National Library of Energy BETA

Sample records for vapor deposition cvd

  1. Amine functionalization by initiated chemical vapor deposition (iCVD) for interfacial adhesion and film cohesion

    E-Print Network [OSTI]

    Xu, Jingjing, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    Amine functional polymer thin films provide a versatile platform for subsequent functionalization because of their diverse reactivity. Initiated chemical vapor deposition (iCVD) is a polymer chemical vapor deposition ...

  2. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOE Patents [OSTI]

    Tsuo, Simon (Lakewood, CO); Langford, Alison A. (Boulder, CO)

    1989-01-01

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.

  3. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    SciTech Connect (OSTI)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-17

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  4. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  5. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  6. Development of a Model for High Precursor Conversion Efficiency Pulsed-Pressure Chemical Vapor Deposition (PP-CVD) Processing

    E-Print Network [OSTI]

    Hickman, Mark

    Engineering, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand-stabilised zirconia (YSZ) has also been deposited using the same technique [4, 5]. Figure 1 shows a functional

  7. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel (Florham Park, NJ)

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  8. Oxidative chemical vapor deposition of conductive polymers for use in novel photovoltaic device architectures

    E-Print Network [OSTI]

    Howden, Rachel M. (Rachel Mary)

    2013-01-01

    The conductive polymer poly(3,4-ethylenedioxythiophene), (PEDOT), deposited via oxidative chemical vapor deposition (oCVD) has been investigated for use in organic electronic devices. The oCVD process as well as the ...

  9. Enabling integration of vapor-deposited polymer thin films

    E-Print Network [OSTI]

    Petruczok, Christy D. (Christy Danielle)

    2014-01-01

    Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

  10. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  11. Chemical vapor deposition of organosilicon and sacrificial polymer thin films

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2005-01-01

    Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

  12. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  13. Chemical vapor deposition coating for micromachines

    SciTech Connect (OSTI)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  14. Chemical Vapor Deposition Growth of 5 mm Hexagonal Single-Crystal Graphene from Ethanol

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Chemical Vapor Deposition Growth of 5 mm Hexagonal Single-Crystal Graphene from Ethanol Xiao Chen1 as large as 5 mm can be synthesized from ethanol via chemical vapor deposition (CVD). Key conditions for the successful reduction in nucleation density are extremely low partial pressure of ethanol vapor and pre

  15. Iron (III) Chloride doping of large-area chemical vapor deposition graphene

    E-Print Network [OSTI]

    Song, Yi, S.M. Massachusetts Institute of Technology

    2013-01-01

    Chemical doping is an effective method of reducing the sheet resistance of graphene. This thesis aims to develop an effective method of doping large area Chemical Vapor Deposition (CVD) graphene using Iron (III) Chloride ...

  16. Deposition of silicon carbide films using a high vacuum metalorganic chemical vapor deposition method with a single source precursor

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    , high temperature, and high radiation environments. Conventional silicon carbide chemical vapor deposition CVD processes generally utilized multiple precursors such as silane and hydrocarbons, and required temperature alternatives to the conventional SiC CVD methods must be considered. To do this, a relatively

  17. Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene

    E-Print Network [OSTI]

    Hone, James

    Chemical Vapor Deposition-Derived Graphene with Electrical Performance of Exfoliated Graphene a scalable method to produce large-area graphene, CVD-grown graphene has heretofore exhibited inferior of CVD-grown graphene in which two important sources of disorder, namely grain boundaries and processing

  18. Initiated chemical vapor deposition of fluoropolymer coatings for the surface modification of complex geometries

    E-Print Network [OSTI]

    Gupta, Malancha, 1980-

    2007-01-01

    Initiated chemical vapor deposition (iCVD) is a one-step, soventless process that can be used to produce polymeric thin films. The iCVD technique has been used to polymerize a wide variety of vinyl monomers such as glycidyl ...

  19. Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques Pascal Brault Abstract: Polymer fuel cell electrode growth using vapor deposition techniques is reviewed. The supports process: sputtering, CVD, PECVD, MOCVD. In each case, up-to-date fuel cell performances are highlighted

  20. Thermodynamic analysis and growth of ZrO2 by chloride chemical vapor deposition

    E-Print Network [OSTI]

    Anderson, Timothy J.

    for the chemical vapor deposition (CVD) of zirconia. The results showed zirconia formation would occur at high) and high temperatures (N800 °C). Using these calculations as a guide, single-phase monoclinic zirconia.46 mg cm-2 h-1 . © 2007 Elsevier B.V. All rights reserved. Keywords: Chemical vapor deposition; Zirconia

  1. Low temperature chemical vapor deposition of Co thin films from Co2(CO)8

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Low temperature chemical vapor deposition of Co thin films from Co2(CO)8 D.-X. Yea,*, S. Pimanpanga chemical vapor deposition with a metallorganic Co2(CO)8 precursor. After Ar sputtering of the surface, Co2(CO)8, has been extensively used in cobalt CVD and is attractive, since Co is in its elemental

  2. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  3. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  4. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films

    E-Print Network [OSTI]

    Neu, Elke; Gross, Elke; Hepp, Christian; Steinmetz, David; Zscherpel, Elisabeth; Ghodbane, Slimane; Sternschulte, Hadwig; Steinmueller-Nethl, Doris; Liang, Yuejiang; Krueger, Anke; Becher, Christoph

    2011-01-01

    We report on the production of nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline quality as well as intense narrowband (7 nm) room temperature luminescence at 738 nm due to in situ incorporated silicon vacancy (SiV) centers. The fluorescence properties at room and cryogenic temperatures indicate that the NDs are, depending on preparation, applicable as single photon sources or as fluorescence labels.

  5. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films

    E-Print Network [OSTI]

    Elke Neu; Carsten Arend; Felix Guldner; Elke Gross; Christian Hepp; David Steinmetz; Elisabeth Zscherpel; Slimane Ghodbane; Hadwig Sternschulte; Doris Steinmueller-Nethl; Yuejiang Liang; Anke Krueger; Christoph Becher

    2011-05-24

    We report on the production of nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline quality as well as intense narrowband (7 nm) room temperature luminescence at 738 nm due to in situ incorporated silicon vacancy (SiV) centers. The fluorescence properties at room and cryogenic temperatures indicate that the NDs are, depending on preparation, applicable as single photon sources or as fluorescence labels.

  6. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  7. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  8. Journal of Crystal Growth 307 (2007) 302308 Equilibrium analysis of zirconium carbide CVD growth

    E-Print Network [OSTI]

    Anderson, Timothy J.

    2007-01-01

    Journal of Crystal Growth 307 (2007) 302­308 Equilibrium analysis of zirconium carbide CVD growth analysis; A3. Metalorganic chemical vapor deposition; A3. Zirconium carbide 1. Introduction Zirconium, is not straightforward particularly by chemical vapor deposition (CVD). Although atmospheric halide CVD using zirconium

  9. Photoinitiated chemical vapor depostion [sic] : mechanism and applications

    E-Print Network [OSTI]

    Baxamusa, Salmaan Husain

    2009-01-01

    Photoinitiated chemical vapor deposition (piCVD) is developed as a simple, solventless, and rapid method for the deposition of swellable hydrogels and functional hydrogel copolymers. Mechanistic experiments show that piCVD ...

  10. Selective charge doping of chemical vapor deposition-grown graphene by interface modification

    SciTech Connect (OSTI)

    Wang, Shengnan, E-mail: wang.shengnan@lab.ntt.co.jp; Suzuki, Satoru; Furukawa, Kazuaki; Orofeo, Carlo M.; Takamura, Makoto; Hibino, Hiroki [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)] [NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198 (Japan)

    2013-12-16

    The doping and scattering effect of substrate on the electronic properties of chemical vapor deposition (CVD)-grown graphene are revealed. Wet etching the underlying SiO{sub 2} of graphene and depositing self-assembled monolayers (SAMs) of organosilane between graphene and SiO{sub 2} are used to modify various substrates for CVD graphene transistors. Comparing with the bare SiO{sub 2} substrate, the carrier mobility of CVD graphene on modified substrate is enhanced by almost 5-fold; consistently the residual carrier concentration is reduced down to 10{sup 11}?cm{sup ?2}. Moreover, scalable and reliable p- and n-type graphene and graphene p-n junction are achieved on various silane SAMs with different functional groups.

  11. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S. (Salt Lake City, UT); Pokhodnya, Kostyantyn I. (Salt Lake City, UT)

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  12. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, Jr., Walter J. (Oak Ridge, TN); Caputo, Anthony J. (Knoxville, TN)

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  13. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect (OSTI)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  14. Charged impurity-induced scatterings in chemical vapor deposited graphene

    SciTech Connect (OSTI)

    Li, Ming-Yang; Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei 25137, Taiwan (China); Li, L. J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-12-21

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  15. Communications CVD Growth of Boron Nitride Nanotubes

    E-Print Network [OSTI]

    in dense thickets on and about nickel boride catalyst particles at 1100 °C. The BN nanotubes resemble thoseCommunications CVD Growth of Boron Nitride Nanotubes Oleg R. Lourie, Carolyn R. Jones, Bart M Manuscript Received May 9, 2000 We describe BN-nanotube growth by chemical vapor deposition (CVD) using

  16. HfB2 and HfBN hard coatings by chemical vapor deposition S. Jayaraman a,c

    E-Print Network [OSTI]

    Girolami, Gregory S.

    are popular materials for hard and environmental coat- ings [1­16]. Applications include cutting tools, wearHfB2 and Hf­B­N hard coatings by chemical vapor deposition S. Jayaraman a,c , J.E. Gerbi a,c , Y rights reserved. Keywords: Hafnium diboride; Hafnium borohydride; CVD; Hard coating; Nanoindentation

  17. A Multiscale Simulator for Low Pressure Chemical Vapor Deposition

    E-Print Network [OSTI]

    A Multiscale Simulator for Low Pressure Chemical Vapor Deposition Matthias K. Gobbert Institute-6206 ABSTRACT An integrated simulator for chemical vapor deposition is introduced. In addition to a reactor

  18. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

    1987-03-31

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  19. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  20. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect (OSTI)

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar Bäumer, Marcus; Mundloch, Udo; Kohse-Höinghaus, Katharina

    2014-10-15

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  1. In-situ deposition of high-k dielectrics on III-V compound semiconductor in MOCVD system

    E-Print Network [OSTI]

    Cheng, Cheng-Wei, Ph.D. Massachusetts Institute of Technology

    2010-01-01

    In situ deposition of high-k materials to passivate the GaAs in metal organic chemical vapor deposition (MOCVD) system was well demonstrated. Both atomic layer deposition (ALD) and chemical vapor deposition (CVD) methods ...

  2. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Harris Kagan; K.K. Gan; Richard Kass

    2009-03-31

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  3. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    SciTech Connect (OSTI)

    Rainer Wallny

    2012-10-15

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2010, and the LHC upgrades expected in 2015, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed and operational in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  4. All graphene electromechanical switch fabricated by chemical vapor deposition

    E-Print Network [OSTI]

    Milaninia, Kaveh M.

    We demonstrate an electromechanical switch comprising two polycrystalline graphene films; each deposited using ambient pressure chemical vapor deposition. The top film is pulled into electrical contact with the bottom film ...

  5. Adhesion improvement of electroless copper depositions on titanium nitride by low temperature annealing 

    E-Print Network [OSTI]

    Eiserer, Rex Anthony

    1999-01-01

    Due to the ever decreasing dimensions of the inter-level metallic interconnects, alternative metal deposition processes must be explored as the current processes (chemical vapor deposition (CVD) and physical vapor deposition ...

  6. Real-time, in situ film thickness metrology in a 10 Torr W chemical vapor deposition process using an acoustic sensor

    E-Print Network [OSTI]

    Rubloff, Gary W.

    wafer consumption.1,2 The International Technology Roadmap for Semiconductors3 places an emphasis on two chemical vapor deposition CVD reactor into an Inficon ComposerTM acoustic sensor for in situ chemical gas at 10 Torr from 340 to 400 °C using a H2 /WF6 gas mixture. Sampled gases were compressed through

  7. Filling Narrow Trenches by Iodine-Catalyzed CVD of Copper and Manganese on Manganese Nitride Barrier/Adhesion Layers

    E-Print Network [OSTI]

    electromigration.1,2 The dual-damascene process, which involves copper electroplating in preformed trenches deposition (CVD) and physical vapor deposition (PVD), the electroplating process has the ability to fill sub

  8. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition

    Broader source: Energy.gov [DOE]

    This project is focused on novel approaches to remove risk related to the development of hybrid perovskite solar cells (HPSCs). Researchers will synthesize a new and chemically stable hybrid organic-inorganic perovskite that eliminates decomposition of the absorber layer upon exposure to water vapor, which is a chief obstacle to widespread use of HPSC technology. They will also demonstrate a unique and industrially-scalable chemical vapor deposition method without halides or iodine, which are the main contributors to perovskite degradation.

  9. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect (OSTI)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan)

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  10. Reduced Order Model Compensator Control of Species Transport in a CVD Reactor

    E-Print Network [OSTI]

    for computation of feedback controls and compensators in a high pressure chemical vapor deposition (HPCVD) reactor are manufactured using chemical vapor deposition (CVD) processes operating at low pressure. However, there are also under low pressure conditions, e.g., InN films that exhibit relatively high decomposition pressure

  11. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  12. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  13. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  14. TiO{sub 2} Film Deposition by Atmospheric Thermal Plasma CVD Using Laminar and Turbulence Plasma Jets

    SciTech Connect (OSTI)

    Ando, Yasutaka; Tobe, Shogo [Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Tahara, Hirokazu [Osaka Institute of Technology, 5-16-1 Omiya, Asahi-Ku, Osaka 535-8585 (Japan)

    2008-02-21

    In this study, to provide continuous plasma atmosphere on the substrate surface in the case of atmospheric thermal plasma CVD, TiO{sub 2} film deposition by thermal plasma CVD using laminar plasma jet was carried out. For comparison, the film deposition using turbulence plasma jet was conducted as well. Consequently, transition of the plasma jet from laminar to turbulent occurred on the condition of over 3.5 1/min in Ar working gas flow rate and the plasma jet became turbulent on the condition of over 10 1/min. In the case of the turbulent plasma jet use, anatase rich titanium oxide film could be obtained though plasma jet could not contact with the surface of the substrate continuously even on the condition that feedstock material was injected into the plasma jet. On the other hand,, in the case of laminar gas flow rate, the plasma jet could contact with the substrate continuously without melt down of the substrate during film deposition. Besides, titanium oxide film could be obtained even in the case of the laminar plasma jet use. From these results, this technique was thought to have high potential for atmospheric thermal plasma CVD.

  15. Compositional Variations in Vapor Deposited Samarium Zirconate Coatings

    E-Print Network [OSTI]

    Wadley, Haydn

    Compositional Variations in Vapor Deposited Samarium Zirconate Coatings A Thesis Presented temperatures instead have relied on the development of thermal barrier coating (TBC) systems. The thermal barrier coating systems applied to superalloys consist of three layers: (i) an aluminum rich metallic bond

  16. Chemical vapor deposition of fluorine-doped zinc oxide

    DOE Patents [OSTI]

    Gordon, Roy G. (Cambridge, MA); Kramer, Keith (Avon Lake, OH); Liang, Haifan (Santa Clara, CA)

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  17. Vapor deposited samarium zirconate thermal barrier coatings Hengbei Zhao a,

    E-Print Network [OSTI]

    Wadley, Haydn

    by Elsevier B.V. 1. Introduction Thermal barrier coating (TBC) systems have become an enabling materials technology for the gas turbine engines used for propulsion and power generation [1]. Through their abilityVapor deposited samarium zirconate thermal barrier coatings Hengbei Zhao a, , Carlos G. Levi b

  18. Influence of process variables on electron beam chemical vapor deposition of platinum

    E-Print Network [OSTI]

    Wang, Zhong L.

    Influence of process variables on electron beam chemical vapor deposition of platinum D. Beaulieu; accepted 8 August 2005; published 22 September 2005 Electron beam chemical vapor deposition was performed. DOI: 10.1116/1.2050672 I. INTRODUCTION Electron beam chemical vapor deposition EBCVD is a technology

  19. Optical characterization of InN layers grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    Optical characterization of InN layers grown by high-pressure chemical vapor deposition M. Alevli properties of InN layers grown by high-pressure chemical vapor deposition have been studied. Raman, infrared at elevated temperatures, a high-pressure chemical vapor deposition HPCVD system has been established at GSU.6

  20. A HOMOGENIZATION TECHNIQUE FOR THE BOLTZMANN EQUATION FOR LOW PRESSURE CHEMICAL VAPOR DEPOSITION 1

    E-Print Network [OSTI]

    Markowich, Peter A.

    A HOMOGENIZATION TECHNIQUE FOR THE BOLTZMANN EQUATION FOR LOW PRESSURE CHEMICAL VAPOR DEPOSITION 1 the approach. The setup models low pressure chemical vapor deposition processes in the manufacturing. Low pressure chemical vapor deposition is used in the manufactur- ing of integrated circuits

  1. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    nanotubes on temperature sensitive substrate via µCVD (Chapter 4). (d) Synthesis of graphene with nickel

  2. Environmentally focused patterning and processing of polymer thin films by initiated chemical vapor deposition (iCVD) and oxidative chemical vapor deposition (oCVD)

    E-Print Network [OSTI]

    Trujillo, Nathan J. (Nathan Jeffrey)

    2010-01-01

    The new millennium has brought fourth many technological innovations made possible by the advancement of high speed integrated circuits. The materials and energy requirements for a microchip is orders of magnitude higher ...

  3. Surface-texture evolution of different chemical-vapor-deposited zinc sulfide flats polished with various magnetorheological fluids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salzman, S.; Romanofsky, H. J.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-08-19

    The macro-structure of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) substrates is characterizedby cone-like structures that start growing at the early stages of deposition. As deposition progresses,these cones grow larger and reach centimeter size in height and millimeter size in width. It is challengingto polish out these features from the top layer, particularly for the magnetorheological finishing (MRF)process. A conventional MR fluid tends to leave submillimeter surface artifacts on the finished surface,which is a direct result of the cone-like structure. Here we describe the MRF process of polishing four CVD ZnS substrates, manufactured by four differentvendors, with conventional MR fluid at pHmore »10 and zirconia-coated-CI (carbonyl iron) MR fluids at pH 4, 5,and 6. We report on the surface–texture evolution of the substrates as they were MRF polished with thedifferent fluids. We show that performances of the zirconia-coated-CI MR fluid at pH 4 are significantlyhigher than that of the same fluid at pH levels of 5 and 6 and moderately higher than that of a conventionalMR fluid at pH 10. An improvement in surface–texture variability from part to part was also observedwith the pH 4 MR fluid.« less

  4. RF MEMS Capacitive Switches Fabricated with HDICP CVD SiNx C.H. Chang, J.Y. Qian, B.A.Cetiner, Q. Xu, M. Bachman, H.K. Kim* Y. Ra*, F. De Flaviis and G.P.Li

    E-Print Network [OSTI]

    De Flaviis, Franco

    RF MEMS Capacitive Switches Fabricated with HDICP CVD SiNx C.H. Chang, J.Y. Qian, B.A.Cetiner, Q plasma chemical vapor deposition (HDICP CVD) process in RF MEMS switch fabrication is addressed of surface roughness, breakdown voltage and RF MEMS switch performance. It is found that HDICP CVD can

  5. Surface structure, composition, and polarity of indium nitride grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    grown by high-pressure chemical vapor deposition have been studied. Atomic hydrogen cleaning produced and heterostructures--which can be accomplished by low- pressure metalorganic chemical vapor deposition MOCVD --the- rium vapor pressure of nitrogen during growth. This requires different approaches in growing structures

  6. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  7. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    SciTech Connect (OSTI)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  8. American Institute of Aeronautics and Astronautics Integrated Development of Vapor Deposition for Non-line-

    E-Print Network [OSTI]

    Wadley, Haydn

    American Institute of Aeronautics and Astronautics 1 Integrated Development of Vapor Deposition, Materials Science & Engineering, 395 McCormick Rd, nonmember I #12;American Institute of Aeronautics

  9. Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS{sub 2}/graphene hetero-structures by chemical vapor depositions

    SciTech Connect (OSTI)

    Lin, Meng-Yu [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Chang, Chung-En [Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan (China); Wang, Cheng-Hung [Institute of Display, National Chiao-Tung University, Hsinchu, Taiwan (China); Su, Chen-Fung; Chen, Chi [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Lee, Si-Chen [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Lin, Shih-Yen, E-mail: shihyen@gate.sinica.edu.tw [Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei, Taiwan (China); Department of Photonics, National Chiao-Tung University, Hsinchu, Taiwan (China)

    2014-08-18

    Uniform large-size MoS{sub 2}/graphene hetero-structures fabricated directly on sapphire substrates are demonstrated with layer-number controllability by chemical vapor deposition (CVD). The cross-sectional high-resolution transmission electron microscopy (HRTEM) images provide the direct evidences of layer numbers of MoS{sub 2}/graphene hetero-structures. Photo-excited electron induced Fermi level shift of the graphene channel are observed on the single MoS{sub 2}/graphene hetero-structure transistors. Furthermore, double hetero-structures of graphene/MoS{sub 2}/graphene are achieved by CVD fabrication of graphene layers on top of the MoS{sub 2}, as confirmed by the cross-sectional HRTEM. These results have paved the possibility of epitaxially grown multi-hetero-structures for practical applications.

  10. Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamondsilicananotube composites

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond vapor deposition Composite thin films of nanodiamond and silica nanotubes were synthesized by means with nanodiamond particles. SEM, Raman spectroscopy, and EDX were used to analyze the composite. Wet chemical

  11. Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application

    E-Print Network [OSTI]

    Zheng, Yufeng

    Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application M was prepared by plasma enhanced chemical vapor deposition (PECVD) of SiH4 on WE43 alloy for biomedical [6], magnetron sputtering [7], alkaline heat treatment [8], micro-arc oxidation [9

  12. OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR

    E-Print Network [OSTI]

    OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN simulations as a fundamental design tool in developing a new prototype high pressure organometallic chemical vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor

  13. Selective Growth of Straight Carbon Nanotubes by Low-Pressure Thermal Chemical Vapor Deposition

    E-Print Network [OSTI]

    Hasegawa, Shuji

    Selective Growth of Straight Carbon Nanotubes by Low-Pressure Thermal Chemical Vapor Deposition) were grown by low-pressure thermal chemical vapor deposition using pure ethylene. It was found preferentially bridged between Fe nanoparticles under a low pressure of 100 Pa. Moreover, utilizing this method

  14. Alcohol chemical vapor deposition growth of millimeter-sized single-crystal of graphene

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Alcohol chemical vapor deposition growth of millimeter-sized single-crystal of graphene Sungjin Kim@photon,t,u-tokyo.ac.jp Abstract: The growth of large-sized single crystalline graphene with mono layer is necessary for large-scale integration of graphene devices. Ethanol as a precursor has proven effective in the chemical vapor deposition

  15. Tunneling characteristics in chemical vapor deposited graphene hexagonal boron nitride graphene junctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Tunneling characteristics in chemical vapor deposited graphene ­ hexagonal boron nitride ­ graphene junctions T. Roy1 , L. Liu2 , S. de la Barrera,3 B. Chakrabarti1,4 , Z. R. Hesabi1 , C. A. Joiner1 Abstract: Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate

  16. Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition approach

    E-Print Network [OSTI]

    Wadley, Haydn

    Lithium phosphorous oxynitride films synthesized by a plasma-assisted directed vapor deposition vapor deposition approach has been explored for the synthesis of lithium phosphorous oxynitride Lipon the ionic transport properties of these films. This enabled the synthesis of electrolyte films with lithium

  17. Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene

    E-Print Network [OSTI]

    Raychaudhuri, Pratap

    Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene Garima field of 33 T. In addition, we demonstrate a process for obtaining flexible, free-standing NbN films

  18. Advanced Metallization Conference 2008 Chemical Vapor Deposition (CVD) of Manganese Self-Aligned

    E-Print Network [OSTI]

    is sputtered, and then the trenches and holes are filled with Cu by electroplating. As the dimensions that the remaining openings are narrower at the top than lower inside the features. Then the electroplating processN. If these areas are missing the Cu seed layer, then Cu electroplating will not take place on the oxidized surface

  19. Prevention of biofouling in seawater desalination via initiated chemical vapor deposition (iCVD)

    E-Print Network [OSTI]

    Yang, Rong, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Biofouling, the undesirable settlement and growth of organisms, occurs immediately when a clean surface is immersed in natural seawater. It is a universal problem and the bottleneck for seawater desalination, which reduces ...

  20. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect (OSTI)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  1. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    SciTech Connect (OSTI)

    Silva, Chinthaka M; Katoh, Yutai; Voit, Stewart L; Snead, Lance Lewis

    2015-01-01

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  2. Low temperature photochemical vapor deposition of alloy and mixed metal oxide films

    DOE Patents [OSTI]

    Liu, David K. (San Pablo, CA)

    1992-01-01

    Method and apparatus for formation of an alloy thin film, or a mixed metal oxide thin film, on a substrate at relatively low temperatures. Precursor vapor(s) containing the desired thin film constituents is positioned adjacent to the substrate and irradiated by light having wavelengths in a selected wavelength range, to dissociate the gas(es) and provide atoms or molecules containing only the desired constituents. These gases then deposit at relatively low temperatures as a thin film on the substrate. The precursor vapor(s) is formed by vaporization of one or more precursor materials, where the vaporization temperature(s) is selected to control the ratio of concentration of metals present in the precursor vapor(s) and/or the total precursor vapor pressure.

  3. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework

    E-Print Network [OSTI]

    Vapor-Phase Metalation by Atomic Layer Deposition in a Metal- Organic Framework Joseph E. Mondloch introduce a new synthetic strategy capable of metallating MOFs from the gas phase: atomic layer deposition and in some instances host- guest interactions may lead to unstable metal@MOFs. Atomic layer deposition (ALD

  4. CVD-Enabled Graphene Manufacture and Technology

    E-Print Network [OSTI]

    Hofmann, Stephan; Braeuninger-Weimer, Philipp; Weatherup, Robert S.

    2015-06-26

    deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus...

  5. Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study

    SciTech Connect (OSTI)

    Chen, R. S. [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tsai, H. Y. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Huang, Y. S. [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Y. T. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-09-10

    The normalized gains, which determines the intrinsic photoconduction (PC) efficiencies, have been defined and compared for the gallium nitride (GaN) nanowires (NWs) grown by chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). By excluding the contributions of experimental parameters and under the same light intensity, the CVD-grown GaN NWs exhibit the normalized gain which is near two orders of magnitude higher than that of the MBE-ones. The temperature-dependent time-resolved photocurrent measurement further indicates that the higher photoconduction efficiency in the CVD-GaN NWs is originated from the longer carrier lifetime induced by the higher barrier height ({phi}{sub B} = 160 {+-} 30 mV) of surface band bending. In addition, the experimentally estimated barrier height at 20 {+-} 2 mV for the MBE-GaN NWs, which is much lower than the theoretical value, is inferred to be resulted from the lower density of charged surface states on the non-polar side walls.

  6. Equilibrium Analysis of CVD of Yttria-Stabilized Zirconia Venu G. Varanasi,a

    E-Print Network [OSTI]

    Anderson, Timothy J.

    Equilibrium Analysis of CVD of Yttria-Stabilized Zirconia Venu G. Varanasi,a Theodore M. Besmann indicate that efficient deposition of tetragonal yttria-stabilized zirconia YSZ by chemical vapor received February 20, 2004. Available electronically November 17, 2004. Yttria-stabilized zirconia YSZ

  7. Plasma and Ion Assistance in Physical Vapor Deposition: A Historical Perspective

    E-Print Network [OSTI]

    Anders, Andre

    2007-01-01

    in the low-pressure diffuse arc plasma,” XVIIth Int. Symp.65] C. Bergman, “Arc plasma physical vapor deposition,” 28thpulsed tantalum filtered arc plasma and bias (photo courtesy

  8. Bilayer graphene growth by low pressure chemical vapor deposition on copper foil

    E-Print Network [OSTI]

    Fang, Wenjing, S.M. Massachusetts Institute of Technology

    2012-01-01

    Successfully integrating graphene in standard processes for applications in electronics relies on the synthesis of high-quality films. In this work we study Low Pressure Chemical Vapor Deposition (LPCVD) growth of bilayer ...

  9. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

    1994-01-01

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  10. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  11. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C. (San Ramon, CA); Letts, Stephan A. (San Ramon, CA); Spadaccini, Christopher M. (Oakland, CA); Morse, Jeffrey C. (Pleasant Hill, CA); Buckley, Steven R. (Modesto, CA); Fischer, Larry E. (Los Gatos, CA); Wilson, Keith B. (San Ramon, CA)

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  12. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    DOE Patents [OSTI]

    O'Brien, Kevin C. (San Ramon, CA); Letts, Stephan A. (San Ramon, CA); Spadaccini, Christopher M. (Oakland, CA); Morse, Jeffrey C. (Pleasant Hill, CA); Buckley, Steven R. (Modesto, CA); Fischer, Larry E. (Los Gatos, CA); Wilson, Keith B. (San Ramon, CA)

    2012-01-24

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  13. Carrier concentration and surface electron accumulation in indium nitride layers grown by high pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    pressure chemical vapor deposition R. P. Bhatta, B. D. Thoms,a A. Weerasekera, A. G. U. Perera, M. Alevli properties of InN layer grown by high pressure chemical vapor deposition have been studied by high-nitride alloys is challenging under low pressure process conditions due to higher equilibrium vapor pressure

  14. SPIN (Version 3. 83): A Fortran program for modeling one-dimensional rotating-disk/stagnation-flow chemical vapor deposition reactors

    SciTech Connect (OSTI)

    Coltrin, M.E. ); Kee, R.J.; Evans, G.H.; Meeks, E.; Rupley, F.M.; Grcar, J.F. )

    1991-08-01

    In rotating-disk reactor a heated substrate spins (at typical speeds of 1000 rpm or more) in an enclosure through which the reactants flow. The rotating disk geometry has the important property that in certain operating regimes{sup 1} the species and temperature gradients normal to the disk are equal everywhere on the disk. Thus, such a configuration has great potential for highly uniform chemical vapor deposition (CVD),{sup 2--5} and indeed commercial rotating-disk CVD reactors are now available. In certain operating regimes, the equations describing the complex three-dimensional spiral fluid motion can be solved by a separation-of-variables transformation{sup 5,6} that reduces the equations to a system of ordinary differential equations. Strictly speaking, the transformation is only valid for an unconfined infinite-radius disk and buoyancy-free flow. Furthermore, only some boundary conditions are consistent with the transformation (e.g., temperature, gas-phase composition, and approach velocity all specified to be independent of radius at some distances above the disk). Fortunately, however, the transformed equations will provide a very good practical approximation to the flow in a finite-radius reactor over a large fraction of the disk (up to {approximately}90% of the disk radius) when the reactor operating parameters are properly chosen, i.e, high rotation rates. In the limit of zero rotation rate, the rotating disk flow reduces to a stagnation-point flow, for which a similar separation-of-variables transformation is also available. Such flow configurations ( pedestal reactors'') also find use in CVD reactors. In this report we describe a model formulation and mathematical analysis of rotating-disk and stagnation-point CVD reactors. Then we apply the analysis to a compute code called SPIN and describe its implementation and use. 31 refs., 4 figs.

  15. Highly stable silicon dioxide films deposited by means of rapid thermal -low-pressure chemical vapor deposition onto InP

    E-Print Network [OSTI]

    Florida, University of

    grown by rapid thermal, low-pressure chemical vapor deposition (RT-LPCVD), using pure oxygen (0,) and 2Highly stable silicon dioxide films deposited by means of rapid thermal - low-pressure chemical vapor deposition onto InP A. Katz, A. Feingold, U. K. Chakrabarti, and S. J. Peat-ton AT&T Bell

  16. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Deposition," Journal of MicroElectroMechanical Systems, vol.Chair MEMS (Microelectromechanical Systems) technologiesby MEMS (Microelectromechanical Systems) technologies many

  17. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  18. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W. (Sandia Park, NM)

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  19. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  20. Chemical vapor deposition of W-Si-N and W-B-N

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Roherty-Osmun, Elizabeth Lynn (Albuquerque, NM); Smith, Paul M. (Albuquerque, NM); Custer, Jonathan S. (Albuquerque, NM); Jones, Ronald V. (Albuquerque, NM); Nicolet, Marc-A. (Pasadena, CA); Madar, Roland (Eybens, FR); Bernard, Claude (Brie et Angonnes, FR)

    1999-01-01

    A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.

  1. Solar Energy Materials & Solar Cells 91 (2007) 924930 Plasma-enhanced chemical vapor deposition of zinc oxide at

    E-Print Network [OSTI]

    Hicks, Robert F.

    2007-01-01

    - enhanced chemical vapor deposition (PECVD) [4], ex- panding thermal plasma [5], and vacuum arc depositionSolar Energy Materials & Solar Cells 91 (2007) 924­930 Plasma-enhanced chemical vapor deposition 2007; accepted 14 February 2007 Available online 6 April 2007 Abstract The plasma-enhanced chemical

  2. Improved process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    DOE Patents [OSTI]

    Lackey, W.J. Jr.; Caputo, A.J.

    1984-09-07

    A specially designed apparatus provides a steep thermal gradient across the thickness of fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  3. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    SciTech Connect (OSTI)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  4. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01

    Microwave Plasma Chemical Vapor Deposition of Nano-tert-butoxide by a one step microwave plasma chemical vaporBatteries; Anode; Plasma; Microwave Corresponding author. E-

  5. In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum

    E-Print Network [OSTI]

    In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on Ga 26 June 2008; published online 21 July 2008 In situ atomic-layer deposition ALD of Al2O3 on p­4 Recently, many ex situ methods such as atomic-layer deposition ALD of high-k on GaAs have achieved success

  6. Hot-Wire Chemical Vapor Deposition (HWCVD) technologies: Rapid, controllable growth of epitaxial silicon films

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-12-27

    NREL scientists have discovered a unique way to quickly grow epitaxial Si using hot-wire chemical vapor deposition (HWCVD), which holds the potential to greatly decrease costs within the manufacturing of Si substrates.  With NREL’s HWCVD technology, Si material use and costs are dramatically reduced with scalable manufacturing and lower deposition temperatures.  NREL’s unique HWCVD technique can easily be integrated into existing manufacturing processes, allowing...

  7. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOE Patents [OSTI]

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  8. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M.; Zielinski, M.; Chassagne, T.

    2013-05-28

    Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

  9. Growth Inhibition to Enhance Conformal Coverage in Thin Film Chemical Vapor Deposition

    E-Print Network [OSTI]

    Girolami, Gregory S.

    Technology Roadmap for Semiconductors predicts that it will be necessary to replace PVD with chemical vapor@scs.uiuc.edu; abelson@illinois.edu Many important technological applications depend crucially on the ability to deposit in a feature of given AR depends on the reactive sticking probability ( ) of the gas phase precursor

  10. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire

    E-Print Network [OSTI]

    Boyer, Edmond

    Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films 2004, there has been an increasing effort in developing efficient methods for preparing graphene graphene can be prepared, which is favorable for the achievement of high quality graphene; it is also known

  11. Device for rapid sample insertion and extraction in thermal chemical vapor deposition tube furnace

    E-Print Network [OSTI]

    Device for rapid sample insertion and extraction in thermal chemical vapor deposition tube furnace a tube furnace is described. The device operates in an atmosphere that is separate from ambient actuation through the walls of a quartz tube furnace is entirely general to any procedure using a tube

  12. Researchers develop electrodeposition process to deposit coatings on substrates, eliminate the expensive physical vapor

    E-Print Network [OSTI]

    the expensive physical vapor deposition step, and improve device quality. CuIn1-xGaxSe2 (CIGS) solar cells have energy gap and allows use of thin layers (1-2 µm) of active material. CIGS solar cells are also known vacuum and non-vacuum technologies. Thin-film solar cell devices based on PVD CIGS have demonstrated

  13. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes

    E-Print Network [OSTI]

    Grujicic, Mica

    ) their unique structure makes them suitable for tailored nanometer- scale membranes and molecular sieves [5]; (dAn atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes M Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition

  14. The Vapor Deposition and Oxidation of Platinum-and Yttria-Stabilized Zirconia Multilayers

    E-Print Network [OSTI]

    Wadley, Haydn

    The Vapor Deposition and Oxidation of Platinum- and Yttria-Stabilized Zirconia Multilayers Zhuo Yu system consisting of platinum- and yttria-stabilized zirconia (YSZ) multilayers. Coatings containing one on the bond coat surface with no intermediate metastable oxide precursor phase.9 Yttria-stabilized zirconia

  15. Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol Pei Zhao, and systematically investigate the growth of graphene from ethanol and compare its self-limiting behavior over copper facets with different identities. Results show that the growth of graphene from ethanol in the LPCVD

  16. Selective Chemical Vapor Deposition of Platinum and Palladium Directed by Monolayers Patterned Using

    E-Print Network [OSTI]

    Girolami, Gregory S.

    , and bis(hexafluoroacetylacetonato)palladium(II), Pd- (hfac)2, in the presence of hydrogen. This processSelective Chemical Vapor Deposition of Platinum and Palladium Directed by Monolayers Patterned 61801 Received February 18, 1997. In Final Form: May 5, 1997X High-purity platinum and palladium thin

  17. American Institute of Aeronautics and Astronautics Aerosol-Assisted Chemical Vapor Deposited Thin Films for

    E-Print Network [OSTI]

    Rockett, Angus

    American Institute of Aeronautics and Astronautics 1 Aerosol-Assisted Chemical Vapor Deposited Thin Aeronautics and Space Administration, John H. Glenn Research Center, Cleveland, OH 44135 Michael H.-C. Jin Sci. and Eng., 1304 West Green Street. #12;American Institute of Aeronautics and Astronautics 2 I

  18. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    SciTech Connect (OSTI)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-05-15

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  19. Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes

    E-Print Network [OSTI]

    Doeff, M.M.

    2012-01-01

    Microwave Plasma Chemical Vapor Deposition of Carbonanthracene, by a one-step microwave plasma chemical vaporFigure 1. A diagram of the microwave plasma chemical vapor

  20. SiC rapid thermal carbonization of the (111)Si semiconductor-on-insulator structure and subsequent metalorganic chemical vapor deposition

    E-Print Network [OSTI]

    Cincinnati, University of

    vapor deposition with mixtures of propane and H2 at atmospheric pressure. Carbonization temperatures metalorganic chemical vapor deposition of GaN A. J. Steckla) and J. Devrajan University of Cincinnati . Metalorganic chemical vapor deposition growth of GaN on the 111 SiC SOI was carried out with trimethylgallium

  1. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  2. Directed inorganic modification of bi-component polymer fibers by selective vapor reaction and atomic layer deposition

    E-Print Network [OSTI]

    Khan, Saad A.

    and atomic layer deposition Bo Gong, Joseph C. Spagnola, Sara A. Arvidson, Saad A. Khan, Gregory N. Parsons Accepted 8 August 2012 Available online 21 August 2012 Keywords: Atomic layer deposition Bi-controlled composition can be formed using vapor-phase atomic layer deposition (ALD) on bi-component polymer fibers

  3. Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3

    E-Print Network [OSTI]

    passivation has to date been mostly deposited by conventional atomic layer deposition (ALD), a technique-effect transistors subjected to on-state bias stress J. Appl. Phys. 111, 084504 (2012) Atomic imaging of atomic layerSurface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3 Lachlan E

  4. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect (OSTI)

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  5. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  6. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOE Patents [OSTI]

    Grigorian, Leonid (Raymond, OH); Hornyak, Louis (Evergreen, CO); Dillon, Anne C (Boulder, CO); Heben, Michael J (Denver, CO)

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  7. Novel Volatile Precursors of Palladium For ALD and CVD Deo V. Shenai,1 Qing Min Wang,1 Jean-Sbastien Lehn,1 and Roy G. Gordon2

    E-Print Network [OSTI]

    Novel Volatile Precursors of Palladium For ALD and CVD Deo V. Shenai,1 Qing Min Wang,1 Jean@dow.com Introduction Homoleptic Palladium Amidinate (Pd-3) Vapor Pressure of Pd-3 Deposition of Palladium Thin FilmsAccelerated Rate Calorimetry (ARC) Study on Pd-3 Conclusions Heteroleptic Palladium Amidinate and Formamidinate (Pd

  8. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOE Patents [OSTI]

    Vernon, Stanley M. (Wellesley, MA)

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  9. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOE Patents [OSTI]

    Hemley, Russell J. (Washington, DC); Mao, Ho-kwang (Washington, DC); Yan, Chih-shiue (Washington, DC)

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  10. Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic integration

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    Polycrystalline germanium (poly-Ge) grown on amorphous Si (a-Si) by ultra-high vacuum chemical vapor deposition (UHVCVD) over oxide barriers at low temperatures (Tles450degC) exhibits a larger grain size and lower defect ...

  11. Fretting wear and electrochemical corrosion of well-adhered CVD diamond films deposited on steel substrates with a WCCo interlayer

    E-Print Network [OSTI]

    Bristol, University of

    -filament chemical vapour deposition methods. A Co-containing tungsten-carbide (WC­Co) coating prepared by high velocity oxy-fuel spraying was used as an intermediate layer on the steel substrates to minimize the early

  12. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    SciTech Connect (OSTI)

    Woehrl, Nicolas, E-mail: nicolas.woehrl@uni-due.de; Schulz, Stephan [Faculty of Chemistry and CENIDE, University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany)] [Faculty of Chemistry and CENIDE, University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Ochedowski, Oliver; Gottlieb, Steven [Faculty of Physics and CENIDE, University Duisburg Essen, Lotharstraße 1, 47057 Duisburg (Germany)] [Faculty of Physics and CENIDE, University Duisburg Essen, Lotharstraße 1, 47057 Duisburg (Germany); Shibasaki, Kosuke [Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)] [Institute of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-04-15

    A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO{sub 2} substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm{sup 2}. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  13. Surface roughening in low-pressure chemical vapor deposition Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Surface roughening in low-pressure chemical vapor deposition Jason T. Drotar, Y.-P. Zhao, T.-M. Lu etching, the pressure is usually low enough so that the mean free path of the vapor particles is much of a reemission model for chemical vapor deposition. We find that, for pure first-order reemission, the interface

  14. Pore evolution during high pressure atomic vapor deposition D. D. Hass Y. Y. Yang H. N. G. Wadley

    E-Print Network [OSTI]

    Wadley, Haydn

    of gas turbine engine compo- nents contain large (micron size) inter-columnar pores aligned perpendicular The development of physical vapor deposition systems that employ inert gas jets to entrain and deposit atomic conditions can contain a higher volume fraction of porosity and a different pore morphology to coatings

  15. CHEMICALLY VAPOR DEPOSITED YTTRIA-STABILIZED ZIRCONIA (YSZ) FOR THERMAL AND ENVIRONMENTAL BARRIER COATING

    SciTech Connect (OSTI)

    Varanasi, V.G.; Besmann, T.M.; Lothian, J.L.; Xu, W.; Starr, T.L.

    2003-04-22

    Yttria-stabilized zirconia (YSZ) is used as a thermal barrier coating (TBC) to protect super-alloy blades such as Mar-M247 or Rene-N5 during engine operation. The current method for YSZ fabrication for TBC applications is by air-plasma spraying (APS) or electron beam physical vapor deposition (EB-PVD) (Haynes 1997). APS gives reasonable deposition rates, but has a limited life and aging effects due to its porous and lamellar structure. The EB-PVD coatings are more stable and can accommodate thermomechanical stresses due to their characteristic strain-tolerant, columnar microstructure. EB-PVD, however, is primarily line-of-sight, which often leaves ''hidden areas'' uncoated, has low throughput, and has high capital cost. The process of metal-organic chemical vapor deposition (MOCVD) is investigated here as an economical alternative to EB-PVD and APS, with the potential for better overall coverage as well as the ability to produce thick (100-250 {micro}m), strain-tolerant, columnar coatings. MOCVD of YSZ involves the use of zirconium and yttrium organometallic precursors reacting with an oxygen source. Previous researchers have used diketonate or chloride precursors and oxygen (Wahl et al. 2001a, Wahl et al. 2001b, Yamane and Harai 1989). These precursors have low transport rates due to their low carrier solvent solubility (Varanasi et al. 2003). Solvated zirconium and yttrium butoxide precursors were investigated here due to their higher vapor pressures and high solvent solubility. This work uses predictive equilibrium modeling and experiments involving butoxide precursors for tetragonal YSZ fabrication.

  16. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1?x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4??m, with a peak responsivity of up to ?100??A/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140?K.

  17. Method of making AlInSb by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  18. Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions

    SciTech Connect (OSTI)

    Roy, T.; Hesabi, Z. R.; Joiner, C. A.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Liu, L.; Gu, G. [Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996 (United States); Barrera, S. de la; Feenstra, R. M. [Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States)

    2014-03-24

    Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene–hexagonal boron nitride–graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene–hexagonal boron nitride–graphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.

  19. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    DOE Patents [OSTI]

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-25

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  20. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H.; Siegal, M.P.; Provencio, P.N.

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  1. Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition

    SciTech Connect (OSTI)

    Xia, Min; Guo, Hongyan; Ge, Changchun; Yan, Qingzhi Lang, Shaoting

    2014-05-14

    A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (?-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, ?-CNTs/amorphous tungsten carbide, ?-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.

  2. Development of hybrid organic-inorganic light emitting diodes using conducting polymers deposited by oxidative chemical vapor deposition process

    E-Print Network [OSTI]

    Chelawat, Hitesh

    2010-01-01

    Difficulties with traditional methods of synthesis and film formation for conducting polymers, many of which are insoluble, motivate the development of CVD methods. Indeed, conjugated polymers with rigid linear backbones ...

  3. The influence of ammonia on rapid-ther al low-pressure metalorganic chemical vapor deposited TIN, films from tetrakis (dimethylamido) titanium

    E-Print Network [OSTI]

    Florida, University of

    The influence of ammonia on rapid-ther al low-pressure metalorganic chemical vapor deposited TIN, and stress of rapid- thermal low pressure metalorganic chemical vapor deposited (RT-LPMOCVD) TiN, films on In) liquid precursors, were studied. Enhanced deposition rates of l-3 nm s- ' at total chamber pressures

  4. Chemical Vapor Deposition of Fluoroalkylsilane Monolayer Films for Adhesion Control in Microelectromechanical Systems

    SciTech Connect (OSTI)

    MAYER,THOMAS M.; DE BOER,MAARTEN P.; SHINN,NEAL D.; CLEWS,PEGGY J.; MICHALSKE,TERRY A.

    2000-01-26

    We have developed a new process for applying a hydrophobic, low adhesion energy coating to microelectromechanical (MEMS) devices. Monolayer films are synthesized from tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor in a low-pressure chemical vapor deposition process at room temperature. Film thickness is self-limiting by virtue of the inability of precursors to stick to the fluorocarbon surface of the film once it has formed. We have measured film densities of {approx}3 molecules nm{sup 2} and film thickness of {approx}1 nm. Films are hydrophobic, with a water contact angle >110{sup o}. We have also incorporated an in-situ downstream microwave plasma cleaning process, which provides a clean, reproducible oxide surface prior to film deposition. Adhesion tests on coated and uncoated MEMS test structures demonstrate superior performance of the FOTS coatings. Cleaned, uncoated cantilever beam structures exhibit high adhesion energies in a high humidity environment. An adhesion energy of 100 mJ m{sup -2} is observed after exposure to >90% relative humidity. Fluoroalkylsilane coated beams exhibit negligible adhesion at low humidity and {<=} 20 {micro}J m{sup -2} adhesion energy at >90% relative humidity. No obvious film degradation was observed for films exposed to >90% relative humidity at room temperature for >24 hr.

  5. Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition

    SciTech Connect (OSTI)

    Huang, Z.P.; Provencio, P.N.; Ren, Z.F.; Siegal, M.P.; Wang, J.H.; Xu, J.W.

    1998-10-11

    Highly-oriented, multi-walled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666"C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 pm in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. In summary, we synthesized large-area highly-oriented carbon nanotubes at temperatures below 666C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas is used to provide carbon for nanotube growth and ammonia gas is used for dilution and catalysis. Plasma intensity is critical in determining the nanotube aspect ratios (diameter and length), and range of both site and height distributions within a given film.

  6. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  7. Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2004-01-01

    The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

  8. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  9. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect (OSTI)

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  10. Carbon impurities on graphene synthesized by chemical vapor deposition on platinum

    SciTech Connect (OSTI)

    Ping, Jinglei; Fuhrer, Michael S., E-mail: michael.fuhrer@monash.edu [Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742-4111, USA and School of Physics, Monash University, 3800 Victoria (Australia)

    2014-07-28

    We report nanocrystalline carbon impurities coexisting with graphene synthesized via chemical vapor deposition on platinum. For certain growth conditions, we observe micron-size island-like impurity layers which can be mistaken for second graphene layers in optical microscopy or scanning electron microscopy. The island orientation depends on the crystalline orientation of the Pt, as shown by electron backscatter diffraction, indicating growth of carbon at the platinum surface below graphene. Dark-field transmission electron microscopy indicates that in addition to uniform single-crystal graphene, our sample is decorated with nanocrystalline carbon impurities with a spatially inhomogeneous distribution. The impurity concentration can be reduced significantly by lowering the growth temperature. Raman spectra show a large D peak, however, electrical characterization shows high mobility (?8000?cm{sup 2}/Vs), indicating a limitation for Raman spectroscopy in characterizing the electronic quality of graphene.

  11. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    E-Print Network [OSTI]

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  12. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect (OSTI)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ?1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  13. A molecular dynamics study of the graphitization ability of transition metals for catalysis of carbon nanotube growth via chemical vapor deposition

    E-Print Network [OSTI]

    Elliott, James

    of carbon nanotube growth via chemical vapor deposition Yasushi Shibuta a,*, James A. Elliott b a Department for carbon nanotube growth via chemical vapor deposition has been investigated via classical molecular and graphene sheet was found to be higher than for clusters comprising cobalt or nickel, since the high energy

  14. Gas jet assisted vapor deposition of yttria stabilized zirconia D. D. Hass and H. N. G. Wadleya

    E-Print Network [OSTI]

    Wadley, Haydn

    Gas jet assisted vapor deposition of yttria stabilized zirconia D. D. Hass and H. N. G. Wadleya February 2009 A gas jet assisted electron beam evaporation process for synthesizing yttria stabilized zirconia YSZ coatings has recently been reported. The process uses a rarefied inert gas jet to entrain

  15. Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Wang, Q.; Dahal, R.; Feng, I. W.; Lin, J. Y.; Jiang, H. X.; Hui, Rongqing

    2011-01-01

    We repost the characterization of emission and absorption cross-sections in an erbium-doped GaN waveguide prepared by metal organic chemical vapor deposition. The emission cross-section was obtained with the Füchtbauer–Ladenburg equation based...

  16. Vapor deposition on doublet airfoil substrates: Coating thickness control Theron M. Rodgers, Hengbei Zhao, and Haydn N. G. Wadleya)

    E-Print Network [OSTI]

    Wadley, Haydn

    barrier coatings (TBCs) to gas turbine engine components,1­6 wear-resistant coatings to cutting tools,7Vapor deposition on doublet airfoil substrates: Coating thickness control Theron M. Rodgers to coatings on interior surfaces of the doublet airfoil geometry, which are only accessible through

  17. Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Santra, T. S.; Liu, C. H. [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T. K. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P. [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T. K. [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

    2010-06-15

    Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

  18. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    SciTech Connect (OSTI)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R?=?rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850?°C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  19. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  20. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOE Patents [OSTI]

    Chow, Robert (Livermore, CA); Loomis, Gary E. (Livermore, CA); Thomas, Ian M. (Livermore, CA)

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  1. Nitrogen doping of chemical vapor deposition grown graphene on 4H-SiC (0001)

    SciTech Connect (OSTI)

    Urban, J. M.; Binder, J.; Wysmo?ek, A.; D?browski, P.; Strupi?ski, W.; Kopciuszy?ski, M.; Ja?ochowski, M.; Klusek, Z.

    2014-06-21

    We present optical, electrical, and structural properties of nitrogen-doped graphene grown on the Si face of 4H-SiC (0001) by chemical vapor deposition method using propane as the carbon precursor and N{sub 2} as the nitrogen source. The incorporation of nitrogen in the carbon lattice was confirmed by X-ray photoelectron spectroscopy. Angle-resolved photoemission spectroscopy shows carrier behavior characteristic for massless Dirac fermions and confirms the presence of a graphene monolayer in the investigated nitrogen-doped samples. The structural and electronic properties of the material were investigated by Raman spectroscopy. A systematical analysis of the graphene Raman spectra, including D, G, and 2D bands, was performed. In the case of nitrogen-doped samples, an electron concentration on the order of 5–10 × 10{sup 12}?cm{sup ?2} was estimated based upon Raman and Hall effect measurements and no clear dependence of the carrier concentration on nitrogen concentration used during growth was observed. This high electron concentration can be interpreted as both due to the presence of nitrogen in graphitic-like positions of the graphene lattice as well as to the interaction with the substrate. A greater intensity of the Raman D band and increased inhomogeneity, as well as decreased electron mobility, observed for nitrogen-doped samples, indicate the formation of defects and a modification of the growth process induced by nitrogen doping.

  2. Fabrication of layered self-standing diamond film by dc arc plasma jet chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, G. C.; Dai, F. W.; Li, B.; Lan, H.; Askari, J.; Tang, W. Z.; Lu, F. X.

    2007-01-15

    Layered self-standing diamond films, consisting of an upper layer, buffer layer, and a lower layer, were fabricated by fluctuating the ratio of methane to hydrogen in high power dc arc plasma jet chemical vapor deposition. There were micrometer-sized columnar diamond crystalline grains in both upper layer and lower layer. The size of the columnar diamond crystalline grains was bigger in the upper layer than that in the lower layer. The orientation of the upper layer was (110), while it was (111) for the lower layer. Raman results showed that no sp{sup 3} peak shift was found in the upper layer, but it was found and blueshifted in the lower layer. This indicated that the internal stress within the film body could be tailored by this layered structure. The buffer layer with nanometer-sized diamond grains formed by secondary nucleation was necessary in order to form the layered film. Growth rate was over 10 {mu}m/h in layered self-standing diamond film fabrication.

  3. Cooperative Island Growth of Large Area Single-Crystal Graphene by Chemical Vapor Deposition on Cu

    SciTech Connect (OSTI)

    Regmi, Murari [Oak Ridge National Laboratory (ORNL); Rouleau, Christopher [Oak Ridge National Laboratory (ORNL); Puretzky, Alexander A [ORNL; Ivanov, Ilia N [ORNL; Geohegan, David B [ORNL; Chen, Jihua [ORNL; Eastman, Jeffrey [Argonne National Laboratory (ANL); Eres, Gyula [ORNL

    2014-01-01

    We describe a two-step approach for suppressing nucleation of graphene on Cu using chemical vapor deposition. In the first step, as received Cu foils are oxidized in air at temperatures up to 500 C to remove surface impurities and to induce the regrowth of Cu grains during subsequent annealing in H2 flow at 1040 C prior to graphene growth. In the second step, transient reactant cooling is performed by using a brief Ar pulse at the onset of growth to induce collisional deactivation of the carbon growth species. The combination of these two steps results in a three orders of magnitude reduction in the graphene nucleation density, enabling the growth of millimeter-size single crystal graphene grains. A kinetic model shows that suppressing nucleation promotes a cooperative island growth mode that favors the formation of large area single crystal graphene, and it is accompanied by a roughly 3 orders of magnitude increase in the reactive sticking probability of methane compared to that in random nucleation growth.

  4. Structural, compositional, and photoluminescence characterization of thermal chemical vapor deposition-grown Zn?N? microtips

    SciTech Connect (OSTI)

    Wei, Pai-Chun, E-mail: pcwei68@gmail.com, E-mail: tsengcm@phys.sinica.edu.tw; Chang, Chung-Chieh; Hsu, Chia-Hao [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Tong, Shih-Chang; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tseng, Chuan-Ming, E-mail: pcwei68@gmail.com, E-mail: tsengcm@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Tao-Yuan 32001, Taiwan (China)

    2014-10-14

    The catalytic growth of Zn?N? using guided-stream thermal chemical vapor deposition has been investigated within the parameter range of acicular growth to obtain uniform microtips with a high crystalline quality. The cubic anti-bixbyite crystal structure of Zn?N? microtips and its related phonon mode are revealed by X-ray diffraction and Raman spectroscopy, respectively. The surface morphologies of pure and surface-oxidized Zn?N? microtips are depicted by scanning electron microscopy and show the crack formation on the surface-oxidized Zn?N? microtips. The spatial element distribution map confirms the VLS growth mechanism for Zn?N? microtips and reveals the depth profile of zinc, nitrogen, oxygen, and nickel elements. Photoluminescence (PL) spectra of Zn?N? microtips show a sharp infrared band-to-band emission peak at 1.34 eV with a full width at half maximum of ~100 meV and a very broad oxygen-related defect band emission peak centered at ~0.85 eV.

  5. Commissioning results of Nb3Sn cavity vapor diffusion deposition system at Jlab

    SciTech Connect (OSTI)

    Eremeev, Grigory; Clemens, William A.; Macha, Kurt M.; Park, HyeKyoung; Williams, R.

    2015-09-01

    Nb3Sn as a BCS superconductor with a superconducting critical temperature higher than that of niobium offers potential benefit for SRF cavities via a lower-than-niobium surface resistance at the same temperature and frequency. A Nb3Sn vapor diffusion deposition system designed for coating of 1.5 and 1.3 GHz single-cell cavities was built and commissioned at JLab. As the part of the commissioning, RF performance at 2.0 K of a single-cell 1.5 GHz CEBAF-shaped cavity was measured before and after coating in the system. Before Nb3Sn coating the cavity had a Q0 of about 10E10 and was limited by the high field Q-slope at Eacc about 27 MV/m. Coated cavity exhibited the superconducting transition at about 17.9 K. The low-field quality factor was about 5 10E9 at 4.3 K and 7 10E9 at 2.0 K decreasing with field to about 1 10E9 at Eacc about 8 MV/m at both temperatures. The highest field was limited by the available RF power.

  6. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

  7. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene

    E-Print Network [OSTI]

    Elliott, James

    Atomistic modelling of CVD synthesis of carbon nanotubes and graphene James A. Elliott,*a Yasushi nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled

  8. The influence of substrate polarity on the structural quality of InN layers grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Dietz, Nikolaus

    the growth temperatures to below 650 °C for low-pressure metal organic chemical vapor depo- sition MOCVDThe influence of substrate polarity on the structural quality of InN layers grown by high-pressure chemical vapor deposition N. Dietz,1,a M. Alevli,1 R. Atalay,1 G. Durkaya,1 R. Collazo,2 J. Tweedie,2 S

  9. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  10. A simple method to deposit palladium doped SnO{sub 2} thin films using plasma enhanced chemical vapor deposition technique

    SciTech Connect (OSTI)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik [School of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Ansari, S. G.; Ansari, Z. A. [Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2010-11-15

    This work presents a simple method to deposit palladium doped tin oxide (SnO{sub 2}) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl{sub 4}) was used as precursor and oxygen (O{sub 2}, 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C{sub 5}HF{sub 6}O{sub 2}){sub 2}) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd{sub 2}Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 m{Omega} cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  11. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO); Turner, John A. (Littleton, CO); Liu, Ping (Lakewood, CO)

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  12. Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Abbasi-Firouzjah, M.; Shokri, B.; Physics Department, Shahid Beheshti University G.C., Evin, Tehran

    2013-12-07

    Low dielectric constant (low-k) silica based films were deposited on p-type silicon and polycarbonate substrates by radio frequency (RF) plasma enhanced chemical vapor deposition method at low temperature. A mixture of tetraethoxysilane vapor, oxygen, and tetrafluoromethane (CF{sub 4}) was used for the deposition of the films in forms of two structures called as SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z}. Properties of the films were controlled by amount of porosity and fluorine content in the film matrix. The influence of RF power and CF{sub 4} flow on the elemental composition, deposition rate, surface roughness, leakage current, refractive index, and dielectric constant of the films were characterized. Moreover, optical emission spectroscopy was applied to monitor the plasma process at the different parameters. Electrical characteristics of SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z} films with metal-oxide-semiconductor structure were investigated using current-voltage analysis to measure the leakage current and breakdown field, as well as capacitance-voltage analysis to obtain the film's dielectric constant. The results revealed that SiO{sub x}C{sub y} films, which are deposited at lower RF power produce more leakage current, meanwhile the dielectric constant and refractive index of these films decreased mainly due to the more porosity in the film structure. By adding CF{sub 4} in the deposition process, fluorine, the most electronegative and the least polarized atom, doped into the silica film and led to decrease in the refractive index and the dielectric constant. In addition, no breakdown field was observed in the electrical characteristics of SiO{sub x}C{sub y}F{sub z} films and the leakage current of these films reduced by increment of the CF{sub 4} flow.

  13. Continuous ultra-thin MoS{sub 2} films grown by low-temperature physical vapor deposition

    SciTech Connect (OSTI)

    Muratore, C. [Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Hu, J. J.; Bultman, J. E.; Jespersen, M. L. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); University of Dayton Research Institute, Dayton, Ohio 45469 (United States); Wang, B.; Haque, M. A. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, College Park, Pennsylvania 16802 (United States); Shamberger, P. J.; McConney, M. E.; Naguy, R. D.; Voevodin, A. A. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2014-06-30

    Uniform growth of pristine two dimensional (2D) materials over large areas at lower temperatures without sacrifice of their unique physical properties is a critical pre-requisite for seamless integration of next-generation van der Waals heterostructures into functional devices. This Letter describes a vapor phase growth technique for precisely controlled synthesis of continuous, uniform molecular layers of MoS{sub 2} on silicon dioxide and highly oriented pyrolitic graphite substrates of over several square centimeters at 350?°C. Synthesis of few-layer MoS{sub 2} in this ultra-high vacuum physical vapor deposition process yields materials with key optical and electronic properties identical to exfoliated layers. The films are composed of nano-scale domains with strong chemical binding between domain boundaries, allowing lift-off from the substrate and electronic transport measurements from contacts with separation on the order of centimeters.

  14. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOE Patents [OSTI]

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  15. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2

    E-Print Network [OSTI]

    is etched away.10 Removal of PMMA from graphene is problematic. Conventional semiconductor surface cleaning deposited graphene transferred to SiO2 A. Pirkle,1 J. Chan,1 A. Venugopal,2 D. Hinojos,1 C. W. Magnuson,3 S) The effects of residues introduced during the transfer of chemical vapor deposited graphene from a Cu

  16. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    SciTech Connect (OSTI)

    Kratzer, Markus Teichert, Christian; Bayer, Bernhard C.; Kidambi, Piran R.; Matkovi?, Aleksandar; Gaji?, Radoš; Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Hofmann, Stephan

    2015-03-09

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.

  17. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition

    SciTech Connect (OSTI)

    Yu, H.; Harberts, M.; Adur, R.; Hammel, P. Chris; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J., E-mail: ejh@physics.osu.edu, E-mail: epstein@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2014-07-07

    We present the growth of thin films of the organic-based ferrimagnetic semiconductor V[TCNE]{sub x} (x???2, TCNE: tetracyanoethylene) via chemical vapor deposition. Under optimized growth conditions, we observe a significant increase in magnetic homogeneity, as evidenced by a Curie temperature above 600?K and sharp magnetization switching. Further, ferromagnetic resonance studies reveal a single resonance with full width at half maximum linewidth of 1.4?G, comparable to the narrowest lines measured in inorganic magnetic materials and in contrast to previous studies that showed multiple resonance features. These characteristics are promising for the development of high frequency electronic devices that take advantage of the unique properties of this organic-based material, such as the potential for low cost synthesis combined with low temperature and conformal deposition on a wide variety of substrates.

  18. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect (OSTI)

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S., E-mail: ferlauto@fisica.ufmg.br [Department of Physics, Federal University of Minas Gerais, Belo Horizonte 31270-901 (Brazil)

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup ?5?}Torr) were investigated. The growth of large graphene domains (?up to 100??m) at very high rates (up to 3??m{sup 2} s{sup ?1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900?°C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900?°C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6?±?1?eV for temperatures ranging from 900?°C to 960?°C and 9?±?1?eV for temperatures above 960?°C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  19. Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor deposition

    E-Print Network [OSTI]

    Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor for the replication of molds for nanoimprint lithography NIL without solvents or etching. A thin hard amorphous from the polymer original, the thin hard film forms a NIL mold that is the inverse of the polymer

  20. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOE Patents [OSTI]

    Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA)

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  1. Low pressure chemical vapor deposition synthesis of hexagonal boron nitride on

    E-Print Network [OSTI]

    Zettl, Alex

    deposition (LPCVD) from borazine, with nickel, copper and platinum employed as catalytic substrates], and nanotubes [10]. Although many fundamental studies of graphene, and to a much lesser extent, h-BN, have been

  2. Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization

    E-Print Network [OSTI]

    D'Arcy, Julio Marcelo

    2012-01-01

    that house three cartridge heaters and a thermocouple. d.that house three cartridge heaters and a thermocouple. d.the CVD chamber. A cartridge heater and a thermocouple are

  3. X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes

    SciTech Connect (OSTI)

    Mannie, Gilbere J. A.; Gerritsen, Gijsbert; Abbenhuis, Hendrikus C. L.; Deelen, Joop van; Niemantsverdriet, J. W.; Thuene, Peter C. [Materials innovation institute (M2i), P. O. Box 5008, 2600 GA Delft (Netherlands) and Physical Chemistry of Surfaces, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven (Netherlands); Hybrid Catalysis BV, P. O. Box 513, 5600 MB Eindhoven (Netherlands); TNO Science and Industry, P. O. Box 6235, 5600 HE Eindhoven (Netherlands); Physical Chemistry of Surfaces, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-01-15

    The chemistry of atmospheric pressure chemical vapor deposition (APCVD) processes is believed to be complex, and detailed reports on reaction mechanisms are scarce. Here, the authors investigated the reaction mechanism of monobutyl tinchloride (MBTC) and water during SnO{sub 2} thin film growth using x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). XPS results indicate an acid-base hydrolysis reaction mechanism, which is tested with multilayer experiments, demonstrating self-terminating growth. In-house developed TEM wafers are used to visualize nucleation during these multilayer experiments, and results are compared with TEM results of APCVD samples. Results show almost identical nucleation behavior implying that their growth mechanism is identical. Our experiments suggest that in APCVD, when using MBTC and water, SnO{sub 2} film growth occurs via a heterolytic bond splitting of the Sn-Cl bonds without the need to invoke gas-phase radical or coordination chemistry of the MBTC precursor.

  4. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2006-04-24

    We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

  5. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Maia da Costa, M.E.H.; Baumvol, I.J.R.; Radke, C.; Jacobsohn, L.G.; Zamora, R.R.M.; Freire, F.L. Jr. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Cx. Postal 3807, Rio de Janeiro, RJ, 22453-970 (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91540-000 (Brazil); Los Alamos National Laboratory, Materials Science and Technology Division, P. O. Box 1663, Los Alamos, New Mexico 87545 (United States); Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Cx. Postal 3807, Rio de Janeiro, RJ, 22453-970 (Brazil)

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 deg. C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 deg. C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 deg. C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  6. Surface Chemistry in Chemical Deposition of Manganese-Based Thin Films on Silicon Substrates

    E-Print Network [OSTI]

    Sun, Huaxing

    2013-01-01

    1.2  Atomic  layer  deposition……………………………………………………………………3  especially   atomic   layer   deposition,  to  deposit  Cu  CVD)   and   atomic  layer  deposition  (ALD)  from  the  

  7. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  8. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOE Patents [OSTI]

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  9. Simulation of chemical vapor infiltration and deposition based on 3D images: a local scale approach

    E-Print Network [OSTI]

    Boyer, Edmond

    aerospace, and are promising candidates for new applications in the fields of civil aircraft propulsion to deposition on a thin substrate with asperities is also studied. Short abstract: A numerical tool based for determination of effective transport and reaction properties in a porous medium. Validations and application

  10. Distributed Porosity as a Control Parameter for Oxide Thermal Barriers Made by Physical Vapor Deposition

    E-Print Network [OSTI]

    Wadley, Haydn

    Deposition Tian Jian Lu Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (typically yttria- stabilized zirconia (YSZ)), an oxidation protection metallic sub- layer, and a thermally depend upon engine design details. Usually, a lower k enables higher engine gas temperature and reduced

  11. Catalyst and its diameter dependent growth kinetics of CVD grown GaN nanowires

    SciTech Connect (OSTI)

    Samanta, Chandan [Department of Physics, Indian Institute of Technology Kanpur (India)] [Department of Physics, Indian Institute of Technology Kanpur (India); Chander, D. Sathish [Department of Physics, Indian Institute of Technology Kanpur (India) [Department of Physics, Indian Institute of Technology Kanpur (India); Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Ramkumar, J. [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India)] [Department of Mechanical Engineering, Indian Institute of Technology Kanpur (India); Dhamodaran, S., E-mail: kdams2003@gmail.com [Department of Physics, Indian Institute of Technology Kanpur (India)

    2012-04-15

    Graphical abstract: GaN nanowires with controlled diameter and aspect ratio has been grown using a simple CVD technique. The growth kinetics of CVD grown nanowires investigated in detail for different catalysts and their diameters. A critical diameter important to distinguish the growth regimes has been discussed in detail. The results are important which demonstrates the growth of diameter and aspect ratio controlled GaN nanowires and also understand their growth kinetics. Highlights: Black-Right-Pointing-Pointer Controlled diameter and aspect ratio of GaN nanowires achieved in simple CVD reactor. Black-Right-Pointing-Pointer Nanowire growth kinetics for different catalyst and its diameters were understood. Black-Right-Pointing-Pointer Adatoms vapor pressure inside reactor plays a crucial role in growth kinetics. Black-Right-Pointing-Pointer Diffusion along nanowire sidewalls dominate for gold and nickel catalysts. Black-Right-Pointing-Pointer Gibbs-Thomson effect dominates for palladium catalyst. -- Abstract: GaN nanowires were grown using chemical vapor deposition with controlled aspect ratio. The catalyst and catalyst-diameter dependent growth kinetics is investigated in detail. We first discuss gold catalyst diameter dependent growth kinetics and subsequently compare with nickel and palladium catalyst. For different diameters of gold catalyst there was hardly any variation in the length of the nanowires but for other catalysts with different diameter a strong length variation of the nanowires was observed. We calculated the critical diameter dependence on adatoms pressure inside the reactor and inside the catalytic particle. This gives an increasing trend in critical diameter as per the order gold, nickel and palladium for the current set of experimental conditions. Based on the critical diameter, with gold and nickel catalyst the nanowire growth was understood to be governed by limited surface diffusion of adatoms and by Gibbs-Thomson effect for the palladium catalyst.

  12. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  13. VOLUME 87, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 24 SEPTEMBER 2001 Morphology Transition during Low-Pressure Chemical Vapor Deposition

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Transition during Low-Pressure Chemical Vapor Deposition Y.-P. Zhao, Jason T. Drotar, G.-C. Wang, and T have studied, in detail, the effect of sticking coefficient on the morphology evolution in low-pressure chemical vapor deposition processes. We have shown that the surface morphology changes from a self

  14. Vapor deposition of platinum alloyed nickel aluminide coatings Z. Yu , K.P. Dharmasena, D.D. Hass, H.N.G. Wadley

    E-Print Network [OSTI]

    Wadley, Haydn

    for the thermal and oxidation protection of high temperature components used in advanced gas turbine and dieselVapor deposition of platinum alloyed nickel aluminide coatings Z. Yu , K.P. Dharmasena, D.D. Hass, H.N.G. Wadley Department of Materials Science and Engineering University of Virginia Charlottesville

  15. Quantum cascade laser investigations of CH{sub 4} and C{sub 2}H{sub 2} interconversion in hydrocarbon/H{sub 2} gas mixtures during microwave plasma enhanced chemical vapor deposition of diamond

    SciTech Connect (OSTI)

    Ma Jie; Cheesman, Andrew; Ashfold, Michael N. R.; Hay, Kenneth G.; Wright, Stephen; Langford, Nigel; Duxbury, Geoffrey; Mankelevich, Yuri A.

    2009-08-01

    CH{sub 4} and C{sub 2}H{sub 2} molecules (and their interconversion) in hydrocarbon/rare gas/H{sub 2} gas mixtures in a microwave reactor used for plasma enhanced diamond chemical vapor deposition (CVD) have been investigated by line-of-sight infrared absorption spectroscopy in the wavenumber range of 1276.5-1273.1 cm{sup -1} using a quantum cascade laser spectrometer. Parameters explored include process conditions [pressure, input power, source hydrocarbon, rare gas (Ar or Ne), input gas mixing ratio], height (z) above the substrate, and time (t) after addition of hydrocarbon to a pre-existing Ar/H{sub 2} plasma. The line integrated absorptions so obtained have been converted to species number densities by reference to the companion two-dimensional (r,z) modeling of the CVD reactor described in Mankelevich et al. [J. Appl. Phys. 104, 113304 (2008)]. The gas temperature distribution within the reactor ensures that the measured absorptions are dominated by CH{sub 4} and C{sub 2}H{sub 2} molecules in the cool periphery of the reactor. Nonetheless, the measurements prove to be of enormous value in testing, tensioning, and confirming the model predictions. Under standard process conditions, the study confirms that all hydrocarbon source gases investigated (methane, acetylene, ethane, propyne, propane, and butane) are converted into a mixture dominated by CH{sub 4} and C{sub 2}H{sub 2}. The interconversion between these two species is highly dependent on the local gas temperature and the H atom number density, and thus on position within the reactor. CH{sub 4}->C{sub 2}H{sub 2} conversion occurs most efficiently in an annular shell around the central plasma (characterized by 1400CH{sub 4} is favored in the more distant regions where T{sub gas}<1400 K. Analysis of the multistep interconversion mechanism reveals substantial net consumption of H atoms accompanying the CH{sub 4}->C{sub 2}H{sub 2} conversion, whereas the reverse C{sub 2}H{sub 2}->CH{sub 4} process only requires H atoms to drive the reactions; H atoms are not consumed by the overall conversion.

  16. Mat. Res. Soc. Symp. Proc. Vol. 612 2000 Materials Research Society VOLATILE LIQUID PRECURSORS FOR THE CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    to air and water. These new compounds have a number of advantages over tungsten-containing CVD precursors contamination in the films can cause problems such as loss of adhesion, or diffusion of fluorine into gate of the carbonyl #12;D9.12.2 ligands in tungsten hexacarbonyl by an alkyl isonitrile, RNC, where R is a hydrocarbon

  17. Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC

    SciTech Connect (OSTI)

    Ciuk, Tymoteusz [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Cakmakyapan, Semih; Ozbay, Ekmel [Department of Electrical and Electronics Engineering, Department of Physics, Nanotechnology Research Center, Bilkent University, 06800 Bilkent, Ankara (Turkey); Caban, Piotr; Grodecki, Kacper; Pasternak, Iwona; Strupinski, Wlodek, E-mail: wlodek.strupinski@itme.edu.pl [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Szmidt, Jan [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2014-09-28

    The transport properties of quasi-free-standing (QFS) bilayer graphene on SiC depend on a range of scattering mechanisms. Most of them are isotropic in nature. However, the SiC substrate morphology marked by a distinctive pattern of the terraces gives rise to an anisotropy in graphene's sheet resistance, which may be considered an additional scattering mechanism. At a technological level, the growth-preceding in situ etching of the SiC surface promotes step bunching which results in macro steps ~10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be ~190 ??m for step height hS = 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications.

  18. Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells

    SciTech Connect (OSTI)

    Papandrew, Alexander B; Chisholm, Calum R; Zecevic, strahinja; Veith, Gabriel M; Zawodzinski, Thomas A

    2013-01-01

    The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

  19. Crystallinity and microstructure in Si films grown by plasma-enhanced chemical vapor deposition: A simple atomic-scale model validated by experiments

    SciTech Connect (OSTI)

    Novikov, P. L.; Le Donne, A.; Cereda, S.; Miglio, Leo; Pizzini, S.; Binetti, S.; Montalenti, F. [Dipartimento di Scienza dei Materiali and L-NESS, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milan (Italy); Rondanini, M.; Cavallotti, C. [Dipartimento di Chimica, Materiali, e Ingegneria Chimica 'G. Natta', Politecnico di Milano, Via Mancinelli 7, 20131 Milan (Italy); Chrastina, D.; Moiseev, T.; Kaenel, H. von; Isella, G. [Dipartimento di Fisica and L-NESS, Politecnico di Milano, Via Anzani 42, 22100 Como (Italy)

    2009-02-02

    A joint theoretical and experimental analysis of the crystalline fraction in nanocrystalline films grown by low-energy plasma enhanced chemical vapor deposition is presented. The effect of key growth parameters such as temperature, silane flux, and hydrogen dilution ratio is analyzed and modeled at the atomic scale, introducing an environment-dependent crystallization probability. A very good agreement between experiments and theory is found, despite the use of a single fitting parameter.

  20. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  1. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  2. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Folta, James Allen (Livermore, CA); Tan, Swie-In (San Jose, CA); Reiss, Ira (New City, NY)

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  3. Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels

    SciTech Connect (OSTI)

    Klobukowski, Erik R; Tenhaeff, Wyatt E; McCamy, James; Harris, Caroline; Narula, Chaitanya Kumar

    2013-01-01

    The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

  4. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  5. Synthesis of SiO{sub 2}/?-SiC/graphite hybrid composite by low temperature hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Zhang, Zhikun; Bi, Kaifeng; Liu, Yanhong; Qin, Fuwen; Liu, Hongzhu; Bian, Jiming; Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 ; Zhang, Dong; Miao, Lihua; Department of Computer and Mathematical Basic Teaching, Shenyang Medical College, Shenyan 110034

    2013-11-18

    ?-SiC thin films were synthesized directly on graphite by hot filament chemical vapor deposition at low temperature. SiH{sub 4} diluted in hydrogen was employed as the silicon source, while graphite was functioned as both substrate and carbon source for the as-grown ?-SiC films. X-ray diffraction and Fourier transform infrared analysis indicate that SiO{sub 2}/?-SiC/graphite hybrid composite was formed after post annealing treatment, and its crystalline quality can be remarkably improved under optimized annealing conditions. The possible growth mechanism was proposed based on in situ etching of graphite by reactive hydrogen radicals at the atomic level.

  6. Please cite this article in press as: W. Wu, et al., Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sens. Actuators B: Chem. (2010), doi:10.1016/j.snb.2010.06.070

    E-Print Network [OSTI]

    Bao, Jiming

    2010-01-01

    with a 1 nm palladium film deposited for hydrogen detection. Hydrogen in air with concentrations in 0 vapor deposition and its application in hydrogen sensing, Sens. Actuators B: Chem. (2010), doi:10.1016/j.elsevier.com/locate/snb Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing

  7. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  8. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings.

    E-Print Network [OSTI]

    Wu, Jean C; Lai, Li-Chung; Sheets, Cherilyn G; Earthman, James; Newcomb, Robert

    2011-01-01

    of Prosthetic Dentistry plasma arc on the cathode surface.arc deposition consists of a titanium cathode material and metal plasma

  9. Materials Science and Engineering A 394 (2005) 4352 NiAl bond coats made by a directed vapor deposition approach

    E-Print Network [OSTI]

    Wadley, Haydn

    2005-01-01

    Materials Science and Engineering A 394 (2005) 43­52 NiAl bond coats made by a directed vapor materials in thermal barrier coating systems applied to nickel base super alloy components. They are usually to nickel base su- peralloy components used in gas turbine engines [1]. In these systems, a metallic bond

  10. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Gilchrist, James F.

    Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry Rev. Sci. Instrum. 83, 025101 (2012) High-temperature thermoelectric properties of Cu1­xInTe2

  11. Crystalline carbon nitride thin films deposited by microwave plasma chemical vapor deposition This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Gao, Hongjun

    of such a hypothetical ma- terial is also significant to the research in the fields of condensed matter physics compound. II. EXPERIMENTAL The carbon nitride thin films were deposited on polished Si (100) in the MPCVD

  12. CVD SWNT van der Waal

    E-Print Network [OSTI]

    Maruyama, Shigeo

    500 ( 1) 2500K 100 ns(Ni108 130 ns) 2 Ni108 CVD Molecular Dynamics of Nanotube Nucleation-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 The formation process of single walled carbon nanotubes (SWNTs) in CCVD and a nickel cluster, the metal-catalyzed growth of the cap-structure of SWNTs was calculated. Carbon atoms

  13. Growth, microstructure, and field-emission properties of synthesized diamond film on adamantane-coated silicon substrate by microwave plasma chemical vapor deposition

    SciTech Connect (OSTI)

    Tiwari, Rajanish N.; Chang Li

    2010-05-15

    Diamond nucleation on unscratched Si surface is great importance for its growth, and detailed understanding of this process is therefore desired for many applications. The pretreatment of the substrate surface may influence the initial growth period. In this study, diamond films have been synthesized on adamantane-coated crystalline silicon {l_brace}100{r_brace} substrate by microwave plasma chemical vapor deposition from a gaseous mixture of methane and hydrogen gases without the application of a bias voltage to the substrates. Prior to adamantane coating, the Si substrates were not pretreated such as abraded/scratched. The substrate temperature was {approx}530 deg. C during diamond deposition. The deposited films are characterized by scanning electron microscopy, Raman spectrometry, x-ray diffraction, and x-ray photoelectron spectroscopy. These measurements provide definitive evidence for high-crystalline quality diamond film, which is synthesized on a SiC rather than clean Si substrate. Characterization through atomic force microscope allows establishing fine quality criteria of the film according to the grain size of nanodiamond along with SiC. The diamond films exhibit a low-threshold (55 V/{mu}m) and high current-density (1.6 mA/cm{sup 2}) field-emission (FE) display. The possible mechanism of formation of diamond films and their FE properties have been demonstrated.

  14. Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model and two-dimensional models of microwave

    E-Print Network [OSTI]

    Bristol, University of

    - turing technology that is beginning to find many commercial applications in electronics, cutting tools, medical coatings and optics.1 The CVD process usually involves the gas-phase activation of a gas mixture

  15. Raman Spectroscopy of the Reaction of Thin Films of Solid-State Benzene with Vapor-Deposited Ag, Mg, and Al

    SciTech Connect (OSTI)

    Schalnat, Matthew C.; Hawkridge, Adam M.; Pemberton, Jeanne E.

    2011-07-21

    Thin films of solid-state benzene at 30 K were reacted with small quantities of vapor-deposited Ag, Mg, and Al under ultrahigh vacuum, and products were monitored using surface Raman spectroscopy. Although Ag and Mg produce small amounts of metal–benzene adduct products, the resulting Raman spectra are dominated by surface enhancement of the normal benzene modes from metallic nanoparticles suggesting rapid Ag or Mg metallization of the film. In contrast, large quantities of Al adduct products are observed. Vibrational modes of the products in all three systems suggest adducts that are formed through a pathway initiated by an electron transfer reaction. The difference in reactivity between these metals is ascribed to differences in ionization potential of the metal atoms; ionization potential values for Ag and Mg are similar but larger than that for Al. These studies demonstrate the importance of atomic parameters, such as ionization potential, in solid-state metal–organic reaction chemistry.

  16. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Portail, M.; Ouerghi, A.; Zielinski, M.; Chassagne, T.

    2010-10-25

    We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

  17. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  18. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  19. Fermi level control of compensating point defects during metalorganic chemical vapor deposition growth of Si-doped AlGaN

    SciTech Connect (OSTI)

    Bryan, Z; Bryan, I; Gaddy, BE; Reddy, P; Hussey, L; Bobea, M; Guo, W; Hoffmann, M; Kirste, R; Tweedie, J; Gerhold, M; Irving, DL; Sitar, Z; Collazo, R

    2014-12-01

    A Fermi-level control scheme for point defect management using above-bandgap UV illumination during growth is presented. We propose an extension to the analogy between the Fermi level and the electrochemical potential such that the electrochemical potential of a charged defect in a material with steady-state populations of free charge carriers may be expressed in terms of the quasi-Fermi levels. A series of highly Si-doped Al0.65Ga0.35N films grown by metalorganic chemical vapor deposition with and without UV illumination showed that samples grown under UV illumination had increased free carrier concentration, free carrier mobility, and reduced midgap photoluminescence all indicating a reduction in compensating point defects. (c) 2014 AIP Publishing LLC.

  20. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore »gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (?40 vs. ?8% for anthropogenics, and ?52 vs. ?11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm?1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = H* (CH3COOH); H* = 105 M atm?1; H* = H* (HNO3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.« less

  1. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2014-05-26

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOC) in the gas-phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the regional chemistry transport model WRF-Chem, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48% and 63% respectively over the continental US Dry deposition of gas-phasemore »SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (?40% vs. ?8% for anthropogenics, ?52% vs. ?11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas-phase (61% for anthropogenics, 76% for biogenics). A number of sensitivity studies shows that this is a robust feature of the modeling system. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = 105 M atm?1; H* = H* (HNO3)) still lead to an overestimation of 25% / 10% compared to our best estimate. A saturation effect is observed for Henry's law constants above 108 M atm?1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations.« less

  2. Characterization of thick 4H-SiC hot-wall CVD layers

    SciTech Connect (OSTI)

    Paisley, M.J.; Irvine, K.G.; Kordina, O.; Singh, R.; Palmour, J.W.; Carter, C.H. Jr.

    1999-07-01

    Epitaxial 4H-SiC layers suitable for high power devices have been grown in a hot-wall chemical-vapor deposition (CVD) system. These layers were subsequently characterized for many parameters important in device development and production. The uniformity of both thickness and doping is presented. Doping trends vs. temperature and growth rate is shown for the p-type dopant used. The n-type dopant drops in concentration with increasing temperature or increasing growth rate. In contrast, the p-type dopant increases in concentration with decreasing temperature or increasing growth rate. A simple descriptive model for this behavior is presented. The outcome from capacitance-voltage and SIMS measurements demonstrate that transitions from n to n{sup {minus}}, or p to p{sup {minus}}, and even n to p levels can be made quickly without adjustment to growth conditions. The ability to produce sharp transitions without process changes avoids degrading the resulting surface morphology or repeatability of the process. Avoiding process changes is particularly important in growth of thick layers since surface roughness tends to increase with layer thickness. Device results from diodes producing two different blocking voltages in excess of 5 kV is also shown. The higher voltage diodes exhibited a breakdown behavior which was near the theoretical limit for the epitaxial layer thickness and doping level grown.

  3. Direct Growth Graphene on Cu Nanoparticles by Chemical Vapor Deposition as Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine

    E-Print Network [OSTI]

    Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Liu, Hanping

    2015-01-01

    We present a graphene/Cu nanoparticle hybrids (G/CuNPs) system as a surface-enhanced Raman scattering (SERS) substrate for adenosine detection. The Cu nanoparticles wrapped around a monolayer graphene shell were directly synthesized on flat quartz by chemical vapor deposition in a mixture of methane and hydrogen. The G/CuNPs showed an excellent SERS enhancement activity for adenosine. The minimum detected concentration of the adenosine in serum was demonstrated as low as 5 nM, and the calibration curve showed a good linear response from 5 to 500 nM. The capability of SERS detection of adenosine in real normal human urine samples based on G/CuNPs was also investigated and the characteristic peaks of adenosine were still recognizable. The reproducible and the ultrasensitive enhanced Raman signals could be due to the presence of an ultrathin graphene layer. The graphene shell was able to enrich and fix the adenosine molecules, which could also efficiently maintain chemical and optical stability of G/CuNPs. Based...

  4. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J.; Patel, J.; Wu, X.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  5. Issues associated with the metalorganic chemical vapor deposition of ScGaN and YGaN alloys.

    SciTech Connect (OSTI)

    Koleske, Daniel David; Knapp, James Arthur; Lee, Stephen Roger; Crawford, Mary Hagerott; Creighton, James Randall; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    The most energy efficient solid state white light source will likely be a combination of individually efficient red, green, and blue LED. For any multi-color approach to be successful the efficiency of deep green LEDs must be significantly improved. While traditional approaches to improve InGaN materials have yielded incremental success, we proposed a novel approach using group IIIA and IIIB nitride semiconductors to produce efficient green and high wavelength LEDs. To obtain longer wavelength LEDs in the nitrides, we attempted to combine scandium (Sc) and yttrium (Y) with gallium (Ga) to produce ScGaN and YGaN for the quantum well (QW) active regions. Based on linear extrapolation of the proposed bandgaps of ScN (2.15 eV), YN (0.8 eV) and GaN (3.4 eV), we expected that LEDs could be fabricated from the UV (410 nm) to the IR (1600 nm), and therefore cover all visible wavelengths. The growth of these novel alloys potentially provided several advantages over the more traditional InGaN QW regions including: higher growth temperatures more compatible with GaN growth, closer lattice matching to GaN, and reduced phase separation than is commonly observed in InGaN growth. One drawback to using ScGaN and YGaN films as the active regions in LEDs is that little research has been conducted on their growth, specifically, are there metalorganic precursors that are suitable for growth, are the bandgaps direct or indirect, can the materials be grown directly on GaN with a minimal defect formation, as well as other issues related to growth. The major impediment to the growth of ScGaN and YGaN alloys was the low volatility of metalorganic precursors. Despite this impediment some progress was made in incorporation of Sc and Y into GaN which is detailed in this report. Primarily, we were able to incorporate up to 5 x 10{sup 18} cm{sup -3} Y atoms into a GaN film, which are far below the alloy concentrations needed to evaluate the YGaN optical properties. After a no-cost extension was granted on this program, an additional more 'liquid-like' Sc precursor was evaluated and the nitridation of Sc metals on GaN were investigated. Using the Sc precursor, dopant level quantities of Sc were incorporated into GaN, thereby concluding the growth of ScGaN and YGaN films. Our remaining time during the no-cost extension was focused on pulsed laser deposition of Sc metal films on GaN, followed by nitridation in the MOCVD reactor to form ScN. Finally, GaN films were deposited on the ScN thin films in order to study possible GaN dislocation reduction.

  6. Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor

    E-Print Network [OSTI]

    of the electrical/optical properties and the reliability of wide bandgap semiconductor devices and circuits, material scientists and physicists at North Carolina State University, to integrate new intelligent deposition (CVD) is an important industrial technique used to grow thin films with certain desired properties

  7. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  8. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L. (Fairview, PA); Giammarise, Anthony W. (Erie, PA)

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  9. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L. (5139 Fox Park Dr., Fairview, PA 16415); Giammarise, Anthony W. (527 Lincoln Ave., Erie, PA 16505)

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  10. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  11. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  12. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    SciTech Connect (OSTI)

    Halder, Nripendra N.; Biswas, Pranab; Banerji, P.; Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S.; Biswas, D.

    2014-01-28

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 10–80?K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19?meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of the PL intensity, peak position, and line width with temperature and excitation source, the existence of free and bound excitonic recombination together with e{sub 1} ? hh{sub 1} transitions in the QDs is established.

  13. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    SciTech Connect (OSTI)

    Haider, Ali; Kayaci, Fatma; Uyar, Tamer; Biyikli, Necmi; Ozgit-Akgun, Cagla; Okyay, Ali Kemal

    2014-09-01

    Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100?°C onto electrospun polymeric nanofibers, (iii) calcination at 500?°C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450?°C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

  14. Broadband optical properties of large-area monolayer CVD molybdenum disulfide

    E-Print Network [OSTI]

    Li, Wei

    Recently emerging large-area single-layer MoS[subscript 2] grown by chemical vapor deposition has triggered great interest due to its exciting potential for applications in advanced electronic and optoelectronic devices. ...

  15. Transport studies on CVD-grown graphene

    E-Print Network [OSTI]

    Huntley, Miriam Hanna

    2009-01-01

    In this thesis, we report transport studies performed on CVD-grown graphene. We perform resistivity and hall measurements on a large-area sample at 4' K. We measure the carrier mobility of the sample and find it to be on ...

  16. Effects of thickness and cycle parameters on fretting wear behavior of CVD diamond coatings on steel substrates

    E-Print Network [OSTI]

    Bristol, University of

    , mechanical seals, cutting tools, and gears. Well-adhered diamond films deposited on steel surfaces can leadEffects of thickness and cycle parameters on fretting wear behavior of CVD diamond coatings) methods. A Co-containing tungsten-carbide coating prepared by high velocity oxy-fuel spraying was used

  17. Apparatus and process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L. (Fairview, PA); Giammarise, Anthony W. (Erie, PA)

    1994-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  18. Apparatus and process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1994-12-20

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  19. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  20. CVD Equipment Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHEL JumpCMNA Power Jump to:Offshore Jump to:CVD

  1. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    SciTech Connect (OSTI)

    Anders, Andre

    2010-11-26

    The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

  2. Photopumped red-emitting InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P self-assembled quantum dot heterostructure lasers grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ryou, J. H.; Dupuis, R. D.; Walter, G.; Kellogg, D. A.; Holonyak, N.; Mathes, D. T.; Hull, R.; Reddy, C. V.; Narayanamurti, V.

    2001-06-25

    We report the 300 K operation of optically pumped red-emitting lasers fabricated from InP self-assembled quantum dots embedded in In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers on GaAs (100) substrates grown by metalorganic chemical vapor deposition. Quantum dots grown at 650{degree}C on In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers have a high density on the order of 10{sup 10} cm{sup {minus}2} and the dominant size of individual quantum dots ranges from {similar_to}5 to {similar_to}10 nm for 7.5 monolayer {open_quotes}equivalent growth.{close_quotes} These InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P quantum dot heterostructures are characterized by atomic force microscopy, high-resolution transmission electron microscopy, and photoluminescence. Laser structures are prepared from wafers having two vertically stacked InP quantum dot active layers within a 100-nm-thick In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P waveguide and upper and lower 600 nm InAlP cladding layers. We observe lasing at {lambda}{similar_to}680 nm at room temperature in optically pumped samples. {copyright} 2001 American Institute of Physics.

  3. Atomic Layer Deposition Enabled Synthesis of Multiferroic Nanostructures

    E-Print Network [OSTI]

    Pham, Calvin Dinh-Tu

    2015-01-01

    deposited by metalorganic chemical vapor deposition on Pt/M. and et al. (1993). "Chemical vapour deposition of high-Tand J. P. Chang (2012). "Chemical Processing of Materials on

  4. Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

    E-Print Network [OSTI]

    Wang, Han

    Ambipolar transport in graphene offers great opportunities for novel device and circuit applications. This paper discusses the RF performance of CVD grown graphene transistors for the first time. Then, a new graphene ...

  5. Submitting Organization Sandia National ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes like sputter deposition and chemical vapor deposition (CVD), which require high temperature andor high vacuum. A simpler and less expensive process is needed, and we...

  6. Coherent Anti-Stokes Raman-Spectroscopy Studies of Nitric-Oxide 

    E-Print Network [OSTI]

    Beckmann, A.; Fietz, H.; Kiefer, W.; Laane, Jaan

    1981-01-01

    Due to the ever decreasing dimensions of the inter-level metallic interconnects, alternative metal deposition processes must be explored as the current processes (chemical vapor deposition (CVD) and physical vapor deposition ...

  7. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    12] Short et al. , Atomic Layer Deposition of Zinc SulfideAlannah Myers, On Atomic Layer Deposition: Tin Sulfide fordepositing CZTS. Atomic layer deposition (known as ALD, a

  8. CVD growth control and solar cell application of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    CVD growth control and solar cell application of single-walled carbon nanotubes ( CVD ) #12;#12; Doctoral Dissertation CVD Growth Control and Solar Cell Application of Single is supposed to be a very promising candidate for next-generation solar cell applications. However, three main

  9. Nanoscale NMR Spectroscopy and Imaging of Multiple Nuclear Species

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    /v) for more than 1 hour. Using atomic layer deposition (ALD, Savannah Atomic Layer Deposition S200), a 3 nm.999% 12 C high-purity chemical vapor deposition (CVD) chip from Element 6 with an unpolished surface.999% 12 C high-purity chemical vapor deposition (CVD) chip from Element 6 with an unpolished surface

  10. Correlation between homogeneous propane pyrolysis and pyrocarbon deposition

    E-Print Network [OSTI]

    Boyer, Edmond

    Correlation between homogeneous propane pyrolysis and pyrocarbon deposition C´edric Descamps, G propane pyrolysis is studied in a 1-D hot-wall CVD furnace. The gas-phase pyrolysis is modelled in previous reports [6]: total pressure equal to 2 kPa, temperature between 900 K and 1400 K, and pure propane

  11. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOE Patents [OSTI]

    Caputo, Anthony J. (Knoxville, TN); Devore, Charles E. (Knoxville, TN); Lowden, Richard A. (Powell, TN); Moeller, Helen H. (Concord, VA)

    1990-01-01

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited.

  12. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOE Patents [OSTI]

    Caputo, A.J.; Devore, C.E.; Lowden, R.A.; Moeller, H.H.

    1990-01-23

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited. 6 figs.

  13. VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA

    E-Print Network [OSTI]

    Rudnyi, Evgenii B.

    1 VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA Rudnyi E of thermodynamic properties of the vapor and the vaporization process, coupling pressure measurements. INTRODUCTION The vapor pressure of a substance is an important system property in many applications. Its value

  14. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  15. Curriculum Vitae Abdulaziz Ahmed Bagabas

    E-Print Network [OSTI]

    Yaghi, Omar M.

    -investigator). IX. Synthesis of carbon nanotubes using chemical vapor deposition (CVD), characterization receiving the chemicals: I. Novel iron, cobalt, and nickel complexes based on aliphatic nitrogen ligands

  16. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  17. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Energy Savers [EERE]

    vapor retarders: Class I vapor retarders (0.1 perms or less): Glass Sheet metal Polyethylene sheet Rubber membrane Class II vapor retarders (greater than 0.1 perms and less...

  18. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  19. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor pressures as a function of temperature and enthalpies of vaporization of a series of both liquid and solid. The applicability of this technique is first demonstrated by reproducing the vapor pressure isotope effect

  20. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    retarders. Materials such as rigid foam insulation, reinforced plastics, aluminum, and stainless steel are relatively resistant to water vapor diffusion. These types of vapor...

  1. Adhesion of diamond coatings synthesized by oxygen-acetylene flame CVD on tungsten carbide

    SciTech Connect (OSTI)

    Marinkovic, S.; Stankovic, S.; Dekanski, A.

    1995-12-31

    The results of a study concerned with chemical vapor deposition of diamond on tungsten carbide cutting tools using an oxygen-acetylene flame in a normal ambient environment are presented. Effects of preparation conditions on the adhesion of the coating have been investigated, including different surface treatment, different position of the flame with respect to the coated surface, effect of an intermediate poorly crystalline diamond layer, etc. In particular, effect of polishing and ultrasonic lapping with diamond powder was compared with that of a corresponding treatment with SiC powder.

  2. Method for localized deposition of noble metal catalysts with control of morphology

    DOE Patents [OSTI]

    Ricco, Antonio J. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Huber, Robert J. (Bountiful, UT)

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  3. Thermally stimulated exoelectronic emission of CVD diamond lms D. Brianda,*, P. Iacconia

    E-Print Network [OSTI]

    Bristol, University of

    Thermally stimulated exoelectronic emission of CVD diamond ®lms D. Brianda,*, P. Iacconia , M of several CVD diamond ®lms (undoped or doped with nitrogen) are studied by the thermally stimulated) ®lms, diamond is an attractive material in the ®eld of high temperature electronic applications [2

  4. FIRST SOLAR CELLS ON SILICON RIBBONS OBTAINED BY FAST CVD FROM SILANE

    E-Print Network [OSTI]

    Lisbon, University of

    FIRST SOLAR CELLS ON SILICON RIBBONS OBTAINED BY FAST CVD FROM SILANE C. R. Pinto, J. M. Serra, M on solar cells made on silicon ribbons obtained by a two-step process: pre-ribbons obtained by CVD followed be doped to make them suitable as base material for solar cells. To this purpose the ribbons were

  5. Catalytic CVD generation of high-purity single-walled carbon nanotubes at low temperature

    E-Print Network [OSTI]

    Maruyama, Shigeo

    CVD Catalytic CVD generation of high-purity single-walled carbon nanotubes at low temperature-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 We have demonstrated the high-quality and low-temperature generation on the generation temperature and gas flow rate. In order to create nanotube devices, we tried to generate SWNTs

  6. Floated Catalyst CVD Generation of Single-Walled Carbon Nanotubes from Alcohol

    E-Print Network [OSTI]

    Maruyama, Shigeo

    the generation of high-quality SWNTs. This simple technique is expected to be an efficient low-cost generationFloated Catalyst CVD Generation of Single-Walled Carbon Nanotubes from Alcohol Shigeo Maruyama of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan We have proposed the new catalytic CVD generation

  7. SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method Toshiaki NISHII1,2

    E-Print Network [OSTI]

    Maruyama, Shigeo

    plants. Furthermore, carbon dioxide gas is exhausted from most industrial plants as one of Greenhouse. (2) R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (1988 CVD SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method * Toshiaki

  8. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  9. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

    SciTech Connect (OSTI)

    Lowndes, D.H.; Merkulov, V.I.; Baylor, L.R.; Jellison, Jr., G.E.; Poker, D.B.; Kim, S.; Sohn, M.H.; Paik, N.W.

    1999-11-29

    The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission.

  10. New novel cleaning technique for extending mean time between mechanical cleans in a Genus tungsten CVD reactor

    SciTech Connect (OSTI)

    Lujan, R.D.; Fleming, J.G.; Baird, J.L.; Gentry, M.S. [Sandia National Labs., Albuquerque, NM (United States). Center for Microelectronics Technologies

    1994-12-31

    During the chemical vapor deposition of blanket tungsten from the reduction of tungsten hexafluoride (WF{sub 6}), metallic parts within the reaction chamber accumulate metallic tungsten, tungsten oxyfluorides, and other related tungsten species. The usual method for removal of the chamber deposits is to open the chamber and perform a labor intensive mechanical clean, which involves the use of hydrogen peroxide (H{sub 2}O{sub 2}) and deionized (DI) water, or an in-situ fluorine-base plasma clean. The authors have investigated the use of repetitive in-situ nitrogen trifluoride (NF{sub 3}) plasma cleans during the course of operating a Genuse 8721 tungsten chemical vapor deposition reactor. The Genuse reactor has been retrofitted with self-ratchetting linear slides, which allow the wafer clamps to be extended into the NF{sub 3} plasma. They have extended the mean time between failures (MTBF) due to the use of 10 minute plasma clean every 75--100 wafers. Deposition for this process is 8,000 angstroms per wafer, using 6 deposition sites. The total tungsten deposition for a 0.5 micron tungsten plug is 4 microns, per a 25 wafer lot. Instead of a total removal of the accumulated tungsten from the chamber hardware, a partial etchback of the deposition from the wafer clamps and wafer chucks was performed. With this, sources for particles and backside deposition were eliminated. They see an increase in wafer-to-wafer uniformity, lot-to-lot repeatability, and particle reduction due to the use of frequent plasma clean. Recovery time after a plasma clean is excellent and no detrimental effects from hydrogen fluoride ``poisoning`` were seen.

  11. Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization

    E-Print Network [OSTI]

    Bielecki, Anthony

    2013-01-01

    Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

  12. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    SciTech Connect (OSTI)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed.

  13. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  14. AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR

    E-Print Network [OSTI]

    AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION YUJIE REN Key Laboratory of Semiconductor Materials and Applications Xiamen University, Xiamen 361005, P. R In this paper, we report an improved transfer of graphene by directly picking up the graphene with target

  15. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  16. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  17. Physics Procedia 00 (2010) 111 Physics Procedia

    E-Print Network [OSTI]

    Curtarolo, Stefano

    2010-01-01

    calorimetry (DSC) and Raman spectroscopy. By sequentially introducing 12 C- and 13 C-based methane, three scenarios in the catalytic chemical vapor deposition growth of single single-walled carbon, reduced solubility, CVD 1. Introduction Low temperature catalytic chemical vapor deposition (CVD

  18. Physics Procedia 00 (2010) 111 Physics Procedia

    E-Print Network [OSTI]

    Curtarolo, Stefano

    2010-01-01

    introducing 12 C- and 13 C-based methane, the authors have revealed the influence of catalyst composition, three scenarios in the catalytic chemical vapor deposition growth of single single-walled carbon, reduced solubility, CVD 1. Introduction Low temperature catalytic chemical vapor deposition (CVD

  19. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  20. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  1. Simulations of CVD Diamond Film Growth Using a Simplified Monte Carlo Model Paul W. May1

    E-Print Network [OSTI]

    Bristol, University of

    is a maturing technology that is beginning to find many commercial applications in electronics, cutting tools, medical coatings and optics [1]. The CVD process involves the gas phase decomposition of a gas mixture

  2. Role of Hydrogen in CVD Growth of Large Single Crystal Graphene

    SciTech Connect (OSTI)

    Regmi, Murari [ORNL; Fulvio, Pasquale F [ORNL; Dai, Sheng [ORNL; Datskos, Panos G [ORNL; Eres, Gyula [ORNL; Vlassiouk, Ivan V [ORNL

    2009-01-01

    We show that graphene chemical vapor deposition growth on copper foil using methane as a carbon source is strongly affected by hydrogen, which appears to serve a dual role: an activator of the surface bound carbon that is necessary for monolayer growth and an etching reagent that controls the size and morphology of the graphene domains. The resulting growth rate for a fixed methane partial pressure has a maximum at hydrogen partial pressures 200400 times that of methane. The morphology and size of the graphene domains, as well as the number of layers, change with hydrogen pressure from irregularly shaped incomplete bilayers to well-defined perfect single layer hexagons. Raman spectra suggest the zigzag termination in the hexagons as more stable than the armchair edges.

  3. Cryochemical and CVD processing of shperical carbide fuels for propulsion reactors

    SciTech Connect (OSTI)

    Blair, H.T.; Carroll, D.W.; Matthews, R.B. (Los Alamos National Laboratory, MS E505, Los Alamos, New Mexico (USA))

    1991-01-10

    Many of the nuclear propulsion reactor concepts proposed for a manned mission to Mars use a coated spherical particle fuel form similar to that used in the Rover and NERVA propulsion reactors. The formation of uranium dicarbide microspheres using a cryochemical process and the coating of the UC{sub 2} spheres with zirconium carbide using chemical vapor deposition are being developed at Los Alamos National Laboratory. The cryochemical process is described with a discussion of the variables affecting the sphere formation and carbothermic reduction to produce UC{sub 2} spheres from UO{sub 2}. Emphasis is placed on minimizing the wastes produced by the process. The ability to coat particles with ZrC was recaptured, and improvements in the process and equipment were developed. Volatile organometallic precursors were investigated as alternatives to the original ZrCl{sub 4} precursor.

  4. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  5. The vapor pressures of explosives

    SciTech Connect (OSTI)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  6. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  7. Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Ge incorporation inside 4H-SiC during Homoepitaxial growth by chemical vapor deposition. Kassem Ilmenau (Germany) Abstract. In this work, we report on the addition of GeH4 gas during homoepitaxial growth of 4H-SiC by chemical vapour deposition. Ge introduction does not affect dramatically the surface

  8. Robust Numerical Simulation of Porosity Evolution in Chemical Vapor In ltration II: Two Dimensional

    E-Print Network [OSTI]

    Jin, Shi

    -solid reactions with solid deposition are exempli#12;ed by the fabrication of ceramic matrix composites through #3) process, during which a matrix of ceramic #12;bers is chemically vapor deposited within a porous preform practical approach to fabricate ceramic composites. Among these composites, #12;ber-reinforced composites

  9. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect (OSTI)

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  10. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  11. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  12. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, Richard A. (Powell, TN)

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  13. Tailor Synthesis of Nanostructures for Direct Integration Into Solar Cells 

    E-Print Network [OSTI]

    Van Laer, Maxime 1989-

    2012-05-09

    The groundwork of this project is the application of CVD (chemical vapor deposition) to deposit thin layers of nanostructures; nanowires in particular. Methods and mechanisms will be studied in detail along with thermodynamic ...

  14. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-12-31

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  15. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  16. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  17. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    including flexible electronics. In the application toet al. , "Flexible nanotube electronics," Nano Letters, vol.Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible

  18. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Liwei Lin, Chair MEMS (Microelectromechanical Systems)been demonstrated by MEMS (Microelectromechanical Systems)

  19. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    0.001 ??cm. A wet thermal oxide layer with a thickness of 2Figure 2.20(a). This oxide layer serves both as an etchingto remove the exposed oxide layer with RF power of 400 W,

  20. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite...

    Office of Scientific and Technical Information (OSTI)

    FeSsub 2) is a promising candidate absorber material for earth-abundant thin-film solar cells. In this report, single-phase, large-grain, and uniform polycrystalline pyrite...

  1. Designing Durable Vapor-Deposited Surfaces for Reduced Hydrate Adhesion

    E-Print Network [OSTI]

    Sojoudi, Hossein

    The formation and accumulation of clathrate hydrates inside oil and gas pipelines cause severe problems in deep-sea oil/gas operations. In the present work, durable and mechanically robust bilayer poly-divinyl benzene/po ...

  2. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Journal of MicroElectroMechanical Systems, vol. 20, pp. 9-Chair MEMS (Microelectromechanical Systems) technologiesby MEMS (Microelectromechanical Systems) technologies many

  3. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    processes, the gas velocity near the reaction surface isreaction surface, where flow streams with higher velocityhigher velocity are drawn closer to the reaction surface. A

  4. NREL: Awards and Honors - High-Rate Vapor Transport Deposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory; Dr. Rick Powell and Dr. Peter Myers, First Solar, LLD A module per minute. First Solar's automated, non-stop, continuous-feed production line can...

  5. Micro Chemical Vapor Deposition for the Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Zhou, Qin

    2011-01-01

    Therefore a temperature monitoring and control system isthe construction of the temperature monitoring and control28 2.4.2 Temperature Monitoring

  6. Graphene growth with giant domains using chemical vapor deposition

    E-Print Network [OSTI]

    Yong, Virginia; Hahn, H. Thomas

    2011-01-01

    N. Martensson, Controlling graphene corrugation on lattice-in patterned epitaxial graphene, Science, 2006, 312(5777), 92009, 4(6), 17 A. K. Geim, Graphene: Status and Prospects,

  7. Zirconium Nitride Coating Fabrication via Fluidized Bed Chemical Vapor Deposition 

    E-Print Network [OSTI]

    Sudderth, Laura

    2015-04-30

    heated to 60-75 °C. Coatings were qualitatively characterized using energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectroscopy, and X-ray distribution mapping. Zirconium-based coatings up to 2.2 ± 0.3 ?m thick after 2 days...

  8. Hot-Wire Chemical Vapor Deposition (HWCVD) technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-Summer 2014 HotPortal

  9. Atomic layer deposition of tin oxide films using tetrakis,,dimethylamino... tin Jeffrey W. Elam,a

    E-Print Network [OSTI]

    Atomic layer deposition of tin oxide films using tetrakis,,dimethylamino... tin Jeffrey W. Elam for preparing thin films of SnO2 by atomic layer deposition ALD using alternating exposures to tetrakis sputtering,5 chemi- cal vapor deposition,15 spray pyrolysis,11 and atomic layer deposition ALD .16­18 ALD

  10. Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography

    E-Print Network [OSTI]

    Chickos, James S.

    Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas: Experimental vapor pressures, vaporization, fusion and sublimation enthalpies of a number of dialkyl, dibutyl phthalate, and bis(2-ethylhexyl) phthalate. New vaporization enthalpies and liquid vapor pressure

  11. The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas

    E-Print Network [OSTI]

    Chickos, James S.

    The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance Information ABSTRACT: Vapor pressures, vaporization, and sublimation enthalpies of several pharmaceuticals.5 ± 2.1); p(cr)/Pa = 0.12 ± 0.04]. Vapor pressure equations also derived from vapor pressureretention

  12. 6/24/2004 1 W CVD Simulation Chang, Adomaitis, Kidder, and Rubloff, 2000 Annual AIChE Meeting

    E-Print Network [OSTI]

    Rubloff, Gary W.

    6/24/2004 1 W CVD Simulation Chang, Adomaitis, Kidder, and Rubloff, 2000 Annual AIChE Meeting of Maryland Contact information: www.isr.umd.edu/~adomaiti adomaiti@umd.edu *Currently at Novellus Systems #12;6/24/2004 model; parameter ID issues. #12;6/24/2004 3 W CVD Simulation Chang, Adomaitis, Kidder, and Rubloff, 2000

  13. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  14. Drying of pulverized material with heated condensible vapor

    DOE Patents [OSTI]

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  15. Vapor etching of nuclear tracks in dielectric materials

    DOE Patents [OSTI]

    Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  16. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect (OSTI)

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  17. The Programmable CVD Reactor [261f] 2002 AIChE Annual Meeting

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Reactor [261f] 2002 AIChE Annual Meeting 6/24/2004 Control of across-wafer gas composition gradientsThe Programmable CVD Reactor [261f] 2002 AIChE Annual Meeting 6/24/2004 Jae-Ouk Chooa,b, Raymond A and ISR b Department of Material and Nuclear Engineering and ISR c Institute for System Research

  18. Modeling and the Adaptive Solution of CVD Fiber-Coating Processes

    E-Print Network [OSTI]

    Adjerid, Slimane

    Modeling and the Adaptive Solution of CVD Fiber-Coating Processes S. Adjerid, J. E. Flaherty, J. B, New York 12180, USA Abstract We develop a mathematical model for the coating of ceramic bers, a convection-di usion system for the reacting precursor species, a ber coating model, and a ber heat conduction

  19. Simulation-Based Design and Experimental Evaluation of a Spatially Controllable CVD Reactor

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , University of Maryland, College Park, MD 20742 Gary W. Rubloff, Laurent Henn-Lecordier, and Yijun Liu Dept. of Materials Science and Engineering and Institute for Systems Research, University of Maryland, College Park with the semiconductor industry, from early bell-jar CVD reactors to current cold-wall single-wafer reactors (Xia et al

  20. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  1. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Heterocycles and Related Compounds

    E-Print Network [OSTI]

    Chickos, James S.

    Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures The vaporization enthalpies and vapor pressures of the liqiud phase from T ) 298.15 K to T ) 500 K of a series in the literature was measured on a hydrated form. Vapor pressures and normal boiling temperatures for the liquid

  2. Vaporization Enthalpy and Vapor Pressure of Valproic Acid by Correlation Gas Chromatography

    E-Print Network [OSTI]

    Chickos, James S.

    Vaporization Enthalpy and Vapor Pressure of Valproic Acid by Correlation Gas Chromatography Joe A-propylpentanoic acid) is reported, and the vapor pressures of a series on aliphatic carboxylic acids are used to evaluate its vapor pressure as a function of temperature. The vaporization enthalpy was derived

  3. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, Ronald A. (Albuquerque, NM)

    1988-01-01

    A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  4. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, R.A.

    1986-05-15

    A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  5. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul (Walnut Creek, CA); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Ellingboe, Albert R. (Fremont, CA)

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  6. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul (Walnut Creek, CA); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Jose, CA); Ellingboe, Albert R. (Malahide, IE)

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  7. Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Jeffrey W. Elam,*, David A. Baker, Alex B. F. Martinson,, Michael J. Pellin, and

    E-Print Network [OSTI]

    Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors Jeffrey W: NoVember 8, 2007 This article describes a new atomic layer deposition (ALD) method for preparing,2 sol-gel methods,3 chemical vapor deposition,4 pulsed laser deposition,5 and atomic layer

  8. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

    SciTech Connect (OSTI)

    Korinko, P.

    2011-03-25

    To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations were large and suggest that all three temperatures exhibited comparable gains. No zinc was detected on the backside surface of the filters indicating high efficiency for front and internal trapping. A zinc rich deposit was formed on the surface of the 60 C filter. Based on a simple tape adhesion test, the surface zinc was readily removed from the 60 C filter while less zinc deposit was removed from the 120 and 200 C filter samples. It is surmised that the higher temperatures enable the zinc to deposit within the filter media rather than on the surface. Based on the findings that all three statistically trapped the same quantity of zinc vapor and that the higher temperatures resulted in a more adherent/better trapped product, operating the filters at 120 to 200 C is recommended.

  9. Vaporization Enthalpies and Vapor Pressures of Two Insecticide Components, Muscalure and Empenthrin, by Correlation Gas

    E-Print Network [OSTI]

    Chickos, James S.

    Vaporization Enthalpies and Vapor Pressures of Two Insecticide Components, Muscalure and Empenthrin: The vaporization enthalpies at T/K = 298.15 and vapor pressures from T/K = (298.15 to Tnb (normal boiling. Vaporization enthalpies of [(114.4 ± 1.0) and (114.5 ± 1.0)] kJ·mol-1 and vapor pressures, p/Pa = [(1.2 ± 0

  10. CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield

    E-Print Network [OSTI]

    Kudo, Akira

    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor ...

  11. Electron Microscopy Observation of TiO2 Nanocrystal Evolution in High-Temperature Atomic Layer Deposition

    E-Print Network [OSTI]

    Wang, Xudong

    ABSTRACT: Understanding the evolution of amorphous and crystalline phases during atomic layer deposition nanorods via the principle of vapor-phase oriented attachment. KEYWORDS: TiO2, atomic layer deposition, Ostwald-Lussac law, oriented attachment Atomic layer deposition (ALD) is a unique thin film growth

  12. Molecular Caulk: A Pore Sealing Technology for Ultra-low k Dielectrics Jay J. Senkevich1

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    chemical vapor (CVD) or atomic layer (ALD) deposition of the barrier layer, the gas-phase precursors have issues of the barrier layer/dielectric interface. Molecular Caulk is deposited via chemical vapor Caulk deposition on surface topology was measured by atomic force microscopy (AFM). Experimental

  13. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  14. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  15. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  16. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  17. Fabrication of optical structures using SU-8 photoresist and chemically assisted ion beam

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    transferred into an chemical vapor deposition CVD grown SiO2 layer, evaporated or electroplated metal layers in a SU-8 layer spin coated onto the surface of GaAs substrate is performed using a contact print

  18. SYMPOSIUM C 11:30 AM -C4.4

    E-Print Network [OSTI]

    to electroplating. Chemical vapor deposition (CVD) can make thin, conformal and continuous seed layers of copper layers for filling the copper lines by electroplating. Alternatively, copper lines can be created

  19. Thin Solid Films 515 (2006) 53 58

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2006-01-01

    heating) while keeping identical the substrate temperature (973 K) and the catalyst preparation chemical etching of edge carbons in graphene sheets. Keywords: Carbon nanotubes; Carbon nanoparticles preparation techniques by chemical vapor deposition (CVD) are considered as the most convenient ones

  20. Characterization of anodic bonding

    E-Print Network [OSTI]

    Tudryn, Carissa Debra, 1978-

    2004-01-01

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  1. Method of deposition of silicon carbide layers on substrates

    DOE Patents [OSTI]

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  2. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  3. Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids

    E-Print Network [OSTI]

    Chickos, James S.

    Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids Joe A vapor pressures of both the subcooled liquid and solid state for those materials that are solids at T/K = 298.15. Equations for the prediction of vapor pressure from T/K = 298.15 to the boiling temperature

  4. STANDARD OPERATING PROCEDURE AIXTRON (formerly NanoInstruments) Carbon Nanotube Deposition System

    E-Print Network [OSTI]

    Reif, Rafael

    1 STANDARD OPERATING PROCEDURE AIXTRON (formerly NanoInstruments) Carbon Nanotube Deposition System Chemical Vapor Deposition (PECVD) of Carbon Nanotubes (CNTs) Figure 1. The TRL PECVD CNT Reactor (CCNT voltages to produce plasma. Typically, the catalyst metals #12;2 are Nickel, Iron or Cobalt. Representative

  5. Uranium deposits of Canada

    SciTech Connect (OSTI)

    Evans, E.L.

    1986-01-01

    Topics covered in this book include: the history, early Aphebian conglomerate-hosted deposits; proterozoic deposits hosted by folded, metamorphosed rocks; Hudsonion classical vein deposits, Saskatchewan unconformity-associated and sedimentary-hosted deposits of Helikian age; other Helikian unconformity-associated and sedimentary-hosted rocks; and Phanerozoic deposits.

  6. Final Technical Report

    SciTech Connect (OSTI)

    drucker, jeff

    2014-08-18

    This project investigated the fundamental science of nanowire epitaxy using vapor-liquid-solid growth in the silicon-germanium material system. Ultrahigh vacuum chemical vapor deposition (UHV CVD) was the primary deposition method. Nanowires grown using UHV CVD were characterized ex situ using scanning electron microscopy and a variety of transmission electron microscopy techniques. In situ transmission electron microscopy was also employed to monitor growth in real time and was instrumental in elucidating growth mechanisms.

  7. Optimization of Xenon Difluoride Vapor Delivery

    SciTech Connect (OSTI)

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng [ATMI, Inc., Danbury, Connecticut 06810 (United States)

    2008-11-03

    Xenon difluoride (XeF{sub 2}) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF{sub 2} into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF{sub 2} is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions ({approx}4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF{sub 2} in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF{sub 2} are also discussed. Finally, cylinder release rate data are provided.

  8. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

    1998-05-19

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

  9. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1998-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  10. Hybrid deposition of thin film solid oxide fuel cells and electrolyzers

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

    1999-01-01

    The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

  11. RIPPLED DEPOSITS PART IV --RIPPLED DEPOSITS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    . The conditions existing at the interface between a deposit surface and a flowing fluid will therefore fluids. It results in changes in the flow and pressure drop character istics of tubes subjected of deposit roughness are much more uncertain. Deposition on a clean surface, with commercial roughness say

  12. Means and method for vapor generation

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1984-01-01

    A liquid, in heat transfer contact with a surface heated to a temperature well above the vaporization temperature of the liquid, will undergo a multiphase (liquid-vapor) transformation from 0% vapor to 100% vapor. During this transition, the temperature driving force or heat flux and the coefficients of heat transfer across the fluid-solid interface, and the vapor percentage influence the type of heating of the fluid--starting as "feedwater" heating where no vapors are present, progressing to "nucleate" heating where vaporization begins and some vapors are present, and concluding with "film" heating where only vapors are present. Unstable heating between nucleate and film heating can occur, accompanied by possibly large and rapid temperature shifts in the structures. This invention provides for injecting into the region of potential unstable heating and proximate the heated surface superheated vapors in sufficient quantities operable to rapidly increase the vapor percentage of the multiphase mixture by perhaps 10-30% and thereby effectively shift the multiphase mixture beyond the unstable heating region and up to the stable film heating region.

  13. Kinetic control of catalytic CVD for high quality graphene at low temperatures

    E-Print Network [OSTI]

    Weatherup, Robert S.; Dlubak, Bruno; Hofmann, Stephan

    2012-10-01

    hydrocarbon and then cooled down in vacuum (see Methods). We note that the Raman and transport measurements are performed after MLG transfer to SiO2(300nm) covered Si wafers, i.e. include possible degradation incurred during transfer. Figure 1A shows a... typical Raman spectrum for our CVD MLG, with a 2D/G ratio of ~3.2 and a 2D peak (?2680 cm-1) that is well fitted by a single Lorentzian with a FWHM of ?31 cm-1. The D peak (~1340cm-1) is very small and almost undetectable above the measurement...

  14. Perspectives on Deposition Velocity

    Office of Environmental Management (EM)

    direction, and stability. Dispersion and Deposition Dispersion is dependent on Wind speed Stability Deposition is dependent on Wind speed Stability 95 th...

  15. Process for recovering organic vapors from air

    DOE Patents [OSTI]

    Baker, Richard W. (Mountain View, CA)

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  16. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers at theAugust 1, 2013theEnergyThe1984 StartVapor

  17. PARTICULATE DEPOSITION OF MAGNETITE

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    PART V PARTICULATE DEPOSITION OF MAGNETITE #12;- 75 - PART V - DEPOSITION OF PARTICULATE MAGNETITE conduits and equipment in conventional boilers and nuclear reactors, the particulate corrosion products tend to deposit at heated and unheated surfaces. The deposition affects the thermohydraulic performance

  18. Metal oxide morphology in argon-assisted glancing angle deposition

    SciTech Connect (OSTI)

    Sorge, J. B.; Taschuk, M. T.; Wakefield, N. G.; Sit, J. C.; Brett, M. J. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada); Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 (Canada) and NRC National Institute for Nanotechnology, Edmonton, AB T6G 2M9 (Canada)

    2012-03-15

    Glancing angle deposition (GLAD) is a thin film deposition technique capable of fabricating columnar architectures such as posts, helices, and chevrons with control over nanoscale film features. Argon bombardment during deposition modifies the GLAD process, producing films with new morphologies which have shown promise for sensing and photonic devices. The authors report modification of column tilt angle, film density, and specific surface area for 12 different metal oxide and fluoride film materials deposited using Ar-assisted GLAD. For the vapor flux/ion beam geometry and materials studied here, with increasing argon flux, the column tilt increases, film density increases, and specific surface area decreases. With a better understanding of the nature of property modification and the mechanisms responsible, the Ar-assisted deposition process can be more effectively targeted towards specific applications, including birefringent thin films or photonic crystal square spirals.

  19. Effect of flow rate of ethanol on growth dynamics of VA-SWNT -Transition from no-flow CVD to normal ACCVD

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Effect of flow rate of ethanol on growth dynamics of VA-SWNT - Transition from no-flow CVD a growth model [2]. In this study, the flow rate of ethanol during the CVD was controlled precisely. Figure 1 shows the growth curve of VA-SWNT film for various ethanol flow rates. In the figure, "No

  20. Diameter-Controlled and Nitrogen-Doped Vertically Aligned Single-Walled Carbon Theerapol Thurakitsereea

    E-Print Network [OSTI]

    Maruyama, Shigeo

    ], methane [8], acetylene [9], ethylene [10], or other organic chemical sources [11]. Acetonitrile (CH3CN SWCNT by no-flow chemical vapor deposition (CVD) from Co/Mo binary catalyst. The mean diameters). The process is based on that described in Ref. [23]. During heating of the CVD system, the Co/Mo binary

  1. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  2. Ultrafast relaxation dynamics of hot optical phonons in graphene Haining Wang,1,a

    E-Print Network [OSTI]

    Afshari, Ehsan

    on silicon carbide substrates and by chemical vapor deposition on nickel substrates. In the first few hundred lifetime in carbon nanotubes via time- resolved Raman anti-Stokes spectroscopy was performed by Song et al-SiC wafers by thermal decomposition epitaxial growth9 and also by chemical vapor deposition CVD on nickel.10

  3. Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy PltMercuriusVapor Jump to:

  4. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  5. Instrument Series: Deposition and Microfabrication Sputter Deposition

    E-Print Network [OSTI]

    and solid oxide fuel cells and solar cells for energy generation Microfabrication ­ deposition offers operational flexibility, efficiency, and control, allowing a range of applications and materials

  6. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  7. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    give a higher lower limit value than the completely vaporized sample. Conversely, the heavy fractions or residue give a smaller lower limit value. For this reason, there is...

  8. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  9. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  10. 06/27/2000 47th AVS International Symposium 1 W-CVD Film Thickness Metrology and Process

    E-Print Network [OSTI]

    Rubloff, Gary W.

    06/27/2000 47th AVS International Symposium 1 W-CVD Film Thickness Metrology and Process Control Engineering University of Maryland, College Park, MD 20742 #12;06/27/2000 47th AVS International Symposium 2 application for real-time control experiments #12;06/27/2000 47th AVS International Symposium 3 H2 Reduction W

  11. The Rise of Spintronics in CVD Graphene Graphene's potential for spin based electronics is well known. However, a crucial

    E-Print Network [OSTI]

    Yao, Shao Q

    The Rise of Spintronics in CVD Graphene Graphene's potential for spin based electronics is well of graphene based spintronics applications. Manipulating electron charge is central to conventional electronic, or spintronics. In contrast to charge based applications, spin based applications are expected to be not only

  12. Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond Available online 26 October 2008 Keywords: Inkjet Printing Diamond Nanodiamond Patterns Fabrication on a rigid or flexible substrate. In this work, nanodiamond suspensions in ethylene glycol were used as inks

  13. Generation of SWNTs on Si Wafer by Alcohol Catalytic CVD Shigeo Maruyama, Shohei Chiashi and Yuhei Miyauchi

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Generation of SWNTs on Si Wafer by Alcohol Catalytic CVD Shigeo Maruyama, Shohei Chiashi and Yuhei ACCVD technique, lower temperature generation of SWNTs on Al patterned Si surface should be principally possible. We tried to generate SWNTs on Si wafer by ACCVD technique. Zeolite particles supporting Fe

  14. Initial Reaction in CVD Nanotube Synthesis by FT-ICR Shuhei Inoue, Satoshi Yoshinaga and Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Initial Reaction in CVD Nanotube Synthesis by FT-ICR Shuhei Inoue, Satoshi Yoshinaga and Shigeo of relatively large catalyst clusters of iron, cobalt and nickel with ethanol. The details of the experimental, and in case of nickel, four hydrogen atoms were dissociated from the clusters. However in case of cobalt

  15. Title: Decomposition of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes

    E-Print Network [OSTI]

    Maruyama, Shigeo

    of ethanol and dimethyl-ether during CVD synthesis of single-walled carbon nanotubes Author list: Bo Hou (single-walled carbon nanotubes) was investigated. Gas-phase thermal decomposition of ethanol and DME ethanol and DME decomposition, confirming expected reaction trends and primary byproducts. Peak

  16. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  17. Chapter 3--Lahar Deposits Lahar Deposits

    E-Print Network [OSTI]

    del Moral, Roger

    with snow and ice, the rapid melting causes lahars that flow down canyons. Slurries entrain soil, rocks above the deposit (July 1980). 27 #12;Chapter 3--Lahar Deposits out. Glaciers and snow fields melt rapidly and small block- ing dams (often glacial moraines) collapse to produce mas- sive surges

  18. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    SciTech Connect (OSTI)

    Kawahito, A.; Yanase, T.; Endo, T.; Nagahama, T.; Shimada, T.

    2015-05-07

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y{sub 0.15}Zr{sub 0.85}O{sub 2}) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  19. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  20. Reductive Dehalogenation of Trichloroethene Vapors in an

    E-Print Network [OSTI]

    to treat trichloroethene (TCE) from waste gases generated by soil vapor extraction or dual-phase extraction and groundwater include soil vapor extraction (SVE) in combination with air sparging and dual-phase extraction methods such as incineration, catalytic oxidation, and adsorption onto activated carbon are currently

  1. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  2. Environmental Chemistry at Vapor/Water Interfaces

    E-Print Network [OSTI]

    Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency for manyyearsowingtoitscomplexityandimportanceindescribingawiderange of physical phenomena. The vapor/water interface is particularly interesting from an environmental for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental

  3. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  4. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  5. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Vapor Caves Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal Facility Facility...

  6. After More Than 20 Years Operating, Hanford's Soil Vapor Extraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    After More Than 20 Years Operating, Hanford's Soil Vapor Extraction Project Nears Completion After More Than 20 Years Operating, Hanford's Soil Vapor Extraction Project Nears...

  7. VAPOR PRESSURES OF THE RUBIDIUM FLUORIDE-ZIRCONIUM FLUORIDE AND...

    Office of Scientific and Technical Information (OSTI)

    VAPOR PRESSURES OF THE RUBIDIUM FLUORIDE-ZIRCONIUM FLUORIDE AND LITHIUM FLUORIDE-ZIRCONIUM FLUORIDE SYSTEMS Citation Details In-Document Search Title: VAPOR PRESSURES OF THE...

  8. The role of polymer formation during vapor phase lubrication...

    Office of Scientific and Technical Information (OSTI)

    The role of polymer formation during vapor phase lubrication of silicon. Citation Details In-Document Search Title: The role of polymer formation during vapor phase lubrication of...

  9. Chapter 2 Deposition Methods 39 Chapter 2 Deposition methods

    E-Print Network [OSTI]

    Bristol, University of

    gases are metered in and the pressure is kept constant by means of a number of valves and a vacuum pump and maintenance of a plasma In RF-CVD ions are accelerated from a plasma onto the substrate. The plasma

  10. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  11. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOE Patents [OSTI]

    Mirza, Zia I. (La Verne, CA); Knell, Everett W. (Los Alamitos, CA); Winter, Bruce L. (Danville, CA)

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  12. The PMMA opal film was infiltrated with SiO2 using a homemade CVD setup operating at atmospheric pressure and room temperature

    E-Print Network [OSTI]

    The PMMA opal film was infiltrated with SiO2 using a homemade CVD setup operating at atmospheric. HRSEM was used to observe the alterations in the opal structure. Before examination, samples had been

  13. Modeling of LNG Pool Spreading and Vaporization 

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20

    In this work, a source term model for estimating the rate of spreading and vaporization of LNG on land and sea is introduced. The model takes into account the composition changes of the boiling mixture, the varying thermodynamic properties due...

  14. An advanced vapor-compression desalination system 

    E-Print Network [OSTI]

    Lara Ruiz, Jorge Horacio Juan

    2006-04-12

    Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system...

  15. Vapor Retarder Classification - Building America Top Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile...

  16. Water vapor distribution in protoplanetary disks

    SciTech Connect (OSTI)

    Du, Fujun; Bergin, Edwin A.

    2014-09-01

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Ly? photons, since the Ly? line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ?300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.

  17. Sealable stagnation flow geometries for the uniform deposition of materials and heat

    DOE Patents [OSTI]

    McCarty, Kevin F. (Livermore, CA); Kee, Robert J. (Livermore, CA); Lutz, Andrew E. (Alamo, CA); Meeks, Ellen (Livermore, CA)

    2001-01-01

    The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.

  18. Synthesis and characterization of carbon-encapsulated magnetic nanoparticles via arc-plasma assisted CVD

    SciTech Connect (OSTI)

    Li, Z.T.; Hu, C.; Yu, C.; Qiu, J.S.

    2009-12-15

    Carbon-encapsulated magnetic nanoparticles (CEMNs) were fabricated on a large scale by arc-plasma assisted CVD in acetylene. The coal-derived metal-containing (Fe, Co and Ni) carbon rods were used as anodes, while a high-purity graphite rod was used as a cathode that remained unchanged during the arcing process. The CEMNs obtained were characterized by TEM, XRD, Raman spectroscopy, N{sub 2} adsorption isotherms and VSM. The diameter distribution of the obtained CEMNs varies from 10 to 70 nm, of which the metal cores are proximately 5-50 nm. The core phases in Fe ) nanoparticles are body-centered cubic Fe and orthorhombic Fe3C while Co ) nanoparticles and Ni ) nanoparticles show the characteristic of a face-centered cubic structure. The Fe ), Co ) and Ni ) nanoparticles with well-ordered graphitic shells have the surface area of 89 m{sup 2}/g, 72 m{sup 2}/g and 75 m{sup 2}/g, respectively. The CEMNs show ferromagnetic of which was characterized by a ratio of remnant magnetization (MR) to saturation magnetization (MS).

  19. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  20. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  1. Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane

    E-Print Network [OSTI]

    Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

    2009-01-01

    High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

  2. M. Bahrami ENSC 461 (S 11) Gas Vapor Mixtures and HVAC 1 Gas Vapor Mixtures and HVAC

    E-Print Network [OSTI]

    Bahrami, Majid

    to the vapor pressure: Tdp = Tsat@ Pv Sling Psychrometer: a rotating set of thermometers one of which measuresM. Bahrami ENSC 461 (S 11) Gas Vapor Mixtures and HVAC 1 Gas Vapor Mixtures and HVAC Atmospheric air normally contains some water vapor (moisture). The dry-air contains no water. Although the amount

  3. Method of deposition of silicon carbide layers on substrates and product

    DOE Patents [OSTI]

    Angelini, Peter (Oak Ridge, TN); DeVore, Charles E. (Knoxville, TN); Lackey, Walter J. (Oak Ridge, TN); Blanco, Raymond E. (Oak Ridge, TN); Stinton, David P. (Knoxville, TN)

    1984-01-01

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at about 800.degree. C. to 1050.degree. C. when the substrates have been confined within a suitable coating environment.

  4. Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons

    E-Print Network [OSTI]

    Chickos, James S.

    of a thermochemical cycle, and agreement is within the combined experimental uncertainties. Vapor pressures pressures. Vaporization enthalpies of crystalline materials are also quite useful. Combined with fusion combined with fusion enthalpies have been used to provide independent confirmation of the magnitude

  5. Solution deposition assembly

    SciTech Connect (OSTI)

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  6. Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n-Alkanes from C40 to C76 at T ) 298.15 K by

    E-Print Network [OSTI]

    Chickos, James S.

    Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n in combination with earlier work to evaluate the vaporization enthalpies and vapor pressures of these n-alkanes from T ) (298.15 to 540) K. The vapor pressure and vaporization enthalpy results obtained are compared

  7. Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C31 to C38 at T ) 298.15 K by Correlation Gas Chromatography

    E-Print Network [OSTI]

    Chickos, James S.

    Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C31 to C38 at T ) 298.15 K with other literature values to evaluate the vaporization enthalpies and vapor pressures of these n-alkanes from T ) 298.15 to 575 K. The vapor pressure and vaporization enthalpy results obtained are compared

  8. Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C21 to C30 at T ) 298.15 K by Correlation Gas Chromatography

    E-Print Network [OSTI]

    Chickos, James S.

    Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from C21 to C30 at T ) 298.15 K pressures of these n-alkanes from T ) 298.15 to 575 K. The vapor pressure and vaporization enthalpy results-alkanes exhibit very low vapor pressures at ambient temperatures, vapor pressure measurement for most

  9. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  10. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  11. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Beach, Raymond J. (Livermore, CA); Dawson, Jay W. (Livermore, CA); Krupke, William F. (Pleasanton, CA)

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  12. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  13. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01

    pressure and entropy, pressure and vapor quality, andfluid at the high pressure vapor turbine exit. In the nexthigh pressure and low pressure vapor turbines. The increase

  14. THE KINETICS OF LASER PULSE VAPORIZATION OF URANIUM DIOXIDE BY MASS SPECTROMETRY

    E-Print Network [OSTI]

    Tsai, Chuen-horng

    2012-01-01

    resulting low vapor pressure and low heat of vaporizationresulting low vapor pressure and low heat of vaporizationyields the partial vapor pressure and the composition in the

  15. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOE Patents [OSTI]

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  16. Deposition of Dielectrics

    E-Print Network [OSTI]

    Garmestani, Hamid

    Deposition of Dielectrics Benjamin A. Small Cleanroom Technical Staff September 26th, 2000 #12 of Microelectronic Fabrication. 1996. MiRC cleanroom users PlasmaTherm, Inc. Surface Technology Systems, Inc. #12;

  17. Advancing Explosives Detection Capabilities: Vapor Detection

    SciTech Connect (OSTI)

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  18. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  19. The Effect of vapor subcooling on film condensation of metals

    E-Print Network [OSTI]

    Fedorovich, Eugene D.

    1968-01-01

    This work presents an analysis of the interfacial "vapor-condensate" temperature distribution, which includes the effect of subcooling (supersaturation) in the vapor. Experimental data from previous investigators for ...

  20. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  1. Type B Accident Investigation of the Acid Vapor Inhalation on...

    Energy Savers [EERE]

    of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on...

  2. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  3. MULTIPLY STRIPPED ION GENERATION IN THE METAL VAPOR VACUUM ARC

    E-Print Network [OSTI]

    Brown, I.G.

    2010-01-01

    the metal vapor vacuum arc plasma discharge. A new kind offrom a metal vapor vacuum arc plasma has been used to obtaindrives the vacuum arc plasma is created. The fundamental

  4. OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    OPTIMIZATION OF INJECTION INTO VAPOR-DOMINATED GEOTHERMAL RESERVOIRS CONSIDERING ADSORPTION governing the behavior of vapor- dominated geothermal reservoirs. These mechanisms affect both was to determine the most effective injection strategy once these two effects are considered. Geothermal reservoir

  5. Heat Recovery in Distillation by Mechanical Vapor Recompression 

    E-Print Network [OSTI]

    Becker, F. E.; Zakak, A. I.

    1986-01-01

    IN DISTILLATION BY MECHANICAL VAPOR RECOMPRESSION Frederick E. Becker and Alexandra I. Zakak Tecogen, Inc., A Subsidiary of Thermo Electron Corporation Waltham, Massachusetts ABSTRACT A significant reduction in distillation tower energy requirements can..., and then recompressing the low-pressure bottom vapors and injecting them directly into the column bottom. The choice of either scheme is a function of the physical properties of the vapors; i.e., the specific volume of the top or bottom vapors may dictate the most...

  6. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  7. MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION

    E-Print Network [OSTI]

    Faccanoni, Gloria

    . (,) P pressure law. G. Faccanoni DNS OF LIQUIDE-VAPOR PHASE TRANSITION 6 / 23 #12;Model Numerical Method. (,) P pressure law. G. Faccanoni DNS OF LIQUIDE-VAPOR PHASE TRANSITION 6 / 23 #12;Model Numerical Method Vapor = 0 x = 0 = 1Fictive fluid 0 pressure law

  8. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  9. Study of the effects of noisy data on the determination of the enthalpy of vaporization from a vapor pressure equation 

    E-Print Network [OSTI]

    Casserly, Thomas Bryan

    2013-02-22

    Chemical engineers use software tools everyday to aid them in solving complex problems. Software packages simulate virtually every aspect of a chemical process, including the use of source vapor pressure data to fit empirical constants of a vapor...

  10. THE KINETICS OF LASER PULSE VAPORIZATION OF URANIUM DIOXIDE BY MASS SPECTROMETRY

    E-Print Network [OSTI]

    Tsai, C-h.

    2010-01-01

    The results of the vapor pressure and the vapor compositionyielded the partial vapor pressure of each species and therecommer.ded limits of total vapor pressure This work fitted

  11. Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

  12. Cathodic Arc Plasma Deposition

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORS FROM BOILING NITRIC ACIDCathodic Arc

  13. Ge MOS Characteristics with CVD HfO2 Gate Dielectrics and TaN Gate Electrode W. P. Bai*, N. Lu*, J. Liu*, A. Ramirez**, D. L. Kwong*, D. Wristers**, A. Ritenour#

    E-Print Network [OSTI]

    Ge MOS Characteristics with CVD HfO2 Gate Dielectrics and TaN Gate Electrode W. P. Bai*, N. Lu*, J, we report for the first time Ge MOS characteristics with ultra thin rapid thermal CVD HfO2 gate dielectrics and TaN gate electrode. Using the newly developed pre- gate cleaning and NH3-based Ge surface

  14. Mater. Res. Soc. Symp. Proc. 134 (2015) [doi: http://dx.doi.org/10.1557/opl.2015.174]. Deposition of CVD diamond onto Zirconium

    E-Print Network [OSTI]

    Bristol, University of

    2015-01-01

    at Fukushima in Japan in 2011) enough hydrogen can be released that an explosion occurs, with potentially

  15. Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n-Alkanes from C78 to C92 at T ) 298.15 K by

    E-Print Network [OSTI]

    Chickos, James S.

    Hypothetical Thermodynamic Properties: Vapor Pressures and Vaporization Enthalpies of the Even n and vapor pressures of the n-alkanes from T ) (298.15 to 540) K for heneicosane to dononacontane. The vapor pressure and vaporization enthalpy results obtained are compared with estimated data from Morgan's "PERT2

  16. Oxide vapor distribution from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R.; Tassano, P.L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  17. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  18. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  19. Water vapor distribution in protoplanetary disks

    E-Print Network [OSTI]

    Du, Fujun

    2014-01-01

    Water vapor has been detected in protoplanetary disks. In this work we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyman alpha photons, since the Lyman alpha line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapor with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more ...

  20. High volume fuel vapor release valve

    SciTech Connect (OSTI)

    Gimby, D.R.

    1991-09-03

    This patent describes a fuel vapor release valve for use in a vehicle fuel system. It comprises a valve housing 10 placed in a specific longitudinal orientation, the valve housing 10 defining an interior cavity 22 having an inlet 20 for admitting fuel vapor and an outlet 14 for discharging such fuel vapor; a valve member 24 positioned in the cavity 22 for movement between an outlet 14 opening position and an outlet 14 closing position, the valve member 24 including a cap member 34 having a seat surface 36 for mating with the outlet 14 and an orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 extending through the cap member 34 providing a passageway from the outlet 14 to the cavity 22, the orifice 42 having a lesser radius than the outlet 14; the valve member 24 further including a plug member 30 engaged with the cap member 34 for movement between an orifice 42 opening position and an orifice 42 closing position; and, a valve housing tilt responsive means for moving the valve member 24 to an outlet 14 and orifice 42 closing position in response to tilting of the valve 10 about its longitudinal axis whereby, upon the return of the valve 10 to its specified longitudinal orientation, the plug member 30 first moves to an orifice 42 opening position and the cap member 34 subsequently moves to an outlet 14 opening position.

  1. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  2. Desktop systems for manufacturing carbon nanotube films by chemical vapor deposition

    E-Print Network [OSTI]

    Kuhn, David S. (David Scott)

    2007-01-01

    Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, and mechanical properties that could potentially transform such diverse fields as composites, electronics, cooling, energy storage, and biological sensing. ...

  3. ELECTRON BEAM -DIRECTED VAPOR DEPOSITION OF MULTIFUNCTIONAL D. T. QUEHEILLALT, Y. KATSUMI, H. N. G. WADLEY

    E-Print Network [OSTI]

    Wadley, Haydn

    . KATSUMI, H. N. G. WADLEY University of Virginia, Department of Materials Science & Engineering, 116 Engineers Way Charlottesville, Virginia, U.S.A. 22904-4745, dougq@virginia.edu ABSTRACT Multifunctional-pipe structures and porous electrode coatings for rechargeable nickel - metal hydride cells. In addition to load

  4. Synthesis of open-cell metal foams by templated directed vapor deposition

    E-Print Network [OSTI]

    Wadley, Haydn

    , Derek D. Hass, David J. Sypeck, and Haydn N.G. Wadley Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22904) and Metapore (Soci- e`te` Sorapec, Fontenay Sous Bois, France) for use in Ni­ Cd and Ni­metal hydride batteries

  5. Reactor design for uniform chemical vapor deposition-grown films without substrate rotation

    DOE Patents [OSTI]

    Wanlass, M.

    1985-02-19

    A quartz reactor vessel for growth of uniform semiconductor films includes a vertical, cylindrical reaction chamber in which a substrate-supporting pedestal provides a horizontal substrate-supporting surface spaced on its perimeter from the chamber wall. A cylindrical confinement chamber of smaller diameter is disposed coaxially above the reaction chamber and receives reaction gas injected at a tangent to the inside chamber wall, forming a helical gas stream that descends into the reaction chamber. In the reaction chamber, the edge of the substrate-supporting pedestal is a separation point for the helical flow, diverting part of the flow over the horizontal surface of the substrate in an inwardly spiraling vortex.

  6. Towards improved spinnability of chemical vapor deposition generated multi-walled carbon nanotubes

    E-Print Network [OSTI]

    McKee, Gregg Sturdivant Burke

    2008-01-01

    defect densities and less catalytic oxidation by the ironcatalytic effects of transition metals upon the oxidation ofcatalytic effects of nanotube catalyst particles and their oxides upon the oxidation

  7. The Effect of Fluid Mechanics on Graphene Growths by Chemical Vapor Deposition

    E-Print Network [OSTI]

    Bell, Jeffrey Michael

    2013-01-01

    than altering the fluids mechanics of the system with theRIVERSIDE The Effect of Fluid Mechanics on Graphene GrowthsTHESIS The Effect of Fluid Mechanics on Graphene Growths by

  8. Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition

    E-Print Network [OSTI]

    Qin, Lu-Chang

    the most studied nanoma- terial for the past few years. Mechanical measurement of the axial Young's modulus, such as laser evaporation;11,12 pyroly- sis of hydrocarbon gases using benzene (C6H6),13 acetylene (C2H2

  9. Polymers via chemical vapor deposition and their application to organic photovoltaics

    E-Print Network [OSTI]

    Barr, Miles Clark

    2012-01-01

    There is emerging interest in the ability to fabricate organic photovoltaics (OPVs) on flexible, lightweight substrates, which could lower the cost of installation and enable new form factors for deployment. However, ...

  10. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    SciTech Connect (OSTI)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-03-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.

  11. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition

    E-Print Network [OSTI]

    at a very rapid and constant rate 100 nm/s that decreases sharply after the catalyst Co particles become. Experi- ments performed, mostly on individual nanotubes, show that they have extraordinary electrical conditions such as substrate, catalyst, feed gas, and temperature, the growth model proposed by several

  12. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    , Cambridge CB2 1EW, United Kingdom R. E. Dunin-Borkowski Department of Materials Science and Metallurgy to low-dimensional physics, and they can be used as nanotechnology building blocks to reach higher device-temperature synthesis from its phase diagram, because the Ga­Si system has a very low eutectic temperature.16 However

  13. Low Temperature Direct Growth of Graphene Films on Transparent Substrates by Chemical Vapor Deposition

    E-Print Network [OSTI]

    Antoine, Geoffrey Sandosh Jeffy

    2013-01-01

    Those also include flexible electronics but the condition ofgraphene usage in flexible electronics and also in organic

  14. High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition

    E-Print Network [OSTI]

    Javey, Ali

    transfer techniques have been explored in the past, where thin epitax- ial films of GaAs and InP and GaAs have the most ideal band gaps and highest the- oretical efficiencies for single-junction cells April 2012; accepted 21 May 2012; published online 25 June 2012) III­V semiconductor solar cells have

  15. Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia

    E-Print Network [OSTI]

    an important subclass, with applications in wear-resistant, electronic, and optical coatings. Titanium nitride by-products form particulates and can cause problems with vacuum pumps and exhaust systems. Lastly

  16. Plasma Enhanced Chemical Vapor Deposition on Living Substrates: Development, Characterization, and Biological Applications 

    E-Print Network [OSTI]

    Tsai, Tsung-Chan 1982-

    2012-12-05

    air and at low temperature was developed using a helium dielectric barrier discharge jet (DBD jet). It was demonstrated that various materials, such as polymeric, metallic, and composite films, can be readily synthesized through this technique. Second...

  17. Broadband microwave and time-domain terahertz spectroscopy of chemical vapor deposition grown graphene

    E-Print Network [OSTI]

    graphene W. Liu, R. Valdés Aguilar, Yufeng Hao, R. S. Ruoff, and N. P. Armitage Citation: J. Appl. Phys. Related Articles Edge surface modes in magnetically biased chemically doped graphene strips Appl. Phys. Lett. 99, 231902 (2011) Terahertz coherent acoustic experiments with semiconductor superlattices Appl

  18. Equilibrium Chemical Vapor Deposition Growth of Bernal-Stacked Bilayer Graphene

    E-Print Network [OSTI]

    Maruyama, Shigeo

    the many different potential applications of graphene meet their requirements, various production methods for previously reported BLG growth using methane as precursor. #12;3 Graphene, a one-atom-thick crystal of sp2

  19. Oxidative chemical vapor deposition of semiconducting polymers and their use In organic photovoltaics

    E-Print Network [OSTI]

    Borrelli, David Christopher

    2014-01-01

    Organic photovoltaics (OPVs) have received significant interest for their potential low cost, high mechanical flexibility, and unique functionalities. OPVs employing semiconducting polymers in the photoactive layer have ...

  20. Chemical vapor deposition and functionalization of fluorocarbon-organosilicon copolymer thin films

    E-Print Network [OSTI]

    Murthy, Shashi Krishna, 1977-

    2003-01-01

    Neural prostheses are micron-scale integrated circuit devices that are under development for the treatment of brain and spinal cord injuries. A key challenge in the fabrication of these silicon- based devices is the ...

  1. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Han, Jung (Woodbridge, CT); Su, Jie (New Haven, CT)

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  2. Multiplexed mass spectrometry for real-time sensing in a spatially programmable chemical vapor deposition reactor

    E-Print Network [OSTI]

    Rubloff, Gary W.

    in understanding and controlling chemical processes used in semiconductor fabrication. Given the complexity at any desired process design point, or 2 intentional nonuniformity to accelerate process optimization. This forms the basis for using real-time mass spectrometry to drive process sensing, metrology, and control

  3. Field emission properties of phosphorus doped microwave plasma chemical vapor deposition diamond films by ion implantation

    E-Print Network [OSTI]

    Lee, Jong Duk

    to the conclusion that phosphorus ions and defects in the Si­diamond interface play an important role. INTRODUCTION A new mold type diamond field emission array FEA has been fabricated on indium tin oxide ITO defects induce the split energy bands within the wide band gap of diamond and help electrons to jump

  4. Porous GaN nanowires synthesized using thermal chemical vapor deposition

    E-Print Network [OSTI]

    Kim, Bongsoo

    nanotube-confined reaction [4], arc discharge [5], laser ablation [6], sublimation [7], pyrolysis [8O3)/ carbons with NH3 produced the large-quantity porous GaN nanowires on the iron (Fe)/nickel (Ni

  5. Towards improved spinnability of chemical vapor deposition generated multi-walled carbon nanotubes

    E-Print Network [OSTI]

    McKee, Gregg Sturdivant Burke

    2008-01-01

    3-10, bottom). Nickel generated nanotubes show a slightlyfollowed by nickel and iron grown nanotubes with comparabletemperature. Nickel and iron generated nanotubes showed

  6. Lanthanide N,N-Dimethylaminodiboranates as a New Class of Highly Volatile Chemical Vapor Deposition Precursors

    E-Print Network [OSTI]

    Girolami, Gregory S.

    , praseodymium, neodymium, samarium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and lutetium

  7. Usage Policies Notebook for AMST Molecular Vapor Deposition System MVD 100

    E-Print Network [OSTI]

    Mease, Kenneth D.

    RF Hazard: The system uses RF power to generate plasma for chamber cleaning and substrate pre 2014 #12;2 Emergency Plan for AMST MVD 100 Standard Operating Procedures for Emergencies Contact the staff in order to use this equipment. The users are expected to understand the nature of the system

  8. Oxidative and initiated chemical vapor deposition for application to organic electronics

    E-Print Network [OSTI]

    Im, Sung Gap

    2009-01-01

    Since the first discovery of polymeric conductors in 1977, the research area of "organic electronics" has grown dramatically. However, methods for forming thin films comprised solely of conductive polymers are limited by ...

  9. A dual-laser interferometry system for thin film measurements in thermal vapor deposition applications

    E-Print Network [OSTI]

    Yin, Allen Shiping

    2012-01-01

    Lithography processes harnessing the phase change of the chemically inert carbon dioxide as a resist have been shown as a possible alternative to patterning thin film organic semiconductors and metals. The ability to control ...

  10. Z .Thin Solid Films 392 2001 231 235 Atmospheric pressure chemical vapor deposition of

    E-Print Network [OSTI]

    material in a wide variety of electrochromic devices, including `smart' windows, dis- plays and signs comfort, optimize illumination and reduce energy consumption in buildings. Elec- trochromic displays have

  11. Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis 

    E-Print Network [OSTI]

    Gomez Gualdron, Diego Armando 1983-

    2012-10-26

    , hence reaction conditions that increase nanoparticle stability, but reduce carbon solubility, may be explored to achieve nanotube templated growth of desired chiralities. The effect of carbon dissolution was further demonstrated through analyses...

  12. Low Temperature Chemical Vapor Deposition of Zirconium Nitride in a Fluidized Bed 

    E-Print Network [OSTI]

    Arrieta, Marie

    2012-10-19

    thick) on uranium-molybdenum (UMo) particulate fuel. Plate-type fuel with U-xMo (x = 3 to 10 wt.%) particle fuel dispersed in an aluminum matrix is under development at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test...

  13. Titanium Diboride Thin Films by Low-Temperature Chemical Vapor Deposition from the Single Source Precursor

    E-Print Network [OSTI]

    Girolami, Gregory S.

    coating for cutting tools,3 as an electrode4 and a diffusion barrier material5,6 in microelectronics

  14. Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model

    E-Print Network [OSTI]

    Bristol, University of

    that is beginning to find many commercial applications in electronics, cutting tools, medical coatings, and optics.1

  15. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process

    E-Print Network [OSTI]

    (LEED) patterns that were, theretofore, unassigned. Later, Blakely and his research undertook extensive of square micrometers on Cu substrates using a C isotope labeling technique.23 The C isotope labeling

  16. Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition

    E-Print Network [OSTI]

    Keast, Craig L.

    Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO[subscript 2] substrate. The properties and integration of these graphene-on-insulator transistors are presented and ...

  17. System and Method for Sealing a Vapor Deposition Source - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable Landmimic key features ofPortal System

  18. Atmospheric-Pressure Chemical Vapor Deposition of Iron Pyrite Thin Films

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (Technical Report) | SciTech Connect AssessingBasin CO{sub 2} pilot

  19. In-situ Sensing Using Mass Spectrometry and its Use for Run-To-Run Control on a W-CVD Cluster Tool

    E-Print Network [OSTI]

    Rubloff, Gary W.

    In-situ Sensing Using Mass Spectrometry and its Use for Run-To-Run Control on a W-CVD Cluster Tool , and E. Zafiriou2 1 Institute for Systems Research and Department of Materials and Nuclear Engineering 2 gases directly from the reactor of an ULVAC ERA-1000 cluster tool has been used for real time process

  20. 10/30/2001 Henn-Lecordier AVS 01 MS TuA7 1 Real-Time CVD Wafer State Metrology using

    E-Print Network [OSTI]

    Rubloff, Gary W.

    rate, consistent with industry practice ­ ~ 1% in-situ film thickness metrology achieved with the 3 diaphragm pump · Controller to keep P @ 100 Torr in acoustic cell Gas compression (diaphragm pump) Acoustic pumps W CVD reactor and gas sampling system to acoustic sensor 10 Torr Needle valve #12;10/30/2001 Henn

  1. Surface Quality of Ti-6%Al-4%V ELI When Machined Using CVD-Carbide Tools at High Cutting Speed

    SciTech Connect (OSTI)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.; Yasir, A.; Zaid, Y.; Yanuar, B.

    2011-01-17

    Machining of Ti-6Al-4V ELI becomes more interested topic due to extremely weight-to-strength ratio and resistance to corrosion at elevated temperature. Quality of machined surface is presented by surface roughness, surface texture and damages of microstructure of titanium alloys. The turning parameters evaluated are cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev, depth of cut of 0.10-0.20 mm and tool grade of CVD carbide tools. The results show the trend lines of surface roughness value are higher at the initial machining and the surface texture profile has a strong correlation with the feed rate. At the machining condition of cutting speed of 95 m/min, feed rate of 0.35 mm/rev and depth of cut of 0.10 mm produced the with layer with thickness of 2.0 {mu}m.

  2. Journal of The Electrochemical Society, 146 (3) 1197-1202 (1999) 1197 S0013-4651(98)01-060-X CCC: $7.00 The Electrochemical Society, Inc.

    E-Print Network [OSTI]

    Cincinnati, University of

    1999-01-01

    - vestigated over the last few years. Initial work was done by chemi- cal vapor deposition (CVD) using separate precursors for Si and C. Powell et al.1 used SiH4 and propane to grow single-crystalline SiC on Si at 1360 C2 and C2H2 by low-pressure CVD (LPCVD) at a temperature of 1000 C. An alternative approach has been

  3. Environmental Performance Characterization of Atomic Layer Deposition

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2008-01-01

    Rahtu and R. Gordon. “Atomic layer deposition of transitionoxide films grown by atomic layer deposition from iodide andand S. M. George. “Atomic layer deposition of ultrathin and

  4. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  5. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  6. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    SciTech Connect (OSTI)

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-12-04

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  7. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  8. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  9. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  10. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation,Ground GravityListsMercury Vapor Jump to:

  11. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  12. Advanced Chemical Heat Pumps Using Liquid-Vapor Reactions 

    E-Print Network [OSTI]

    Kirol, L.

    1987-01-01

    HEAT PUMPS USING LIQUID-VAPOR REACTIONS LANCE KIROL Senior Program Specialist Idaho National Engineering Laboratory Idaho Falls, Idaho . ABSTRACT Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous... to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynam ically feasible systems...

  13. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  14. Controlled CVD Growth of Single-Walled Carbon Nanotubes and Application to CNT-Si Heterojunction Solar Cells

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Solar Cells Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo 113 controlled assembly of SWNTs for SWNT-Si heterojunction solar cells will be discussed. We found' growth mode predicted by molecular dynamics simulations. We proposed a water vapor treatment to build up

  15. M. Bahrami ENSC 461 (S 11) Vapor Power Cycles 1 Vapor Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    is not a suitable model for steam power cycle since: The turbine has to handle steam with low quality which will cause erosion and wear in turbine blades. It is impractical to design a compressor that handles two vapor expands isentropically in turbine and produces work. 4-1: Const P heat rejection High quality

  16. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L. (Roseville, MN); Jeffrey, Frank R. (Shoreview, MN); Westerberg, Roger K. (Cottage Grove, MN)

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  17. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L. (Roseville, MN); Jeffrey, Frank R. (Shoreview, MN); Westerberg, Roger K. (Cottage Grove, MN)

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  18. Micromechanical Resonators with Nanoporous Materials for Enhanced Vapor Sensing

    E-Print Network [OSTI]

    Hwang, Yong Ha

    2012-01-01

    organic compounds," Analytical Chemistry, vol. 74, pp. 3084-Gas Sensor Array," Analytical Chemistry, vol. 81, pp. 595-Chemical Vapors," Analytical Chemistry, vol. 83, pp. 3448-

  19. Thermodynamic and transport properties of sodium liquid and vapor...

    Office of Scientific and Technical Information (OSTI)

    sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in...

  20. Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...