Turning on LAMP

    SciTech Connect (OSTI)

    Bostedt, Christoph

    2014-06-30T23:59:59.000Z

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  9. Turning on LAMP

    ScienceCinema (OSTI)

    Bostedt, Christoph

    2014-07-16T23:59:59.000Z

    Christoph Bostedt, a senior staff scientist at SLAC's Linac Coherent Light Source X-ray laser, provides a sneak peek of a powerful new instrument, called LAMP, that is now available for experiments that probe the atomic and molecular realm. LAMP replaces and updates the first instrument at LCLS, dubbed CAMP, which will be installed at an X-ray laser in Germany.

  10. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01T23:59:59.000Z

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

  11. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register Supplemental Notice of Proposed Rulemaking regarding Test Procedures for Integrated Light-Emitting Diode Lamps, as issued by the Deputy Assistant Secretary for Energy Efficiency on June 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  12. Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp

    DOE Patents [OSTI]

    Borowiec, Joseph Christopher (Schenectady, NY); Cocoma, John Paul (Clifton Park, NY); Roberts, Victor David (Burnt Hills, NY)

    1998-01-01T23:59:59.000Z

    An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

  13. Side-by-Side Testing of Commercial Office Lighting Systems: Two-lamp Fluorescent Fixtures

    E-Print Network [OSTI]

    Parker, D. S.; Schrum, L.; Sonne, J. K.; Stedman, T. C.

    1996-01-01T23:59:59.000Z

    Lighting systems in commercial office buildings are primary determinants of building energy use. In warmer climates, lighting energy use has important implications for building cooling loads as well as those directly associated with illumination...

  14. Visible Light Photocatalysis with Nitrogen-Doped Titanium Dioxide Nanoparticles Prepared by Plasma Assisted Chemical Vapor Deposition

    SciTech Connect (OSTI)

    Buzby,S.; Barakat, M.; Lin, H.; Ni, C.; Rykov, S.; Chen, J.; Shah, S.

    2006-01-01T23:59:59.000Z

    Nitrogen-doped TiO{sub 2} nanoparticles were synthesized via plasma assisted metal organic chemical vapor deposition. Nitrogen dopant concentration was varied from 0 to 1.61 at. %. The effect of nitrogen ion doping on visible light photocatalysis has been investigated. Samples were analyzed by various analytical techniques such as x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure. Titanium tetraisopropoxide was used as the titanium precursor, while rf-plasma-decomposed ammonia was used as the source for nitrogen doping. The N-doped TiO{sub 2} nanoparticles were deposited on stainless steel mesh under a flow of Ar and O2 gases at 600 {sup o}C in a tube reactor. The photocatalytic activity of the prepared N-doped TiO{sub 2} samples was tested by the degradation of 2-chlorophenol (2-CP) in an aqueous solution using a visible lamp equipped with an UV filter. The efficiency of photocatalytic oxidation of 2-CP was measured using high performance liquid chromatography. Results obtained revealed the formation of N-doped TiO{sub 2} samples as TiO{sub 2-x}N{sub x}, and a corresponding increase in the visible light photocatalytic activity.

  15. Lamp with a truncated reflector cup

    DOE Patents [OSTI]

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15T23:59:59.000Z

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  16. LED Replacements for Linear Fluorescent Lamps Webcast

    Broader source: Energy.gov [DOE]

    In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

  17. Cost effectiveness of long life incandescent lamps and energy buttons

    SciTech Connect (OSTI)

    Verderber, R.; Morse, O.

    1980-04-07T23:59:59.000Z

    Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen hours are determined for each lamp system. It is found that the most important component lighting cost is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial unit cost of $20.00, is the most cost-effective source of illumination compared to the incandescent lamp and lamp systems examined.

  18. Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of...

    Energy Savers [EERE]

    Maintenance of LED PAR38 Lamps LED T8 Replacement Lamps 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking...

  19. High pressure neon arc lamp

    DOE Patents [OSTI]

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15T23:59:59.000Z

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  20. Laboratory Evaluation of LED T8 Replacement Lamp Products

    SciTech Connect (OSTI)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23T23:59:59.000Z

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  1. Over the past decade, lighting became more efficient across all...

    Broader source: Energy.gov (indexed) [DOE]

    of light output (in lumen-hours) provided by each lamp type. "Other" includes light-emitting diode (LED) lamps as well as other lamps such as fiber optic lights, induction lamps,...

  2. High brightness microwave lamp

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09T23:59:59.000Z

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  3. Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED)

    E-Print Network [OSTI]

    Short, Daniel

    the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state in lighting products without compromising their performance and useful lifespan. INTRODUCTION The U.S. Energy to increase energy efficiency for general lighting. Therefore, consumers are replacing incandescent light

  4. Reducing home lighting expenses

    SciTech Connect (OSTI)

    Aimone, M.A.

    1981-02-01T23:59:59.000Z

    Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

  5. Light storage in a room temperature atomic vapor based on coherent population oscillations

    E-Print Network [OSTI]

    M. -A. Maynard; F. Bretenaker; F. Goldfarb

    2014-10-21T23:59:59.000Z

    We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $\\Lambda$ system selected by polarization in metastable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $\\Lambda$ system.

  6. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  7. Heat transfer assembly for a fluorescent lamp and fixture

    SciTech Connect (OSTI)

    Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  8. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10T23:59:59.000Z

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  9. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect (OSTI)

    Miller, Naomi

    2011-07-01T23:59:59.000Z

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at Intercontinental Hotel in San Francisco, CA

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-11-01T23:59:59.000Z

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program have been prescreened and tested to verify their actual performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products.

  11. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps.

    SciTech Connect (OSTI)

    Royer, Michael P.; Poplawski, Michael E.; Brown, Charles C.

    2014-12-14T23:59:59.000Z

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one characteristic, but not others. Consumers (and specifiers) may have a hard time distinguishing better-performing lamps from one another; at this time, physical experimentation is likely the best evaluation tool.

  12. Integral CFLs performance in table lamps

    SciTech Connect (OSTI)

    Page, E.; Driscoll, D.; Siminovitch, M.

    1997-03-01T23:59:59.000Z

    This paper focuses on performance variations associated with lamp geometry and distribution in portable table luminaires. If correctly retrofit with compact fluorescent lamps (CFLs), these high use fixtures produce significant energy savings, but if misused, these products could instead generate consumer dissatisfaction with CFLs. It is the authors assertion that the lumen distribution of the light source within the luminaires plays a critical role in total light output, fixture efficiency and efficacy, and, perhaps most importantly, perceived brightness. The authors studied nearly 30 different integral (screw-based) CFLs available on the market today in search of a lamp, or group of lamps, which work best in portable table luminaires. The findings conclusively indicate that horizontally oriented CFLs outperform all other types of CFLs in nearly every aspect.

  13. Channelization architecture for wide-band slow light in atomic vapors

    E-Print Network [OSTI]

    Zachary Dutton; Mark Bashkansky; Michael Steiner; John Reintjes

    2005-10-20T23:59:59.000Z

    We propose a ``channelization'' architecture to achieve wide-band electromagnetically induced transparency (EIT) and ultra-slow light propagation in atomic Rb-87 vapors. EIT and slow light are achieved by shining a strong, resonant ``pump'' laser on the atomic medium, which allows slow and unattenuated propagation of a weaker ``signal'' beam, but only when a two-photon resonance condition is satisfied. Our wideband architecture is accomplished by dispersing a wideband signal spatially, transverse to the propagation direction, prior to entering the atomic cell. When particular Zeeman sub-levels are used in the EIT system, then one can introduce a magnetic field with a linear gradient such that the two-photon resonance condition is satisfied for each individual frequency component. Because slow light is a group velocity effect, utilizing differential phase shifts across the spectrum of a light pulse, one must then introduce a slight mismatch from perfect resonance to induce a delay. We present a model which accounts for diffusion of the atoms in the varying magnetic field as well as interaction with levels outside the ideal three-level system on which EIT is based. We find the maximum delay-bandwidth product decreases with bandwidth, and that delay-bandwidth product ~1 should be achievable with bandwidth ~50 MHz (~5 ns delay). This is a large improvement over the ~1 MHz bandwidths in conventional slow light systems and could be of use in signal processing applications.

  14. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

    2001-01-01T23:59:59.000Z

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  15. Fluorescent Tube Lamps

    Broader source: Energy.gov [DOE]

    FEMP temporarily suspended its energy efficiency requirements for fluorescent tube lamps as it evaluates the market impact of the pending 2012 minimum efficiency standards for fluorescent lamps. The program will issue updated energy efficiency requirements when the market distribution of this product category stabilizes and when doing so has the potential to result in significant Federal energy savings.

  16. Jacketed lamp bulb envelope

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

    2001-01-01T23:59:59.000Z

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  17. Study of high frequency & low frequency electronic ballasts for HID lamps

    E-Print Network [OSTI]

    Peng, Hua

    1997-01-01T23:59:59.000Z

    High-intensity discharge (HID) lamp electronic ballasting is receiving increasing attention in the recent years as low wattage HID lighting systems are finding indoor applications. Advantages of high frequency electronic ballast for HID lamps...

  18. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11T23:59:59.000Z

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  19. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, Donald A. (Butler, PA); Turner, Brian (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

    1999-01-01T23:59:59.000Z

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  20. Light storage via coherent population oscillation in a thermal cesium vapor

    E-Print Network [OSTI]

    A. J. F. de Almeida; J. Sales; M. -A. Maynard; T. Laupretre; F. Bretenaker; D. Felinto; F. Goldfarb; J. W. R. Tabosa

    2014-09-19T23:59:59.000Z

    We report on the storage of light via the phenomenon of Coherent Population Oscillation (CPO) in an atomic cesium vapor at room temperature. In the experiment the optical information of a probe field is stored in the CPO of two ground states of a Lambda three-level system formed by the Zeeman sublevels of the hyperfine transition F = 3 - F' = 2 of cesium D2 line. We show directly that this CPO based memory is very insensitive to stray magnetic field inhomogeneities and presents a lifetime which is mainly limited only by atomic motion. A theoretical simulation of the measured spectra was also developed and is in very good agreement with the experiment.

  1. Nonlinear Magneto-Optical Rotation in Rubidium Vapor Excited with Blue Light

    E-Print Network [OSTI]

    Pustelny, S; Akulshin, A; Auzinsh, M; Leefer, N; Budker, D

    2015-01-01T23:59:59.000Z

    We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2\\!S_{1/2}\\rightarrow 6^2\\!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2\\!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a model, where only a single excited-state relaxation rate is used.

  2. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31T23:59:59.000Z

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  3. Lamp bulb with integral reflector

    DOE Patents [OSTI]

    Levin, Izrail (Silver Spring, MD); Shanks, Bruce (Gaithersburg, MD); Sumner, Thomas L. (Wheaton, MD)

    2001-01-01T23:59:59.000Z

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  4. CALiPER Retail Lamps Study 3

    SciTech Connect (OSTI)

    Royer, Michael P.; Beeson, Tracy A.

    2014-02-01T23:59:59.000Z

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other uses, such as in enclosed luminaires, may require more development. At the same price point, lamps purchased in 2013 tended to have higher output and slightly higher efficacy than in 2011 or 2010. Over 30% of the products purchased in 2013 exceeded the maximum efficacy measured in 2011 (71 lm/W), with the most efficacious product measured at 105 lm/W. There appears to be increasing consistency in color quality, with a vast majority of products having a CCT of 2700 K or 3000 K and a CRI between 80 and 85. There were also fewer poor performing products tested and more high-performing products available in 2013 than in previous years. The accuracy of equivalency and performance claims was better than in 2011, but remains a concern, with 43% of tested products failing to completely meet their equivalency claim and 20% of products failing to match the manufacturer’s performance data. Although progress has been substantial, on average LED lamps remain more expensive than other energy efficiency lighting technologies -- although some aspects can be superior. Although not universal to all product lines or all product types, the issue of insufficient lumen output from LED lamps is waning. Thus, manufacturers can focus on other issues, such as reducing cost, improving electrical/dimmer compatibility, eliminating flicker, or improving color quality. While these issues are not inherent to all products, they remain a concern for the broader market.

  5. Magnetic fluorescent lamp

    DOE Patents [OSTI]

    Berman, S.M.; Richardson R.W.

    1983-12-29T23:59:59.000Z

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  6. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, M.J.

    1992-11-10T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

  7. Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps

    E-Print Network [OSTI]

    Lehman, Brad

    Issues, Models and Solutions for Triac Modulated Phase Dimming of LED Lamps Dustin Rand (Raytheon Edison socket LED lamps directly from residential phase modulated dimmer switches. In order to explain brightness "White Light" LEDs have experts predicting that the "bright white replacement lamp" could trigger

  8. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

  9. One piece microwave container screens for electrodeless lamps

    DOE Patents [OSTI]

    Turner, Brian (Myersville, MD); Ury, Michael (Bethesda, MD)

    1998-01-01T23:59:59.000Z

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  10. Electrodeless lamp energized by microwave energy

    SciTech Connect (OSTI)

    Ervin, R.M.; Perret, J.

    1990-01-16T23:59:59.000Z

    This patent describes an electrodeless lamp. It comprises: a microwave cavity; a source of microwaves in communication with the cavity; a lamp envelope containing a plasma-forming medium mounted within the microwave cavity; a gas manifold for feeding gas to at least one gas passageway for directing a stream of gas to the outer surface of the envelope; a gas leak passageway leading from the gas manifold; a conductive mesh assembly for retaining microwaves within the cavity and permitting light to be emitted from the cavity. The assembly including gas flow blocking means for preventing the flow of gas through the gas leak passageway when the screen is in place in the lamp; and means for shutting off the source of microwaves when the gas pressure in the manifold drops below a predetermined value.

  11. Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition

    SciTech Connect (OSTI)

    Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County 54561, Taiwan (China); Shei, Shih-Chang [Department of Electrical Engineering, National University of Tainan, No.33, Sec. 2, Shulin St., West Central Dist., Tainan City 70005, Taiwan (China)

    2014-09-07T23:59:59.000Z

    In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

  12. Max Tech and Beyond: Fluorescent Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01T23:59:59.000Z

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp contains less material (i.e., glass, fill gas and phosphor), and has a higher luminance, enabling fixtures to take advantage of the smaller lamp size to improve the optics and provide more efficient overall system illuminance. In addition to offering the market a high-quality efficacious light source, another strong value proposition of fluorescent lighting is its long operating life. In today's market, one manufacturer is offering fluorescent lamps that have a rated life of 79,000 hours - which represents 18 years of service at 12 hours per day, 365 days per year. These lamps, operated using a long-life ballast specified by the manufacturer, take advantage of improvements in cathode coatings, fill gas chemistry and pressure to extend service life by a factor of four over conventional fluorescent lamps. It should be noted that this service life is also longer (approximately twice as long) as today's high-quality LED products. The fluorescent market is currently focused on the T5 and T8 lamp diameters, and it is not expected that other diameters would be introduced. Although T8 is a more optimal diameter from an efficacy perspective, the premium efficiency and optimization effort has been focused on T5 lamps because they are 40% smaller than T8, and are designed to operate at a higher temperature using high-frequency electronic ballasts. The T5 lamp offers savings in terms of materials, packaging and shipping, as well as smaller fixtures with improved optical performance. Manufacturers are actively researching improvements in four critical areas that are expected to yield additional efficacy improvements of approximately 10 to 14 percent over the next five years, ultimately achieving approximately 130 lumens per watt by 2015. The active areas of research where these improvements are anticipated include: (1) Improved phosphors which continue to be developed and patented, enabling higher efficacies as well as better color rendering and lumen maintenance; (2) Enhanced fill gas - adjusting proportions of argon, krypton, neon and xenon to optimize performance, while also m

  13. Sub-Doppler resonances in the back-scattered light from random porous media infused with Rb vapor

    E-Print Network [OSTI]

    Villalba, S; Lenci, L; Bloch, D; Lezama, A; Failache, H

    2013-01-01T23:59:59.000Z

    We report on the observation of sub-Doppler resonances on the back-scattered light from a random porous glass medium with rubidium vapor filling its interstices. The sub-Doppler spectral lines are the consequence of saturated absorption where the incident laser beam saturates the atomic medium and the back-scattered light probes it. Some specificities of the observed spectra reflect the transient atomic evolution under confinement inside the pores. Simplicity, robustness and potential miniaturization are appealing features of this system as a spectroscopic reference.

  14. Electrodeless HID lamp study. Final report. [High intensity discharge

    SciTech Connect (OSTI)

    Anderson, J.M.; Johnson, P.D.; Jones, C.E.; Rautenberg, T.H.

    1985-01-01T23:59:59.000Z

    High intensity discharge lamps excited by solenoidal electric fields (SEF/HID) were examined for their ability to give high brightness, high efficacy and good color. Frequency of operation was 13.56 MHz (ISM Band) and power to the lamp plasma ranged from about 400 to 1000 W. Radio frequency transformers with air cores and with air core complemented by ferrite material in the magnetic path were used to provide the voltage for excitation. Electrical properties of the matching network and the lamp plasma were measured or calculated and total light from the lamp was measured by an integrating sphere. Efficacies calculated from measurement were found to agree well with the positive column efficacies of conventional HID lamps containing only mercury, and with additives of sodium, thallium, and scandium iodide. Recommendations for future work are given.

  15. LED MR16 Lamps

    Broader source: Energy.gov [DOE]

    The following CALiPER report provides detailed analysis of LED MR16 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Pending reports will offer analysis on performance attributes that are not captured by LM-79 testing. These reports are intended to educate the industry on market trends, potential issues, and important areas for improvement.

  16. Emission and spectral characteristics of electrodeless indium halide lamp

    SciTech Connect (OSTI)

    Takeda, M.; Hochi, A.; Horii, S.; Matsuoka, T. [Matsushita Electric Industrial Co., Ltd., Kyoto (Japan). Lighting Research Lab.

    1997-12-31T23:59:59.000Z

    The electrodeless HID lamp excited by microwave has been intensively investigated because of its long life, high efficacy and environmental aspect. This study reports excellent emission and spectral characteristics of electrodeless HID lamp containing indium halides. The authors investigate InI and InBr as ingredients, and measure the microwave excited spectra and luminous intensities of lamps which are made from spherical silica glass in 10--40 mm outer diameter and with various amounts of halides. It is well known that such indium halides in the usual metal-halide lamps have strong blue line emission at 410 and 451nm. But, in the authors` microwave excited lamps, continuous spectrum can be observed in addition in the visible region. Increasing input of power of microwave makes this continuous spectrum stronger. Below 1kW microwave input power, the spectrum of InBr lamp almost resembled the CIE standard illuminant D65. As a consequence of the spectrum, they found that the color rendering and the duv of InBr lamp were excellent as high as 95 and smaller than 0.002, respectively, in the region of 400--800W input power. The efficacy higher than 100 lm/W was further achieved at 400W. The authors confirm that the microwave excited indium halides lamps can be applicable to many fields of lighting.

  17. Application Summary Report 22: LED MR16 Lamps

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-07-23T23:59:59.000Z

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens, or the approximate equivalent of a 50 W halogen MR16 lamp. Many factors beyond photometric performance should be considered during specification. For example, performance over time, transformer and dimmer compatibility, and total system performance are all critical to a successful installation. Subsequent CALiPER reports will investigate more complex issues.

  18. LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    The following CALiPER reports provide detailed analysis of LED PAR38 lamp performance, covering basic performance characteristics as well as subjective evaluation of beam, shadow, and color quality. Pending reports will offer analysis on flicker, dimming and power quality characteristics; stress testing; and lumen and chromaticity maintenance. These reports are intended to educate the industry on market trends, potential issues, and important areas for improvement.

  19. Electrodeless lamp using a single magnetron and improved lamp envelope therefor

    SciTech Connect (OSTI)

    Ury, M. G.; Ryan, P. J.; Wood, Ch. H.

    1985-03-12T23:59:59.000Z

    A microwave generated electrodeless lamp using a single magnetron, and an improved lamp envelope therefor. An elongated lamp envelope containing a plasma forming medium is disposed in a microwave chamber comprised of a reflector and mesh. The reflector includes a pair of coupling slots, each of which is disposed equidistant from the ends of the lamp envelope. A waveguide means is provided which has a wall which is comprised of a portion of the reflector which includes the slots, and has means for introducing microwave energy thereto at an area equidistant from the two slots so that the energy couples equally to the slots. When the frequency of the microwave energy and chamber dimensions are arranged so that a symmetrical standing wave exists in the chamber, a balanced system results wherein after a short start-up period, approximately equal light output is obtained from the respective ends of the lamp envelop. In order to prevent recondensation of the envelope fill during operation at areas of low temperature, and improved envelope is provided in which such areas are severly tapered to cause hotter operation thereat.

  20. Efficient Light Sources Today

    E-Print Network [OSTI]

    Hart, A. L.

    1982-01-01T23:59:59.000Z

    This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

  1. Practical features of illumination with high pressure sodium lamps

    SciTech Connect (OSTI)

    Corth, R.

    1983-06-01T23:59:59.000Z

    A number of concerns raised about the health effects of high pressure sodium lamps (HPS) are discussed. The notion of a ''natural'' human photic environment based on sunlight is disputed. Humans are better adapted to the ''greenish'' spectral composition of forest light than to direct sunlight. It is ironic that the artificial light source which has received the most disapproval, cool white flourescent lamp, has a spectral composition similar to that of forest light. HPS is also available in a full range of colors. Some successful examples of HPS--from North Division High School, in Milwaukee, Wisconsin, to museum exhibits at National Geographic in Washington--are listed.

  2. Demonstration of LED Retrofit Lamps at the Smithsonian American Art Museum, Washington, DC

    SciTech Connect (OSTI)

    Miller, Naomi J.; Rosenfeld, Scott M.

    2012-06-22T23:59:59.000Z

    This report documents observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy GATEWAY Solid-State Lighting (SSL) Technology Demonstration Program at the Smithsonain American Art Museum in Washington, DC. LED Lamp samples were tested in the museum workshop, temporarily installed in a gallery for feedback, and ultimately replaced all traditional incandescent lamps in one gallery of modernist art at the American Art Museum and partially replacing lamps in two galleries at the Musesum's Renwick Gallery. This report describes the selection and testing process, technology challenges, perceptions, economics, energy use, and mixed results of usign LED replacement lamps in art galleries housing national treasures.

  3. Performance of T12 and T8 Fluorescent Lamps and Troffers and LED Linear Replacement Lamps CALiPER Benchmark Report

    SciTech Connect (OSTI)

    Myer, Michael; Paget, Maria L.; Lingard, Robert D.

    2009-01-16T23:59:59.000Z

    The Department of Energy (DOE) Commercially Available LED Product Evaluation and Reporting (CALiPER) Program was established in 2006 to investigate the performance of light-emitting diode (LED) based luminaires and replacement lamps. To help users better compare LED products with conventional lighting technologies, CALiPER has also performed benchmark research and testing of traditional (i.e., non-LED) lamps and fixtures. This benchmark report addresses standard 4-foot fluorescent lamps (i.e., T12 and T8) and the 2-foot by 4-foot recessed troffers in which they are commonly used. This report also examines available LED replacements for T12 and T8 fluorescent lamps, and their application in fluorescent troffers. The construction and operation of linear fluorescent lamps and troffers are discussed, as well as fluorescent lamp and fixture performance, based on manufacturer data and CALiPER benchmark testing. In addition, the report describes LED replacements for linear fluorescent lamps, and compares their bare lamp and in situ performance with fluorescent benchmarks on a range of standard lighting measures, including power usage, light output and distribution, efficacy, correlated color temperature, and the color rendering index. Potential performance and application issues indicated by CALiPER testing results are also examined.

  4. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  5. A Photometric and Energy Assessment of a Novel Lighting System

    SciTech Connect (OSTI)

    Crawford, Doug; Gould, Carl; Packer, Michael; Rubinstein, Francis; Siminovitch, Michael

    1995-06-01T23:59:59.000Z

    This paper describes the results of a photometric and energy analysis that was conducted on a new light guide and sulfur lamp system recently installed at both the US Department of Energy's Forrestal building and the Smithsonian Institution's National Air and Space Museum. This system couples high lumen output, high efficiency sulfur lamps to hollow light guides lined with a reflective prismatic film. At the Forrestal building the system lights a large roadway and plaza area that lies beneath a section of the building. It has been designed to completely replace the grid of 280 mercury vapor lamps formerly used to illuminate the space. At the National Air and Space Museum a similar system illuminates Gallery 114, which houses the large rocket displays from the US Space program. This paper outlines the unique operational and design characteristics of this highly efficient distribution system and details the results of field studies that characterize the significant energy savings and increased illumination levels that have been achieved. The projected savings in maintenance costs, due to longer lamp life and a reduction of the total number of lamps, is also presented.

  6. Inductive tuners for microwave driven discharge lamps

    DOE Patents [OSTI]

    Simpson, James E. (Gaithersburg, MD)

    1999-01-01T23:59:59.000Z

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  7. Estimation of temporal separation of slow light pulses in atomic vapors by weak measurement

    E-Print Network [OSTI]

    Pardeep Kumar; Shubhrangshu Dasgupta

    2015-03-16T23:59:59.000Z

    We show how two circular polarization components of a linearly polarized pulse, propagating through a coherently driven dilute atomic vapor, can be well resolved in time domain by weak measurement. Slower group velocity of one of the components due to electromagnetically induced transparency leads to a differential group delay between the two components. For low number density, this delay may not be large enough to temporally resolve the two components. We show how this can be enhanced in terms of mean time of arrival of the output pulse through a post-selected polarizer. We demonstrate the idea with all the analytical and numerical results, with a specific example of alkali atoms.

  8. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD)

    2001-01-01T23:59:59.000Z

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  9. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24T23:59:59.000Z

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  10. Microwave power spectral density and its effects on exciting electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Butler, S.J.; Goss, H.H.; Lapatovich, W.P. [Osram Sylvania Inc., Salem, MA (United States)

    1995-12-31T23:59:59.000Z

    The effects of a microwave source generating a spectrally dense power spectrum on the operation of an electrodeless high intensity discharge lamp were measured. Spectrally pure sources operating within ISM bands at 915 MHz and 2.45 GHz produce stable capacitively coupled discharges useful for producing flicker-free light for numerous applications. The internal plasma temperature distribution and lamp geometry define acoustic resonance modes within the lamp which can be excited with power sidebands. The operation of lamps with commercially available power sources and custom built generators are discussed. Estimates of the spectral purity required for stable operation are provided.

  11. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  12. Red phosphors for use in high CRI fluorescent lamps

    DOE Patents [OSTI]

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15T23:59:59.000Z

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  13. Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks

    E-Print Network [OSTI]

    energy through temperature and pressure to drive the mercury into a vapor phase. Mercury is a heavy metal, and is regulated in drinking water by the EPA through the Safe Drinking Water Act (SDWA). If an on-line lamp break historically the U.S. has been skeptical to implement UV into drinking water systems, many areas of Europe

  14. Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications

    E-Print Network [OSTI]

    Mills, Evan

    2007-01-01T23:59:59.000Z

    lamp calibrated by Labsphere Spectral measurements - LEDs inLEDs we tested is exceptionally good (as good or better than many compact fluorescent lamps),lamp. Off-grid lighting products using the poorer LEDs would

  15. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

    1988-01-01T23:59:59.000Z

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  16. Text-Alternative Version: CALiPER Report Series 20 on LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    Michael Royer, Lighting Engineer, Pacific Northwest National Laboratory: The CALiPER program looks at typical LED lamp performance attributes. As we've gone through the progression of reports, we...

  17. DOE Publishes CALiPER Snapshot Report on LED MR16 Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released a Snapshot Report on MR16 lamps, which utilizes the LED Lighting Facts® program's extensive product database to help industry...

  18. Microwave generated electrodeless lamp for producing bright output

    SciTech Connect (OSTI)

    Wood, Ch. H.; Ury, M. G.

    1985-03-26T23:59:59.000Z

    A microwave generated electrodeless light source for producing a bright output comprising a lamp structure including a microwave chamber and a plasma medium-containing lamp envelope having a maximum dimension which is substantially less than a wavelength disposed therein. To provide the desired radiation output the interior of the chamber is coated with a UV-reflective material and the chamber has an opening for allowing UV radiation to exit, which is covered with a metallic mesh. The chamber is arranged to be near-resonant at a single wavelength, and the lamp envelope has a fill including mercury at an operating pressure of 1-2 atmospheres, while a power density of at least 250-300 (watts/cm/sup 3/) is coupled to the envelope to result in a relatively high deep UV output at a relatively high brightness.

  19. The electrical and lumen output characteristics of an RF lamp

    SciTech Connect (OSTI)

    Alexandrovich, B.M.; Godyak, V.A.; Piejak, R.B. [Osram Sylvania Inc., Beverly, MA (United States)

    1996-12-31T23:59:59.000Z

    Low pressure rf discharges have been studied for over a century. Their first practical application for lighting was proposed by Tesla in 1891. Since then hundreds of patents have been published attempting to implement rf lighting. However, progress in understanding rf discharge phenomena (mostly driven by plasma processing needs) and dramatic improvement in the performance/cost ratio of rf power sources have recently opened the door for development of rf light sources. Today commercial inductively coupled electrodeless lamps are offered by Matsuhita, Philips and GE. In this work the authors present measurements of the electrical characteristics and lumen output from a 2.65 MHz driven inductively coupled light source. Measurements were made on a spherical lamp of 3.125 inch diameter with a re-entrant cavity that houses a cylindrical ferrite core around which is wrapped the primary coil.

  20. The evolving price of household LED lamps: Recent trends and historical comparisons for the US market

    SciTech Connect (OSTI)

    Gerke, Brian F.; Ngo, Allison T.; Alstone, Andrea L.; Fisseha, Kibret S.

    2014-10-14T23:59:59.000Z

    In recent years, household LED light bulbs (LED A lamps) have undergone a dramatic price decline. Since late 2011, we have been collecting data, on a weekly basis, for retail offerings of LED A lamps on the Internet. The resulting data set allows us to track the recent price decline in detail. LED A lamp prices declined roughly exponentially with time in 2011-2014, with decline rates of 28percent to 44percent per year depending on lumen output, and with higher-lumen lamps exhibiting more rapid price declines. By combining the Internet price data with publicly available lamp shipments indices for the US market, it is also possible to correlate LED A lamp prices against cumulative production, yielding an experience curve for LED A lamps. In 2012-2013, LED A lamp prices declined by 20-25percent for each doubling in cumulative shipments. Similar analysis of historical data for other lighting technologies reveals that LED prices have fallen significantly more rapidly with cumulative production than did their technological predecessors, which exhibited a historical decline of 14-15percent per doubling of production.

  1. Max Tech and Beyond: Fluorescent Lamps

    E-Print Network [OSTI]

    Scholand, Michael

    2012-01-01T23:59:59.000Z

    Laboratory, LBNL-4998E. General Electric Lamp and BallastEuropean Union General Electric High Intensity DischargeEnergy Saver”; and General Electric has a 26 watt T5 lamp (

  2. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  3. Comparison lamps automation CTIO 60 inches Echelle

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Comparison lamps automation CTIO 60 inches Echelle ECH60S5.1 La Serena, December 09, 2009 #12)...............................................................................12 CTIO 60 inches Echelle / Comparison lamps automation, ECH60S5.1 2 #12;Introduction The present document is just a brief summary of the work done automating the 60 inches echelle comparison lamps

  4. Comparison lamps automation CTIO 60 inches CHIRON

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Comparison lamps automation CTIO 60 inches CHIRON CHI60HF5.2 La Serena, March 16, 2011 #12;Table)...............................................................................12 CTIO 60 inches Chiron / Comparison lamps automation, CHI60HF5.2 2 #12;Introduction The present document is just a brief summary of the work done automating the 60 inches chiron comparison lamps

  5. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  6. The glass lamps from the 11th-century shipwreck at Serc?e Liman, Turkey: a thesis

    E-Print Network [OSTI]

    Morden, Margaret Elizabeth

    1982-01-01T23:59:59.000Z

    writ1ng during the 4th century, describes a hanging lamp in the following terms: "From the center of panelled ceil1ngs 1n spac1ous rooms . . . openwork bronze lamps were suspended by cable . like a kind of tree w1th pliant vine-like branches... to the three major forms of lamp development discussed earlier. Paul the S1lentiary, in h1s description of Sancta Soph1a in Constantinople, describes the lighting of the entire church (see Appendix III). In the center of the church a lamp was suspended 37...

  7. Phosphors for LED lamps

    DOE Patents [OSTI]

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13T23:59:59.000Z

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  8. Environmental and health aspects of lighting: Mercury

    SciTech Connect (OSTI)

    Clear, R.; Berman, S.

    1993-07-01T23:59:59.000Z

    Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

  9. Demonstration of LED Retrofit Lamps at the Jordan Schnitzer Museum of Art

    SciTech Connect (OSTI)

    Miller, Naomi J.

    2011-09-01T23:59:59.000Z

    The Jordan Schnitzer Museum of Art in Eugene, Oregon, houses a remarkable permanent collection of Asian art and antiquities, modern art, and sculpture, and also hosts traveling exhibitions. In the winter and spring of 2011, a series of digital photographs by artist Chris Jordan, titled "Running the Numbers," was exhibited in the Coeta and Donald Barker Special Exhibitions Gallery. These works graphically illustrate waste (energy, money, health, consumer objects, etc.) in contemporary culture. The Bonneville Power Administration and the Eugene Water and Electricity Board provided a set of Cree 12W light-emitting diode (LED) PAR38 replacement lamps (Cree LRP38) for the museum to test for accent lighting in lieu of their standard Sylvania 90W PAR38 130V Narrow Flood lamps (which draw 78.9W at 120V). At the same time, the museum tested LED replacement lamps from three other manufacturers, and chose the Cree lamp as the most versatile and most appropriate color product for this exhibit. The lamps were installed for the opening of the show in January 2011. This report describes the process for the demonstration, the energy and economic results, and results of a survey of the museum staff and gallery visitors on four similar clusters of art lighted separately by four PAR38 lamps.

  10. Covered Product Category: Compact Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including compact fluorescent lamps (CFLs), which are an ENERGY STAR-qualified product category.

  11. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  12. Energy savings with solid-state ballasted high-pressure sodium lamps

    SciTech Connect (OSTI)

    Verderber, R.R.; Morse, O.

    1981-04-01T23:59:59.000Z

    The performance of three types of solid-state ballasts used to operate high-pressure sodium lamps is discussed. Each type of solid-state ballast has been designed to operate an HPS lamp of a different wattage (150, 200, and 400 watts). The performance of these ballasts compared to standard core-coil ballasts operating the same HPS lamps shows that system efficiency improves as much as 17%. The solid-state ballasted HPS system also demonstrates excellent regulation with respect to input voltage and output power. These new ballasts can dim the HPS lamps and reduce flicker from more than 60% to less than 3%. Refitting street lighting with these new HPS systims provides an attractive return on initial capital investment.

  13. Solid-state lamp with integral occupancy sensor

    E-Print Network [OSTI]

    Cooley, John J.

    Previous work demonstrated a retrofit proximity detector for fluorescent lamps using the lamp's own stray electric fields. This paper extends the retrofit sensor system to a solid-state (LED) lamp. The design and implementation ...

  14. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  15. Consumer Light Bulb Changes: Briefing and Resources for Media...

    Broader source: Energy.gov (indexed) [DOE]

    flux") - CFL: Compact Fluorescent Lamp: The curly fluorescent bulbs - LED: Light Emitting Diode: more recently emerging technology, also called "solid state lighting" as it is...

  16. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03T23:59:59.000Z

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  17. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  18. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02T23:59:59.000Z

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  19. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

    1989-01-01T23:59:59.000Z

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  20. Slow light propagation and amplification via electromagnetically induced transparency and four-wave mixing in an optically dense atomic vapor

    E-Print Network [OSTI]

    N. B. Phillips; A. V. Gorshkov; I. Novikova

    2009-03-24T23:59:59.000Z

    We experimentally and theoretically analyze the propagation of weak signal field pulses under the conditions of electromagnetically induced transparency (EIT) in hot Rb vapor, and study the effects of resonant four-wave mixing (FWM). In particular, we demonstrate that in a double-$\\Lambda$ system, formed by the strong control field with the weak resonant signal and a far-detuned Stokes field, both continuous-wave spectra and pulse propagation dynamics for the signal field depend strongly on the amplitude of the seeded Stokes field, and the effect is enhanced in optically dense atomic medium. We also show that the theory describing the coupled propagation of the signal and Stokes fields is in good agreement with the experimental observations.

  1. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOE Patents [OSTI]

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11T23:59:59.000Z

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  2. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01T23:59:59.000Z

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  3. LED lamp power management system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19T23:59:59.000Z

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  4. 3654 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 10, OCTOBER 2006 High-Sensitivity Detection of Narrowband Light in a

    E-Print Network [OSTI]

    Guillas, Serge

    -emitting diode (LED), narrowband-filtered white light, and LED signal sources in a more intense tungsten-halogen-lamp

  5. Numerical Investigation of Symmetry Breaking and Critical Behavior of the Acoustic Streaming Field in High-Intensity Discharge Lamps

    E-Print Network [OSTI]

    Baumann, Bernd; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2014-01-01T23:59:59.000Z

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled 3D multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. The system behaves similar to a ferromagnet near the Curie point. Furthermore, it is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach wit...

  6. Health Implications of New Lamp Technology Progress with Lamp Safety

    E-Print Network [OSTI]

    California at Davis, University of

    (185pages) ­ "...no more dangerous than steam radiators" D Sliney 2006 #12;11/9/2013 3 F. H. Verhoeff--a Comprehensive Handbook, New York, Plenum, 1980, 500 pages 2006 UV and Blue-Light Hazards · UV and bl e light

  7. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

    2000-01-01T23:59:59.000Z

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  8. Metallic halide lights and lighting systems. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations of selected patents concerning the design and operation of metallic halide lights and lighting systems. High pressure, high intensity, and low wattage discharge lamps are described. Citations discuss power sources, lamp life, lamp control circuits, thermal switches, and heat reflective coatings. Applications in sport stadium lighting, vehicle headlights, and crop-lighting are included. (Contains a minimum of 170 citations and includes a subject term index and title list.)

  9. 6035 Hg(Ar) Lamp in 6058 Fiber Optic Accessory. Pencil Style Calibration Lamps

    E-Print Network [OSTI]

    Woodall, Jerry M.

    to that of the Hg(Ar) Lamp, which is the characteristic mercury line spectrum. Forced air-cooling (i.e. from of the handle for connection to the power supply. Table 1 Usable Wavelengths of Spectral Calibration Lamps (in.2 1079.8 1084.5 1114.3 Power Supplies; AC versus DC We offer different power supplies for different needs

  10. The Problem Conventional office lighting typically consists of bright fluo-

    E-Print Network [OSTI]

    by delamping--result in lower power consump- tion. The PLS, which features light-emitting diode (LED lighting is reduced and three light-emitting diode (LED) task lights (two desk lamps and one undercabinet

  11. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

    2001-01-01T23:59:59.000Z

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  12. Electrochromic properties of tungsten trioxide thin films prepared by photochemical vapor deposition

    SciTech Connect (OSTI)

    Maruyama, Toshiro; Kanagawa, Tetsuya (Kyoto Univ. (Japan). Dept. of Chemical Engineering)

    1994-09-01T23:59:59.000Z

    Electrochromic tungsten trioxide thin films were prepared by a photochemical vapor deposition. The source material was tungsten carbonyl. A 6 W low pressure mercury lamp was used as a light source. Amorphous tungsten trioxide thin films were obtained at a substrate temperature of 200 C. The UV radiation enhances the oxidation of tungsten, in addition to the acceleration of the deposition of the films. Reduction and oxidation of the films in a 0.3M LiClO[sub 4] propylene carbonate solution resulted in desirable changes in optimal absorption. The bleaching time was short compared to the amorphous CVD film. Coulometry indicated that the coloration efficiency was 222 cm[sup 2]/C.

  13. New Energy Efficiency Standards for Metal Halide Lamp Fixtures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce...

  14. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  15. Advances in Lighting

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01T23:59:59.000Z

    colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

  16. Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that various models of incandescent reflector lamps do not comport with the energy conservation standards.

  17. Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.

  18. Modelling of a Fluorescent Lamp Plasma

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een TECHNISCHE UNIVERSITEIT EINDHOVEN Hartgers, Albertus Modelling of a Fluorescent Lamp Plasma / by Albertus Hartgers. - Eindhoven : Technische Universiteit Eindhoven, 2003. - Proefschrift. ISBN 90-386-1665-1 NUR 924

  19. Modelling Additive Transport in Metal Halide Lamps

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Beks, Mark Louwrens Modelling Additive Transport in Metal Halide Lamps/ door Beks, M.L. - Eindhoven : Technische Universiteit Eindhoven, 2008. Proefschrift. ISBN: 978

  20. Modeling of highly loaded fluorescent lamps

    SciTech Connect (OSTI)

    Lister, G.G.; Lawler, J.E.; Curry, J.J.

    1999-07-01T23:59:59.000Z

    Numerical modeling of the positive column of fluorescent lamps under conditions of high current density are of current interest, particularly in view of recent developments in electrodeless lamps. Current models tend to overestimate radiation output, and consequently the maintenance electric field in these discharges. Under highly loaded conditions, mercury-rare gas fluorescent lamps exhibit strong mercury depletion on axis (cataphoresis), and an understanding of resonance radiation transport under these conditions is therefore vital to the development of models with a predictive capability. The authors have explored the effect of radial cataphoresis on resonance radiation trapping for situations in which the radiation transport is dominated by foreign gas broadening, Doppler broadening, or resonance collisional broadening of the spectral line. Several different production rates per unit volume of resonance (excited) atoms have also been studied. It is advantageous in many cases to parameterize the trapped decay rate in terms of the total number of ground state atoms in the positive column independent of their radial distribution. The results of this work have been included in a numerical model of the positive column and the predicted influence on discharge parameters will be presented for cases of interest to highly loaded lamps.

  1. Energy 101: Lighting Choices | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about 50 per year. For more information on lighting...

  2. Stress Testing of the Philips 60W Replacement Lamp L Prize Entry

    SciTech Connect (OSTI)

    Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark

    2012-04-24T23:59:59.000Z

    The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stress cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions of the Philips L Prize entry.

  3. LED lamp color control system and method

    DOE Patents [OSTI]

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05T23:59:59.000Z

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  4. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A. (Great Falls, VA); Bass, Gary K. (Mt. Airy, MD); Copsey, Jesse F. (Germantown, MD); Garber, Jr., William E. (Poolesville, MD); Kwong, Vincent H. (Vancouver, CA); Levin, Izrail (Silver Spring, MD); MacLennan, Donald A. (Gaithersburg, MD); Roy, Robert J. (Frederick, MD); Steiner, Paul E. (Olney, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

    2002-01-01T23:59:59.000Z

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  5. Advanced lighting guidelines: 1993. Final report

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31T23:59:59.000Z

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

  6. Tomorrow's cities -the lamp-posts watching every move1 by Jane Wakefield for BBC News2

    E-Print Network [OSTI]

    South Bohemia, University of

    the city council is looking to upgrade its23 streetlights to more energy-efficient LED lights - likely in the area. The pilot project will be integrated with the newly built City Operations Centre, where CCTVTomorrow's cities - the lamp-posts watching every move1 by Jane Wakefield for BBC News2 3 Imagine

  7. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06T23:59:59.000Z

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  8. Application of vane-type resonator to microwave powered electrodeless HID lamp

    SciTech Connect (OSTI)

    Hochi, Akira; Takeda, Mamoru

    1999-07-01T23:59:59.000Z

    A cavity resonator has been generally used as microwave applicator for an electrodeless high intensity discharge (HID) lamp. The size of a cavity resonator is determined by the wavelength of a microwave applied. For example, for a microwave of 2.45 GHz, an inner diameter of more than about 76 mm is necessary for obtaining a microwave resonant field, and then the size of a plasma arc capable of maintaining a stable discharge is experimentally limited at about 15 mm and above. Accordingly the microwave powered electrodeless HID lamp device using cavity resonator is inappropriate in applications where a point light source is required. A vane-type resonator is generally known as an anode of a magnetron, which decides the oscillation frequency of the magnetron. The authors used 3-D finite element method simulation for a design of a vane-type resonator with parabolic reflector to obtain a desired resonant frequency. According to the results of the simulation, the sizes of a 4-vanes resonator with the parabolic reflector were decided, and the resonator made of aluminum and copper was prepared. An electrodeless lamp with InBr and Ar gas enclosed in a spherical quartz glass tube having an inner diameter of about 4 mm was also prepared, and was set at center portion of the resonator. The total luminous flux was about 2,150 lm at microwave input of 27 W. Incidentally, the CRI and Tc for this lamp were 93 and 10,200 K, respectively. Thus, it becomes possible to efficiently couple microwave energy with a smaller-sized electrodeless HID lamp than conventional.

  9. arc lamp heal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cultures) -- (Animal Behaviour Wang, Yan 40 Spatial and time-dependent distribution of plasma parameters in the metal-halide arc lamp. Physics Websites Summary: for the...

  10. ave lamp margareete: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wm; Kaufmann, David E; Davis, Michael W; Versteeg, Maarten 2012-01-01 213 Study of the electrodeless discharge lamps for photochemical applications and temperature dependence of...

  11. Fluorescent lamp unit with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-08-08T23:59:59.000Z

    A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

  12. Blue-green phosphor for fluorescent lighting applications

    DOE Patents [OSTI]

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15T23:59:59.000Z

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  13. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, George (820 Skywood Rd., Lafayette, CA 94549); Orr, Thomas Robert (2285 Vestal, Castro Valley, CA 94546); Greene, Charles Maurice (6450 Regent St., Oakland, CA 94618); Crawford, Douglas Gordon (33 Longridge Rd., Orinda, CA 94563); Berman, Samuel Maurice (2832 Union St., San Francisco, CA 94123)

    1998-01-01T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  14. RF driven sulfur lamp having driving electrodes arranged to cool the lamp

    DOE Patents [OSTI]

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1998-10-20T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  15. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOE Patents [OSTI]

    Simpson, James E. (Gaithersburg, MD)

    2000-01-01T23:59:59.000Z

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  16. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated...

  17. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-06-18 Issuance: Test Procedure for Integrated...

  18. Stresa, Italy, 26-28 April 2006 DESIGN AND FABRICATION OF A NOVEL LIGHT GUIDING PLATE FOR BACKLIGHT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is applied in TFT-LCD which consists of light source (as a fluorescent lamp), a light guiding plate, prism. A white LED is used to be light sources of the CCLGP and optical illuminator is applied to measure AND CONCEPT The cold cathode fluorescent lamp (CCFL) was used to be the light sources of the traditional

  19. Method and apparatus for mounting a dichroic mirror in a microwave powered lamp assembly using deformable tabs

    DOE Patents [OSTI]

    Ury, M.; Sowers, F.; Harper, C.; Love, W.

    1998-11-24T23:59:59.000Z

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet. 7 figs.

  20. Method and apparatus for mounting a dichroic mirror in a microwave powered lamp assembly using deformable tabs

    DOE Patents [OSTI]

    Ury, Michael (Bethesda, MD); Sowers, Frank (Frederick, MD); Harper, Curt (Wheaton, MD); Love, Wayne (Olney, MD)

    1998-01-01T23:59:59.000Z

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector secured at the juncture of the two sections to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. The reflector is mounted in the cavity by tabs formed in the screen unit and bendable into the cavity to define support planes abutting respective surfaces of the reflector. The mesh section and tabs are preferably formed by etching a thin metal sheet.

  1. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    SciTech Connect (OSTI)

    Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

    2011-04-15T23:59:59.000Z

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  2. New LED light sources and lamps for general illumination

    E-Print Network [OSTI]

    , Henrik Pedersen and Paul Michael Petersen Risø DTU, Optics and Plasma Research Department, DK-4000

  3. Peak Power Reduction Strategies for the Lighting Systems in Government Buildings

    E-Print Network [OSTI]

    Al-Nakib, D.; Al-Mulla, A. A.; Maheshwari, G. P.

    2010-01-01T23:59:59.000Z

    fluorescent lamps with ECGs, CFLs, incandescent lamps and light emitting diodes (LEDs). The building has a peak load of around 2900 kW and it is mainly shared by A/C and lighting. Lighting system is controlled by DELMATIC software which controls...

  4. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  5. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    data logger equipped rechargeable LED lamps, monitoring theadoption of the LED lamps, and a follow-up survey.s kiosk illuminated by an LED lamp Radecsky, K. , P.

  6. Westinghouse Lighting: Order (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE ordered Westinghouse Lighting Corporation to pay a $50,000 civil penalty after finding Westinghouse Lighting had failed to certify that certain models of general service flourescent and incandescent reflector lamps comply with the applicable energy conservation standards.

  7. Fluorescent lamp with static magnetic field generating means

    DOE Patents [OSTI]

    Moskowitz, P.E.; Maya, J.

    1987-09-08T23:59:59.000Z

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  8. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, B.A.; Siminovitch, M.

    1997-07-29T23:59:59.000Z

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  9. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, Bruce A. (825 Manor Rd., El Sobrante, CA 94803); Siminovitch, Michael (829 Manor Rd., El Sobrante, CA 94803)

    1997-01-01T23:59:59.000Z

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  10. Nonequilibrium lighting plasmas

    SciTech Connect (OSTI)

    Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

    1991-12-01T23:59:59.000Z

    In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

  11. Electrodeless lighting RF power source development. Final report

    SciTech Connect (OSTI)

    NONE

    1996-08-30T23:59:59.000Z

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  12. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  14. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  15. Stalled on the Road to the Market: Analysis of Field Experience with a Project to Promote Lighting Efficiency in India

    E-Print Network [OSTI]

    Gadgil, A.J.

    2008-01-01T23:59:59.000Z

    Lamps in India and Brazil" Energy Policy, 19(6):449-463.1991. "Energy-Efficient Lighting in Brazil and India:

  16. Energy Savings Potential for Street Lighting in India

    E-Print Network [OSTI]

    Johnson, Alissa K.

    2014-01-01T23:59:59.000Z

    M. B. Kostic, “Light-emitting diodes in street and roadwayCompact fluorescent Light emitting diode High intensityCompact fluorescent Light emitting diode Mercury Vapor High

  17. Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that model F40T12/CWE (Westinghouse product code 07521000), a general service fluorescent lamp, and model 15GLOBE/65/2 (Westinghouse product code 3800400), a medium base compact fluorescent lamp, do not comport with the energy conservation standards.

  18. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  19. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  20. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  1. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    SciTech Connect (OSTI)

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K [Space Applications Centre, ISRO, Ahmedabad-380015 (India)

    2011-10-20T23:59:59.000Z

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  2. DOE Publishes Special CALiPER Report on Retail Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released a special report on LED lamps available through the retail marketplace and targeted toward general consumers. The report follows similar...

  3. NEWS & VIEWS synchrotron or helium-lamp studies. But

    E-Print Network [OSTI]

    Loss, Daniel

    NEWS & VIEWS synchrotron or helium-lamp studies. But the low energy of the laser photons raises that of a conventional metal. The effects of projection have led to detailed quantitative insights into the properties

  4. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Richardson, Robert W. (Pelham, NY)

    1985-01-01T23:59:59.000Z

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  5. Energy-efficient lighting system for television

    DOE Patents [OSTI]

    Cawthorne, Duane C. (Amarillo, TX)

    1987-07-21T23:59:59.000Z

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  6. Solid State Lighting Semiconductor Spectroscopy & Devices

    E-Print Network [OSTI]

    Strathclyde, University of

    and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy % of Earth's total power consumption is used for lighting! Figure 3: Earth at night from space. Evolution inside a semiconductor for light emission. Over 150 years ago... How to achieve white LEDs? Figure 5

  7. Lighting plasmas, energy and the environment

    SciTech Connect (OSTI)

    Rogoff, G.L. [Osram Sylvania Inc., Salem, MA (United States)

    1994-12-31T23:59:59.000Z

    Light production accounts for a significant fraction of the electrical energy used, and plasma-based light sources presently account for a significant fraction of existing lamps. In fact, the plasma-lamp portion is increasing, primarily due to the efficiency and economic benefits offered. Although relatively complex systems, the plasmas contained in those lamps are highly efficient electrical-to-radiative energy converters. Lighting can affect the environment indirectly through the power generation technologies as well as through waste disposal. However, while the relevance of energy efficiency and material disposal to environmental issues is clear, less apparent, but also important, are the environmental effects of the light itself. The latter play a significant role in determining whether lamp improvements are accepted and used. This talk describes some aspects of the physics of plasma lamps that are particularly important in establishing their widespread use. Topics include: key discharge processes, the significance of mercury in plasma-based lamps, and the disposal issue, particularly for mercury.

  8. February 8th 2011 Visible light communications

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    400 350 300 250 200 150100 150 200 150 150 200 x y 0 LED Lamp 5 m x y 0 5 m 2.5 800 600 700 500 400 200 150100 150 200 150 150 200 x y 0 LED Lamp 5 m x y 0 5 m x y 0 LED Lamp 5 m x y 0 5 m 2.5 800 600 exchange RF Wireless channel PC or portable terminal Visible optical link LED solid state lighting unit #12

  9. Cold Light from Hot Atoms and Molecules

    SciTech Connect (OSTI)

    Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2011-05-11T23:59:59.000Z

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  10. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22T23:59:59.000Z

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  11. Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting

    E-Print Network [OSTI]

    Wee, Qixun

    2008-01-01T23:59:59.000Z

    One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

  12. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect (OSTI)

    Kern, G.

    1999-04-01T23:59:59.000Z

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  13. ComEd- Business Instant Lighting Discounts Program (Illinois)

    Broader source: Energy.gov [DOE]

    ComEd offers the Business Instant Lighting Discounts program to businesses, multi-family properties and private schools. Incentives are available on a variety of reduced wattage lamps which can be...

  14. Energy Saving and Good Quality Lighting for Indoor Applications

    E-Print Network [OSTI]

    Lange, H.

    2008-01-01T23:59:59.000Z

    with extremely high lamp efficacies, silver-coated aluminum lamellae optics for high luminares efficiency, as well as highly efficient electronic gear take care that the energy consumption is decreasing up to 40%, while the light quality is improving. Latest...

  15. The Reduction of Retinal Autofluorescence Caused by Light Exposure

    E-Print Network [OSTI]

    is important because several clinical procedures (such as slit- lamp examination, fundus photography has led to the theory that light exposure plays a role in some retinal diseases including age

  16. Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Westinghouse Lighting Corporation failed to certify various flourescent and incandescent reflector lamps as compliant with the applicable energy conservation standards.

  17. Very high efficacy electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Johnson, P.D.

    1987-11-10T23:59:59.000Z

    This patent describes an electrodeless arc lamp for forming a ring shaped plasma in a region therein during operation comprising a tube having a raised bottom center section, and an optically transparent outer jacket hermetically sealing the tube to protect the tube from cooling by convection. The raised center section rises centrally to form a ring shaped reservoir below the region in which the rig shaped plasma is formed to minimize wall cooling during operation of the lamp so that there is enhanced excitation near the center of the tube.

  18. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, Peter D. (Schenectady, NY)

    1987-01-01T23:59:59.000Z

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  19. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, P.D.

    1985-10-03T23:59:59.000Z

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  20. DOE Publishes CALiPER Report on LED T8 Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released an Application Summary Report that focuses on the bare-lamp performance of 31 linear LED lamps intended as an alternative to T8...

  1. LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Broader source: Energy.gov [DOE]

    This May 19, 2009 webcast summarized CALiPER's recent benchmark testing of common omnidirectional incandescent lamps (e.g., A-lamps), and provided an update on ENERGY STAR criteria for LED integral...

  2. April 2002, L. Henn-Lecordier LAMP general operating procedures 1 Laboratory for Advanced Materials Processing

    E-Print Network [OSTI]

    Rubloff, Gary W.

    written request ­ Receive safety training from DES ­ Lab orientation with the lab manager ­ Equipment training and qualification #12;April 2002, L. Henn-Lecordier LAMP general operating procedures 9 LAMP "10

  3. Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''

    SciTech Connect (OSTI)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20T23:59:59.000Z

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

  4. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  5. A Behavioral SPICE Compatible Model of an Electrodeless Fluorescent Lamp Sam Ben-Yaakov*1

    E-Print Network [OSTI]

    to the plasma. In the case of the lamp with electrodes, coupling is via wires. In the case of the electrodelessA Behavioral SPICE Compatible Model of an Electrodeless Fluorescent Lamp Sam Ben-Yaakov*1 , Moshe, SPICE compatible, model was developed for an electrodeless fluorescent lamp (OSRAM SYLVANIA ICETRON

  6. Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat

    E-Print Network [OSTI]

    Levens, Kurt Antony, 1961-

    1997-01-01T23:59:59.000Z

    Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

  7. Basics of lava-lamp convection Balzs Gyre1

    E-Print Network [OSTI]

    Jánosi, Imre M.

    marketed only since the sixties 1 . The most essential ingredients are two immis- cible fluids of densities function, the lava lamp has been used also as visual aid in geoscience courses 2 demonstrat- ing phenomena such as the transformation of energy, force and motion, adiabatic circulations in the atmosphere and oceans, or magma

  8. Lighting and the Bottom Line

    E-Print Network [OSTI]

    Christensen, M.

    1981-01-01T23:59:59.000Z

    of replace~ent lamps, renlacement and clean ina labor, and electricity. These costs are a?nrOxiMately 5% for lamps, 10% for labor and ~5% for electricity. In a f'1.a.nufacturing plant the avera<1e apnroxi mate expenditure for laf'1ns ner employee per... year is $5.30. ~ith this infor~ation, kno''''in<1 the nu!'1ber of employees, the total annual operatin<1 cost of the li~hting system can be estimated. ~1any analvses of this type have shown that the cost of operating the lighting system is always...

  9. Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits

    E-Print Network [OSTI]

    Liu, Z.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    , street lights and traffic lights represent one of the largest categories of electricity used by a city. By retrofitting the street lights with energy efficient lamps such as high pressure sodium and metal halide and traffic lights with light-emitting... diode (LED) traffic signals, a city 1 In the 2003 and 2005 Texas State legislative sessions, the emissions reductions legislation in Senate Bill 5 was modified by House bill 3235, and House bill 1365...

  10. Light-Emitting Diodes in the Solid-State Lighting Systems

    E-Print Network [OSTI]

    Sparavigna, Amelia Carolina

    2014-01-01T23:59:59.000Z

    Red and green light-emitting diodes (LEDs) had been produced for several decades before blue emitting diodes, suitable for lighting applications, were widely available. Today, we have the possibility of combining the three fundamental colours to have a bright white light. And therefore, a new form of lighting, the solid-state lighting, has now become a reality. Here we discuss LEDs and some of their applications in displays and lamps.

  11. CX-000110: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    replace existing public lighting using sodium vapor lamp technology with LED (light-emitting diode) technology. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000110.pdf More Documents &...

  12. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  13. ISSUANCE 2014-12-29: Energy Conservation Program: Clarification for Energy Conservation Standards and Test Procedures for Fluorescent Lamp Ballasts

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Clarification for Energy Conservation Standards and Test Procedures for Fluorescent Lamp Ballasts

  14. Shipboard lighting: A.D. 400-1900

    E-Print Network [OSTI]

    Quinn, Kendra LeeAnne

    1999-01-01T23:59:59.000Z

    . Openings in the Deck: Gratings, Skylights and Deck-lights. . . 82 88 CONCLUSION. . . . 105 REFERENCES. 113 APPENDIX 129 VITA. 142 LIST OF TABLES TABLE 1 Ancient Shipwrecks with Non-Cargo Lamps Organized by Date. . . . . . 2 Shipwrecks with Lamps... (1862-63, Edited 1987), provided first hand accounts of how certain areas of a ship were illuminated. Perhaps the largest portion of information came from reports of wreck sites which mention an oil-lamp, candle or lantern among the non-cargo artifact...

  15. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    SciTech Connect (OSTI)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Radecsky, Kristen

    2009-03-21T23:59:59.000Z

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for a given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.

  16. 2014-04-11 Issuance: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for general service fluorescent lamps and incandescent reflectors lamps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on April 11, 2014.

  17. University of Winnipeg Department of Theatre and Film Safe Handling of Lighting Instruments Updated: 09/2010

    E-Print Network [OSTI]

    Martin, Jeff

    . - Depending on the facility you are working in wattages may vary. Replace bulbs only of the same type the pipe and lower or hand it down to a spotter. CHANGING LAMPS: - The light must be physically unplugged to change a bulb you must wait a minimum of 5 minutes after the lamp has been on and you must use gloves

  18. Energy Savings Forecast of Solid-State Lighting in General Illuminatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18% of the total U.S. electricity use in 2013 (Navigant, 2014). At that time, light- emitting diode (LED) lamp and luminaire products were costly, and very few were installed in...

  19. CALiPER Retail Lamps Study RRL3.2 Lumen and Chromaticity Maintenance of LED A lamps Operated in Steady-State Conditions

    SciTech Connect (OSTI)

    Royer, Michael P.; McCullough, Jeffrey J.; Tucker, Joseph C.

    2014-12-01T23:59:59.000Z

    The lumen depreciation and color shift of 17 different A lamps (15 LED, 1 CFL, 1 halogen) was monitored in the automated long-term test apparatus (ALTA) for more than 7,500 hours. Ten samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at an ambient temperature of 45°C (-1°C). Importantly, the steady-state test conditions were not optimized for inducing catastrophic failure for any of the lamp technologies—to which thermal cycling is a strong contributor— and are not typical of normal use patterns—which usually include off periods where the lamp cools down. Further, the test conditions differ from those used in standardized long-term test methods (i.e., IES LM-80, IES LM-84), so the results should not be directly compared. On the other hand, the test conditions are similar to those used by ENERGY STAR (when elevated temperature testing is called for). Likewise, the conditions and assumptions used by manufacturers to generated lifetime claims may vary; the CALiPER long-term data is informative, but cannot necessarily be used to discredit manufacturer claims. The test method used for this investigation should be interpreted as one more focused on the long-term effects of elevated temperature operation, at an ambient temperature that is not uncommon in luminaires. On average, the lumen maintenance of the LED lamps monitored in the ALTA was better than benchmark lamps, but there was considerable variation from lamp model to lamp model. While three lamp models had average lumen maintenance above 99% at the end of the study period, two products had average lumen maintenance below 65%, constituting a parametric failure. These two products, along with a third, also exhibited substantial color shift, another form of parametric failure. While none of the LED lamps exhibited catastrophic failure—and all of the benchmarks did—the early degradation of performance is concerning, especially with a new technology trying to build a reputation with consumers. Beyond the observed parametric failures nearly half of the products failed to meet early-life thresholds for lumen maintenance, which were borrowed from ENERGY STAR specifications. That is, the lumen maintenance was sufficiently low at 6,000 hours that seven of the products are unlikely to have lumen maintenance above 70% at their rated lifetime (which was usually 25,000 hours). Given the methods used for this investigation—most notably continuous operation—the results should not be interpreted as indicative of a lamp’s performance in a typical environment. Likewise, these results are not directly relatable to manufacturer lifetime claims. This report is best used to understand the variation in LED product performance, compare the robustness of LED lamps and benchmark conventional lamps, and understand the characteristics of lumen and chromaticity change. A key takeaway is that the long-term performance of LED lamps can vary greatly from model to model (i.e., the technology is not homogenous), although the lamp-to-lamp consistency within a given model is relatively good. Further, operation of LED lamps in an enclosed luminaire (or otherwise in high ambient temperatures), can induce parametric failure of LEDs much earlier than their rated lifetime; manufacturer warnings about such conditions should be followed if performance degradation is unacceptable.

  20. Lumen and Chromaticity Maintenance of LED PAR38 Lamps Operated in Steady-State Conditions

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-12-01T23:59:59.000Z

    The lumen depreciation and color shift of 38 different lamps (32 LED, 2 CFL, 1 ceramic metal halide [CMH], 3 halogen) were monitored in a specially developed automated long-term test apparatus (ALTA2) for nearly 14,000 hours. Five samples of each lamp model were tested, with measurements recorded on a weekly basis. The lamps were operated continuously at a target ambient temperature between 44°C and 45°C.

  1. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06T23:59:59.000Z

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  2. EA-1881: Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to amend energy conservation standards for various consumer products and certain commercial and industrial equipment, including fluorescent lamp ballasts.

  3. Text-Alternative Version: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® webcast.

  4. The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis in a Microwave Field

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Electrodeless Discharge Lamps Coated with the Titania Thin Film for Photocatalysis assisted photocatalysis using TiO2 thin films has been examined. Several factors influencing

  5. Atomic vapor spectroscopy in integrated photonic structures

    E-Print Network [OSTI]

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01T23:59:59.000Z

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  6. Conservation potential of compact fluorescent lamps in India and Brazil

    SciTech Connect (OSTI)

    Gadgil, A.; Martino Jannuzzi, G. de (Lawrence Berkeley Lab., CA (USA); Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia)

    1989-07-01T23:59:59.000Z

    We evaluate the conservation potential of compact fluorescent lamps (CFLs) for managing the rapidly increasing electrical energy and peak demand in India and Brazil. Using very conservative assumptions, we find that the cost of conserved energy using 16 W CFLs is 4 and 6 times less than the long range marginal cost of electricity for the two countries. The cost of avoided peak installed capacity is 6 and 9.5 times less than the cost of new installed capacity for India and Brazil. The analysis is undertaken from the three separate perspectives of the national economies, the consumers, and the utilities. We find that because residential electricity is subsidized, the consumers have little or no incentive to purchase and install the CFLs, unless they too are subsidized. However, the benefits of CFL installation to the utility are so large that subsidizing them is a paying proposition for the utility are so large that subsidizing them is a paying proposition for the utility in almost all cases. As an illustration of a gradual introduction strategy for CFLs, we calculate a scenario where national savings of the order of US $1.2 million per day for India and US $2.5 million per day for Brazil are reached in 10 years by a small and gradual transfer of subsidy from residential electricity to CFLs. We then explore the barriers to immediate large scale introduction of these lamps in the two countries. Specific technical and marketing problems are identified and discussed, which would require solution before such an introduction can be attempted. Lastly, we discuss the range of policy instruments, in addition to a subsidy scheme, that can be used for promoting the diffusion of these lamps in the domestic and commercial sector. 47 refs., 15 figs., 2 tabs.

  7. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, Michael G. (Bethesda, MD); Turner, Brian (Myersville, MD); Wooten, Robert D. (Rockville, MD)

    1999-01-01T23:59:59.000Z

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  8. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02T23:59:59.000Z

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  9. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

    1987-03-31T23:59:59.000Z

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  10. Color stable phosphors for LED lamps and methods for preparing them

    DOE Patents [OSTI]

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26T23:59:59.000Z

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  11. Vapor generation methods for explosives detection research. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor generation methods for explosives detection research. Vapor generation methods for explosives detection research. Abstract: The generation of calibrated vapor samples of...

  12. Compact light source performance in recessed type luminaires

    SciTech Connect (OSTI)

    Hammer, E.E.

    1998-11-01T23:59:59.000Z

    Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

  13. Power Quality Improvements in Lighting Systems Mr. Ashish Shrivastava

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    an integral part of indoor and outdoor lighting in domestic, commercial, industrial, institutional and retail applications. Due to reduced size, compact fluorescent lamps (CFL) have been preferred in comparison and vibration. It is also gaining wider acceptance in the automotive industries, decorative lightings, traffic

  14. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  15. CALiPER Report 20.3: Robustness of LED PAR38 Lamps

    SciTech Connect (OSTI)

    Poplawski, Michael E.; Royer, Michael P.; Brown, Charles C.

    2014-12-31T23:59:59.000Z

    Three samples of 40 of the Series 20 PAR38 lamps underwent multi-stress testing, whereby samples were subjected to increasing levels of simultaneous thermal, humidity, electrical, and vibrational stress. The results do not explicitly predict expected lifetime or reliability, but they can be compared with one another, as well as with benchmark conventional products, to assess the relative robustness of the product designs. On average, the 32 LED lamp models tested were substantially more robust than the conventional benchmark lamps. As with other performance attributes, however, there was great variability in the robustness and design maturity of the LED lamps. Several LED lamp samples failed within the first one or two levels of the ten-level stress plan, while all three samples of some lamp models completed all ten levels. One potential area of improvement is design maturity, given that more than 25% of the lamp models demonstrated a difference in failure level for the three samples that was greater than or equal to the maximum for the benchmarks. At the same time, the fact that nearly 75% of the lamp models exhibited better design maturity than the benchmarks is noteworthy, given the relative stage of development for the technology.

  16. Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition

    E-Print Network [OSTI]

    Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition Monm Doshi (I-0425 regan.zane@colorado.edu Absfruci-This paper presents a low frequency architecture for driving parallel to the architecture is a proposed capacitive coupling approach for ac lamp ignition. The system consists of a single

  17. Demonstration of LED Retrofit Lamps at an Exhibit of 19th Century Photography at the Getty Museum

    SciTech Connect (OSTI)

    Miller, Naomi J.; Druzik, Jim

    2012-03-02T23:59:59.000Z

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program may have been prescreened for performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products. This report reviews the installation and use of LED PAR38 lamps to light a collection of toned albument photographic prints at the J. Paul Getty Museum in Malibu, California. Research results provided by the Getty Conservation Institute are incorporated and discussed.

  18. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  19. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  20. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    None

    2011-06-30T23:59:59.000Z

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

  1. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang; Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2010-08-10T23:59:59.000Z

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  2. Enrichment of light hydrocarbon mixture

    DOE Patents [OSTI]

    Yang, Dali (Los Alamos, NM); Devlin, David (Santa Fe, NM); Barbero, Robert S. (Santa Cruz, NM); Carrera, Martin E. (Naperville, IL); Colling, Craig W. (Warrenville, IL)

    2011-11-29T23:59:59.000Z

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  3. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Fluorescent Lamps, and LED Lamps. Published by Osram Optothe embodied energy of the LED lamp was “paid for” in onlyof manufacture for an LED lamp powered by a Ľ watt solar

  4. CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

    2014-05-27T23:59:59.000Z

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  5. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20T23:59:59.000Z

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  6. Pre-Retrofit Lighting Study at the University of Texas at Arlington, Texas

    E-Print Network [OSTI]

    Houcek, J. K.; Claridge, D. E.; Haberl, J. S.

    1993-01-01T23:59:59.000Z

    in terms of energy efficiency. The most relevant report is a 1991 Electric Power Research Institute (EPRI) publication entitled "Retrofit Lighting Technologies". Table 4 presents a summary of data provided in the EPRI report. Table 4 Lamp Comparison Table... (Based on 2 lamp systems) Notes: ? All lamps at 4100K color temperature ?? No longer manufactured ??? Using T-8 instant-start mode ballast with 0.97 ballast factor. For rapid-start T8 electronic ballast with 0.90 ballast factor, values are 5220 lm,61 W...

  7. Light-Induced Atomic Desorption (LIAD)

    E-Print Network [OSTI]

    Budker, Dmitry

    in density n0=the initial density more intense higher density!! #12;Light Friquency Low light power (0.56m, polysiloxane, etc) #12;Time Dependence exposed to 514-nm desorbing light at room temperature (~20) density increase in density!! coating is replenished #12;Light Intensity 0=relative rate of increase of the vapor

  8. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01T23:59:59.000Z

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  9. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect (OSTI)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.; Vegliň, F.

    2013-11-15T23:59:59.000Z

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  10. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    SciTech Connect (OSTI)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)] [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15T23:59:59.000Z

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  11. LEDs for Energy Efficient Greenhouse Lighting

    E-Print Network [OSTI]

    Singh, Devesh; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01T23:59:59.000Z

    Light energy is an important factor for plant growth. In regions where the natural light source, i.e. solar radiation, is not sufficient for growth optimization, additional light sources are being used. Traditional light sources such as high pressure sodium lamps and other metal halide lamps are not very efficient and generate high radiant heat. Therefore, new sustainable solutions should be developed for energy efficient greenhouse lighting. Recent developments in the field of light source technologies have opened up new perspectives for sustainable and highly efficient light sources in the form of light-emitting diodes, i.e. LEDs, for greenhouse lighting. This review focuses on the potential of LEDs to replace traditional light sources in the greenhouse. In a comparative economic analysis of traditional vs. LED lighting, we show that the introduction of LEDs allows reduction of the production cost of vegetables in the long-run of several years, due to the high energy efficiency, low maintenance cost and lon...

  12. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29T23:59:59.000Z

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  13. ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

  14. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

    2011-08-23T23:59:59.000Z

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  15. To estimate vapor pressure easily

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

    1989-10-01T23:59:59.000Z

    Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

  16. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergyNews3 Water Vapor

  17. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar323ARM Water Vapor IOP

  18. Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ishikawa, M.; Ohba, Y.; Sugawara, H.; Yamamoto, M.; Nakanisi, T.

    1986-01-20T23:59:59.000Z

    Room-temperature cw operation for InGaP/InGaAlP double heterostructure (DH) laser diodes on GaAs substrates was achieved for the first time. The DH wafers were grown by low-pressure metalorganic chemical vapor deposition using methyl metalorganics. A lasing wavelength of 679 nm and a threshold current of 109 mA at 24C were obtained for an inner stripe structure laser diode with a 250- m-long and 7- m stripe geometry. The laser operated at up to 51C. The characteristic temperature T0 was 87 K at around room temperature. The lowest threshold current density, 5.0 kA/cmS, was obtained with a 20- m stripe width laser diode under room-temperature pulsed operation.

  19. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16T23:59:59.000Z

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  20. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  1. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    SciTech Connect (OSTI)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland)] [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)] [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland) [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15T23:59:59.000Z

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II ? lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  2. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  3. Luminescent light source for laser pumping and laser system containing same

    DOE Patents [OSTI]

    Hamil, Roy A. (Tijeras, NM); Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.

  4. Vapor Retarder Classification - Building America Top Innovation...

    Energy Savers [EERE]

    the Top Innovation. See an example of vapor retarder best practices in action. Find other case studies of Building America projects across the country that utilizes vapor retarder...

  5. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect (OSTI)

    Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

    2013-04-15T23:59:59.000Z

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  6. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid hydrocarbons and their perdeuterated analogues have been determined by correlation-gas chromatography of cyclohexane-d12 and benzene-d6. Other hydrocarbons studied include the perdeuterated forms of hexane, toluene

  7. Demonstration of Fluorescent RGB Electrowetting Devices for Light Wave Coupling Displays

    E-Print Network [OSTI]

    Steckl, Andrew J.

    and wasted, instead of recycling the light for use at pixels in the ON state. We present the demonstration-degrade the organic fluorescent oils. Violet light sources include custom developed cold-cathode- fluorescent lamps of a traditional diffuse backlight because (as will be discussed later) it allows for the advantage of recycling

  8. Crystal coat warms up LED light 16:46 01 February 2008

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    in the commercial market. Illuminating buildings accounts for about a quarter of the electricity used in the US in the home. Now researchers have used nanocrystals to create LEDs that give off a warm white light. Fine Articles 'Smart' lamp offers true mood lighting http://technology.newscientist.com/article/mg19626276

  9. An Assessment of the U.S. Residential Lighting Market

    E-Print Network [OSTI]

    Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan; Sardinsky, Robert

    1995-01-01T23:59:59.000Z

    basis by fixture type and lamp wattage. The average lightingusage level, lamp wattage, fixture type, and location withinusage level, lamp wattage, fixture type, and location within

  10. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  11. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01T23:59:59.000Z

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  12. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12T23:59:59.000Z

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  13. Electric lamp, base for use therewith and method of assembling same

    DOE Patents [OSTI]

    Hough, Harold L. (Beverly, MA); English, George J. (Reading, MA); Chakrabarti, Kirti B. (Danvers, MA)

    1989-02-14T23:59:59.000Z

    An electric lamp including a reflector, at least one conductive ferrule located within a surface of the reflector and a lead-in conductor electrically connected to the ferrule and extending within the reflector. The lamp includes a base having an insulative (e.g., ceramic) cap located substantially about the ferrule, barrier means (e.g., ceramic fiber) located within the cap to define an open chamber substantially about the ferrule, an electrical conductor (e.g., wire) extending within the cap and electrically connected (e.g., silver soldered) to the ferrule, and sealing means (e.g., high temperature cement) located within the cap to provide a seal therefore. The barrier means serves to separate the sealing means from the open chamber about the ferrule such that the heat generated by the ferrule can be vented through spaced apertures located within the cap's side wall. A method of assembling a base on an electric lamp is also provided.

  14. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

    1983-04-19T23:59:59.000Z

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  15. Phosphor blends for high-CRI fluorescent lamps

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Srivastava, Alok Mani (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Manivannan, Venkatesan (Clifton Park, NY); Beers, William Winder (Chesterland, OH); Toth, Katalin (Pomaz, HU); Balazs, Laszlo D. (Budapest, HU)

    2008-06-24T23:59:59.000Z

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  16. LED Performance Specification Series: T8 Replacement Lamps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoor

  17. LED T8 Replacement Lamps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED LightingOutdoorLEDT8

  18. Plasma spectroscopic study of an electrodeless HID lamp containing Tl and Zn

    SciTech Connect (OSTI)

    Takeda, Mamoru; Horii, Shigeru; Hochi, Akira [Matsushita Electric Industrial Co., Ltd., Kyoto (Japan). Lighting Research Lab.

    1996-12-31T23:59:59.000Z

    Recently the electrodeless HID lamps excited by microwaves have been studied intensively. Tl is well known as a material having strong green emission lines. In this study, Tl spectra excited by microwaves were reported in the cases of Tl only and Tl + Zn. Using the Elenbaas`s method of high pressure Hg lamp, the cause of Tl continuous spectrum was examined. From the ratio of radiative intensities of two lines, an average arc temperature in the bulb was estimated. Then excitation level of the continuous emission spectrum near the 600nm wavelength was calculated from the dependence of the radiative intensities on these arc temperatures.

  19. Solid-state lighting technology perspective.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01T23:59:59.000Z

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  20. Plasma lighting, fiber optics, and daylight collectors: Toward the next revolution in high-efficiency illumination

    SciTech Connect (OSTI)

    Audin, L. [Columbia Univ., New York, NY (United States)

    1995-06-01T23:59:59.000Z

    Combining three recently marketed innovations may provide the next revolution in illumination, making many other recent advances eventually obsolete. The first is plasma lighting, pioneered by Fusion Lighting Inc. of Rockville, Maryland, and first commercially applied by Hutchins International Ltd. of Mississauga, Ontario. This microwave-generated light source yields very high-quality light with efficacies at or beyond high intensity discharge (HID) lamps. The source uses no mercury, thus eliminating lamp disposal problems, and has no cathode, thereby providing very long lamp life. Using no phosphors, it also has very short start and re-strike periods, and is dimmable. The second innovation is in the distribution of light. Commercial developments in fiber optics and light guides now provide products that transfer light from a remote point and distribute it like standard light fixtures. Advances in fiber optic communications and applications to decorative lighting have supplied relatively economical systems for mounting and directing light from both electric light sources and the sun. The third advance is a result of efforts to harness daylight. Unlike architectural daylighting that directs sunlight into perimeter areas through glazing, daylight collectors are roof-mounted devices that supply light to interior and underground spaces through hollow columns and open chases. Aided by improvements and cost reductions in sun-tracking (i.e., heliostatic) controls that capture and concentrate sunlight, such collectors offer a source of free light to locations that might otherwise never receive it. When combined together, these three options could offer a centralized building lighting system that pipes lumens to distribution devices replacing many existing lamps and fixtures.

  1. High Extraction Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Chris Summers; Hisham Menkara; Brent Wagner

    2011-09-30T23:59:59.000Z

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the â??anti-quenchingâ?ť behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, â??largeâ?ť nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

  2. ISSUANCE 2015-06-17: Energy Conservation Standards for Fluorescent Lamp Ballasts, Notice of Public Meeting and Availability of the Framework Document

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Fluorescent Lamp Ballasts, Notice of Public Meeting and Availability of the Framework Document

  3. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  4. The Model 5000-16C 1000 WATT FEL Lamp Standard pro-vides absolute calibration of spectral irradiance from 250 nm to

    E-Print Network [OSTI]

    The Model 5000-16C 1000 WATT FEL Lamp Standard pro- vides absolute calibration of spectral irradiance from 250 nm to 2.5 microns.This Tungsten-Halogen Lamp Standard bears the ANSI designation of FEL might be discernible at the crossover point of the two referenced NIST Scales. 5000 FEL 1000Watt Lamp

  5. Method for removal of phosgene from boron trichloride. [DOE patent application; mercury arc lamp

    DOE Patents [OSTI]

    Freund, S.M.

    1981-09-03T23:59:59.000Z

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method.

  6. DOE Publishes CALiPER Report on Linear (T8) LED Lamps in Recessed Troffers

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released Report 21.2, which is part of a series of investigations on linear LED lamps. Report 21.2 focuses on the performance of three linear (T8...

  7. DOE Publishes CALiPER Report on Cost-Effectiveness of Linear (T8) LED Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released Report 21.3, which is part of a series of investigations on linear LED lamps. Report 21.3 details a set of life-cycle cost simulations...

  8. RF driven sulfur lamp having driving electrodes which face each other

    DOE Patents [OSTI]

    Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.

    1999-06-22T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.

  9. Transport phenomena in metal-halide lamps a poly-diagnostic study

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    UNIVERSITEIT EINDHOVEN Nimalasuriya, Tanya Transport phenomena in metal-halide lamps : a poly-diagnostic study / by Tanya Nimalasuriya. - Eindhoven : Technische Universiteit Eindhoven, 2007. Proefschrift. ISBN 978 aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van

  10. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOE Patents [OSTI]

    Simpson, James E. (Gaithersburg, MD)

    1999-01-01T23:59:59.000Z

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp.

  11. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference

    DOE Patents [OSTI]

    Simpson, J.E.

    1999-06-08T23:59:59.000Z

    An electrodeless lamp waveguide structure includes tuned absorbers for spurious RF signals. A lamp waveguide with an integral frequency selective attenuation includes resonant absorbers positioned within the waveguide to absorb spurious out-of-band RF energy. The absorbers have a negligible effect on energy at the selected frequency used to excite plasma in the lamp. In a first embodiment, one or more thin slabs of lossy magnetic material are affixed to the sidewalls of the waveguide at approximately one quarter wavelength of the spurious signal from an end wall of the waveguide. The positioning of the lossy material optimizes absorption of power from the spurious signal. In a second embodiment, one or more thin slabs of lossy magnetic material are used in conjunction with band rejection waveguide filter elements. In a third embodiment, one or more microstrip filter elements are tuned to the frequency of the spurious signal and positioned within the waveguide to couple and absorb the spurious signal's energy. All three embodiments absorb negligible energy at the selected frequency and so do not significantly diminish the energy efficiency of the lamp. 18 figs.

  12. RF driven sulfur lamp having driving electrodes which face each other

    DOE Patents [OSTI]

    Gabor, George (Lafayette, CA); Orr, Thomas Robert (Castro Valley, CA); Greene, Charles Maurice (Oakland, CA); Crawford, Douglas Gordon (Orinda, CA); Berman, Samuel Maurice (San Francisco, CA)

    1999-01-01T23:59:59.000Z

    A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.

  13. Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

  14. Issues In the Design and Specification of Class Libraries Gregor Kiczales and John Lamping

    E-Print Network [OSTI]

    Introduction Object-oriented programming has been praised for many virtues, of which we believe code reuse that require their sort of functionality, we can reuse the library rather than having to code again from; Gregor@parc.xerox.com, Lamping@parc.xerox.com. c 1992 Association of Computing Machinery. Permission

  15. RG: A Case-Study for Aspect-Oriented Programming Anurag Mendhekar, Gregor Kiczales, John Lamping

    E-Print Network [OSTI]

    to be sprinkled throughout the code, resulting in code that tangled the various performance issues along 3333 Coyote Hill Road, Palo Alto, CA 94304, USA. {anurag,gregor,lamping}@parc.xerox.com #12;22 Aspect-cutting issues. In AOP, code relating to cross-cutting issues, called aspects, can be written in a way that need

  16. What A Metaobject Protocol Based Compiler Can Do For Lisp Gregor Kiczales, John Lamping, Anurag Mendhekar

    E-Print Network [OSTI]

    Mendhekar Xerox PARC Internal Report, December 1993. © Copyright 1993 Xerox Corporation. All rights reserved allows programmers to cleanly, concisely and portably code the following examples, and have them work Hill Rd., Palo Alto, CA 94304; (415)812-4888; Gregor--Lamping@parc.xerox.com. 1 #12;Internal Memo -- c

  17. Predicted Pulsed-Power/Flash-Lamp Performance of the NIF Main Amplifier

    SciTech Connect (OSTI)

    Fulkerson, E. Steven; Hammond, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-06-22T23:59:59.000Z

    The laser glass for the National Ignition Facility (NIF) Main Amplifier system is pumped by a system of 192 pulsed power/flash lamp assemblies. Each of these 192 assemblies consists of a 1.6 MJ (nominal) capacitor bank working with a Pre-Ionization/Lamp Check (PILC) pulser to drive an array of 40 flash lamps. This paper describes the predicted performance of these Power Conditioning System (PCS) modules in concert with flashlamp assemblies in NIF. Each flashlamp assembly consists of 20 parallel sets of lamps in series pairs. The sensitivity of system performance to various design parameters of the PILC pulser and the main capacitor bank is described. Results of circuit models are compared to sub-scale flashlamp tests and to measurements taken in tests of a PCS module driving a flashlamp assembly in the First Article NIF Test Module facility at Sandia National Laboratories. Also included are predictions from a physics-based, semi-empirical amplifier gain code.

  18. Women in Science The Lady with the Lamp 100 years on Prof. Sylvia Draper

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    into current (or vice versa) provides us with the capacity to devise efficient solar cells or LightemittingWomen in Science ­ The Lady with the Lamp ­ 100 years on Prof. Sylvia Draper Florence Nightingale was an inspiration to the wounded and the dying in the Crimean war and to future generations of women who wanted

  19. THIN NANOPOROUS TITANIA FILMS ON THE ELECTRODELESS DISCHARGE LAMPS FOR PHOTOCATALYSIS

    E-Print Network [OSTI]

    Cirkva, Vladimir

    THIN NANOPOROUS TITANIA FILMS ON THE ELECTRODELESS DISCHARGE LAMPS FOR PHOTOCATALYSIS Vladimír: cirkva@icpf.cas.cz, http://home.icpf.cas.cz/cirkva Keywords: Microwave assisted photocatalysis. Introduction Photocatalysis is an efficient, attractive and clean technology for pollution abatement in water

  20. Controls for Solid-State Lighting

    E-Print Network [OSTI]

    Rubinstein, Francis

    2007-01-01T23:59:59.000Z

    efficacy at 350 mA). As LED lamp current drops to under 10%saves energy but also extends LED lamp life because when theCRI LEDs might eventually replace RE phosphored lamps and

  1. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1985-01-01T23:59:59.000Z

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  3. Hydrogen Cars and Water Vapor

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

  4. Apparatus to facilitate lengthening the life of incandescent lamps

    SciTech Connect (OSTI)

    Spissinger, F.H.

    1987-03-17T23:59:59.000Z

    An energizing circuit is described for an incandescent bulb comprising a transformer having a primary winding connectable to an AC mains source and first and second secondary windings for producing first and second voltages. The first secondary winding is connected to an input of a first full-wave rectifier means and the second secondary winding is connected to an input of a second full-wave rectifier means, the full-wave rectifier means having outputs connected in parallel across the bulb. The first voltage is sufficient to fully illuminate the bulb and the second voltage is sufficient to maintain the bulb warm but with little or no light output, a first switch being connected between the first secondary winding and the first rectifier means whereby, when the first switch is open, the bulb is energized solely by the second voltage.

  5. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  6. An Integrated Solid-State LED Luminaire for General Lighting

    SciTech Connect (OSTI)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

    2009-03-31T23:59:59.000Z

    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  7. LIGHTING RESEARCH PROGRAM CASE STUDIES

    E-Print Network [OSTI]

    luminaires. At the DoubleTree Hotel, as lamp usage decreased, so did energy use, lamp replacement with a built in occupancy sensor and an LED nightlight. While these technologies are not new, the WN-100 Motion

  8. CALiPER Report 20.1: Quality of Beam, Shadow, and Color in LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    View the video about CALiPER Report 20.1 which focuses on human-evaluated characteristics, including beam quality, shadow quality, and color quality in LED PAR38 lamps.

  9. DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than those with a wide distribution (i.e., with a diffuse optic), and all of the linear LED lamps resulted in a higher luminaire efficiency than the fluorescent benchmark. The...

  10. CENTRIFUGAL LABTUBE FOR FULLY AUTOMATED DNA EXTRACTION & LAMP AMPLIFICATION BASED ON AN INTEGRATED, LOW-COST HEATING SYSTEM

    E-Print Network [OSTI]

    Hoehl, Melanie Margarete

    In this paper, we introduce a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA-extraction platform (LabTube). We demonstrate fully automated, ...

  11. Treatability study for removal of leachable mercury in crushed fluorescent lamps

    SciTech Connect (OSTI)

    Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

    1996-02-01T23:59:59.000Z

    Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

  12. Pre-Retrofit Lighting Study at the University of Texas at Arlington

    E-Print Network [OSTI]

    Houcek, J. K.; Claridge, D. E.; Haberl, J. S.

    1994-01-01T23:59:59.000Z

    .T. Arlington campus and to determine whether lamp locations within the fixture would impact the amount of light output. This was followed by a series of lab tests conducted at the Energy Systems Lab, located on the Texas A&M University campus, to compare...

  13. Vapor canister heater for evaporative emissions systems

    SciTech Connect (OSTI)

    Bishop, R.P.; Berg, P.G.

    1987-01-01T23:59:59.000Z

    Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

  14. 2015-01-28 Issuance: Test Procedure for Fluorescent Lamp Ballasts; Final Rule Correction

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule correction regarding test procedures for fluorescent lamp ballasts, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 28, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  15. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11T23:59:59.000Z

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is “lost” in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

  16. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1984-01-01T23:59:59.000Z

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  17. Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork

    SciTech Connect (OSTI)

    Douglas VanOsdell; Karin Foarde

    2002-11-30T23:59:59.000Z

    Germicidal ultraviolet (UVGI) lamps have a long history of use for inactivating microbial aerosols. Most reports have focused on the control of infectious diseases, such as tuberculosis (TB), in the occupied spaces of medical facilities. Ventilation duct use of UVGI has been increasing. In-duct applications are generally more concerned with controlling environmental organisms than with controlling infections agents. This document reports the results of a project to investigate the ability of UVGI lamps to inactivate representative environmental microbial aerosols in ventilation ducts. During this research, UVGI lamps were experimentally demonstrated to inactivate bioaerosols composed of vegetative bacteria, bacteria spores, or fungal spores to a reproducible degree under conditions of fixed dose. Vegetative bacteria were most susceptible to UVGI, with bacteria and fungal spores being substantially more resistant. The performance equation commonly cited in the literature for UVGI inactivation was found to generally apply, provided its parameters were known. Revision of final report DOE/OR22674/610-40030-01. Revised table 5 on page 33.

  18. Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems

    SciTech Connect (OSTI)

    Earl, D.D.

    2001-06-15T23:59:59.000Z

    We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.

  19. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  20. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    E-Print Network [OSTI]

    Tracy, Jennifer

    2012-01-01T23:59:59.000Z

    34 Appendix C. LED Lamp Salesthe grid-rechargeable LED lamp at a cheaper price withoutof buyers reported that the LED lamp fully replaced a pre-

  1. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    s kiosk illuminated by her LED lamp [1/2009] “A.N. ” Market:charge at a shop) “The [LED] lamp is very important and mylamp, hurricane lamp, and LED lamp illuminate night market

  2. New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2004-10-01T23:59:59.000Z

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

  3. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08T23:59:59.000Z

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  4. Vapor explosion in the RIA-ST-4 experiment. [BWR

    SciTech Connect (OSTI)

    El-Genk, M.S.

    1980-01-01T23:59:59.000Z

    A concern in assuring the safety of commercial light water reactors (LWRs) is whether core overheating, during which molten fuel is produced, can lead to massive vaporization of the coolant and shock pressurization of the system due to an energetic molten fuel-coolant interaction (MFCI). The RIA-ST-4 experiment was one of four scoping tests in the Reactivity Initiated Accident (RIA) Test Series which is being conducted in the Power Burst Facility (PBF) to define an energy deposition failure threshold and to determine modes and consequences of fuel rod failure during a postulated boiling water reactor (BWR) control rod drop accident.

  5. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  6. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  7. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  8. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    SciTech Connect (OSTI)

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01T23:59:59.000Z

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  9. Overview of chemical vapor infiltration

    SciTech Connect (OSTI)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01T23:59:59.000Z

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  10. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  11. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17T23:59:59.000Z

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  12. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures 

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  13. Flammability Characteristics of Hydrogen and Its Mixtures with Light Hydrocarbons at Atmospheric and Sub-atmospheric Pressures

    E-Print Network [OSTI]

    Le, Thuy Minh Hai

    2013-07-13T23:59:59.000Z

    /vapor. This research focuses on the flammability limits of hydrogen and its binary mixtures with light hydrocarbons (methane, ethane, n-butane, and ethylene) at sub-atmospheric pressures. The flammability limits of hydrogen, light hydrocarbons, and binary mixtures...

  14. Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya

    SciTech Connect (OSTI)

    Radecsky, Kristen; Johnstone, Peter; Jacobson, Arne; Mills, Evan

    2008-12-14T23:59:59.000Z

    superior lighting services to low income people in off-grid areas of developing countries, many of whom currently rely on fuel based lighting sources such as kerosene. If this potential is to be achieved in the near term, however, manufacturers must produce off-grid lighting products that are inexpensive, perform well, and meet the needs of potential end users. At present, relatively few products meet all three of these goals. In this article, we report results from a detailed study of lighting use by micro-enterprises in two small towns in Kenya's Rift Valley Province. The work included a survey about lighting use by 50 small businesses, careful measurements of kerosene lighting use patterns and associated costs for 23 of these businesses, and a subsequent field trial in which 14 of the 23 businesses purchased and used low cost LED lamps over a number of months.

  15. Tropospheric water vapor and climate sensitivity

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    1999-06-01T23:59:59.000Z

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

  16. Controls for Solid-State Lighting

    SciTech Connect (OSTI)

    Rubinstein, Francis

    2007-06-22T23:59:59.000Z

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

  17. Lamp Divisions

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\ LILTS PlanI9

  18. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01T23:59:59.000Z

    that UV LED and LD will replace traditional lamps and alsocolored LED as traffic signals instead of traditional lamp.

  19. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  20. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01T23:59:59.000Z

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  1. 6, 80698095, 2006 Water vapor in Asian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Sciences, Beijing, China 2 National Center for Atmospheric Research, Boulder, CO, USA Received: 23 May 2006 vapor from European Center for Medium-Range Weather20 Forecasts (ECMWF) analyses. 1 Introduction Upper Tropospheric Water Vapor (UTWV) is a key greenhouse gas which exerts a major influence on the energy balance

  2. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    E-Print Network [OSTI]

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01T23:59:59.000Z

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  3. Lighting Market Sourcebook for the U.S.

    E-Print Network [OSTI]

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-01-01T23:59:59.000Z

    2.1.4. Residential Lamp Types 2.1.5. Wattage, Hours of Use,all lamp types (mostly incandescent) in all other wattageWattage Category Energy Use (hours per day) lamp types)

  4. Physical Layer Characteristics and Techniques for Visible Light Communications

    E-Print Network [OSTI]

    Cui, Kaiyun

    2012-01-01T23:59:59.000Z

    of the illuminance variation with adjacent LED lamp distance4.4.2 E?ect of the adjacent LED lamp distance 4.4.3 E?ect ofof di?erent LED lamps. . . . . . . . . . . . . . 107 Input

  5. The Influence of Photoperiod History on Circadian Response to Light

    E-Print Network [OSTI]

    Glickman, Gena Lynne

    23 nm ˝ peak bandwidth) 8-LED lamp source with diffuser waswas delivered with a 24-LED lamp with a spectral compositionidentical to the 8-LED lamp source. Spectral power

  6. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect (OSTI)

    ANDERSON, T.J.

    2006-12-20T23:59:59.000Z

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  7. Stacked vapor fed amtec modules

    DOE Patents [OSTI]

    Sievers, Robert K. (North Huntingdon, PA)

    1989-01-01T23:59:59.000Z

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  8. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  9. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  10. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

  11. Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    Budget: The Economics of Off-Grid Lighting for SmallProject includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions for

  12. Advanced Lighting Program Development (BG9702800) Final Report

    SciTech Connect (OSTI)

    Rubinstein, Francis; Johnson, Steve

    1998-02-01T23:59:59.000Z

    The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

  13. IEEE Power Electronics Specialists Conference, PESC-97, 39-45, St. Louis, 1997. A MHz Electronic Ballast for Automotive-Type HID Lamps

    E-Print Network [OSTI]

    Ballast for Automotive-Type HID Lamps Michael Gulko and Sam Ben-Yaakov* Power Electronics Laboratory lamps designated for automotive headlight applications was investigated theoretically, by simulation and experimentally. The study reveals that a based ballast (CS-PPRI) complies with the automotive requirement of very

  14. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  15. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  16. Visible Light Digital Camera --Up to 2.3MP resolution with LED lamps provides sharp images

    E-Print Network [OSTI]

    Short, Daniel

    electrical and industrial applications · Thumbnail Image Gallery -- Allows quick search of stored images Marker Function · Auto Hot/Cold spot marker function shows a spot within the area that automatically% of reading Image Storage (1GB micro SD card) 1000 Images 1000 Images 1000 Images Emissivity Table 0.1 to 1

  17. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Maxey, L Curt [ORNL; Earl, Dennis Duncan [ORNL; Beshears, David L [ORNL; Ward, Christina D [ORNL; Parks, James Edgar [ORNL

    2006-01-01T23:59:59.000Z

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  18. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30T23:59:59.000Z

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  19. Energy-conservation opportunities in lighting

    SciTech Connect (OSTI)

    None

    1981-04-01T23:59:59.000Z

    Technologies and techniques which can be employed by your existing personnel - without the need for consultants - to reduce your lighting costs by as much as 70% are discussed. Four basic steps to reduce energy costs and improve the effectiveness of the lighting system discussed are: get acquainted with some of the basic terminology and energy efficient lamps and fixtures which are on the market; conduct a survey of the building to determine where and how much energy and money can be saved in the process; implement the simple, low-cost or no-cost measures immediately; and calculate the payback period for capital investment modifications, and implement those which make economic sense. Case studies are used to illustrate the recommendations. (MCW)

  20. DOE Publishes CALiPER Report on Dimming, Flicker, and Power Quality Characteristics of LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released Report 20.2, which is part of a series of investigations on LED PAR38 lamps. Report 20.2 focuses on dimming, flicker, and power quality...

  1. Macros that Reach Out and Touch Somewhere Gregor Kiczales, John Lamping, Luis H. Rodriguez Jr., and Erik Ruf

    E-Print Network [OSTI]

    ., and Erik Ruf Xerox PARC Internal Report, December 1991. © Copyright 1991 Xerox Corporation. All rights Xerox Corporation Gregor Kiczales, John Lamping, Luis Rodriguez and Erik Ruf Xerox PARC By providing, and insert the necessary coercions. The code stays clean, and there is no chance of missing a coercion. Both

  2. NIST energy related inventions: Electronic starter device for fluorescent lamps. Interim report, August--October, 1997

    SciTech Connect (OSTI)

    Johnson, S.A.

    1997-12-01T23:59:59.000Z

    From the Scope of Work document which accompanied the original proposal, three silicon devices were anticipated for development, simulation, and quality assurance fabrication. The status of these are in the same format as the Scope of Work...Attachment-A-: Task 1--design and simulation; Task 2--prototype tooling; Task 3--test engineering; Task 4--product tooling; Task 5--package tooling/manufacturing design and assembly. It is felt the program will meet it`s stated goals of producing a low cost, high performance fluorescent lamp starter which will lower the acquisition and operating cost of fluorescent technology...thus saving significant amounts of energy. The likelihood of success is even greater, now that the TN22 component has been qualified. The challenges of creating a custom ASIC, while still significant, are within the skill and expertise level or the assigned engineers.

  3. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01T23:59:59.000Z

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  4. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01T23:59:59.000Z

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  5. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12T23:59:59.000Z

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  6. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  7. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01T23:59:59.000Z

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  8. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10T23:59:59.000Z

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  9. Solid-Vapor Sorption Refrigeration Systems 

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    1991-01-01T23:59:59.000Z

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract.... Complex compounds have a number of advantages as working media, including: 43 SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL Engineer Rocky Research Boulder city, NV DR. UWE ROCKENFELLER President Rocky Research Boulder city, NV MR...

  10. DOE CALiPER Program, Report 21.2: Linear (T8) LED Lamp Performance in Five Types of Recessed Troffers

    SciTech Connect (OSTI)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.; Wilkerson, Andrea M.; Beeson, Tracy A.

    2014-05-20T23:59:59.000Z

    Although lensed troffers are numerous, there are many other types of optical systems as well. This report looked at the performance of three linear (T8) LED lamps chosen primarily based on their luminous intensity distributions (narrow, medium, and wide beam angles) as well as a benchmark fluorescent lamp in five different troffer types. Also included are the results of a subjective evaluation. Results show that linear (T8) LED lamps can improve luminaire efficiency in K12-lensed and parabolic-louvered troffers, effect little change in volumetric and high-performance diffuse-lensed type luminaires, but reduce efficiency in recessed indirect troffers. These changes can be accompanied by visual appearance and visual comfort consequences, especially when LED lamps with clear lenses and narrow distributions are installed. Linear (T8) LED lamps with diffuse apertures exhibited wider beam angles, performed more similarly to fluorescent lamps, and received better ratings from observers. Guidance is provided on which luminaires are the best candidates for retrofitting with linear (T8) LED lamps.

  11. Abstract--This paper deals with halogen luminaries, ones of the main used lighting sources in residential area. The use of these

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    power systems were performed to show the accuracy of developed models. Index Terms--halogen lamp, EMTP is with Schneider Electric Industries (Business Unit Power ­ Systems and Mechatronic Integration), 31 Pierre Mendes and the LV power systems. But studies regarding the power up problem of electrical lighting systems where ETs

  12. Stationary light in cold atomic gases

    E-Print Network [OSTI]

    Gor Nikoghosyan; Michael Fleischhauer

    2009-09-16T23:59:59.000Z

    We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

  13. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  14. Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light

    E-Print Network [OSTI]

    Han, Jinkyu

    2013-01-01T23:59:59.000Z

    high-color-rendering LED lamps using oxyfluoride andin white LED. (a) Typical LED lamp package. (b) Uniformin white LED. (a) Typical LED lamp package. (b) Uniform

  15. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16T23:59:59.000Z

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  16. Initial Score: # of workers

    E-Print Network [OSTI]

    Yamamoto, Keith

    My lab has replaced incandescent lamps with Compact Fluorescent Lamps (CFLs) or Light Emitting Diodes

  17. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect (OSTI)

    Andrews, E.

    1996-05-01T23:59:59.000Z

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  18. Embodied Energy and Off-Grid Lighting

    SciTech Connect (OSTI)

    Alstone, Peter; Mills, Evan; Jacobson, Arne

    2011-01-25T23:59:59.000Z

    The greenhouse gas (GHG) emissions from fuel-based lighting are substantial given the paltry levels of lighting service provided to users, leading to a great opportunity for GHG mitigation byencouraging the switch from fuel-based to rechargeable LED lighting. However, as with most new energy technology, switching to efficient lighting requires an up-front investment of energy(and GHGs) embedded in the manufacture of replacement components. We studied a population of off-grid lighting users in 2008-2009 in Kenya who were given the opportunity to adopt LEDlighting. Based on their use patterns with the LED lights and the levels of kerosene offset we observed, we found that the embodied energy of the LED lamp was"paid for" in only one month for grid charged products and two months for solar charged products. Furthermore, the energyreturn-on investment-ratio (energy produced or offset over the product's service life divided by energy embedded) for off-grid LED lighting ranges from 12 to 24, which is on par with on-gridsolar and large-scale wind energy. We also found that the energy embodied in the manufacture of a typical hurricane lantern is about one-half to one-sixth of that embodied in the particular LEDlights that we evaluated, indicating that the energy payback time would be moderately faster if LEDs ultimately displace the production of kerosene lanterns. As LED products improve, weanticipate longer service lives and more successful displacement of kerosene lighting, both of which will speed the already rapid recovery of embodied energy in these products. Our studyprovides a detailed appendix with embodied energy values for a variety of components used to construct off-grid LED lighting, which can be used to analyze other products.

  19. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01T23:59:59.000Z

    as do HID lamps, and an LED lamp includes electronic driverT8, and CFL lamps CFL lamps LED lamp CFL floodlight LightingIncandescent, fluorescent, and LED lamps Electric resistance

  20. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    SciTech Connect (OSTI)

    De Michelis, Ida, E-mail: ida.demichelis@univaq.it [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials - Ex-Optimes Loc., Campo di Pile, 67100 L'Aquila (Italy); Ferella, Francesco, E-mail: francesco.ferella@univaq.it [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials - Ex-Optimes Loc., Campo di Pile, 67100 L'Aquila (Italy); Varelli, Ennio Fioravante [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials - Ex-Optimes Loc., Campo di Pile, 67100 L'Aquila (Italy); Veglio, Francesco, E-mail: francesco.veglio@univaq.it [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials - Ex-Optimes Loc., Campo di Pile, 67100 L'Aquila (Italy)

    2011-12-15T23:59:59.000Z

    Highlights: > Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. > The use of sulphuric acid allows to reduce calcium dissolutions. > Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. > Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). > We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO{sub 3} produces toxic vapours. A full factorial design is carried out with HCl and H{sub 2}SO{sub 4} to evaluate the influence of operating factors. HCl and H{sub 2}SO{sub 4} leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H{sub 2}SO{sub 4} concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H{sub 2}SO{sub 4} medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders.

  1. General Electric Lighting The last couple months at General Electric Lighting have been very exciting. In addition to the

    E-Print Network [OSTI]

    Rollins, Andrew M.

    ) is that the higher the temperature, the more efficient the lamps operate. Therefore, these lamps are running just the temperature of these lamps accurately, the lamp must be prepared correctly. This includes cutting the arctube out of its glass casing, and welding wires to the end of the arctube so it can reach the clamps inside

  2. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  3. CALiPER Report 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps

    Broader source: Energy.gov [DOE]

    This December 3, 2013 webinar explored the findings of CALiPER 20.1: Subjective Evaluation of Beam Quality, Shadow Quality, and Color Quality for LED PAR38 Lamps and discussed what attributes to...

  4. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect (OSTI)

    Kuhne, W.

    2012-12-03T23:59:59.000Z

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

  5. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2008-10-07T23:59:59.000Z

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  6. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  7. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  8. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  9. Data:802fd0d8-8ec7-441d-8f00-214d5a4c2e84 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  10. Data:Eed4cd30-0867-4db9-bc49-0bcec5c1b12f | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  11. Data:B6739a00-6c0a-4e2d-af8a-21e9d0093040 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  12. Data:4bc18685-9bb1-4980-82ec-d883a8c62dd2 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  13. Data:2cce35e6-2b7f-4b0e-a21d-7b4d5142c9d0 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  14. Data:0a540c92-6917-4134-aecd-7770c84a34b6 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  15. Data:4b818dba-a1cd-41e8-8f1b-36b2c342bc83 | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  16. Data:5c60f0bb-b728-40a3-93ac-083076c602ca | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  17. Data:93ee6365-3e0f-45d3-ae09-cc7d28810b8a | Open Energy Information

    Open Energy Info (EERE)

    Description: Class C: Mercury Vapor Lamps or Sodium Vapor Lamps on standard overhead concrete pole construction or on existing metal pole construction, owned and operated by...

  18. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  19. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  20. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  1. An Assessment of the U.S. Residential Lighting Market

    SciTech Connect (OSTI)

    Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan; Sardinsky, Robert

    1995-10-01T23:59:59.000Z

    This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.

  2. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01T23:59:59.000Z

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place...

  3. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  4. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01T23:59:59.000Z

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  5. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  6. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24T23:59:59.000Z

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  7. Vaporization of synthetic fuels. Final report. [Thesis

    SciTech Connect (OSTI)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01T23:59:59.000Z

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  8. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01T23:59:59.000Z

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  9. Atomic-vapor-laser isotope separation

    SciTech Connect (OSTI)

    Davis, J.I.

    1982-10-01T23:59:59.000Z

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  10. Program performs vapor-liquid equilibrium calculations

    SciTech Connect (OSTI)

    Rice, V.L.

    1982-06-28T23:59:59.000Z

    A program designed for the Hewlett-Packard HP-41CV or 41C calculators solves basic vapor-liquid equilibrium problems, including figuring the dewpoint, bubblepoint, and equilibrium flash. The algorithm uses W.C. Edmister's method for predicting ideal-solution K values.

  11. Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Pruess, Karsten; O'Sullivan, Michael

    1992-01-01T23:59:59.000Z

    Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

  12. Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

    SciTech Connect (OSTI)

    Mueller, Robert P.; Simmons, Mary Ann

    2007-12-29T23:59:59.000Z

    The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).

  13. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  14. Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting)

    SciTech Connect (OSTI)

    Conan O'Rourke; Yutao Zhou

    2006-03-01T23:59:59.000Z

    The Program for the Evaluation and Analysis of Residential Lighting (PEARL) is a watchdog program. It was created in response to complaints received by utility program managers about the performance of certain Energy Star lighting products being promoted within their service territories and the lack of a self-policing mechanism within the lighting industry that would ensure the reliability of these products and their compliance with ENERGY STAR specifications. To remedy these problems, PEARL purchases and tests products that are available to the consumers in the marketplace. The Lighting Research Center (LRC) tests the selected products against the corresponding Energy Star specifications. This report includes the experimental procedure and data results of Cycle Three of PEARL program during the period of October 2002 to April 2003, along with the description of apparatus used, equipment calibration process, experimental methodology, and research findings from the testing. The products tested are 20 models of screw-based compact fluorescent lamps (CFL) of various types and various wattages made or marketed by 12 different manufacturers, and ten models of residential lighting fixtures from eight different manufacturers.

  15. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  16. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  17. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective... allows for firing temperatures much higher than possible with liquid/vapor systems. The high energy density per unit mass and the independence of the vapor pressure from the refrigerant concentration (p = f (T), p "# f( x)) over a wide range leads...

  18. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect (OSTI)

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01T23:59:59.000Z

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  19. Conference shapes direction of Doctrine 2015 -Fort Leavenworth, KS -The Fort Leavenworth Lamp http://www.ftleavenworthlamp.com/news/around_the_force/x27456959/Conference-shapes-direction-of-Doctrine-2015[8/18/2011 12:32:27 PM

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Conference shapes direction of Doctrine 2015 - Fort Leavenworth, KS - The Fort Leavenworth Lamp and more accessible. The conference was led by the Combined Arms Doctrine Directorate, a subordinate

  20. Estimate of federal relighting potential and demand for efficient lighting products

    SciTech Connect (OSTI)

    Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

    1993-11-01T23:59:59.000Z

    The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

  1. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect (OSTI)

    James Ibbetson

    2006-05-01T23:59:59.000Z

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  2. FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE

    SciTech Connect (OSTI)

    Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

    2012-11-10T23:59:59.000Z

    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

  3. Precision micro drilling with copper vapor lasers

    SciTech Connect (OSTI)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02T23:59:59.000Z

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  4. Solid-Vapor Sorption Refrigeration Systems

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract... Complex compound sorption reactions are ideally suited for use in refrigeration cycles as an economically viable alternative to CFC refrigerants. Complex compound refrigeration provides a number of energy-saving advantages over present refrigeration...

  5. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03T23:59:59.000Z

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  6. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  7. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28T23:59:59.000Z

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  8. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  9. High volume fuel vapor release valve

    SciTech Connect (OSTI)

    Gimby, D.R.

    1991-09-03T23:59:59.000Z

    This patent describes a fuel vapor release valve for use in a vehicle fuel system. It comprises a valve housing 10 placed in a specific longitudinal orientation, the valve housing 10 defining an interior cavity 22 having an inlet 20 for admitting fuel vapor and an outlet 14 for discharging such fuel vapor; a valve member 24 positioned in the cavity 22 for movement between an outlet 14 opening position and an outlet 14 closing position, the valve member 24 including a cap member 34 having a seat surface 36 for mating with the outlet 14 and an orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 having a lesser radius than the outlet 14; the valve member 24 further including a plug member 30 engaged with the cap member 34 for movement between an orifice 42 opening position and an orifice 42 closing position; and, a valve housing tilt responsive means for moving the valve member 24 to an outlet 14 and orifice 42 closing position in response to tilting of the valve 10 about its longitudinal axis whereby, upon the return of the valve 10 to its specified longitudinal orientation, the plug member 30 first moves to an orifice 42 opening position and the cap member 34 subsequently moves to an outlet 14 opening position.

  10. The Spectrum of the Th-Ar Hollow-Cathode Lamp Used with the 2dcoude Spectrograph

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2001-11-08T23:59:59.000Z

    We have produced an atlas of the Th-Ar hollow-cathode lamp used with the 2dcoude spectrograph at McDonald Observatory. The atlas covers from 3611.9 to 10596.4 A at a resolving power of 52,000. We have determined the wavelenghts of 1483 emission lines in the spectrum with a median precision of 0.00023 A. A web-based interface is offered for interactive visualization of segments of the atlas or spectral orders.

  11. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    SciTech Connect (OSTI)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)] [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)] [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15T23:59:59.000Z

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ?0.2%, the radiation of the B ? X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules. The total energy deposited in the discharge rises with increasing chlorine concentration due to an increase in the power spent on the heating of positive and negative ions. The power dissipated by electrons decreases with increasing chlorine concentration in the working mixture. Recommendations on the choice of the chlorine content in the mixture for reducing the intensity of VUV radiation of the second continuum of the Xe*{sub 2} excimer without a substantial decrease in the excilamp efficiency are formulated.

  12. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    SciTech Connect (OSTI)

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19T23:59:59.000Z

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  13. Light Transport in Cold Atoms and Thermal Decoherence G. Labeyrie,1,* D. Delande,2

    E-Print Network [OSTI]

    Light Transport in Cold Atoms and Thermal Decoherence G. Labeyrie,1,* D. Delande,2 R. Kaiser,1 experimentally and theoretically how coherent transport of light inside a cold atomic vapor is affected motivated by astrophysical purposes, wave transport in opaque media was first analyzed by means

  14. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-08-31T23:59:59.000Z

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under the U.S. Department of Energy (DOE) Solid-State Lighting GATEWAY Technology Demonstration Program. Other participants in the demonstration project included the Minnesota Department of Transportation (Mn/DOT), Federal Highways Administration (FHWA), and BetaLED™ (a division of Ruud Lighting). Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. DOE has implemented a three-year evaluation of the LED luminaires in this installation in order to develop new longitudinal field data on LED performance in a challenging, real-world environment. This document provides information through the initial phase of the I-35W bridge project, up to and including the opening of the bridge to the public and the initial feedback received on the LED lighting installation from bridge users. Initial findings of the evaluation are favorable, with minimum energy savings level of 13% for the LED installation relative to the simulated base case using 250W high-pressure sodium (HPS) fixtures. The LEDs had an average illuminance level of 0.91 foot candles compared to 1.29 fc for the HPS lamps. The LED luminaires cost $38,000 more than HPS lamps, yielding a lengthy payback period, however the bridge contractor had offered to include the LED luminaires as part of the construction package at no additional cost. One potentially significant benefit of the LEDs in this installation is avoiding rolling lane closures on the heavily-traveled interstate bridge for the purpose of relamping the HPS fixtures. Rolling lane closures involve multiple crew members and various maintenance and safety vehicles, diversion of traffic, as well as related administrative tasks (e.g., approvals, scheduling, etc.). Mn/DOT records show an average cost of relamping fixtures along interstate roadways of between $130-150 per pole. The previous bridge saw a lamp mortality rate of approximately 50% every two years, though the new bridge was designed to minimize many of the vibration issues. A voluntary Web-based feedback survey of nearly 500 self-described bridge users showed strong preference for the LED lighting - positive comments outnumbered negative ones by about five-to-one.

  15. STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION

    E-Print Network [OSTI]

    ; Multi-faceted reflector (MR) lamps; Light-emitting diode (LED) lamps EISA exempt lamps; Lighting;3 Consumers Electronics Association; Pacific Gas and Electric Company, Southern California Edison

  16. Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California

    E-Print Network [OSTI]

    Mathew, Paul

    2008-01-01T23:59:59.000Z

    and two lighting features: lamp power density and lightingbetween lighting energy intensity and lamp power density forlighting energy intensity is positively correlated with lamp power density.

  17. Cost-effective Lighting Retrofits: Lessons Learned

    E-Print Network [OSTI]

    Fisher, M. D.

    1994-01-01T23:59:59.000Z

    in cramped fixtures. Those who replace lamps are often more likely to replace failed integral units with cheap incandescents again, while with component-type units they tend to replace the failed fluorescent lamp only. - Where incandescent lamps are on a... fixtures, 9 and 13 watt quad tubes may not start in freezing weather. Twin 9be lamps of similar wattages may be a better ioice. Power factor can be quite low on some lagnetic ballasted products, while total ~rmonic distortion can be high on some...

  18. Modelling of Radiative Transfer in Light Sources

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    . . . . . . . . . . . . . . . 30 2.5.3 Temperature distribution . . . . . . . . . . . . . . . . . . . . . . . . . 32 2-X radiative transition that is responsible for the sulfur lamp's bright sun-like spectrum #12;Contents 1

  19. Next Generation Light Source CEO & President

    E-Print Network [OSTI]

    + Lamps Ballast Ballast + Lamps LED 1.5 60,000 1.00 2.50 1.00 2.50 FL 0.063 20,000 0.20 0.39 0.70 0.89 FPL GROWTH FORUM 2 Flat Panel Lamp (FPL) & Applications 24x12 12x12 24x4 12x3 #12;tm THE 22nd NREL INDUSTRY GROWTH FORUM 3 Company Overview Background ­ Inc. 02/07 ­ HQ Cupertino, CA Product ­ Flat panel lamp

  20. CALiPER Exploratory Study: Recessed Troffer Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Royer, Michael P.; Poplawski, Michael E.

    2013-04-28T23:59:59.000Z

    This report describes an exploration of troffer lighting as used in office and classroom spaces, which was conducted by the CALiPER program. Twenty-four pairs of 2×2 and 2×4 troffers were procured anonymously, documented, tested for photometric and electrical performance, and installed in a mockup office space in Portland, Oregon. Three of the pairs were T8 fluorescent benchmark products, 12 were dedicated LED troffers, five were fluorescent troffers modified for LED lamps (sometimes referred to as "tubes"), and another four troffers were modified with LED retrofit kits. The modifications were performed by a commercial electrical contractor, following the instructions provided by the retrofit lamp or kit manufacturer. Once installed in the mockup facility, the converted luminaires were examined by a NRTL (Nationally Recognized Testing Laboratory) safety expert, who provided feedback on safety issues. In September 2012, a group of lighting designers, engineers, and facility managers were brought in to observe the LED luminaires in comparison to fluorescent benchmarks. This report documents performance in measures that go beyond illuminance values or luminaire efficacy. Dedicated LED troffers are ready to compete with fluorescent troffers in terms of efficacy (lumens per watt), and in many lighting quality issues such as glare, light distribution, visual appearance, and color quality. That is not to say that each one is stellar, but each one tested in this CALiPER study bested the fluorescent benchmarks in terms of efficacy, and almost all were rated highly in several categories -- only one luminaire of twelve performed consistently poorly.

  1. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2012-06-05T23:59:59.000Z

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  2. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23T23:59:59.000Z

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  3. Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor

    E-Print Network [OSTI]

    S. M. Hendrickson; M. M. Lai; T. B. Pittman; J. D. Franson

    2010-07-12T23:59:59.000Z

    Nonlinear optical effects can be enhanced in tapered optical fibers with diameters less than the wavelength of the propagating light. Here we report on the observation of two-photon absorption using tapered fibers in rubidium vapor at power levels of less than 150 nW. Transit-time broadening produces two-photon absorption spectra with sharp peaks that are very different from conventional line shapes.

  4. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect (OSTI)

    NONE

    1998-10-05T23:59:59.000Z

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  5. Cold Water Vapor in the Barnard 5 Molecular Cloud

    E-Print Network [OSTI]

    Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

    2014-01-01T23:59:59.000Z

    After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  6. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  7. Heat Recovery in Distillation by Mechanical Vapor Recompression

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed... for lowering energy consumption in the distillation process through various heat recovery techniques. (3-8) One such technique utilizes mechanical vapor recompression. (9-12) The principle of this ap proach involves the use of a compressor to recycle...

  8. Recovery of benzene in an organic vapor monitor

    E-Print Network [OSTI]

    Krenek, Gregory Joel

    1980-01-01T23:59:59.000Z

    solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

  9. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01T23:59:59.000Z

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  10. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ADVANCED CHEMICAL HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured... in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam...

  11. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  12. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09T23:59:59.000Z

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  13. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  14. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel (Florham Park, NJ)

    1984-01-01T23:59:59.000Z

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  15. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  16. Vapor Retarder Classification - Building America Top Innovation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment of Energy Photo of a vapor retarder

  17. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? For detailed

  18. acetone vapor sensing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XI, Universit de 7 ATMOSPHERIC WATER VAPOR PROFILES DERIVED FROM REMOTE-SENSING RADIOMETER MEASUREMENTS CiteSeer Summary: The feasibility and preliminary testing of a low...

  19. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air...

  20. alkali vapor species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hexagonal patterns in a nonlinear optical system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in...

  1. alkali atom vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low power requirements, these "chip-scale" atomic Popovic, Zoya 3 Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis Physics...

  2. assisted chemical vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline...

  3. A new vapor pressure equation originating at the critical point

    E-Print Network [OSTI]

    Nuckols, James William

    1976-01-01T23:59:59.000Z

    - tence curve has been developed from critical scaling theory. The agreement between published vapor pressures and vapor pressures predicted by this equation is very good, especially in the critical region where many other vapor pressure equations fail... vapor pressure data f' or Ar, N2, 02H6, and H20, w1th the parameters ai to a being determined by an unweighted least squares curve 5 fit. The method of least squares has been described adequately elsewhere, e. g. Wylie (1966), and the theory w111...

  4. atmospheric water vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas, contributing to approximately two-thirds of the Earth's greenhouse effect Mitchell, 1989; IntergovernmentalA meta-analysis of water vapor...

  5. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    of Polyaromatic Hydrocarbons William Hanshaw, Marjorie Nutt, and James S. Chickos* Department of Chemistry and liquid vapor pressures from T ) 298.15 K to T ) 510 K of a series of polyaromatic hydrocarbons have been protocols are also made, and agreement generally is quite good. Introduction Polyaromatic hydrocarbons (PAHs

  6. M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which will cause erosion and wear in turbine blades. It is impractical to design a compressor that handles two vapor expands isentropically in turbine and produces work. 4-1: Const P heat rejection High quality

  7. Sandia National Laboratories: Solid-State Lighting Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    colors of objects in the environment around us. The efficiency of this state-of-the-art SSL lamp is about 20%-25%, slightly better than that of a fluorescent lamp, but far from...

  8. The control of confined vapor phase explosions

    SciTech Connect (OSTI)

    Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

    1995-12-31T23:59:59.000Z

    The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

  9. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01T23:59:59.000Z

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  10. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  11. DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4 K12-Lensed Troffer

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released Report 21.1, which is part of a series of investigations on linear LED lamps. Report 21.1 focuses on the performance of 31 types of...

  12. Mechanistic Evaluation of the Pros and Cons of Digital RT-LAMP for HIV1 Viral Load Quantification on a Microfluidic Device and

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    to manipulate many single molecules in parallel through a two-step digital process. In the first step weMechanistic Evaluation of the Pros and Cons of Digital RT-LAMP for HIV1 Viral Load Quantification on a Microfluidic Device and Improved Efficiency via a Two-Step Digital Protocol Bing Sun, Feng Shen, Stephanie E

  13. * Corresponding author. Tel.: #44-1570-424736. E-mail address: walker@lamp.ac.uk (M.J.C. Walker)

    E-Print Network [OSTI]

    Wohlfarth, Barbara

    * Corresponding author. Tel.: #44-1570-424736. E-mail address: walker@lamp.ac.uk (M.J.C. Walker that these approaches were never designed for such "ne-scale resolution of the strati- graphic record. This has led

  14. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  15. 1-Dimensional Numerical Model of Thermal Conduction and Vapor Diffusion

    E-Print Network [OSTI]

    Schörghofer, Norbert

    developed by Samar Khatiwala, 2001 extended to variable thermal properties and irregular grid by Norbert Sch for c. Upper boundary condition: a) Radiation Q + k T z z=0 = T4 z=0 Q is the incoming solar flux of Water Vapor with Phase Transitions developed by Norbert Sch¨orghofer, 2003­2004 3 phases: vapor, free

  16. Fenton Oxidation of TCE Vapors in a Foam Reactor

    E-Print Network [OSTI]

    Fenton Oxidation of TCE Vapors in a Foam Reactor Eunsung Kan,a,b Seongyup Kim,a and Marc A.interscience.wiley.com). DOI 10.1002/ep.10205 Oxidation of dilute TCE vapors in a foam reactor using Fenton's reagent composition of Fenton's reagents, the foam reactor configuration provided a higher rate absorption and greater

  17. ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS

    E-Print Network [OSTI]

    Matsuoka, Hiroshige

    ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS H. MATSUOKA1 , T] or meniscus force [3], which have been neglected in the conventional and relatively large mechani- cal systems forces between mica surfaces in under- saturated vapors of several kind of hydrocarbon liquids are mea

  18. Analysis of electron-beam vaporization of refractory metals

    SciTech Connect (OSTI)

    Kheshgi, H.S.; Gresho, P.M.

    1986-09-01T23:59:59.000Z

    An electron beam is focussed onto a small area on the surface of a refractory metal to locally raise the temperature and vaporize metal. At high vaporization rates the hot area is on the surface of a churning liquid-metal pool contained in a solid-metal skull which sits in a cooled crucible. Inner workings of the process are revealed by analysis of momentum, energy, and mass transfer. At the surface high temperature causes high vaporization rate and high vapor thrust, depressing the vapor/liquid surface. In the liquid pool surface-tension gradients and thermal buoyancy drive a (typically) chaotic flow. In the solid skull thermal conductivity and contact resistance regulate the rate of heat transfer from pool to crucible. Analyses of these phenomena together reveal process performance sensitivities - e.g., to depression size or to magnitude of surface-tension gradients. 12 refs., 3 figs.

  19. Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

  20. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  1. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  2. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01T23:59:59.000Z

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  3. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21T23:59:59.000Z

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  4. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    None

    2012-01-04T23:59:59.000Z

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  5. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03T23:59:59.000Z

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  6. alkali-metal vapor density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in a nonlinear optical system: Alkali metal vapor...

  7. Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; Steward, Heidi E.; Calwell, Chris

    2006-05-22T23:59:59.000Z

    This report describes the history of compact fluorescent lamps (CFLs) in America. CFLs were introduced in the 1970s; however, it has taken more than 20 years for them to gain widespread recognition in the U.S. residential lighting market. This report reviews the development of CFLs, efforts to increase market acceptance of them, and barriers to that acceptance. Lessons to be learned from this study of CFLs are identified in hopes of assisting future market introduction efforts for other promising energy-efficient technologies. This report was prepared by the Pacific Northwest National Laboratory for the U.S. Department of Energy’s Office of Building Technologies, Emerging Technologies Program.

  8. Solid-State Lighting: Early Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31T23:59:59.000Z

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOE’s SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  9. Sandia National Laboratories: metal organic chemical vapor deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  10. Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters

    SciTech Connect (OSTI)

    Freeman, S.L.

    1997-01-01T23:59:59.000Z

    In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

  11. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect (OSTI)

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01T23:59:59.000Z

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  12. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery

    E-Print Network [OSTI]

    Rosso, Lula

    of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid- state Illumination Á Light-emitting diode Á Minimal access surgery Á Solid-state semiconductor In the 1950s

  13. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  14. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13T23:59:59.000Z

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  15. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect (OSTI)

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk (Texas Tech University, Lubbock, TX); Crawford, Mary Hagerott; Dasgupta, Purnendu K. (Texas Tech University, Lubbock, TX); Li, Qingyang (Texas Tech University, Lubbock, TX); Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01T23:59:59.000Z

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  16. Spectrum of second-harmonic radiation generated from incoherent light

    SciTech Connect (OSTI)

    Stabinis, A.; Pyragaite, V.; Tamosauskas, G.; Piskarskas, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)

    2011-10-15T23:59:59.000Z

    We report on the development of the theory of second-harmonic generation by an incoherent pump with broad angular and frequency spectra. We show that spatial as well as temporal walk-off effects in a nonlinear crystal result in angular dispersion of the second-harmonic radiation. We demonstrate that the acceptance angle in second-harmonic generation by incoherent light is caused by the width of the pump angular spectrum and the resulting angular dispersion of second-harmonic radiation but does not depend on crystal length. In this case the frequency spectrum of second-harmonic radiation is determined by its angular dispersion and the pump angular spectrum. The theory is supported by an experiment in which a LiIO{sub 3} crystal was pumped by a tungsten halogen lamp.

  17. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15T23:59:59.000Z

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

  18. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Mark J. Bergander

    2005-08-29T23:59:59.000Z

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  19. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20T23:59:59.000Z

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  20. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.