Sample records for vapor emits ultraviolet

  1. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect (OSTI)

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk (Texas Tech University, Lubbock, TX); Crawford, Mary Hagerott; Dasgupta, Purnendu K. (Texas Tech University, Lubbock, TX); Li, Qingyang (Texas Tech University, Lubbock, TX); Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01T23:59:59.000Z

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  2. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  3. Stimulated emission of ultraviolet radiation by vapors of complex molecules

    SciTech Connect (OSTI)

    Barkova, L.A.; Gruzinskii, V.V.; Danilova, V.I.; Degtyarenko, K.M.; Kopylova, T.N.; Kuznetsov, A.L.

    1981-08-01T23:59:59.000Z

    Lasing was observed in vapors of new organic compounds: para-terphenyl, 2-phenylbenzoxazole, 2-(n-tolyl) benzoxazole, 2-(n-methoxyphenyl) benzoxazole, 2-(n-dimethylaminophenyl) benzoxazole, 2-biphenylbenzoxazole, 2-(..cap alpha..-naphthyl) benzoxazole, and also 1,4-di(n-phenylethynyl) benzole, and para-quaterphenyl pumped transversely by XeCl excimer laser radiation at lambda/sub p/ = 308 nm. The lasing bands without tuning covered the 330--370 nm range. The shortest-wavelength maximum (333.5 nm) was observed for 2-(n-methoxyphenyl) benzoxazole. An analysis was made of the lasing ability of the molecules.

  4. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    E-Print Network [OSTI]

    Wu, Y.; Hasan, T.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.

    2015-02-05T23:59:59.000Z

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5?nm. The dominant emission, detectable...

  5. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)] [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

    2013-01-28T23:59:59.000Z

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  6. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N., E-mail: kurose@fc.ritsumei.ac.jp; Aoyagi, Y. [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Shibano, K.; Araki, T. [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2014-02-15T23:59:59.000Z

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400?nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  7. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  8. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01T23:59:59.000Z

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  9. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03T23:59:59.000Z

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  10. Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition

    SciTech Connect (OSTI)

    Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County 54561, Taiwan (China); Shei, Shih-Chang [Department of Electrical Engineering, National University of Tainan, No.33, Sec. 2, Shulin St., West Central Dist., Tainan City 70005, Taiwan (China)

    2014-09-07T23:59:59.000Z

    In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

  11. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--In metal organic vapor phase epitaxy we developed

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- In metal organic vapor phase epitaxy we developed GaInN/GaN quantum well material suitable for 500 ­ 580 nm light emitting diodes at longer wavelengths. Index Terms-- a-plane GaN, GaInN, Green light emitting diode, m-plane GaN I

  12. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect (OSTI)

    Wang, Zhengliang, E-mail: wzhl_ww@yahoo.com.cn [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China)] [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China); He, Pei; Wang, Rui [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)] [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China); Zhao, Jishou [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China)] [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming, Yunnan 650031 (China); Gong, Menglian [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)] [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

    2010-02-15T23:59:59.000Z

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  13. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24T23:59:59.000Z

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  14. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    SciTech Connect (OSTI)

    Landi, E.; Young, P. R. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States)

    2009-12-20T23:59:59.000Z

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve the accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.

  15. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect (OSTI)

    Verma, Jai, E-mail: jverma@nd.edu; Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-01-13T23:59:59.000Z

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  16. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02T23:59:59.000Z

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  17. Dynamics and manipulation of the dominant 13.5 nm in-band extreme ultraviolet emitting region of laser-produced Sn plasmas

    E-Print Network [OSTI]

    Yuspeh, Samuel Edward

    2011-01-01T23:59:59.000Z

    manufacturing (HVM) of semiconductor microchips with nodes 32 nm and below is extreme ultraviolet (EUV) lithography using laser

  18. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Al tahtamouni, T. M., E-mail: talal@yu.edu.jo [Department of Physics, Yarmouk University, Irbid 21163 (Jordan); Lin, J. Y.; Jiang, H. X. [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-15T23:59:59.000Z

    Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

  19. Sr{sub 3}Al{sub 2}O{sub 5}Cl{sub 2}:Ce{sup 3+},Eu{sup 2+}: A potential tunable yellow-to-white-emitting phosphor for ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Song Yanhua; Jia Guang; Yang Mei; Huang Yeju; You Hongpeng; Zhang Hongjie [State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) and Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-03-02T23:59:59.000Z

    The Sr{sub 3}Al{sub 2}O{sub 5}Cl{sub 2}:Ce{sup 3+},Eu{sup 2+} phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce{sup 3+} to Eu{sup 2+} ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.

  20. Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device

    SciTech Connect (OSTI)

    Dong Chunfeng; Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2011-11-15T23:59:59.000Z

    A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

  1. Hydrogen Cars and Water Vapor

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

  2. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  3. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  4. Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes

    E-Print Network [OSTI]

    Gilchrist, James F.

    of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

  5. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01T23:59:59.000Z

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  6. The O iv and S iv intercombination lines in the ultraviolet spectra of astrophysical sources

    E-Print Network [OSTI]

    , obtained with the Solar Ultraviolet Measurements of the Emitted Radiation (sumer) instrument on the Solar/09/2002; 9:46; p.1 #12; 2 Keenan et al. line ratios and observational data. For example, Cook et al. (1995

  7. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Patents [OSTI]

    Hassanein, Ahmed (Bolingbrook, IL); Konkashbaev, Isak (Bolingbrook, IL)

    2006-10-03T23:59:59.000Z

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  8. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

    1987-03-31T23:59:59.000Z

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  9. The synthesis of inorganic semiconductor nanocrystalline materials for the purpose of creating hybrid organic/inorganic light-emitting devices

    E-Print Network [OSTI]

    Steckel, Jonathan S. (Jonathan Stephen)

    2006-01-01T23:59:59.000Z

    Colloidal semiconductor nanocrystals (NCs) or quantum dots (QDs) can be synthesized to efficiently emit light from the ultraviolet, across the entire visible spectrum, and into the near infrared. This is now possible due ...

  10. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  11. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  12. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  13. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, James H. (Los Alamos, NM); Sander, Robert K. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  14. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOE Patents [OSTI]

    Glownia, J.H.; Sander, R.K.

    1982-06-29T23:59:59.000Z

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  15. The ultra-violet spectrum of formaldehyde vapor

    E-Print Network [OSTI]

    Hodges, Sidney Edward

    1958-01-01T23:59:59.000Z

    ons A system 1200 1120 vk~ ?u3 0/1 - 3 l Qfl C ~o c o Cl 0 in c o ww o o O J J ?> sVw o O J > L- uuo Yis... O Jm J9|UI O oon O LLL1. (0 c Oil o c ?U) ~ o CO C iS)COil o c Yis T O s l? 9 k . 3,^d o o cvJ o ?? ? 9 ? Jt s oUJ_J c GO ?

  16. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

    1988-01-01T23:59:59.000Z

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  17. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2 2) semipolar versus (0001) polar

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Articles you may be interested in Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam light-emitting diodes prepared on ( 11 2 ¯ 2 ) -plane GaN J. Appl. Phys. 100, 113109 (2006); 10.1063/1.2382667 Demonstration of a semipolar ( 10 1 ¯ 3 ¯ ) In Ga N Ga N green light emitting diode Appl. Phys. Lett. 87, 231110

  18. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  19. Ultraviolet stimulation of hydrogen peroxide production using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultraviolet stimulation of hydrogen peroxide production using aminoindazole, diaminopyridine, and phenylenediamine solid polymer Ultraviolet stimulation of hydrogen peroxide...

  20. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  1. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15T23:59:59.000Z

    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

  2. Controlled doping of graphene using ultraviolet irradiation

    SciTech Connect (OSTI)

    Luo Zhengtang [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pinto, Nicholas J.; Davila, Yarely [Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, 00792 (Puerto Rico); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 (United States)

    2012-06-18T23:59:59.000Z

    The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

  3. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01T23:59:59.000Z

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  4. Ultraviolet | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |FrankUltrafastHydrogen andPortalUltraviolet

  5. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? (II) ----Ozone layer depth reconstruction via HEWV effect

    E-Print Network [OSTI]

    Chen, Jilong; Zheng, Yujun

    2014-01-01T23:59:59.000Z

    It is suggested by Chen {\\it et al.} that the Earth's surface Ultraviolet irradiance ($280-400$ nm) could influence the Earth's surface temperature variation by "Highly Excited Water Vapor" (HEWV) effect. In this manuscript, we reconstruct the developing history of the ozone layer depth variation from 1860 to 2011 based on the HEWV effect. It is shown that the reconstructed ozone layer depth variation correlates with the observational variation from 1958 to 2005 very well ($R=0.8422$, $P>99.9\\%$). From this reconstruction, we may limit the spectra band of the surface Ultraviolet irradiance referred in HEWV effect to Ultraviolet B ($280-320$ nm).

  6. The ultraviolet spectra of SO?¹? and SO?¹? near 2300 A 

    E-Print Network [OSTI]

    Kim, Sang Uk

    1966-01-01T23:59:59.000Z

    22 10 Isotope Shift of Bands in the 2300 S02 ~ 13 Vapor Pressure Curve of SO Correction Curve. A System of 24 33 INTRODUCTION SO has three absorption regions in the ultraviolet portion of its spectrum. They are located at 5900 ? 5400 A.... The emission spectrum lines of the iron arc were used as a 14 TABLE I CORRESPONDING PRESSURES AT DIFFERENT TEMPERATURES PLATL' NUMBER 3 Spectrograms Temperatures -100 C - 85'c - 70'0 - 65'c 50 C Pressures 22 mm 33 mm 43 mm 73 15 standard...

  7. The ultraviolet spectra of SO?¹? and SO?¹? near 2300 A

    E-Print Network [OSTI]

    Kim, Sang Uk

    1966-01-01T23:59:59.000Z

    22 10 Isotope Shift of Bands in the 2300 S02 ~ 13 Vapor Pressure Curve of SO Correction Curve. A System of 24 33 INTRODUCTION SO has three absorption regions in the ultraviolet portion of its spectrum. They are located at 5900 ? 5400 A.... The emission spectrum lines of the iron arc were used as a 14 TABLE I CORRESPONDING PRESSURES AT DIFFERENT TEMPERATURES PLATL' NUMBER 3 Spectrograms Temperatures -100 C - 85'c - 70'0 - 65'c 50 C Pressures 22 mm 33 mm 43 mm 73 15 standard...

  8. Toward ZnO Light Emitting Diode

    E-Print Network [OSTI]

    Liu, Jianlin

    2008-01-01T23:59:59.000Z

    applications such as light emitting diodes (LEDs) and laser009 "Toward ZnO Light Emitting Diode" Jianlin Liu July 2008Title: “Toward ZnO Light Emitting Diode” Sponsor: UC Energy

  9. Vapor generation methods for explosives detection research. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor generation methods for explosives detection research. Vapor generation methods for explosives detection research. Abstract: The generation of calibrated vapor samples of...

  10. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  11. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  12. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  13. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01T23:59:59.000Z

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  14. Blue light emitting thiogallate phosphor

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

    1998-01-01T23:59:59.000Z

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  15. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20T23:59:59.000Z

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  16. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01T23:59:59.000Z

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  17. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  18. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14T23:59:59.000Z

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  19. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29T23:59:59.000Z

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  20. Ultraviolet-radiation-curable paints

    SciTech Connect (OSTI)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30T23:59:59.000Z

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  1. To estimate vapor pressure easily

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

    1989-10-01T23:59:59.000Z

    Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

  2. Constraints on the ionizing flux emitted by T Tauri stars

    E-Print Network [OSTI]

    R. D. Alexander; C. J. Clarke; J. E. Pringle

    2005-01-06T23:59:59.000Z

    We present the results of an analysis of ultraviolet observations of T Tauri Stars (TTS). By analysing emission measures taken from the literature we derive rates of ionizing photons from the chromospheres of 5 classical TTS in the range ~10^41-10^44 photons/s, although these values are subject to large uncertainties. We propose that the HeII/CIV line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTS. By studying this line ratio in a much larger sample of objects we find evidence for an ionizing flux which does not decrease, and may even increase, as TTS evolve. This implies that a significant fraction of the ionizing flux from TTS is not powered by the accretion of disc material onto the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.

  3. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergyNews3 Water Vapor

  4. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar323ARM Water Vapor IOP

  5. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31T23:59:59.000Z

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  6. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31T23:59:59.000Z

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  7. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16T23:59:59.000Z

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  8. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  9. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Bauer, Eve (Los Alamos, NM); Mueller, Alexander H. (Los Alamos, NM)

    2012-04-17T23:59:59.000Z

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  10. White light-emitting organic electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20T23:59:59.000Z

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  11. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  12. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15T23:59:59.000Z

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  13. White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodesGaN/conjugated polymer hybrid light-emitting diodes," Appl. Phys. Lett. 70, 2664-2666 (1997). 9. H. V. Demir, S

  14. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27T23:59:59.000Z

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  15. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  16. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect (OSTI)

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

    2013-03-15T23:59:59.000Z

    Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  17. Vapor Retarder Classification - Building America Top Innovation...

    Energy Savers [EERE]

    the Top Innovation. See an example of vapor retarder best practices in action. Find other case studies of Building America projects across the country that utilizes vapor retarder...

  18. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid hydrocarbons and their perdeuterated analogues have been determined by correlation-gas chromatography of cyclohexane-d12 and benzene-d6. Other hydrocarbons studied include the perdeuterated forms of hexane, toluene

  19. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  20. Ultraviolet imaging of hydrogen flames

    SciTech Connect (OSTI)

    Yates, G.J.; Wilke, M.; King, N.

    1988-01-01T23:59:59.000Z

    We have assembled an ultraviolet-sensitive intensified camera for observing hydrogen combustion by imaging the OH, A/sup 2/..sigma.. - X/sup 2//Pi/ bandhead emissions near 309 nm. The camera consists of a quartz and CaF achromat lense-coupled to an ultraviolet image intensifier which is in turn fiber-coupled to a focus projection scan (FPS) vidicon. The emission band is selected with interference filters which serve to discriminate against background. The camera provides optical gain of 100 to 1000 and is capable of being shuttered at nanosecond speeds and of being framed at over 600 frames per second. We present data from observations of test flames in air at standard RS-170 video rates with varying background conditions. Enhanced images using background subtraction are presented. Finally, we discuss the use of polarizaton effects to further discrimination against sky background. This work began as a feasibility study to investigate ultraviolet technology to detect hydrogen fires for the NASA space program. 6 refs., 7 figs, 2 tabs.

  1. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect (OSTI)

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G. [Institute of Optics und Quantum Electronics, Friedrich-Schiller-University Jena (Germany); Helmholtz-Institute Jena (Germany); Krebs, M. [Institute of Applied Physics, Friedrich-Schiller-University Jena (Germany); Haedrich, S.; Limpert, J. [Helmholtz-Institute Jena (Germany); Institute of Applied Physics, Friedrich-Schiller-University Jena (Germany); Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U. [Institute of Optics und Quantum Electronics, Friedrich-Schiller-University Jena (Germany)

    2013-02-15T23:59:59.000Z

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  2. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12T23:59:59.000Z

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  3. Sandia National Laboratories: light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-emitting diode Sandian Receives the Illuminating Engineering Society of North America, South Region Technical Award On December 12, 2014, in Capabilities, Energy, Energy...

  4. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

    1983-04-19T23:59:59.000Z

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  5. Metalorganic Chemical Vapor Deposition for Optoelectronic Devices

    E-Print Network [OSTI]

    Coleman, James J.

    ­1100 nm, visible InGaP and related compounds, and the column III nitrides for blue and ultraviolet la

  6. Ultraviolet divergences and supersymmetric theories

    SciTech Connect (OSTI)

    Sagnotti, A.

    1984-09-01T23:59:59.000Z

    This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references.

  7. Microgap ultra-violet detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.

    1994-09-20T23:59:59.000Z

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  8. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

    2010-12-28T23:59:59.000Z

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  9. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN

    E-Print Network [OSTI]

    Wang, Zhong L.

    Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN of metal organic chemical vapor deposition (MOCVD), gallium nitride (GaN) has become the most important GaN nanowires (NWs) have also been fabricated, and nanoLEDs are an active field of research.[5

  10. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28T23:59:59.000Z

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  11. Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations71 Posters

  12. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  13. A Combined Vacuum Ultraviolet Laser and Synchrotron Pulsed Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum Ultraviolet Laser and Synchrotron Pulsed Field Ionization Study of BCl. A Combined Vacuum Ultraviolet Laser and Synchrotron Pulsed Field Ionization Study of BCl. Abstract:...

  14. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  15. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  16. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect (OSTI)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi 321-8585 (Japan); HiLASE Centre, Institute of Physics ASCR, v.v.i., Za Radnicí 828, 25241 Dolní B?ežany (Czech Republic); Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi 321-8585 (Japan); Ohashi, Hayato [Graduate School of Science and Engineering for Research, University of Toyama, Toyama, Toyama 930-8555 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Li, Bowen [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Miura, Taisuke; Mocek, Tomas; Endo, Akira [HiLASE Centre, Institute of Physics ASCR, v.v.i., Za Radnicí 828, 25241 Dolní B?ežany (Czech Republic)

    2014-08-18T23:59:59.000Z

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18??m was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  17. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1985-01-01T23:59:59.000Z

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  18. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  19. Stable blue phosphorescent organic light emitting devices

    DOE Patents [OSTI]

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26T23:59:59.000Z

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  20. Demonstration Assessment of Light Emitting Diode (LED) Street...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This...

  1. Demonstration Assessment of Light-Emitting Diode (LED) Freezer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report...

  2. Highly efficient blue organic light emitting devices with indium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient blue organic light emitting devices with indium-free transparent anode on flexible substrates. Highly efficient blue organic light emitting devices with indium-free...

  3. An Infrared Spectral Database for Detection of Gases Emitted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database for Detection of Gases Emitted by Biomass Burning. An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning. Abstract: We report the construction of...

  4. array lasers emitting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Array and Graphene Hybrid Light Emitting Diodes Jung Min Lee, Jae a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics,...

  5. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    E-Print Network [OSTI]

    Gaspera, Gerald L.

    2011-01-01T23:59:59.000Z

    Laboratory, USA Comparing Vacuum and Extreme Ultravioletradiation, extreme ultraviolet, vacuum ultravioletAbstract Vacuum and extreme ultraviolet radiation from 8 -

  6. Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-02T23:59:59.000Z

    Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

  7. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    E-Print Network [OSTI]

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01T23:59:59.000Z

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  8. Vapor canister heater for evaporative emissions systems

    SciTech Connect (OSTI)

    Bishop, R.P.; Berg, P.G.

    1987-01-01T23:59:59.000Z

    Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

  9. The Local Interstellar Ultraviolet Radiation Field

    E-Print Network [OSTI]

    Richard Conn Henry

    2002-01-03T23:59:59.000Z

    I have used the Hipparcos Input Catalog, together with Kurucz model stellar atmospheres, and information on the strength of the interstellar extinction, to create a model of the expected intensity and spectral distribution of the local interstellar ultraviolet radiation field, under various assumptions concerning the albedo a of the interstellar grains. (This ultraviolet radiation field is of particular interest because of the fact that ultraviolet radiation is capable of profoundly affecting the chemistry of the interstellar medium.) By comparing my models with the observations, I am able to conclude that the albedo a of the interstellar grains in the far ultraviolet is very low, perhaps a = 0.1. I also advance arguments that my present determination of this albedo is much more reliable than any of the many previous (and conflicting) ultraviolet interstellar grain albedo determinations. Beyond this, I show that the ultraviolet background radiation that is observed at high galactic latitudes must be extragalactic in origin, as it cannot be backscatter of the interstellar radiation field.

  10. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1984-01-01T23:59:59.000Z

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  11. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12T23:59:59.000Z

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  12. Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters

    E-Print Network [OSTI]

    Kostko, Oleg

    2008-01-01T23:59:59.000Z

    Vacuum-ultraviolet (VUV) photoionization of small methanolwe report on the vacuum-ultraviolet (VUV) photoionization ofionization with tunable vacuum- ultraviolet synchrotron

  13. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    E-Print Network [OSTI]

    Ahmed, Musahid

    2008-01-01T23:59:59.000Z

    Physical Chemistry Vacuum-ultraviolet (VUV) photoionizationPhysical Chemistry Vacuum-ultraviolet (VUV) photoionizationwe report on the vacuum-ultraviolet (VUV) photoionization of

  14. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

    1993-01-01T23:59:59.000Z

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  15. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08T23:59:59.000Z

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  16. Could the Earth's surface Ultraviolet irradiance be blamed for the global warming? A new effect may exist

    E-Print Network [OSTI]

    Chen, Jilong; Zhao, Juan; Zheng, Yujun

    2014-01-01T23:59:59.000Z

    Whether natural factors could interpret the rise of the Earth's surface temperature is still controversial. Though numerous recent researches have reported apparent correlations between solar activity and the Earth's climate, solar activity has encountered a big problem when describing the rapid global warming after 1970s. Our investigation shows the good positive correlations between the Earth's surface Ultraviolet irradiance (280-400 nm) and the Earth's surface temperature both in temporal and spatial variations by analyzing the global surface Ultraviolet irradiance (280-400 nm) and global surface temperature data from 1980-1999. The rise of CO$_2$ cannot interpret the good positive correlations, and we could even get an opposite result to the good correlations when employing the rise of CO$_2$ to describe the relation between them. Based on the good positive correlations, we suggest a new effect, named "Highly Excited Water Vapor" (HEWV) effect, which can interpret how the Sun influences the Earth's surfac...

  17. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  18. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23T23:59:59.000Z

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  19. Overview of chemical vapor infiltration

    SciTech Connect (OSTI)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01T23:59:59.000Z

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  20. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  1. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17T23:59:59.000Z

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  2. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03T23:59:59.000Z

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  3. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  4. Ultraviolet Limit of Open String Theory

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-01-21T23:59:59.000Z

    We confirm the intuition that a string theory which is perturbatively infrared finite is automatically perturbatively ultraviolet finite. Our derivation based on the asymptotics of the Selberg trace formula for the Greens function on a Riemann surface holds for both open and closed string amplitudes and is independent of modular invariance and supersymmetry. The mass scale for the open strings stretched between Dbranes suggests a natural world-sheet ultraviolet regulator in the string path integral, preserving both T-duality and open-closed string world-sheet duality. Note added (Jan 2005): Comments and related references added.

  5. The Application of Ultraviolet Germicidal Technology in HVAC Systems

    E-Print Network [OSTI]

    Taylor, M. J.

    2000-01-01T23:59:59.000Z

    capability, which increases the operating costs of the equipment. Fortunately, IAQ degradation, foul odor, and increased expenses can be eliminated with the installation of the ultraviolet 'C' band (W-C) lamps. The ultraviolet germicidal lamps are designed...

  6. Efficient charge carrier injection into sub-250?nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank, E-mail: mehnke@physik.tu-berlin.de; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, Michael [Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-08-04T23:59:59.000Z

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250?nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246?nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235?nm and 263?nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234?nm with 14.5??W integrated optical output power and an external quantum efficiency of 0.012% at 18.2?A/cm{sup 2}.

  7. Tropospheric water vapor and climate sensitivity

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    1999-06-01T23:59:59.000Z

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

  8. Ultraviolet emissions from Gd3 + ions excited by energy transfer

    E-Print Network [OSTI]

    Cao, Wenwu

    Ultraviolet emissions from Gd3 + ions excited by energy transfer from Ho3 + ions Ying Yu October 2010 Accepted 28 October 2010 Available online 4 November 2010 Keywords: Ultraviolet emission Upconversion Energy transfer a b s t r a c t Ultraviolet (UV) upconversion (UC) emissions of Gd3+ ion were

  9. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells

    E-Print Network [OSTI]

    Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN based on radial p­i­n multi quantum well (QW) junctions have been realized from GaN wires grown by catalyst- free metal organic vapor phase epitaxy. The Inx Ga1Àx N/GaN undoped QW system is coated over both

  10. Microwave-driven ultraviolet light sources

    SciTech Connect (OSTI)

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA)

    2002-01-29T23:59:59.000Z

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  11. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  12. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01T23:59:59.000Z

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  13. 6, 80698095, 2006 Water vapor in Asian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Sciences, Beijing, China 2 National Center for Atmospheric Research, Boulder, CO, USA Received: 23 May 2006 vapor from European Center for Medium-Range Weather20 Forecasts (ECMWF) analyses. 1 Introduction Upper Tropospheric Water Vapor (UTWV) is a key greenhouse gas which exerts a major influence on the energy balance

  14. Method of making organic light emitting devices

    DOE Patents [OSTI]

    Shiang, Joseph John (Niskayuna, NY); Janora, Kevin Henry (Schenectady, NY); Parthasarathy, Gautam (Saratoga Springs, NY); Cella, James Anthony (Clifton Park, NY); Chichak, Kelly Scott (Clifton Park, NY)

    2011-03-22T23:59:59.000Z

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  15. Highly Efficient Silicon Light Emitting Diode

    E-Print Network [OSTI]

    Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

    2000-01-01T23:59:59.000Z

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

  16. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01T23:59:59.000Z

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  17. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01T23:59:59.000Z

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  18. Water Cooling of High Power Light Emitting Diode Henrik Srensen

    E-Print Network [OSTI]

    Berning, Torsten

    Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

  19. High-Performance Organic Light-Emitting Diodes Using ITO

    E-Print Network [OSTI]

    Ho, Seng-Tiong

    High-Performance Organic Light-Emitting Diodes Using ITO Anodes Grown on Plastic by Room,* Mark E. Madsen, Antonio DiVenere, and Seng-Tiong Ho Organic light-emitting diodes (OLEDs) fabricated

  20. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect (OSTI)

    ANDERSON, T.J.

    2006-12-20T23:59:59.000Z

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  1. Stacked vapor fed amtec modules

    DOE Patents [OSTI]

    Sievers, Robert K. (North Huntingdon, PA)

    1989-01-01T23:59:59.000Z

    The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.

  2. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  3. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  4. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acidic Polymers for Chemical Vapor Sensing. Hydrogen-Bond Acidic Polymers for Chemical Vapor Sensing. Abstract: A review with 171 references. Hydrogen-bond acidic polymers for...

  5. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect (OSTI)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Wang, Jiannong [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-07-21T23:59:59.000Z

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4?eV at a small forward bias larger than ?2?V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  6. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02T23:59:59.000Z

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  7. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30T23:59:59.000Z

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  8. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16T23:59:59.000Z

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  9. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, Robert (Livermore, CA); Loomis, Gary E. (Livermore, CA); Thomas, Ian M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  10. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    SciTech Connect (OSTI)

    Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patanè, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2013-12-09T23:59:59.000Z

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  11. Tunable, superconducting, surface-emitting teraherz source

    DOE Patents [OSTI]

    Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii

    2010-05-11T23:59:59.000Z

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  12. Tunable, superconducting, surface-emitting teraherz source

    DOE Patents [OSTI]

    Welp, Ulrich (Lisle, IL); Koshelev, Alexei E. (Bolingbrook, IL); Gray, Kenneth E. (Evanston, IL); Kwok, Wai-Kwong (Evanston, IL); Vlasko-Vlasov, Vitalii (Downers Grove, IL)

    2009-10-27T23:59:59.000Z

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  13. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    SciTech Connect (OSTI)

    Henderson, Kevin; Harper, Ron; Funsten, Herb; MacDonald, Elizabeth [Space Science and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15T23:59:59.000Z

    We have developed and demonstrated a versatile, compact electron source that can produce a mono-energetic electron beam up to 50 mm in diameter from 0.1 to 30 keV with an energy spread of <10 eV. By illuminating a metal cathode plate with a single near ultraviolet light emitting diode, a spatially uniform electron beam with 15% variation over 1 cm{sup 2} can be generated. A uniform electric field in front of the cathode surface accelerates the electrons into a beam with an angular divergence of <1 Degree-Sign at 1 keV. The beam intensity can be controlled from 10 to 10{sup 9} electrons cm{sup -2} s{sup -1}.

  14. Ultraviolet stimulated electron source for use with low energy plasma instrument calibration

    E-Print Network [OSTI]

    Henderson, Kevin; Funsten, Herb; MacDonald, Elizabeth

    2011-01-01T23:59:59.000Z

    We report the development of a versatile, compact, low to medium energy electron source. A collimated, monoenergetic beam of electrons, up to 50 mm in diameter, is produced with energies ranging from 0.03 to 30 keV. A uniform electron beam profile is generated by illuminating a metal cathode plate with a near ultraviolet (UV) light emitting diode (LED). A parallel electric field accelerates the electrons away from the cathode plate towards a grounded grid. The beam intensity can be controlled from 10 - 10^9 electrons cm-2 s-1 and the angular divergence of the beam is less than 1 degree FWHM for energies greater than 1 keV.

  15. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01T23:59:59.000Z

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  16. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01T23:59:59.000Z

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  17. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12T23:59:59.000Z

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  18. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  19. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01T23:59:59.000Z

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  20. Solid-Vapor Sorption Refrigeration Systems 

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    1991-01-01T23:59:59.000Z

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract.... Complex compounds have a number of advantages as working media, including: 43 SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL Engineer Rocky Research Boulder city, NV DR. UWE ROCKENFELLER President Rocky Research Boulder city, NV MR...

  1. White organic light-emitting diodes with an ultra-thin premixed emitting layer

    E-Print Network [OSTI]

    Jeon, T; Tondelier, Denis; Bonnassieux, Yvan; Forget, Sebastien; Chenais, Sebastien; Ishow, Elena

    2014-01-01T23:59:59.000Z

    We described an approach to achieve fine color control of fluorescent White Organic Light-Emitting Diodes (OLED), based on an Ultra-thin Premixed emitting Layer (UPL). The UPL consists of a mixture of two dyes (red-emitting 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene or fvin and green-emitting 4-di(4'-tert-butylbiphenyl-4-yl)aminobenzaldehyde or fcho) premixed in a single evaporation cell: since these two molecules have comparable structures and similar melting temperatures, a blend can be evaporated, giving rise to thin films of identical and reproducible composition compared to those of the pre-mixture. The principle of fine color tuning is demonstrated by evaporating a 1-nm-thick layer of this blend within the hole-transport layer (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl (\\alpha-NPB)) of a standard fluorescent OLED structure. Upon playing on the position of the UPL inside the hole-transport layer, as well as on the premix composition, two independent parameters are available to finel...

  2. Preparation and fluorescence property of red-emitting Eu{sup 3+}-activated amorphous calcium silicate phosphor

    SciTech Connect (OSTI)

    Kojima, Yoshiyuki, E-mail: ykojima@chem.cst.nihon-u.ac.jp [Department of Materials and Applied Chemistry, Faculty of Science and Technology, Nihon University, Tokyo 101-8308 (Japan)] [Department of Materials and Applied Chemistry, Faculty of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Kamei, Shinnosuke; Nishimiya, Nobuyuki [Department of Materials and Applied Chemistry, Faculty of Science and Technology, Nihon University, Tokyo 101-8308 (Japan)] [Department of Materials and Applied Chemistry, Faculty of Science and Technology, Nihon University, Tokyo 101-8308 (Japan)

    2010-02-15T23:59:59.000Z

    This paper describes the energy efficient synthesis of a red-emitting Eu{sup 3+}-activated amorphous calcium silicate phosphor produced by heating a Eu{sup 3+}-activated calcium silicate hydrate phosphor. Concentration quenching of the Eu{sup 3+}-activated calcium silicate hydrate phosphor was not observed and the emission intensity did not decrease up to a Eu/(Ca+Eu) atomic ratio of 0.46. Heating of the Eu{sup 3+}-activated calcium silicate hydrate (Eu/(Ca+Eu) atomic ratio = 0.32) phosphor produced an amorphous Eu{sup 3+}-activated calcium silicate phosphor, which had a maximum emission intensity at 870 {sup o}C and emitted in the red under near-ultraviolet irradiation (395 nm). The emission intensity of the Eu{sup 3+}-activated amorphous calcium silicate phosphor was about half that of a commercial BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor, and shows great potential for application in white light-emitting diodes.

  3. A Novel Neighbor Discovery Protocol for Ultraviolet Wireless Networks

    E-Print Network [OSTI]

    Krishnamurthy, Srikanth

    in terms of building advanced low cost, low power and small size light emitting diodes (LEDs) that operate

  4. Policy for Permitting Low-Emitting Sources  (West Virginia)

    Broader source: Energy.gov [DOE]

    While this policy alleviates some requirements on low-emitting emission sources, it does not change the policy of requiring applicants to submit reasonable information concerning all potential...

  5. alingap light emitting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    show a low threshold voltage for light emission of Potma, Eric Olaf 4 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) Engineering Websites Summary: , 1997...

  6. active compounds emitted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    switching occurs even Rocca, Jorge J. 5 Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Chemistry Websites Summary: and portable electronics. In...

  7. airborne noise emitted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase Wetzel,...

  8. auger electron emitting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes constructed from an electron online 30 September 2013 Keywords: Organic light-emitting diode Alternating current AC driving Color- and brightness-tunable organic...

  9. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates. Peak internal quantum efficiency (IQE) values of greater than 80% are...

  10. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22T23:59:59.000Z

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  11. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect (OSTI)

    Andrews, E.

    1996-05-01T23:59:59.000Z

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  12. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    SciTech Connect (OSTI)

    Tandy, J. D., E-mail: jt245@le.ac.uk [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom); Mihaly, J. M.; Adams, M. A.; Rosakis, A. J. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2014-07-21T23:59:59.000Z

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5?mg Nylon 6/6 right-cylinders to speeds between 5?km/s and 7?km/s to impact 1.5?mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250?000?rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10??s after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1?mmHg atmosphere inside the target chamber. A comparison of the data to down-range emission spectra also revealed differences in the relative intensities of the atomic/molecular composition of the observed vapor clouds.

  13. Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process

    E-Print Network [OSTI]

    Chelawat, Hitesh

    2010-01-01T23:59:59.000Z

    Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

  14. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    SciTech Connect (OSTI)

    Peek, J. E. G.; Schiminovich, David, E-mail: jegpeek@gmail.com [Department of Astronomy, Columbia University, New York, NY (United States)

    2013-07-01T23:59:59.000Z

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  15. THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET Nicole Farnsworth

    E-Print Network [OSTI]

    Hart, Gus

    THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET by Nicole Farnsworth Submitted to Brigham Young Ultraviolet and Thorium-based Mirrors . . . 1 1.2 Project Background the Optical Constants of Thorium Oxide 34 3.1 Reflectance and Transmittance Measurements

  16. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2008-10-07T23:59:59.000Z

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  17. Ultraviolet laser beam monitor using radiation responsive crystals

    DOE Patents [OSTI]

    McCann, Michael P. (Oliver Springs, TN); Chen, Chung H. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  18. TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT

    E-Print Network [OSTI]

    Pang, Grantham

    1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

  19. Effects of emitted electron temperature on the plasma sheath

    SciTech Connect (OSTI)

    Sheehan, J. P., E-mail: sheehanj@umich.edu [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kaganovich, I. D.; Wang, H.; Raitses, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Sydorenko, D. [Physics Department, University of Alberta, Edmonton, Alberta T6G 2E9 (Canada); Hershkowitz, N. [Department of Engineering Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2014-06-15T23:59:59.000Z

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T{sub e}/e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux.

  20. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  1. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26T23:59:59.000Z

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  3. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  4. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, Terry (Tracy, CA)

    1988-01-01T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.

  5. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  6. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20T23:59:59.000Z

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  7. Top-emitting Organic Light-Emitting Diode with a Cap Layer Chengfeng Qiu, Huajun Peng, Haiying Chen, Zhilang Xie,

    E-Print Network [OSTI]

    Kwok, Hoi S.

    , Kowloon, Hong Kong, China ABSTRACT For top emitting Organic Light-Emitting Diodes (OLED), the study of top layer is very important aiming to acquire good device performance. In this report, Pt as anode for Cu coated on glass as anode, copper (II) phthalocyanine (CuPc) as organic buffer layer, N,N'- diphenyl

  8. Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene Derivatives

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and to stop the well known spectral shift degradation occurring in fluorene based materials. In this paper we1 Organic Light-Emitting Diodes and Organic Light-emitting Electrochemical Cells Based on Silole-Fluorene, copolymerization of siloles with fluorene was aimed at improving electron injection into the polymer layer and so

  9. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01T23:59:59.000Z

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place...

  10. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  11. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01T23:59:59.000Z

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  12. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  13. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24T23:59:59.000Z

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  14. Vaporization of synthetic fuels. Final report. [Thesis

    SciTech Connect (OSTI)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01T23:59:59.000Z

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  15. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01T23:59:59.000Z

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  16. Atomic-vapor-laser isotope separation

    SciTech Connect (OSTI)

    Davis, J.I.

    1982-10-01T23:59:59.000Z

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  17. Program performs vapor-liquid equilibrium calculations

    SciTech Connect (OSTI)

    Rice, V.L.

    1982-06-28T23:59:59.000Z

    A program designed for the Hewlett-Packard HP-41CV or 41C calculators solves basic vapor-liquid equilibrium problems, including figuring the dewpoint, bubblepoint, and equilibrium flash. The algorithm uses W.C. Edmister's method for predicting ideal-solution K values.

  18. Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Pruess, Karsten; O'Sullivan, Michael

    1992-01-01T23:59:59.000Z

    Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

  19. Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520525 nm employing graded growth-temperature profile

    E-Print Network [OSTI]

    Gilchrist, James F.

    Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520­525 nm employing current spreading and light extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012

  20. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  1. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    SciTech Connect (OSTI)

    Kwang-Ohk Cheon

    2003-08-05T23:59:59.000Z

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  2. Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and

    E-Print Network [OSTI]

    Baker, Chris I.

    Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re can be recycled infinitely without losing its purity or strength. While the primary end product

  3. Development of ZnO Based Light Emitting Diodes and Laser Diodes

    E-Print Network [OSTI]

    Kong, Jieying

    2012-01-01T23:59:59.000Z

    E. Fred Schubert, Light-Emitting Diodes, New York (2006) [8]ZnO homojunction light emitting diode 3. 1. Motivation ofAlGaAs red light-emitting diodes, in: G.B. Stringfellow, M.

  4. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Alger, Terry W. (Tracy, CA)

    1995-01-01T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  5. Metal vapor laser including hot electrodes and integral wick

    DOE Patents [OSTI]

    Ault, E.R.; Alger, T.W.

    1995-03-07T23:59:59.000Z

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  6. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective... allows for firing temperatures much higher than possible with liquid/vapor systems. The high energy density per unit mass and the independence of the vapor pressure from the refrigerant concentration (p = f (T), p "# f( x)) over a wide range leads...

  7. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    SciTech Connect (OSTI)

    Däubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J. [Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, 79108 Freiburg (Germany)

    2014-09-15T23:59:59.000Z

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown on metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.

  8. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs /

    E-Print Network [OSTI]

    Choi, Jae Ik

    2014-01-01T23:59:59.000Z

    application in white light emitting diode,” J. Mater. Res. ,phosphors for white light emitting diodes (LEDs)”, 220 thconverted white light emitting diodes by electrophoretic

  9. White light emitting diode as liquid crystal display backlight

    E-Print Network [OSTI]

    Soon, Chian Myau

    2007-01-01T23:59:59.000Z

    The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One of the most promising sectors would be using white LED to ...

  10. Metal-halide perovskites for photovoltaic and light-emitting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-halide perovskites for photovoltaic and light-emitting devices September 15, 2015 at 4:30 pm36-428 Sam Stranks Massachusetts Institute of Technology peopleStranks...

  11. alpha emitting radionuclides: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the response function of a TeO2 bolometer to alpha's emitted by 147Sm dissolved in the crystal at the growth phase. A Quenching Factor of (1.0076pm...

  12. White organic light-emitting diodes: Status and perspective

    E-Print Network [OSTI]

    Reineke, Sebastian

    White organic light-emitting diodes (OLEDs) are ultrathin, large-area light sources made from organic semiconductor materials. Over the past decades, much research has been spent on finding suitable materials to realize ...

  13. Quantitative imaging of living cells by deep ultraviolet microscopy

    E-Print Network [OSTI]

    Zeskind, Benjamin J

    2006-01-01T23:59:59.000Z

    Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

  14. Organic light emitting device structure for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun (Princeton, NJ); Ngo, Tan (Levittown, PA)

    2007-05-01T23:59:59.000Z

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  15. Interference of Cooper Pairs Emitted from Independent Superconductors

    E-Print Network [OSTI]

    Mauro Iazzi; Kazuya Yuasa

    2010-05-16T23:59:59.000Z

    We discuss the interference in the two-particle distribution of the electrons emitted from two independent superconductors. It is clarified that, while the interference appearing in the antibunching correlation is due to the Hanbury Brown and Twiss effect, that in the positive correlation due to superconductivity is intrinsically different and is nothing but the first-order interference of Cooper pairs emitted from different sources. This is the equivalent of the interference of two independent Bose-Einstein condensates.

  16. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    SciTech Connect (OSTI)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland)] [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)] [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland) [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15T23:59:59.000Z

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II ? lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  17. Precision micro drilling with copper vapor lasers

    SciTech Connect (OSTI)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02T23:59:59.000Z

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  18. Atomic vapor spectroscopy in integrated photonic structures

    E-Print Network [OSTI]

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01T23:59:59.000Z

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  19. High power light emitting diode based setup for photobleaching fluorescent impurities

    E-Print Network [OSTI]

    Kaufman, Laura

    High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

  20. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Light-Emitting Diode Luminaire for General Illumination Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology...

  1. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15T23:59:59.000Z

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 ?m wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  2. Solid-Vapor Sorption Refrigeration Systems

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    SOLID-VAPOR SORPTION REFRIGERATION SYSTEMS DR. WILLIAM GRAEBEL DR. UWE ROCKENFELLER MR. LANCE KIROL Engineer President Chief Engineer Rocky Research Rocky Research Rocky Research Boulder city, NV Boulder city, NV Boulder City, NV Abstract... Complex compound sorption reactions are ideally suited for use in refrigeration cycles as an economically viable alternative to CFC refrigerants. Complex compound refrigeration provides a number of energy-saving advantages over present refrigeration...

  3. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03T23:59:59.000Z

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  4. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  5. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  6. High volume fuel vapor release valve

    SciTech Connect (OSTI)

    Gimby, D.R.

    1991-09-03T23:59:59.000Z

    This patent describes a fuel vapor release valve for use in a vehicle fuel system. It comprises a valve housing 10 placed in a specific longitudinal orientation, the valve housing 10 defining an interior cavity 22 having an inlet 20 for admitting fuel vapor and an outlet 14 for discharging such fuel vapor; a valve member 24 positioned in the cavity 22 for movement between an outlet 14 opening position and an outlet 14 closing position, the valve member 24 including a cap member 34 having a seat surface 36 for mating with the outlet 14 and an orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 having a lesser radius than the outlet 14; the valve member 24 further including a plug member 30 engaged with the cap member 34 for movement between an orifice 42 opening position and an orifice 42 closing position; and, a valve housing tilt responsive means for moving the valve member 24 to an outlet 14 and orifice 42 closing position in response to tilting of the valve 10 about its longitudinal axis whereby, upon the return of the valve 10 to its specified longitudinal orientation, the plug member 30 first moves to an orifice 42 opening position and the cap member 34 subsequently moves to an outlet 14 opening position.

  7. Reflective masks for extreme ultraviolet lithography

    SciTech Connect (OSTI)

    Nguyen, Khanh Bao

    1994-05-01T23:59:59.000Z

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  8. Lamp for generating high power ultraviolet radiation

    DOE Patents [OSTI]

    Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  9. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01T23:59:59.000Z

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect (OSTI)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States) [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28T23:59:59.000Z

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ?}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  11. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

    1988-01-01T23:59:59.000Z

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  12. Compound nuclear decay and the liquid to vapor phase transition: a physical picture

    E-Print Network [OSTI]

    L. G. Moretto; J. B. Elliott; L. Phair

    2005-07-08T23:59:59.000Z

    Analyses of multifragmentation in terms of the Fisher droplet model (FDM) and the associated construction of a nuclear phase diagram bring forth the problem of the actual existence of the nuclear vapor phase and the meaning of its associated pressure. We present here a physical picture of fragment production from excited nuclei that solves this problem and establishes the relationship between the FDM and the standard compound nucleus decay rate for rare particles emitted in first-chance decay. The compound thermal emission picture is formally equivalent to a FDM-like equilibrium description and avoids the problem of the vapor while also explaining the observation of Boltzmann-like distribution of emission times. In this picture a simple Fermi gas thermometric relation is naturally justified and verified in the fragment yields and time scales. Low energy compound nucleus fragment yields scale according to the FDM and lead to an estimate of the infinite symmetric nuclear matter critical temperature between 18 and 27 MeV depending on the choice of the surface energy coefficient of nuclear matter.

  13. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect (OSTI)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03T23:59:59.000Z

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40?mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (?2?cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  14. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect (OSTI)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Meneghini, Matteo; Zanoni, Enrico [Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131 (Italy); Zhu, Dandan; Humphreys, Colin [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-05-26T23:59:59.000Z

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup ?2} and a low dislocation density of 3 × 10{sup 8} cm{sup ?2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A}???0.04?eV, E{sub A1}???0.13?eV, and E{sub B}???0.54?eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  15. Optical Simulation of Top-emitting Organic Light Emitting Diodes H. J. Peng, C.F. Qiu, Z. L. Xie, H. Y. Chen, M. Wong and H. S. Kwok

    E-Print Network [OSTI]

    Kwok, Hoi S.

    8.3.3-89 Optical Simulation of Top-emitting Organic Light Emitting Diodes H. J. Peng, C.F. Qiu, Z the optical effects for the top-emitting organic light emitting diodes. The optical performance of the devices with experiments Keywords: Top-emitting organic light emitting diode, optical modeling, microcavity INTRODUCTION

  16. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-06T23:59:59.000Z

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  17. HST polarization map of the ultraviolet emission from the outer jet in M87 and a comparison with the 2cm radio emission

    E-Print Network [OSTI]

    R. C. Thomson; D. R. T. Robinson; N. R. Tanvir; C. D. Mackay; A. Boksenberg

    1995-05-26T23:59:59.000Z

    We present the first high resolution polarization map of the ultraviolet emission from the outer jet in M87. The data were obtained by the Faint Object Camera (FOC) on the Hubble Space Telescope. The polarization map has a resolution of 0.2 arcsec and was derived using data from three linearly polarized images combined with the best available calibration data. The ultraviolet emission is highly polarized (~40\\%) with the magnetic vector aligned roughly with the jet axis, except in the region of the brightest knot (Knot A) where the position angle changes abruptly and the magnetic vector becomes perpendicular to the jet axis. A similar behaviour is seen in the 2cm VLA radio polarization map. By aligning the FOC and VLA data, we present ultraviolet--2cm spectral index, depolarization and rotation measure maps. We identify a region of high depolarization adjacent to Knot A. This is the first direct observational evidence that indicates the presence of a cloud or filament of dense thermal material which is mixed with the synchrotron emitting plasma of the jet. The interaction of the jet with this cloud is likely to be responsible for the sudden increase in the brightness of the jet at Knot A due to an induced shock. We suggest that the dark line seen in the 2cm radio data between Knot A and Knot C could be the shadow or magnetotail of the depolarizing cloud in the jet.

  18. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2012-06-05T23:59:59.000Z

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  19. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23T23:59:59.000Z

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  20. Stability properties of Hawking radiation in the presence of ultraviolet violation of local Lorentz invariance

    E-Print Network [OSTI]

    Antonin Coutant

    2014-05-14T23:59:59.000Z

    In this thesis, we study several features of Hawking radiation in the presence of ultraviolet Lorentz violations. These violations are implemented by a modified dispersion relation that becomes nonlinear at short wavelengths. The motivations of this work arise on the one hand from the developing field of analog gravity, where we aim at measuring the Hawking effect in fluid flows that mimic black hole space-times, and on the other hand from the possibility that quantum gravity effects might be approximately modeled by a modified dispersion relation. We develop several studies on various aspects of the problem. First we obtain precise characterizations about the deviations from the Hawking result of black hole radiation, which are induced by dispersion. Second, we study the emergence, both in white hole flows or for massive fields, of a macroscopic standing wave, spontaneously produced from the Hawking effect, and known as `undulation'. Third, we describe in detail an instability named black hole laser, which arises in the presence of two horizons, where Hawking radiation is self-amplified and induces an exponentially growing in time emitted flux.

  1. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect (OSTI)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15T23:59:59.000Z

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7?nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p?3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  2. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  3. Heat Recovery in Distillation by Mechanical Vapor Recompression

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    tower energy requirements can be achieved by mechanical vapor recompression. Three design approaches for heating a distillation tower reboiler by mechanical vapor recompression are presented. The advantages of using a screw compressor are discussed... for lowering energy consumption in the distillation process through various heat recovery techniques. (3-8) One such technique utilizes mechanical vapor recompression. (9-12) The principle of this ap proach involves the use of a compressor to recycle...

  4. Recovery of benzene in an organic vapor monitor

    E-Print Network [OSTI]

    Krenek, Gregory Joel

    1980-01-01T23:59:59.000Z

    solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

  5. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01T23:59:59.000Z

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  6. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions

    E-Print Network [OSTI]

    Kirol, L.

    ADVANCED CHEMICAL HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured... in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam...

  7. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09T23:59:59.000Z

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  8. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  9. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel (Florham Park, NJ)

    1984-01-01T23:59:59.000Z

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  10. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  11. Vapor Retarder Classification - Building America Top Innovation |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment of Energy Photo of a vapor retarder

  12. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists forMercury Vapor page? For detailed

  13. Light emitting ceramic device and method for fabricating the same

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  14. Flip-chip light emitting diode with resonant optical microcavity

    SciTech Connect (OSTI)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29T23:59:59.000Z

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  15. Close-packed array of light emitting devices

    SciTech Connect (OSTI)

    Ivanov, Ilia N.; Simpson, John T.

    2013-04-09T23:59:59.000Z

    A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

  16. Oxycarbonitride phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2014-07-08T23:59:59.000Z

    Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  17. Oxycarbonitride phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08T23:59:59.000Z

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  18. acetone vapor sensing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XI, Universit de 7 ATMOSPHERIC WATER VAPOR PROFILES DERIVED FROM REMOTE-SENSING RADIOMETER MEASUREMENTS CiteSeer Summary: The feasibility and preliminary testing of a low...

  19. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air...

  20. alkali vapor species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hexagonal patterns in a nonlinear optical system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in...

  1. alkali atom vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low power requirements, these "chip-scale" atomic Popovic, Zoya 3 Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas M. V. Romalis Physics...

  2. assisted chemical vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline...

  3. A new vapor pressure equation originating at the critical point

    E-Print Network [OSTI]

    Nuckols, James William

    1976-01-01T23:59:59.000Z

    - tence curve has been developed from critical scaling theory. The agreement between published vapor pressures and vapor pressures predicted by this equation is very good, especially in the critical region where many other vapor pressure equations fail... vapor pressure data f' or Ar, N2, 02H6, and H20, w1th the parameters ai to a being determined by an unweighted least squares curve 5 fit. The method of least squares has been described adequately elsewhere, e. g. Wylie (1966), and the theory w111...

  4. atmospheric water vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas, contributing to approximately two-thirds of the Earth's greenhouse effect Mitchell, 1989; IntergovernmentalA meta-analysis of water vapor...

  5. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    of Polyaromatic Hydrocarbons William Hanshaw, Marjorie Nutt, and James S. Chickos* Department of Chemistry and liquid vapor pressures from T ) 298.15 K to T ) 510 K of a series of polyaromatic hydrocarbons have been protocols are also made, and agreement generally is quite good. Introduction Polyaromatic hydrocarbons (PAHs

  6. M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which will cause erosion and wear in turbine blades. It is impractical to design a compressor that handles two vapor expands isentropically in turbine and produces work. 4-1: Const P heat rejection High quality

  7. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

    1989-01-01T23:59:59.000Z

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  8. The control of confined vapor phase explosions

    SciTech Connect (OSTI)

    Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

    1995-12-31T23:59:59.000Z

    The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

  9. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01T23:59:59.000Z

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  10. Measurement and analysis of near ultraviolet solar radiation

    SciTech Connect (OSTI)

    Mehos, M.S.; Pacheco, K.A.; Link, H.F.

    1991-12-01T23:59:59.000Z

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

  11. On-board Measurement of NO and NO2 using Non-dispersive Ultraviolet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    board Measurement of NO and NO2 using Non-dispersive Ultraviolet (NDUV) Spectroscopy On-board Measurement of NO and NO2 using Non-dispersive Ultraviolet (NDUV) Spectroscopy...

  12. Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    A heated semiconductor light-emitting diode at low forward bias voltage V

  13. Bright Light-Emitting Diodes based on Organometal Halide Perovskite

    E-Print Network [OSTI]

    Tan, Zhi-Kuang; Moghaddam, Reza Saberi; Lai, May Ling; Docampo, Pablo; Higler, Ruben; Deschler, Felix; Price, Michael; Sadhanala, Aditya; Pazos, Luis M.; Credgington, Dan; Hanusch, Fabian; Bein, Thomas; Snaith, Henry J.; Friend, Richard H.

    2014-08-03T23:59:59.000Z

    a Keithley 2400 Source Measure Unit (SMU). Photon flux was measured simultaneously using a calibrated silicon photodiode centered over the light-emitting pixel. Radiance in W sr-1 m-2 and luminance in cd m-2 10 were calculated based...

  14. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  15. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  16. Sandia National Laboratories: metal organic chemical vapor deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  17. 1-Dimensional Numerical Model of Thermal Conduction and Vapor Diffusion

    E-Print Network [OSTI]

    Schörghofer, Norbert

    developed by Samar Khatiwala, 2001 extended to variable thermal properties and irregular grid by Norbert Sch for c. Upper boundary condition: a) Radiation Q + k T z z=0 = T4 z=0 Q is the incoming solar flux of Water Vapor with Phase Transitions developed by Norbert Sch¨orghofer, 2003­2004 3 phases: vapor, free

  18. Fenton Oxidation of TCE Vapors in a Foam Reactor

    E-Print Network [OSTI]

    Fenton Oxidation of TCE Vapors in a Foam Reactor Eunsung Kan,a,b Seongyup Kim,a and Marc A.interscience.wiley.com). DOI 10.1002/ep.10205 Oxidation of dilute TCE vapors in a foam reactor using Fenton's reagent composition of Fenton's reagents, the foam reactor configuration provided a higher rate absorption and greater

  19. ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS

    E-Print Network [OSTI]

    Matsuoka, Hiroshige

    ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS H. MATSUOKA1 , T] or meniscus force [3], which have been neglected in the conventional and relatively large mechani- cal systems forces between mica surfaces in under- saturated vapors of several kind of hydrocarbon liquids are mea

  20. Analysis of electron-beam vaporization of refractory metals

    SciTech Connect (OSTI)

    Kheshgi, H.S.; Gresho, P.M.

    1986-09-01T23:59:59.000Z

    An electron beam is focussed onto a small area on the surface of a refractory metal to locally raise the temperature and vaporize metal. At high vaporization rates the hot area is on the surface of a churning liquid-metal pool contained in a solid-metal skull which sits in a cooled crucible. Inner workings of the process are revealed by analysis of momentum, energy, and mass transfer. At the surface high temperature causes high vaporization rate and high vapor thrust, depressing the vapor/liquid surface. In the liquid pool surface-tension gradients and thermal buoyancy drive a (typically) chaotic flow. In the solid skull thermal conductivity and contact resistance regulate the rate of heat transfer from pool to crucible. Analyses of these phenomena together reveal process performance sensitivities - e.g., to depression size or to magnitude of surface-tension gradients. 12 refs., 3 figs.

  1. Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

  2. Kinetics of wet sodium vapor complex plasma

    SciTech Connect (OSTI)

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15T23:59:59.000Z

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  3. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21T23:59:59.000Z

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  4. Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System

    SciTech Connect (OSTI)

    None

    2012-01-04T23:59:59.000Z

    HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

  5. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Pinnau, Ingo (Palo Alto, CA); He, Zhenjie (Fremont, CA); Da Costa, Andre R. (Menlo Park, CA); Daniels, Ramin (San Jose, CA); Amo, Karl D. (Mountain View, CA); Wijmans, Johannes G. (Menlo Park, CA)

    2003-06-03T23:59:59.000Z

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  6. Electron and proton aurora observed spectroscopically in the far ultraviolet

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    Electron and proton aurora observed spectroscopically in the far ultraviolet M. Galand,1 D the location of the electron and proton aurorae is discussed. The estimation of the particle characteristics aurora. Because protons and electrons do not interact in the same way with the atmosphere, our study

  7. Time resolved ultraviolet absorption spectroscopy of pulsed fluorocarbon plasmas

    E-Print Network [OSTI]

    Gleason, Karen K.

    Time resolved ultraviolet absorption spectroscopy of pulsed fluorocarbon plasmas Brett A. Cruden.1063/1.1334936 I. INTRODUCTION The study of fluorocarbon plasmas is of great interest for their applications in silicon dioxide etching.1,2 Recently, at- tention has been paid to using fluorocarbon plasmas to pro- duce

  8. alkali-metal vapor density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system: Alkali metal vapor in a single-mirror arrangement Physics Websites Summary: Secondary bifurcations of hexagonal patterns in a nonlinear optical system: Alkali metal vapor...

  9. Ultraviolet-B Radiation Harms Aquatic Life -Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 1 of 2 8/7/2007 1:45 PM

    E-Print Network [OSTI]

    Blaustein, Andrew R.

    Ultraviolet-B Radiation Harms Aquatic Life - Current Results http://www.currentresults.com/Water/Water-Pollution/ultraviolet.php 1 of 2 8/7/2007 1:45 PM Ultraviolet-B Radiation Harms Aquatic Life The first quantitative analysis of published studies on ultraviolet-B (UVB) radiation and water-borne life reveals that UVB causes widespread

  10. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Patrik Hlobil; Peter P. Orth

    2015-05-11T23:59:59.000Z

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  11. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Hlobil, Patrik

    2015-01-01T23:59:59.000Z

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  12. Organic light-emitting diodes from homoleptic square planar complexes

    DOE Patents [OSTI]

    Omary, Mohammad A

    2013-11-12T23:59:59.000Z

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  13. Luminescence and Squeezing of a Superconducting Light Emitting Diode

    E-Print Network [OSTI]

    Patrik Hlobil; Peter P. Orth

    2015-02-17T23:59:59.000Z

    We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.

  14. Concave-hemisphere-patterned organic top-light emitting device

    DOE Patents [OSTI]

    Forrest, Stephen R; Slootsky, Michael; Lunt, Richard

    2014-01-21T23:59:59.000Z

    A first device is provided. The first device includes an organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first and second electrode. Preferably, the second electrode is more transparent than the first electrode. The organic emissive layer has a first portion shaped to form an indentation in the direction of the first electrode, and a second portion shaped to form a protrusion in the direction of the second electrode. The first device may include a plurality of organic light emitting devices. The indentation may have a shape that is formed from a partial sphere, a partial cylinder, a pyramid, or a pyramid with a mesa, among others. The protrusions may be formed between adjoining indentations or between an indentation and a surface parallel to the substrate.

  15. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27T23:59:59.000Z

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  16. Coherent flash of light emitted by a cold atomic cloud

    SciTech Connect (OSTI)

    Chalony, M. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Pierrat, R. [Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, 10 rue Vauquelin, F-75005 Paris (France); Delande, D. [Laboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS, 4 Place Jussieu, F-75005 Paris (France); Wilkowski, D. [Institut Non Lineaire de Nice, Universite de Nice Sophia-Antipolis, CNRS, F-06560 Valbonne (France); Centre for Quantum Technologies, National University of Singapore, 117543 Singapore (Singapore)

    2011-07-15T23:59:59.000Z

    When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.

  17. Organic light emitting device having multiple separate emissive layers

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI)

    2012-03-27T23:59:59.000Z

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  18. Multispectral imaging of the ocular fundus using light emitting diode illumination

    E-Print Network [OSTI]

    Claridge, Ela

    Multispectral imaging of the ocular fundus using light emitting diode illumination N. L. Everdell,1 on light emitting diode LED illumination that produces multispectral optical images of the human ocular

  19. High-Efficiency and Stable White Organic Light-Emitting Diode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter Presenter: Jian...

  20. Injection and transport processes in organic light emitting diodes based on N. Huby a,b

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Injection and transport processes in organic light emitting diodes based on a silole. N. Huby a- conductors in light emitting diodes1 . The different fields of research around the organic electronic allowed

  1. Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex

    E-Print Network [OSTI]

    Huang, Yanyi

    Green exciplex emission from a bilayer light-emitting diode containing a rare earth ternary complex form 18 October 2001 Abstract A bilayer organic light-emitting diode using a blue-fluorescent yttrium

  2. auger-electron emitting estrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag as anode Institute of Physics. DOI: 10.10631.2172734 Active-matrix organic light-emitting diode AMOLED displays have 63 Interference of spontaneously emitted photons Quantum...

  3. advanced semiconductor light-emitting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode Engineering Websites Summary: light-emitting diode Alexei A. Erchak,a) Daniel...

  4. alpha-particle emitting 211at: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag as anode Institute of Physics. DOI: 10.10631.2172734 Active-matrix organic light-emitting diode AMOLED displays have 108 Interference of spontaneously emitted photons Quantum...

  5. Evaluation of potential applications for templated arrays of heterostructural semiconductor nanowires as light emitting devices

    E-Print Network [OSTI]

    Zou, Ting, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    While light emitting devices, such as laser diodes (LDs) and light emitting diodes (LEDs), were first introduced decades ago, they have been the subject of continuing research and improvements due to their relatively poor ...

  6. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01T23:59:59.000Z

    and J. K. Kim, “Solid-state light sources getting smart,”power phosphor-converted light-emitting diodes based on III-for phosphor- based white-light-emitting diodes,” Appl.

  7. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13T23:59:59.000Z

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  8. INFRARED AND ULTRAVIOLET STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES IN THE ACCEPT SAMPLE

    SciTech Connect (OSTI)

    Hoffer, Aaron S.; Donahue, Megan; Hicks, Amalia [Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824-2320 (United States); Barthelemy, R. S., E-mail: hofferaa@msu.edu, E-mail: donahue@pa.msu.edu, E-mail: hicksam@msu.edu, E-mail: ramon.s.barthelemy@wmich.edu [Physics Department, Western Michigan University, Kalamazoo, MI 49008-5252 (United States)

    2012-03-01T23:59:59.000Z

    We present infrared (IR) and ultraviolet (UV) photometry for a sample of brightest cluster galaxies (BCGs). The BCGs are from a heterogeneous but uniformly characterized sample, the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), of X-ray galaxy clusters from the Chandra X-ray telescope archive with published gas temperature, density, and entropy profiles. We use archival Galaxy Evolution Explorer (GALEX), Spitzer Space Telescope, and Two Micron All Sky Survey (2MASS) observations to assemble spectral energy distributions (SEDs) and colors for BCGs. We find that while the SEDs of some BCGs follow the expectation of red, dust-free old stellar populations, many exhibit signatures of recent star formation in the form of excess UV or mid-IR emission, or both. We establish a mean near-UV (NUV) to 2MASS K color of 6.59 {+-} 0.34 for quiescent BCGs. We use this mean color to quantify the UV excess associated with star formation in the active BCGs. We use both fits to a template of an evolved stellar population and library of starburst models and mid-IR star formation relations to estimate the obscured star formation rates (SFRs). We show that many of the BCGs in X-ray clusters with low central gas entropy exhibit enhanced UV (38%) and mid-IR emission (43%) from 8 to 160 {mu}m, above that expected from an old stellar population. These excesses are consistent with ongoing star formation activity in the BCG, star formation that appears to be enabled by the presence of high-density, X-ray-emitting intergalactic gas in the core of the cluster of galaxies. This hot, X-ray-emitting gas may provide the enhanced ambient pressure and some of the fuel to trigger star formation. This result is consistent with previous works that showed that BCGs in clusters with low central gas entropies host H{alpha} emission-line nebulae and radio sources, while clusters with high central gas entropy exhibit none of these features. GALEX UV and Spitzer mid-IR measurements combined provide a complete picture of unobscured and obscured star formation occurring in these systems. We present IR and UV photometry and estimated equivalent continuous SFRs for a sample of BCGs.

  9. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15T23:59:59.000Z

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE flowchart provides a structured process to determine if the technology is, or is not, reasonable and defensible for a particular site. The central basis for that decision is the expected performance of PSVE under the site specific conditions. Will PSVE have sufficient mass removal rates to reduce the release, or flux, of contamination into the underlying groundwater so that the site can meet it overall remedial objectives? The summary technical information, case study experiences, and structured decision process provided in this 'user guide' should assist environmental decision-makers, regulators, and engineers in selecting and successfully implementing PSVE at appropriate sites.

  10. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Mark J. Bergander

    2005-08-29T23:59:59.000Z

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  11. Process development for the fabrication of light emitting vacuum field emission triodes

    E-Print Network [OSTI]

    Williams, Roger T.

    1994-01-01T23:59:59.000Z

    . Light emitting diodes and triodes are also fabricated to address the feasibility of their application to flat panel displays....

  12. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17T23:59:59.000Z

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  13. Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    E-Print Network [OSTI]

    Fuchs, Cornelius; Wieczorek, Martin; Gather, Malte C; Hofmann, Simone; Reineke, Sebastian; Leo, Karl; Scholz, Reinhard

    2015-01-01T23:59:59.000Z

    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within ot...

  14. Direct radiative effect of aerosols emitted by transport from road, shipping and

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Direct radiative effect of aerosols emitted by transport from road, shipping and aviation 1234567.0 License. Atmospheric Chemistry and Physics Direct radiative effect of aerosols emitted by transport: from ­ Published: 17 May 2010 Abstract. Aerosols and their precursors are emitted abun- dantly by transport

  15. Space charge spectroscopy of integrated quantum well infrared photodetectorlight emitting diode

    E-Print Network [OSTI]

    Perera, A. G. Unil

    Space charge spectroscopy of integrated quantum well infrared photodetector±light emitting diode M ± light emitting diode (QWIP-LED). Quasistatic capacitance±voltage (C±V ) characteristics under reverse.V. All rights reserved. Keywords: Quantum-well infrared photodetector; Light-emitting diode; Space charge

  16. Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Hwang, Sung Woo

    acrylate layer and MS-31 (MgO : SiO2 ¼ 3 : 1 wt %) layer was adopted in organic light emitting diode (OLED the penetrations of oxygen and moisture. [DOI: 10.1143/JJAP.45.5970] KEYWORDS: organic light emitting diode (OLED. Introduction As a next generation display, the organic light emitting diode (OLED) has to great performances

  17. Light extraction analysis and enhancement in a quantum dot light emitting diode

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Light extraction analysis and enhancement in a quantum dot light emitting diode Ruidong Zhu outcoupling and angular performance of quantum dot light emitting diode (QLED). To illustrate the design principles, we use a red QLED as an example and compare its performance with an organic light emitting diode

  18. Enhanced coupling of light from organic light emitting diodes using nanoporous films

    E-Print Network [OSTI]

    Enhanced coupling of light from organic light emitting diodes using nanoporous films H. J. Peng, Y the light extraction efficiency for organic light emitting diode OLED . Nanoporous alumina film was used by Bragg scattering. The corrugated light- emitting diode had two-times the efficiency as compared

  19. Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs)

    E-Print Network [OSTI]

    Ashworth, Stephen H.

    Depth of cure and compressive strength of dental composites cured with blue light emitting diodes with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do reserved. Keywords: Blue light emitting diodes; Light curing unit; Composites; Irradiance; Spectrum; Depth

  20. Correlation between the Indium Tin Oxide morphology and the performances of polymer light-emitting diodes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : This paper reports on performance enhancement of polymer light-emitting diodes (PLEDs) based on poly(2,5-bis. Keywords : Polymer light emitting diode; Indium tin oxide; Atomic force microscopy; Rutherford backscattering spectroscopy 1. Introduction Polymer light-emitting diodes (PLEDs) have received worldwide

  1. Point defect engineered Si sub-bandgap light-emitting diode

    E-Print Network [OSTI]

    Bao, Jiming

    Point defect engineered Si sub-bandgap light-emitting diode Jiming Bao1 , Malek Tabbal1,2 , Taegon light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction OCIS codes: (230.3670) Light-emitting diodes; (160.6000) Semiconductors; (130-0250) Optoelectronics

  2. High efficiency light emitting diode with anisotropically etched GaN-sapphire interface

    E-Print Network [OSTI]

    High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

  3. spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer

    E-Print Network [OSTI]

    spectroscopic techniques A Multi-Source Portable Light Emitting Diode Spectrofluorometer SAFWAN only 1.5 kg that uses multiple light emitting diodes (LEDs) as excitation sources was developed emitting diodes; LEDs; Animal forage; Excitation-emission matrices; EEM. INTRODUCTION Movement of chemical

  4. Room temperature 1.6 m electroluminescence from Ge light emitting diode on Si substrate

    E-Print Network [OSTI]

    Vuckovic, Jelena

    Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate Szu n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device.4670) Optical materials; (230.3670) Light-emitting diodes. References and links 1. L. C. Kimerling, "Silicon

  5. Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode

    E-Print Network [OSTI]

    Poly(p-phenylene vinylene)/tris(8-hydroxy) quinoline aluminum heterostructure light emitting diode are presented from polymer/molecular organic heterostructure light emitting diodes composed of a layer,2 organic light emitting diodes OLEDs utilizing fluorescent molecules have attracted considerable interest

  6. Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes

    E-Print Network [OSTI]

    Rogers, John A.

    Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes Jung Min Lee, Jae a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics, light-emitting diodes, 3D architectures, transparent electrodes V ertical arrays of one-dimensional (1D

  7. Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes

    E-Print Network [OSTI]

    Dutton, Robert W.

    trade-offs in electrically pumped photonic-crystal-based light-emitting diodes. A finite- toelectronic devices, such as light-emitting diodes LEDs and lasers. It has been suggested that a thin slabCoupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting

  8. Efficient blue organic light-emitting diodes employing thermally activated delayed

    E-Print Network [OSTI]

    Cai, Long

    Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence,2 * Organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) have energy is high enough and the 3 LE state is higher than the 3 CT state. O rganic light-emitting diodes

  9. A description and evaluation of light-emitting diode displays for generation of visual stimuli*

    E-Print Network [OSTI]

    Massaro, Dominic

    A description and evaluation of light-emitting diode displays for generation of visual stimuli 53706 A description of the design and function of light-emitting diode (LED) display modules is given (Time, April 1972). Light-emitting diodes (L~Ds) are examples of these spin-offs, LED display devices

  10. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    SciTech Connect (OSTI)

    Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul, E-mail: gcyi@snu.ac.kr [Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoo, Hyobin; Kim, Miyoung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-09-01T23:59:59.000Z

    We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  11. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    SciTech Connect (OSTI)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China)] [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China) [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15T23:59:59.000Z

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  12. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

    2012-05-01T23:59:59.000Z

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

  13. Photoinitiated chemical vapor depostion [sic] : mechanism and applications

    E-Print Network [OSTI]

    Baxamusa, Salmaan Husain

    2009-01-01T23:59:59.000Z

    Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

  14. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  15. Optical Precursors in Rubidium Vapor and Their Relation to Superradiance

    E-Print Network [OSTI]

    Yang, Wenlong

    2012-10-19T23:59:59.000Z

    Optical precursor is the sharp optical pulse front that does not show delay in absorptive media. In this thesis, optical precursor behavior in rubidium (Rb) vapor was investigated in the picoseconds regime. An amplified femtosecond laser was shaped...

  16. Applications of Mechanical Vapor Recompression to Evaporation and Crystallization

    E-Print Network [OSTI]

    Outland, J. S.

    there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity...

  17. Melt and vapor characteristics in an electron beam evaporator

    SciTech Connect (OSTI)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

  18. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  19. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01T23:59:59.000Z

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  20. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  1. All graphene electromechanical switch fabricated by chemical vapor deposition

    E-Print Network [OSTI]

    Milaninia, Kaveh M.

    We demonstrate an electromechanical switch comprising two polycrystalline graphene films; each deposited using ambient pressure chemical vapor deposition. The top film is pulled into electrical contact with the bottom film ...

  2. Apparent Temperature Dependence on Localized Atmospheric Water Vapor

    E-Print Network [OSTI]

    Salvaggio, Carl

    Apparent Temperature Dependence on Localized Atmospheric Water Vapor Matthew Montanaroa, Carl temperature of the target if not properly accounted for. The temperature error is defined as the difference between the target leaving apparent temperature and observed apparent temperature. The effects

  3. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  4. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01T23:59:59.000Z

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  5. Systems and methods for generation of hydrogen peroxide vapor

    DOE Patents [OSTI]

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02T23:59:59.000Z

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  6. Type B Accident Investigation of the Acid Vapor Inhalation on...

    Broader source: Energy.gov (indexed) [DOE]

    2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1...

  7. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cadeddu, Maria

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  8. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    E-Print Network [OSTI]

    Chou, Bo-Tsun; Wu, Yen-Mo; Chung, Yi-Chen; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2015-01-01T23:59:59.000Z

    Plasmonic devices have advanced significantly in the past decade. Being one of the most intriguing devices, plamonic nanolasers plays an important role in biomedicine, chemical sensor, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly in ultraviolet regime, are extremely sensitive to metal and interface quality, which renders the development of ultraviolet plasmonics. Here, by addressing the material issues, we demonstrate a low threshold, high characteristic temperature metal-oxide-semiconductor ZnO nanolaser working at room temperature. The template for ZnO nanowires consists of a flat single-crystalline aluminum film grown by molecular beam epitaxy and an ultra-smooth Al2O3 spacer layer prepared by atomic layer deposition. By effectively reducing surface plasmon scattering loss and metal intrinsic absorption loss, the high-quality metal film and sharp interfaces between layers boost the device performance. Our work paves the way for future applicati...

  9. Intermediate Vapor Expansion Distillation and Nested Enrichment Cascade Distillation

    E-Print Network [OSTI]

    Erickson, D. C.

    INTERMEDIATE VAPOR EXPANSION DISTILLATION AND NESTED ENRICHMENT CASCADE DISTILLATION D.. C. Erickson Energy Concepts Company Annapolis, Maryland ABSTRACT Although it is known that incorporating an intermediate reboiler or reflux... condenser in a distillation ~olumn will improve column efficiency by 15 to 100%, there has been little use of this technique to date." Intermediate vapor compression heat pumping was recently introduced as one practical means of achieving this benefit...

  10. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01T23:59:59.000Z

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  11. Vaporizer design criteria for ethanol fueled internal combustion engines

    E-Print Network [OSTI]

    Ariyaratne, Arachchi Rallage

    1985-01-01T23:59:59.000Z

    Properties of Alcohols, Water and Petroleum Fuels. 2 Results of regression analysis. 3 Effect of various parameters on vaporization length. 51 4 Predicted tube length for different fuel requirements (Ten stainless steel tubes, 4. 7 mm ID. ). 60 ix LIST... with quality with increasing heat flux as parameter. 18 5 Reynolds Number Factor, F. 6 Suppression Factor, S. 27 27 7 Flow chart of the algorithm for vaporization length. 8 The single tube heat exchanger. 33 36 9 Thermocouple arrangement along...

  12. Optimal determination of the vapor pressure critical exponent

    E-Print Network [OSTI]

    Walton, Clifford Wayne

    1977-01-01T23:59:59.000Z

    , 1969), while scaling theory predicts about 0. 1 (Vicentini-Missoni et al. , 1969; Widom and Rowlinson, 1970). The object of this study was to determine the optimum value of 0 by means of a least squares fit of various nonanalytic vapor pressure... onal : cj ence Foundation, Grant ENG76-00692, is acknowl- edged. vi TABLE OF CONTENTS Page SCOPE. CONCLUSIONS AND SIGNII'ICANCE INTRODUCTION Theory. Development of Vapor Pressure Equations PROCEDURE. Curve Fit Method (CFN). Numerical...

  13. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24T23:59:59.000Z

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  14. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Richardson, Robert W. (Pelham, NY)

    1985-01-01T23:59:59.000Z

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  15. Tank Vapor Characterization Project: Annual status report for FY 1996

    SciTech Connect (OSTI)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01T23:59:59.000Z

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

  16. A high galactic latitude survey of far ultraviolet excess objects

    SciTech Connect (OSTI)

    Bixler, J.V.

    1988-01-01T23:59:59.000Z

    Two closely related efforts in astrophysical instrumentation and observation are described with the objective of performing a high galactic latitude survey of faint objects in the far ultraviolet. The avenues of research possible with data obtained from space based ultraviolet surveys are discussed and a summary of past, present and planned instruments capable of such survey work presented. The Faust telescope, an eight degree field of view imaging instrument with peak sensitivity at 1700A, designed for survey work is described. An imaging, active readout detector and associated ground support equipment were designed, constructed, and calibrated to replace the original photographic detector. The present state of observational data relevant to determining the atmospheric parameters of subdwarf B and O stars, and their mid-Galactic plane density and scale height was reviewed. Theoretical explanations of their evolutionary status were proposed. The optical observations and spectral reductions performed on objects included in a catalog of far ultraviolet bright, high galactic latitude objects are described. These observations provide a sample of subdwarf O and B stars free of brightness and temperature selection effects. A model atmospheres analysis was performed on the subdwarf sample to determine the temperature, gravity and helium to hydrogen ratio of the individual objects. The results show a smooth distribution of objects on the gravity versus temperature diagram near the theoretical location of the extended horizontal branch.

  17. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOE Patents [OSTI]

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30T23:59:59.000Z

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  18. Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures

    SciTech Connect (OSTI)

    Liu, D.-S.; Lin, T.-W.; Huang, B.-W.; Juang, F.-S.; Lei, P.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei 63201, Taiwan (China); Hu, C.-Z. [Chilin Technology Co. Ltd., Tainan County 71758, Taiwan (China)

    2009-04-06T23:59:59.000Z

    Amorphous titanium oxide (a-TiO{sub x}:OH) films prepared by plasma-enhanced chemical-vapor deposition at 200 and 25 deg. C are in turn deposited onto the GaN-based light-emitting diode (LED) to enhance the associated light extraction efficiency. The refractive index, porosity, and photocatalytic effect of the deposited films are correlated strongly with the deposition temperatures. The efficiency is enhanced by a factor of {approx}1.31 over that of the uncoated LEDs and exhibited an excellent photocatalytic property after an external UV light irradiation. The increase in the light extraction is related to the reduction in the Fresnel transmission loss and the enhancement of the light scattering into the escape cone by using the graded-refractive-index a-TiO{sub x}:OH film with porous structures.

  19. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

    1994-10-04T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  20. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

    1994-08-02T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  1. Efficient bottom cathodes for organic light-emitting devices

    SciTech Connect (OSTI)

    Liu Jie; Duggal, Anil R.; Shiang, Joseph J.; Heller, Christian M. [General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309 (United States)

    2004-08-02T23:59:59.000Z

    Bilayers of aluminum and an alkali fluoride are well-known top cathode contacts for organic light-emitting devices but have never been successfully applied as bottom contacts. We describe a bilayer bottom cathode contact for organic electronic devices based on reversing the well-known top cathode structure such that the aluminum, rather than the alkali fluoride, contacts the organic material. Electron-only devices were fabricated showing enhanced electron injection from this bottom contact. Kelvin probe, x-ray photoelectron spectroscopy experiments, and thermodynamic calculations suggest that the enhancement results from n doping of the organic material by dissociated alkali metals.

  2. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28T23:59:59.000Z

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  3. Poly (p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04T23:59:59.000Z

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  4. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02T23:59:59.000Z

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  5. Graphene surface emitting terahertz laser: Diffusion pumping concept

    SciTech Connect (OSTI)

    Davoyan, Arthur R., E-mail: davoyan@seas.upenn.edu [Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of Sciences, Saratov 410019, Russia and Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Morozov, Mikhail Yu.; Popov, Vyacheslav V. [Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of Sciences, Saratov 410019 (Russian Federation)] [Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch), Russian Academy of Sciences, Saratov 410019 (Russian Federation); Satou, Akira; Otsuji, Taiichi [Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Miyagi 980-8577 (Japan)] [Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2013-12-16T23:59:59.000Z

    We suggest a concept of a tunable graphene-based terahertz (THz) surface emitting laser with diffusion pumping. We employ significant difference in the electronic energy gap of graphene and a typical wide-gap semiconductor, and demonstrate that carriers generated in the semiconductor can be efficiently captured by graphene resulting in population inversion and corresponding?THz lasing from graphene. We develop design principles for such a laser and estimate its performance. We predict up to 50?W/cm{sup 2} terahertz power output for 100?kW/cm{sup 2} pump power at frequency around 10?THz at room temperature.

  6. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, Carol S. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Reed, Scott (Albuquerque, NM); Walko, Robert J. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy.

  7. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1992-08-11T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy. 4 figs.

  8. Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-

    E-Print Network [OSTI]

    Wang, Zhong L.

    of Technology, Atlanta, Georgia 30332-0245, United States Key Laboratory of Modern Optical InstrumentationO nanostructures has been limited by a lack of efficient methods to achieve a balance between electron contributed, and energy harvesting.1-5 With a direct band gap of about 3.30 eV, a large excitonic binding energy about 60

  9. Dynamics and manipulation of the dominant 13.5 nm in-band extreme ultraviolet emitting region of laser-produced Sn plasmas

    E-Print Network [OSTI]

    Yuspeh, Samuel Edward

    2011-01-01T23:59:59.000Z

    mesh overlaps, known as a bowtie, thus creating errors inadditional limitations. If a bowtie occurs (when the mesh ofthe mesh to remove the bowtie. This removal of the bowtie

  10. Organic light-emitting devices using spin-dependent processes

    DOE Patents [OSTI]

    Vardeny, Z. Valy (Salt Lake City, UT); Wohlgenannt, Markus (Salt Lake City, UT)

    2010-03-23T23:59:59.000Z

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  11. Monitoring lensed starlight emitted close to the Galactic Center

    E-Print Network [OSTI]

    Adi Nusser; Tom Broadhurst

    2004-07-12T23:59:59.000Z

    We describe the feasibility of detecting the gravitational deflection of light emitted by stars moving under the influence of the massive object at the Galactic center. Light emitted by a star orbiting behind the central mass has a smaller impact parameter than the star itself, and suffers the effect of gravitational lensing, providing a closer probe of the central mass distribution and hence a stricter test of the black hole hypothesis. A mass of $4.3\\times 10^{6} M_{\\odot}$ causes a $0.1-2\\rm mas$ deviation in the apparent position of orbiting stars projected within $10^{\\circ}$ of the line of sight to the galactic center. In addtion, we may uniquely constrain the distance to the center of the galaxy because lensing deflections constrain the ratio $\\rg/R_{0}$ of the Schwarzschild radius to the distance to the black hole, $R_{o}$, whereas the ratio $\\rg/R_{o}^{3}$ is obtained by fitting the orbit.

  12. Carbon contamination of extreme ultraviolet (EUV) mask and its effect on imaging

    E-Print Network [OSTI]

    Fan, Yu-Jen

    2009-01-01T23:59:59.000Z

    induced carbon contamination of extreme ultraviolet optics."potential LWR due to the contamination topography may be anet aI. , "Accelerated contamination testing of EUV masks."

  13. alpha-class extreme ultraviolet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum Society. S0734-211X 00 02506-3 I. INTRODUCTION EUV lithography optics require 5 Solar Dynamics Observatory Extreme Ultraviolet Variability Experiment Geosciences Websites...

  14. Spectral Control of Emission from Tin Doped Targets for Extreme Ultraviolet Lithography

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    control of emissions from tin doped targets for extremearray (UTA) emission around 13.5 nm from solid density tinand tin doped foam targets. Extreme ultraviolet (EUV)

  15. Self-cleaning optic for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16T23:59:59.000Z

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  16. Gamma Ray Burst Constraints on Ultraviolet Lorentz Invariance Violation

    E-Print Network [OSTI]

    Tina Kahniashvili; Grigol Gogoberidze; Bharat Ratra

    2006-10-20T23:59:59.000Z

    We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of $\\gamma$-rays from gamma ray bursts in a LV model. Here $\\gamma$-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, L\\'{o}pez-Sarri\\'{o}n, and Polychronakos (2006).

  17. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C. (Livermore, CA); Wall, Mark A. (Stockton, CA)

    2001-01-01T23:59:59.000Z

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  18. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Dürr, Hermann A.; Parkin, Stuart S. P.; Gühr, Markus

    2015-01-01T23:59:59.000Z

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  19. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect (OSTI)

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-08-18T23:59:59.000Z

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  20. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Quigley, Gerard P. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  1. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOE Patents [OSTI]

    Sze, R.C.; Quigley, G.P.

    1996-12-17T23:59:59.000Z

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  2. Extreme Ultra-Violet Spectroscopy of the Flaring Solar Chromosphere

    E-Print Network [OSTI]

    Milligan, Ryan O

    2015-01-01T23:59:59.000Z

    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.

  3. Ultraviolet Absorber UV-770 Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobalUbbinkUkrainianUltraviolet

  4. Evaluation and prevention of explosions in soil vapor extraction systems

    SciTech Connect (OSTI)

    Hower, J.W. [Radian Corp., El Segundo, CA (United States)

    1995-12-31T23:59:59.000Z

    Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

  5. Interactions between Liquid-Wall Vapor and Edge Plasmas

    SciTech Connect (OSTI)

    Rognlien, T D; Rensink, M E

    2000-05-25T23:59:59.000Z

    The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

  6. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect (OSTI)

    Davis, W. Jr. (Oak Ridge Gaseous Diffusion Plant, TN (USA)); Cochran, H.D. (Oak Ridge National Lab., TN (USA))

    1990-02-01T23:59:59.000Z

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  7. Solid-state radiation-emitting compositions and devices

    DOE Patents [OSTI]

    Ashley, Carol S. (14316 Bauer Rd., NE., Albuquerque, NM 87123); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Reed, Scott (10308 Leymon Ct., NW., Albuquerque, NM 87114); Shepodd, Timothy J. (1838 Broadmore St., Livermore, CA 94550); Leonard, Leroy E. (4944 Ten Oaks Rd., Dayton, MD 21036); Ellefson, Robert E. (193 Elmwood Dr., Centerville, OH 45459); Gill, John T. (906 E. Linden Ave., Miamisburg, OH 45342); Walko, Robert J. (3215 Blume, NE., Albuquerque, NM 87111); Renschler, Clifford L. (7 Lagarto Rd., Tijeras, NM 87059)

    1992-01-01T23:59:59.000Z

    The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. In the composition, a composite is formed from a carrier material and at least one of the source of the exciting radiation or the component which is capable of interacting with the exciting radiation. The composite is then employed for loading a porous substrate, preferably an aerogel substrate.

  8. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect (OSTI)

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay [Y?ld?z Technical University, Department of Physics, Esenler, Istanbul (Turkey); Tekin, Emine; Pravadal?, Selin [National Metrology Inst?tute of Turkey (TUB?TAK-UME), Kocaeli (Turkey)

    2013-12-16T23:59:59.000Z

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  9. Thermal properties of organic light-emitting diodes

    SciTech Connect (OSTI)

    Bergemann, Kevin; Krasny, Robert; Forrest, Stephen R.

    2012-01-01T23:59:59.000Z

    Thermal management is important for the efficient operation of organic light-emitting diodes (OLED, or PHOLED) at high brightness, with the device operating temperature influencing both lifetime and performance. We apply a transmission-matrix approach to analytically model the effects of thermal conduction, convection and radiation on OLED temperature. The model predictions match experiment without requiring the use of fitting parameters. This allows for the simulation of the thermal response of various device architectures, materials combinations and environmental factors under a variety of operating conditions. Using these simulations, we find that 87% of the heat is dissipated through the air space adjacent to the glass package cap. Furthermore, an air gap between the device cathode and cap provides a significant thermal impedance. Minimizing the thickness of the internal air gap can lead to nearly room temperature operation, even at very high brightness.

  10. Method of electroplating a conversion electron emitting source on implant

    DOE Patents [OSTI]

    Srivastava, Suresh C. (Setauket, NY); Gonzales, Gilbert R. (New York, NY); Adzic, Radoslav (East Setauket, NY); Meinken, George E. (Middle Island, NY)

    2012-02-14T23:59:59.000Z

    Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H.sub.2 evolution in H.sub.2SO.sub.4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H.sub.2SO.sub.4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.

  11. Model for Triplet State Engineering in Organic Light Emitting Diodes

    E-Print Network [OSTI]

    Prodhan, Suryoday; Ramasesha, S

    2014-01-01T23:59:59.000Z

    Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions and twisted geometry. The largest system studied is an eighteen carbon polyene which spans a Hilbert space of about 991 million. We show that for reverse intersystem crossing (RISC) process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

  12. White organic light-emitting diodes: Status and perspective

    E-Print Network [OSTI]

    Reineke, Sebastian; Lüssem, Björn; Leo, Karl

    2013-01-01T23:59:59.000Z

    White organic light-emitting diodes (OLEDs) are ultra-thin, large-area light sources made from organic semiconductor materials. Over the last decades, much research has been spent on finding the suitable materials to realize highly efficient monochrome and white OLEDs. With their high efficiency, color-tunability, and color-quality, white OLEDs are emerging to become one of the next generation light sources. In this review, we discuss the physics of a variety of device concepts that are introduced to realize white OLEDs based on both polymer and small molecule organic materi als. Owing to the fact that about 80 % of the internally generated photons are trapped within the thin-film layer structure, we put a second focus on reviewing promising concepts for improved light outcoupling.

  13. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; Reynolds, J. R. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01T23:59:59.000Z

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  14. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOE Patents [OSTI]

    Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

    2009-08-25T23:59:59.000Z

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  15. Balance of atmospheric water vapor over the Gulf of Mexico

    E-Print Network [OSTI]

    Hughes, Ralph Morgan

    1967-01-01T23:59:59.000Z

    / / / / I / o. i + B CAP C BBJ V S TPA PZA EHA Fig. 5. Vertical distribution of the average water-vapor flux normal to the perimeter of the Gulf of Nexico during Oct-Kov-Dec 1959. Plus values are inflow in kgm/sec-mb-. m. -o-I Pi C4 I / ~-o, i...BALANCE OF ATMOSPHERIC HATER VAPOR OVER THE GULF OF MEXICO A Thesis By RALPH MORGAN HUGHES Captain, USAF Submitted to the Graduate College of the Texas A&M University in partial fulf-'llment of the rec;uirements for the degree of MASTER...

  16. The development of a passive dosimeter for airborne benzene vapors

    E-Print Network [OSTI]

    Hager, David William

    1978-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BENZENE VAPORS A Thesis DAVID NII LIAM HAGER Submitted to the Graduate Colleqe of Texas ASM University in partial fulfillment of the requirement for the d"gree of MASTER OF SC. IENCE May IB...7B Major Subject: Indus t& ial Hyqiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE BFNZENE VAPORS A Thesis by DAVID NILLIAM HAGER Approved as to style and content by: Z Chairman of Commi t e~ ~'g C'S~ Head of Department~ Member...

  17. The development of a passive dosimeter for airborne aniline vapors

    E-Print Network [OSTI]

    Campbell, James Evan

    1977-01-01T23:59:59.000Z

    THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James Evan Campbell Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE I...'iay 1977 Major Subject: Industrial Hygiene THE DEVELOPMENT OF A PASSIVE DOSIMETER FOR AIRBORNE ANILINE VAPORS A Thesis by James E van Campbe1 1 Approved as to style and content by: Chairm of Com itt ea of De rtment Member Member May 1977...

  18. A study of vapor-liquid flow in porous media

    SciTech Connect (OSTI)

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20T23:59:59.000Z

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  19. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated...

  20. algainp light-emitting diodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials for different organic layers, which compose the standard organic light emitting diode (OLED) architecture.; Chapter one introduces (more) Borek, Carsten 2008-01-01...

  1. Wire-shaped semiconductor light-emitting diodes for general-purpose lighting

    SciTech Connect (OSTI)

    Mauk, Michael G.

    2002-10-28T23:59:59.000Z

    The object of this work is to develop and optimize a new type of light-emitting diode (LED) with a wire-shaped, cylindrical geometry.

  2. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-06-18 Issuance: Test Procedure for Integrated...

  3. Ultraviolet radiation in the southern seas in early spring 1993

    SciTech Connect (OSTI)

    Wendler, G.; Quakenbush, T. [Univ. of Alaska, Fairbanks, AK (United States)

    1994-12-31T23:59:59.000Z

    The National Science Foundation research vessel Nathaniel B. Palmer carried out a cruise to Antarctica in early spring of 1993. It left Punta Arenas, Chile, close to the tip of South America on 11 August 1993. sailed south for 3 days to the tip of The Antarctic Peninsula, stopping at O`Higgens and Palmer Stations, and from there went southwest and into the Bellingshausen sea. On 10 September, it reached the most southerly position, 71{degrees}S, some distance north of the Thurston Island. From there, it went as far as 110{degrees}W before returning to Punta Arenas. The main purpose of the cruise was to investigate the snow- and sea-ice thickness, properties, and structures in this part of the southern oceans. It also allowed us to carry out continuous radiation measurements. We measured the following fluxes: global radiation (Eppley PSP), infrared incoming radiation (Eppley Pyrgeometer PIR), ultraviolet-A radiation (Eppley UV meter), ultraviolet-B radiation (Yankee Environmental Systems), and pitch and roll of the ship (Lucas Sensing Systems, Inc.). All instruments were sampled twice per second (Campbell Scientific, Model 21 X), and a notebook computer (ASI Patriot) stored 1-minute averages of the radiation data and 1-minute standard deviation of the ship`s pitch and roll. Visual observations of cloud cover were also recorded. 2 refs., 3 figs.

  4. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect (OSTI)

    Ben-Zvi, I. [ed.

    1993-02-01T23:59:59.000Z

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  5. Ambient Levels of Ultraviolet-B Radiation Cause Mortality in Juvenile Western Toads, Bufo boreas

    E-Print Network [OSTI]

    Blaustein, Andrew R.

    Ambient Levels of Ultraviolet-B Radiation Cause Mortality in Juvenile Western Toads, Bufo boreas industrial gases contribute to the depletion of the earth's protective ozone layer, resulting in increased amounts of cell damaging ultraviolet-B (UV-B) radiation reaching the surface of the earth. Recent

  6. Author's personal copy Effects of ultraviolet radiation on an intertidal trematode parasite: An assessment

    E-Print Network [OSTI]

    Poulin, Robert

    Author's personal copy Effects of ultraviolet radiation on an intertidal trematode parasite: An assessment of damage and protection A. Studer a, , V.M. Cubillos b,c , M.D. Lamare c , R. Poulin a , D ecosystems which experience high levels of ultraviolet radiation. Although these parasites mostly live within

  7. Table top nanopatterning with extreme ultraviolet laser illumination M.G. Capeluto c

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Table top nanopatterning with extreme ultraviolet laser illumination M.G. Capeluto c , P. Wachulak practical table-top nanopatterning tools based on extreme ultraviolet lasers for nanotechnology applications. Ó 2007 Elsevier B.V. All rights reserved. Keywords: EUV lasers; Table top photolithography

  8. Hubble Space Telescope FOS Optical and Ultraviolet Spectroscopy of the Bow Shock HH 47A 1

    E-Print Network [OSTI]

    Hartigan, Patrick

    Hubble Space Telescope FOS Optical and Ultraviolet Spectroscopy of the Bow Shock HH 47A 1 Patrick Telescope of the HH 47A bow shock and Mach disk that cover the entire spectral range between 2220 Å¡ that the Fe II line broadening must exceed that expected from thermal motions. Excitation of ultraviolet Fe II

  9. Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

    E-Print Network [OSTI]

    Harilal, S. S.

    Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas ultraviolet (EUV) radiation from a laser pro- duced tin plasma has been studied extensively in recent years. The need for 13.5 nm wavelength and a regenerative target lead to the use of tin droplet targets.10 Hot tin

  10. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15T23:59:59.000Z

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  11. Heat transfer during film condensation of potassium vapor on a horizontal plate

    E-Print Network [OSTI]

    Meyrial, Paul M.

    1968-01-01T23:59:59.000Z

    The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

  12. Chemical vapor deposition thin films as biopassivation coatings and directly patternable dielectrics

    E-Print Network [OSTI]

    Pryce Lewis, Hilton G. (Hilton Gavin), 1973-

    2001-01-01T23:59:59.000Z

    Organosilicon thin films deposited by pulsed plasma-enhanced chemical vapor deposition (PPECVD) and hot-filament chemical vapor deposition (HFCVD) were investigated as potential biopassivation coatings for neural probes. ...

  13. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam 

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG...

  14. Amine functionalization by initiated chemical vapor deposition (iCVD) for interfacial adhesion and film cohesion

    E-Print Network [OSTI]

    Xu, Jingjing, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Amine functional polymer thin films provide a versatile platform for subsequent functionalization because of their diverse reactivity. Initiated chemical vapor deposition (iCVD) is a polymer chemical vapor deposition ...

  15. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phasehydrodeoxy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of...

  16. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  17. A transient model for a cesium vapor thermionic converter. [Cs

    SciTech Connect (OSTI)

    El-Genk, M.S.; Murray, C.S.; Chaudhuri, S. (Institute for Space Nuclear Power Studies, Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico (USA))

    1991-01-10T23:59:59.000Z

    This paper presents an analytical model for simulating the transient and steady-state operation of cesium vapor thermionic converters. A parametric analysis is performed to assess the transient response of the converter to changes in fission power and width of interelectrode gap. The model optimizes the converter performance for maximum electric power to the load.(AIP)

  18. Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors

    E-Print Network [OSTI]

    Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors Eunsung Kan, Marc A.interscience.wiley.com). DOI: 10.1002/bit.20619 Abstract: Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding

  19. DIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages

    E-Print Network [OSTI]

    Dandy, David

    a reality. Epi- taxial diamond has been grown on diamond and cubic-BN. Polycrystalline diamond films haveDIAMOND CHEMICAL VAPOR DEPOSITION Nucleation and Early Growth Stages by Huimin Liu David S. Dandy of high-quality diamond coatings on preshaped parts and synthesis of free-standing shapes of diamond

  20. Forced vaporization cooling of HVDC thyristor valves. Final report

    SciTech Connect (OSTI)

    Scaringe, R.P.; Staub, F.W.; Lazarek, G.M.; Black, S.H.; Abuaf, N.

    1982-10-01T23:59:59.000Z

    The cooling of power-dissipating devices by boiling Freon R-113 was investigated. Thermohydraulic instability questions were resolved, and it was shown tht the maximum (critical) heat flux available using this coolant in a forced vaporization cooling mode provides sufficient margin for semiconductor device duty cycles. Analytical predictive tools, experimental data, and empirical correlations were developed for design purposes.

  1. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R.K.; Im, K.H.

    1996-04-02T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines. 13 figs.

  2. Method for removing metal vapor from gas streams

    DOE Patents [OSTI]

    Ahluwalia, R. K. (6440 Hillcrest Dr., Burr Ridge, IL 60521); Im, K. H. (925 Lehigh Cir., Naperville, IL 60565)

    1996-01-01T23:59:59.000Z

    A process for cleaning an inert gas contaminated with a metallic vapor, such as cadmium, involves withdrawing gas containing the metallic contaminant from a gas atmosphere of high purity argon; passing the gas containing the metallic contaminant to a mass transfer unit having a plurality of hot gas channels separated by a plurality of coolant gas channels; cooling the contaminated gas as it flows upward through the mass transfer unit to cause contaminated gas vapor to condense on the gas channel walls; regenerating the gas channels of the mass transfer unit; and, returning the cleaned gas to the gas atmosphere of high purity argon. The condensing of the contaminant-containing vapor occurs while suppressing contaminant particulate formation, and is promoted by providing a sufficient amount of surface area in the mass transfer unit to cause the vapor to condense and relieve supersaturation buildup such that contaminant particulates are not formed. Condensation of the contaminant is prevented on supply and return lines in which the contaminant containing gas is withdrawn and returned from and to the electrorefiner and mass transfer unit by heating and insulating the supply and return lines.

  3. Cometabolic Degradation of TCE Vapors in a Foamed Emulsion

    E-Print Network [OSTI]

    Cometabolic Degradation of TCE Vapors in a Foamed Emulsion Bioreactor E U N S U N G K A N A N D M the experiments, 85-101% of the degraded TCE chlorine was recovered as chloride. Overall, the results suggest to complete degradation of TCE to harmless end products. Unfortunately, no microorganism can grow on TCE

  4. Experimental Study of Water Vapor Adsorption on Geothermal

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

  5. Surface Science in the Richmond Lab: Vapor/Water Studies

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Surface Science in the Richmond Lab: Vapor/Water Studies Many of the Earth's important atmospheric recovery, and emulsion stabilization. We are studying the behavior of species at the carbon tetrachloride.2 3100300029002800 pH~ 2 pH~ 4.5 pH ~ 5.5 Wavenumbers / cm-1 SFGAmp/arb.units COOH COOH COOH Emulsion Studies

  6. Intensities of electronic transitions in sulfur dioxide vapor

    E-Print Network [OSTI]

    McCray, James Arthur

    1955-01-01T23:59:59.000Z

    . Relation between Oscillator Strength and Probability Coefficient of Absorption . . . . . . . . . . . . . . . . 20 V. The Ultraviolet Spectrum of Sulfur Dioxide Gas . . . . . . 22 ) VI. Experimental Procedure and Computations . . . . . . . . . 23 U A... where )(e is defined as the dielectric constant of the medium. This equation holds for radiation which has a frequency sufficiently dif- ferent from that of the resonant frequencies of'the molecules of the medium, The polarizability o( of a molecule...

  7. Assessment of radionuclide vapor-phase transport in unsaturated tuff

    SciTech Connect (OSTI)

    Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

    1986-11-01T23:59:59.000Z

    This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

  8. Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission

    E-Print Network [OSTI]

    Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular a microcavity to optimize the color of a phosphorescent organic light emitting device OLED based on the-sky blue.1063/1.2742577 The development of a stable, efficient, and saturated blue remains an important goal for phosphorescent organic

  9. Hydrocarbons emitted by waggle-dancing honey bees stimulate colony foraging activity by causing experienced

    E-Print Network [OSTI]

    Hydrocarbons emitted by waggle-dancing honey bees stimulate colony foraging activity by causing of the hydrocarbons emitted by waggle-dancing bees are investigated in this study. First, we test the hypothesis itself. waggle dance / cuticular hydrocarbon / nectar foraging / semiochemical / pheromone 1

  10. Method to generate high efficient devices which emit high quality light for illumination

    DOE Patents [OSTI]

    Krummacher, Benjamin C. (Sunnyvale, CA); Mathai, Mathew (Santa Clara, CA); Choong, Vi-En (San Jose, CA); Choulis, Stelios A. (San Jose, CA)

    2009-06-30T23:59:59.000Z

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  11. Proton implanted singlemode holey vertical-cavity surface-emitting lasers

    E-Print Network [OSTI]

    Choquette, Kent

    Proton implanted singlemode holey vertical-cavity surface-emitting lasers P.O. Leisher, A.J. Danner of proton implant confined vertical-cavity surface-emitting lasers. The index confinement and selective loss (both fundamental and non-fundamental) operation [9]. Although proton implantation for current

  12. Emitting gas regions in Mrk 493: An extensive Fe II line emission region

    E-Print Network [OSTI]

    L. C. Popovic; A. Smirnova; D. Ilic; A. Moiseev; J. Kovacevic; V. Afanasiev

    2007-01-24T23:59:59.000Z

    We performed 3D spectroscopic observations of Mrk 493 in order to investigate the Fe II emitting region and their possible connection with the Hydrogen emitting region. We found that there is a strong Fe II emission in an extensive region ~ 4" x 4" around Sy 1 nucleus. The Fe II line width indicates that these lines are originated in an intermediate line region.

  13. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    E-Print Network [OSTI]

    iPage | i Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking. LBNL4885E #12;Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners distributions resulting from use of natural gas cooking appliances across households in California. The model

  14. Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag as anode

    E-Print Network [OSTI]

    Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag The emission efficiency in an organic light-emitting diode OLED based on fac tris phenyl pyridine iridium Ir current efficiency of 81 cd/A and a power efficiency of 79 lm/W, compared with 46 cd/A and 39 lm

  15. Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with

    E-Print Network [OSTI]

    Gilchrist, James F.

    Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes@lehigh.edu Abstract: Improvement of light extraction efficiency of InGaN light emitting diodes (LEDs) using microstructures on the light extraction efficiency of III-Nitride LEDs was studied. Depending on the size

  16. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  17. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    E-Print Network [OSTI]

    Mayer, Alexandre

    Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

  18. Semiconductor lasers with broad tunnel-coupled waveguides, emitting at a wavelength of 980 nm

    SciTech Connect (OSTI)

    Zvonkov, N B; Ershov, A V; Zvonkov, B N; Maksimov, G A; Uskova, E A [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation); Akhlestina, S A [Research Insitute of Chemistry, N.I. Lobachevskii Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation)

    1999-03-31T23:59:59.000Z

    InGaP/GaAs/InGaAs semiconductor lasers with broad tunnel-coupled waveguides were developed and investigated experimentally. Output radiation power of 5.2 - 5.8 W was obtained from an emitting region 100 {mu}m wide with a 36{sup 0} divergence of the emitted radiation in a plane perpendicular to the p - n junction. (lasers)

  19. GaN light-emitting diodes with Archimedean lattice photonic crystals Aurlien David,a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GaN light-emitting diodes with Archimedean lattice photonic crystals Aurélien David,a Tetsuo Fujii 2005; published online 16 February 2006 We study GaN-based light emitting diodes incorporating the semiconductor due to its index contrast with air.1­6 Recently, PhCs were used as out- coupling gratings in GaN

  20. White Light Emitting Diode Development for General Illumination Applications

    SciTech Connect (OSTI)

    James Ibbetson

    2006-05-01T23:59:59.000Z

    This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

  1. Microchemical investigations of dust emitted by a lead smelter

    SciTech Connect (OSTI)

    Sobanska, S.; Ricq, N. [Ecole des Mines de Douai (France). Dept. Chimie et Environnement] [Ecole des Mines de Douai (France). Dept. Chimie et Environnement; [Univ. de Lille I, Villeneuve d`Ascq (France); Laboudigue, A.; Guillermo, R. [Ecole des Mines de Douai (France). Dept. Chimie et Environnement] [Ecole des Mines de Douai (France). Dept. Chimie et Environnement; Bremard, C.; Laureyns, J.; Merlin, J.C.; Wignacourt, J.P. [Univ. de Lille I, Villeneuve d`Ascq (France)] [Univ. de Lille I, Villeneuve d`Ascq (France)

    1999-05-01T23:59:59.000Z

    Dusts emitted by an important pyrometallurgical lead smelter have been sampled within the pipes of the grilling and furnace working units before and after the filtering systems, respectively. Particle size distribution, elementary analyses, and X-ray powder diffraction analysis indicate PbS, PbSO{sub 4}, PbSO{sub 4}{center_dot}PbO, Pb, ZnS small particles less than 5 {micro}m in size to contribute mainly to the current atmospheric pollution. Although at least 90% of dust are retained on the filters, the amounts of the respirable smaller particles are significantly larger in the current emission. The average chemical speciation was found to be analogous for the dust samples collected before and after the filters. The scanning electron microscopy associated with energy-dispersive X-ray analysis and Raman microspectrometry established the morphology and chemical composition at the level of individual particles. A lot of minor compounds were found as small heterogeneous individual particles in the heterogeneous particles of grilling dust. Among the homogeneous particles of furnace dust, amorphous C, {beta}-PbO, PbO-PbCl{sub 2}, FeO, CdS, CdSO{sub 4} were often detected as homogeneous mixtures with the major compounds within the particles.

  2. Standoff ultraviolet raman scattering detection of trace levels of explosives.

    SciTech Connect (OSTI)

    Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.

    2011-10-01T23:59:59.000Z

    Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

  3. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22T23:59:59.000Z

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  4. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect (OSTI)

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Schroeter, C. D.; Moshammer, R. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Rudenko, A.; Foucar, L. [Max-Planck Advanced Study Group at CFEL, 22607 Hamburg (Germany); Herrwerth, O.; Lezius, M.; Kling, M. F. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Tilborg, J. van; Belkacem, A. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai (Japan); Duesterer, S.; Treusch, R. [DESY, 22607 Hamburg (Germany); Ullrich, J. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Max-Planck Advanced Study Group at CFEL, 22607 Hamburg (Germany)

    2010-12-31T23:59:59.000Z

    Ultrafast isomerization of acetylene cations ([HC=CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +}+CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52{+-}15 fs in a kinetic energy release (KER) window of 5.8

  5. Ultrafast Extreme Ultraviolet Induced Isomerization of Acetylene Cations

    SciTech Connect (OSTI)

    Jiang, Y.; Rudenko, Artem; Herrwerth, O.; Foucar, L.; Kurka, M.; Kuhnel, K.; Lezius, M.; Kling, Matthias; van Tilborg, Jeroen; Belkacem, Ali; Ueda, K.; Dusterer, S.; Treusch, R.; Schroter, Claus-Dieter; Moshammer, Robbert; Ullrich, Joachim

    2011-06-17T23:59:59.000Z

    Ultrafast isomerization of acetylene cations ([HC = CH]{sup +}) in the low-lying excited A{sup 2}{Sigma}{sub g}{sup +} state, populated by the absorption of extreme ultraviolet (XUV) photons (38 eV), has been observed at the Free Electron Laser in Hamburg, (FLASH). Recording coincident fragments C{sup +} + CH{sub 2}{sup +} as a function of time between XUV-pump and -probe pulses, generated by a split-mirror device, we find an isomerization time of 52 {+-} 15 fs in a kinetic energy release (KER) window of 5.8 < KER < 8 eV, providing clear evidence for the existence of a fast, nonradiative decay channel.

  6. Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    E-Print Network [OSTI]

    Cao, Yi; Howell, D Andrew; Gal-Yam, Avishay; Kasliwal, Mansi M; Valenti, Stefano; Johansson, J; Amanullah, R; Goobar, A; Sollerman, J; Taddia, F; Horesh, Assaf; Sagiv, Ilan; Cenko, S Bradley; Nugent, Peter E; Arcavi, Iair; Surace, Jason; Wo?niak, P R; Moody, Daniela I; Rebbapragada, Umaa D; Bue, Brian D; Gehrels, Neil

    2015-01-01T23:59:59.000Z

    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.

  7. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT

    SciTech Connect (OSTI)

    Zhang, X. L.; Cheng, Z. F., E-mail: chengfe@hust.edu.cn; Hou, S. Y.; Zhuang, G.; Luo, J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15T23:59:59.000Z

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  8. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect (OSTI)

    Yalin, Azer P., E-mail: ayalin@engr.colostate.edu; Dumitrache, Ciprian [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Wilvert, Nick [Sandia Laboratory, Albuquerque, New Mexico 87123 (United States); Joshi, Sachin [Cummins Inc., Columbus, Indiana 47201 (United States); Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-10-15T23:59:59.000Z

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266?nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064?nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ?10?ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  9. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    SciTech Connect (OSTI)

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21T23:59:59.000Z

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  10. Ultraviolet photoluminescence from Gd-implanted AlN epilayers

    SciTech Connect (OSTI)

    Zavada, J. M.; Nepal, N.; Lin, J. Y.; Jiang, H. X.; Brown, E.; Hoemmerich, U.; Hite, J.; Thaler, G. T.; Abernathy, C. R.; Pearton, S. J.; Gwilliam, R. [U.S. Army Research Office, Durham, North Carolina 27709 (United States); Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601 (United States); Department of Physics, Hampton University, Hampton, Virginia 23668 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Surrey Ion Beam Center, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-09T23:59:59.000Z

    Deep ultraviolet emission from gadolinium (Gd)-implanted AlN thin films has been observed using photoluminescence (PL) spectroscopy. The AlN epilayers were ion implanted with Gd to a total dose of {approx}6x10{sup 14} cm{sup -2}. Using the output at 197 nm from a quadrupled Ti:sapphire laser, narrow PL emission was observed at 318 nm, characteristic of the trivalent Gd ion. A broader emission band, also centered at 318 nm, was measured with excitation at 263 nm. The PL emission intensity decreased by less than a factor of 3 over the sample temperature range of 10-300 K and decay transients were of the order of nanoseconds.

  11. Laser lift-off technique for freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes

    SciTech Connect (OSTI)

    Iida, Daisuke, E-mail: dft0tfi16@meijo-u.ac.jp; Kawai, Syunsuke; Ema, Nobuaki; Tsuchiya, Takayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi [Faculty of Science and Technology, Meijo University, Nagoya 468-8502 (Japan); Akasaki, Isamu [Faculty of Science and Technology, Meijo University, Nagoya 468-8502 (Japan); Akasaki Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2014-08-18T23:59:59.000Z

    We developed a laser lift-off technique for a freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN. A combination of an In droplet formed by thermal decomposition of GaInN during growth and a pulsed second-harmonic neodymium-doped yttrium aluminum garnet laser (??=?532?nm) realized the lift-off GaN substrate. After laser lift-off of the GaN substrate, it was used to achieve 380?nm ultraviolet light-emitting diodes with light output enhanced 1.7-fold. In this way, the light extraction can be improved by removing the GaN substrate.

  12. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect (OSTI)

    Short, B J; Carter, J C; Gunter, D; Hovland, P; Jagode, H; Karavanic, K; Marin, G; Mellor-Crummey, J; Moore, S; Norris, B; Oliker, L; Olschanowsky, C; Roth, P C; Schulz, M; Shende, S; Snavely, A; Spear, W

    2009-06-03T23:59:59.000Z

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided {approx}2000-fold enhancement at 244 nm and {approx}800-fold improvement at 229 nm while PETN showed a maximum of {approx}25-fold at 244 nm and {approx}190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  13. A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    optoelectronic devices, including solar cells, flat panel displays, and light emitting diodes (LEDs). Most

  14. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, Brian J. (Livermore, CA); Matthews, Dennis L. (El Granada, CA); Trebes, James E. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  15. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05T23:59:59.000Z

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  16. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  17. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31T23:59:59.000Z

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of titanium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  18. A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} for near UV white light-emitting diodes

    SciTech Connect (OSTI)

    Yang, Zhigang; Zhao, Zhengyan; Shi, Yurong; Wang, Yuhua, E-mail: wyh@lzu.edu.cn

    2013-10-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was prepared by solid-state reaction. • Excitation spectra suggested an obvious absorption in near-ultraviolet region. • Under 392 nm excitation, the phosphors exhibited a red emission at 614 nm. • Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white LEDs. - Abstract: A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was synthesized using a solid-state reaction method, and its luminescence characteristics and charge compensators effect (Li{sup +}, Na{sup +}, K{sup +}) were investigated. The excitation spectra showed a obvious absorption in near-ultraviolet region. Under 392 nm excitation, the phosphors exhibited an intense red emission at 614 nm. The Commission Internationale de l’Eclairage (CIE) chromaticity coordinates and quantum efficiency (QE) were (0.65, 0.35) and 62.3%, respectively. The good color saturation, high quantum efficiency and small thermal-quenching properties indicate that Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white light-emitting diodes.

  19. Carbonitride based phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Tian, Yongchi; Romanelli, Michael Dennis

    2013-08-20T23:59:59.000Z

    Disclosed herein is a novel group of carbidonitride phosphors and light emitting devices which utilize these phosphors. In certain embodiments, the present invention is directed to a novel family of carbidonitride-based phosphors expressed as follows: Ca.sub.1-xAl.sub.x-xySi.sub.1-x+xyN.sub.2-x-xyC.sub.xy:A; (1) Ca.sub.1-x-zNa.sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xyC.sub.xy:- A; (2) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x- -xyC.sub.xy:A; (3) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xy-2w/- 3C.sub.xyO.sub.w-v/2H.sub.v:A; and (4) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xy-2w/- 3-v/3C.sub.xyO.sub.wH.sub.v:A, (4a) wherein 0xy+z, and 0

  20. Water vapor and the dynamics of climate changes

    E-Print Network [OSTI]

    Schneider, Tapio; Levine, Xavier

    2009-01-01T23:59:59.000Z

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

  1. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2

    SciTech Connect (OSTI)

    Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

    1993-04-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

  2. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  3. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

    2000-02-15T23:59:59.000Z

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  4. Piston pump and method of reducing vapor lock

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Harvey, Michael N. (DeSoto, TX)

    2001-01-30T23:59:59.000Z

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  5. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  6. Organic light emitting device architecture for reducing the number of organic materials

    DOE Patents [OSTI]

    D'Andrade, Brian (Westampton, NJ); Esler, James (Levittown, PA)

    2011-10-18T23:59:59.000Z

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  7. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  8. High average power magnetic modulator for metal vapor lasers

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  9. Screw Type Steam Compressors for Mechanical Vapor Recompression (MVR) Systems

    E-Print Network [OSTI]

    Kawamura, K.; Apaloo, Thomas-L.

    SCREW TYPE STEAM COMPRESSORS FOR MECHANICAL VAPOR RECOMPRESSION (MVR) SYSTEMS K. KAWAMURA AND THOMAS-L. APALOO MYCOM CORPORATION, LOS ANGELES, CALIFORNIA MATSUDA, MAYEKAWA MFG. CO., TOKYO, JAPAN ABSTRACT In processes of evaporation... to a usable pressure for reinjection into the process stream. Mycom has developed, designed and installed two large MVR systems using screw compressors: one for a brewery and the other for a whiskey plant. This paper discusses the system aspects...

  10. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  11. Fixation of nitrogen in the presence of water vapor

    DOE Patents [OSTI]

    Harteck, Paul (Santa Barbara, CA)

    1984-01-01T23:59:59.000Z

    A process for the fixation of nitrogen is disclosed which comprises combining a mixture of nitrogen, oxygen, metal oxide and water vapor, initially heating the combination to initiate a reaction which forms nitrate, but at a temperature and pressure range below the dissociation pressure of the nitrate. With or without the water component, the yield of fixed nitrogen is increased by the use of a Linde Molecular Sieve Catalyst.

  12. MOCVD growth of In GaP-based heterostructures for light emitting devices

    E-Print Network [OSTI]

    McGill, Lisa Megan, 1975-

    2004-01-01T23:59:59.000Z

    In this work, we examine fundamental materials processes in the growth of indium gallium phosphide (InGaP) via metalorganic chemical vapor deposition (MOCVD). In particular, we realize improvements in the epitaxial integration ...

  13. Program plan for the resolution of tank vapor issues

    SciTech Connect (OSTI)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01T23:59:59.000Z

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  14. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, L.D.; Cerni, T.A.

    1989-10-17T23:59:59.000Z

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  15. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

    1989-01-01T23:59:59.000Z

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  16. VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS

    SciTech Connect (OSTI)

    Zapp, P.; Hoffman, E.

    2009-11-09T23:59:59.000Z

    The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

  17. Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether

    SciTech Connect (OSTI)

    Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

    1995-11-01T23:59:59.000Z

    Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

  18. The ultraviolet-bright, slowly declining transient PS1-11af as a partial tidal disruption event

    SciTech Connect (OSTI)

    Chornock, R.; Berger, E.; Zauderer, B. A.; Kamble, A.; Soderberg, A. M.; Czekala, I.; Dittmann, J.; Drout, M.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Lunnan, R.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Rest, A.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lawrence, A., E-mail: rchornock@cfa.harvard.edu [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2014-01-01T23:59:59.000Z

    We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ?0.002 M {sub ?}, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.

  19. A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714

    SciTech Connect (OSTI)

    Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin; Keeney, Brian A., E-mail: danforth@casa.colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2013-02-10T23:59:59.000Z

    The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physical size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.

  20. all-solid-state ultraviolet laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C. S. Menoni, and J. J. Rocca NSFERC for Extreme Ultraviolet Science. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, and D. A amplifier,"...

  1. The development and application of a diode-laser-based ultraviolet absorption sensor for nitric oxide 

    E-Print Network [OSTI]

    Anderson, Thomas Nathan

    2004-09-30T23:59:59.000Z

    This thesis describes the development of a new type of sensor for nitric oxide (NO) that can be used in a variety of combustion diagnostics and control applications. The sensor utilizes the absorption of ultraviolet (UV) ...

  2. Table-top Extreme Ultraviolet Laser Aerial Imaging of Lithographic Masks

    E-Print Network [OSTI]

    Brizuela, F.

    2012-01-01T23:59:59.000Z

    Table-top Extreme Ultraviolet Laser Aerial Imaging ofmasks realized using a table-top aerial imaging systembased on a table-top X=\\3.2 laser. © 2 0 0 9 Optical Society

  3. Tryptophan Cluster Protects Human ?D-Crystallin from Ultraviolet Radiation-Induced Photoaggregation

    E-Print Network [OSTI]

    Schafheimer, Steven Nathaniel

    Exposure to ultraviolet radiation (UVR) is a significant risk factor for age-related cataract, a disease of the human lens and the most prevalent cause of blindness in the world. Cataract pathology involves protein misfolding ...

  4. Quantum Field Theory on Noncommutative Space-Times and the Persistence of Ultraviolet Divergences

    E-Print Network [OSTI]

    M. Chaichian; A. Demichev; P. Presnajder

    1999-04-13T23:59:59.000Z

    We study properties of a scalar quantum field theory on two-dimensional noncommutative space-times. Contrary to the common belief that noncommutativity of space-time would be a key to remove the ultraviolet divergences, we show that field theories on a noncommutative plane with the most natural Heisenberg-like commutation relations among coordinates or even on a noncommutative quantum plane with $E_q(2)$-symmetry have ultraviolet divergences, while the theory on a noncommutative cylinder is ultraviolet finite. Thus, ultraviolet behaviour of a field theory on noncommutative spaces is sensitive to the topology of the space-time, namely to its compactness. We present general arguments for the case of higher space-time dimensions and as well discuss the symmetry transformations of physical states on noncommutative space-times.

  5. EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE

    E-Print Network [OSTI]

    Lewin, Walter H. G.

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This ...

  6. Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Wavelength-resolved low-frequency noise of GaInN/GaN green light emitting diodes S. L. Rumyantseva well light emitting diodes. The light intensity noise was measured as a function of wavelength within the light emitting diode spectral emission line. The spectral noise density is found to increase

  7. High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

  8. Journal of Crystal Growth 298 (2007) 272275 Dislocation analysis in homoepitaxial GaInN/GaN light emitting

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2007-01-01T23:59:59.000Z

    of GaInN/GaN-based light emitting diodes (LED) on quasi-bulk GaN with an atomically flat polished were much improved. The optical output power of the light emitting diode increased by more than one. Cathodoluminescence; A1. Threading dislocation density; A2. Homoepitaxial growth; B1. GaInN; B3. Light emitting diode

  9. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Keywords: GaInN/GaN Light emitting diode temperature Micro-Raman Photoluminescence Electroluminescence well light emitting diode (LED) dies is analyzed by micro-Raman, photoluminescence, cathodoluminescenceJunction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting

  10. 4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display

    E-Print Network [OSTI]

    4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode active matrix organic light emitting diode (AMOLED) pixel with high pixel to pixel luminance uniformity such as organic light emitting diodes (OLEDs) are presently of great interest due to their potential application

  11. Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes

    E-Print Network [OSTI]

    Carter, Sue

    the thickness-dependent optical properties of single layer polymer light emitting diodes for two materials, poly the electronic and optical properties of these materials in light emitting diode LED structures.2 OurThickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting

  12. Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design

    E-Print Network [OSTI]

    Boyer, Edmond

    Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes Light Emitting Diode (OLED), intermolecular p­p interactions should be usually suppressed to avoid any Emitting Diodes (SMOLEDs) is almost absent from the literature. In this work, three aryl-substituted Di

  13. Vacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting diodes

    E-Print Network [OSTI]

    Meng, Hsin-Fei

    -coated organic light-emitting diode is transferred from a soft polydimethylsiloxane (PDMS) mold by lamination, or blade coating [1,2] for organic light emitting diode (OLED) as well as solar cell. The top electrodeVacuum-free lamination of low work function cathode for efficient solution-processed organic light-emitting

  14. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal

    E-Print Network [OSTI]

    Baba, Toshihiko

    Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic 21 November 2003 We demonstrate a light-emitting diode exhibiting 1.7­2.7-fold enhancement in light light emitting diode LED , the ef- ficiency is limited to several percents by a low light extrac- tion

  15. Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract--Semiconductor nanocrystal quantum dots (NQD)

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 Abstract-- Semiconductor nanocrystal convertors integrated on light-emitting diodes (LEDs). The use of nonradiative energy transfer, also known-LEDs for lighting applications. Index Terms-- Förster resonance energy transfer, light emitting diode, nanocrystal

  16. Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy

    E-Print Network [OSTI]

    Kim, Sehun

    Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study injec- tion and transport layers in an organic light-emitting diode (OLED) structure has been studied B.V. All rights reserved. 1. Introduction OLEDs (organic light-emitting diodes) are display de

  17. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data,3* Abstract Background: Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3AUR 17326E125C4(7E3E3C7E>4(72B43.EE7D4" 7D4":BE27B725CE9393BE647 #12;RESEARCH ARTICLE Open Access Solar

  18. Microbial Reduction on Eggshell Surfaces by the use of Hydrogen Peroxide and Ultraviolet Light

    E-Print Network [OSTI]

    Gottselig, Steven Michael

    2011-10-21T23:59:59.000Z

    MICROBIAL REDUCTION ON EGGSHELL SURFACES BY THE USE OF HYDROGEN PEROXIDE AND ULTRAVIOLET LIGHT A Thesis by STEVEN MICHAEL GOTTSELIG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Poultry Science Microbial Reduction on Eggshell Surfaces by the Use of Hydrogen Peroxide and Ultraviolet Light Copyright 2011...

  19. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOE Patents [OSTI]

    Vogl, O.; Li, S.

    1983-10-06T23:59:59.000Z

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  20. Gas-phase ultraviolet photoelectron spectroscopy and molecular orbital calculations on transition metal carbonyls and nitrosyls

    E-Print Network [OSTI]

    Morris-Sherwood, Betty Jeanne

    1981-01-01T23:59:59.000Z

    GAS-PHASE ULTRAVIOLET PHOTOELECTRON SPECTROSCOPY AND MOLECULAR ORBITAL CALCULATIONS ON TRANSITION METAL CARBONYLS AND NITROSYLS A Thesis by BETTY JEANNE MORRIS-SHERWOOD Submitted to the Graduate College of Texas ARM Uni ver s i ty in partial... JEANNE MORRIS-SHERWOOD Approved as to sty1e and content by: (Chairman of Committee) (Member): (Niember) r / )g (Head of Department) December 1981 ABSTRACT Gas-Phas Ultraviolet Photoelectron Spectroscopy and Molecular Orbital Calculations...