National Library of Energy BETA

Sample records for vanadium redox flow

  1. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect (OSTI)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  2. Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2013-04-22

    Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

  3. Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s

    SciTech Connect (OSTI)

    Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2012-07-01

    Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.

  4. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  5. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  6. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  7. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  8. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not play a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.

  9. Full cell study of Diels Alder poly(phenylene) anion and cation exchange membranes in vanadium redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pezeshki, Alan M.; Fujimoto, Cy; Sun, Che -Nan; Mench, Matthew M.; Zawodzinski, Thomas A.; Tang, Z. J.

    2015-11-14

    In this paper, we report on the performance of Diels Alder poly(phenylene) membranes in vanadium redox flow batteries. The membranes were functionalized with quaternary ammonium groups to form an anion exchange membrane (QDAPP) and with sulfonic acid groups to form a cation exchange membrane (SDAPP). Both membrane classes showed similar conductivities in the battery environment, suggesting that the ion conduction mechanism in the material is not strongly affected by the moieties along the polymer backbone. The resistance to vanadium permeation in QDAPP was not improved relative to SDAPP, further suggesting that the polarity of the functional groups do not playmore » a significant role in the membrane materials tested. Both QDAPP and SDAPP outperformed Nafion membranes in cycling tests, with both achieving voltage efficiencies above 85% while maintaining 95% coulombic efficiency while at a current density of 200 mA/cm2.« less

  10. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Sun, Che Nan; Delnick, Frank M; Aaron, D; Mench, Matthew M; Zawodzinski, Thomas A

    2014-01-01

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  11. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  12. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  13. Fact Sheet: Vanadium Redox Battery Demonstration Program (August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The City of Painesville, OH, and its partners will demonstrate vanadium redox battery storage capacity at the 32 megawatt (MW), coal-fired Painesville Municipal Electric Plant ...

  14. City of Painesville, Ohio Vanadium Redox Battery Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Painesville, Ohio and its partners will demonstrate vanadium redox battery storage capacity at the 32 megawatt (MW), coal-fired Painesville Municipal Electric Plant (PMEP). ...

  15. Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery

    SciTech Connect (OSTI)

    Reed, David M.; Thomsen, Edwin C.; Wang, Wei; Nie, Zimin; Li, Bin; Wei, Xiaoliang; Koeppel, Brian J.; Sprenkle, Vincent L.

    2015-07-01

    Three Nafion membranes of similar composition but different thicknesses were operated in a 3-cell 1kW class all vanadium mixed acid redox flow battery. The influence of current density on the charge/discharge characteristics, coulombic and energy efficiency, capacity fade, operating temperature and pressure drop in the flow circuit will be discussed and correlated to the Nafion membrane thickness. Material costs associated with the Nafion membranes, ease of handling the membranes, and performance impacts will also be discussed.

  16. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  17. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The major issue of this type of flow battery is the high capital cost, partially due to the high market prices of vanadium compounds. Another drawback of the vanadium system is the ...

  18. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  19. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  20. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  1. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-07-07

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  2. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-09-01

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  3. Redox flow batteries based on supporting solutions containing chloride

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  4. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Redox Flow Batteries for Grid-scale Energy Storage Pacific Northwest National Laboratory Contact PNNL About This Technology A schematic of an upgraded vanadium redox batter shows how using both hydrochloric and sulfuric acids in the electrolyte significantly improves the battery's performance and could also improve the electric grid's reliability and help connect more wind turbines and solar panels to

  5. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Title: Estimating the system price of redox flow batteries for grid storage Authors: Ha, ...

  6. Estimating the System Price of Redox Flow Batteries for Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the System Price of Redox Flow Batteries for Grid Storage VRFB system price ... Significance and Impact Redox flow batteries have potential advantages to meet the ...

  7. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  8. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  9. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    SciTech Connect (OSTI)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  10. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudak, Nicholas S.

    2013-12-31

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron–vanadium, and iron–chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantitiesmore » measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. As a result, proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.« less

  11. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    SciTech Connect (OSTI)

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.; Wang, Wei; Thomsen, Edwin C.; Reed, David M.; Li, Bin; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2015-10-20

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been shared with the redox flow battery community to both validate their stack data and guide future direction.

  12. Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Britto, Sylvia; Leskes, Michal; Hua, Xiao; Hébert, Claire-Alice; Shin, Hyeon Suk; Clarke, Simon; Borkiewicz, Olaf; Chapman, Karena W.; Seshadri, Ram; Cho, Jaephil; et al

    2015-06-08

    Vanadium sulfide VS4 in the patronite mineral structure, is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2]2–. 51V NMR shows that the material, despite having V formally in the d1 configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 Å and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S2–, including via an internal redox process whereby an electronmore » from V4+ is transferred to [S2]2– resulting in oxidation of V4+ to V5+ and reduction of the [S2]2– to S2- to form Li3VS4 containing tetrahedral [VS4]3– anions. On further lithiation this is followed by reduction of the V5+ in Li3VS4 to form Li3+xVS4 (x=0.5-1), a mixed valent V4+/V5+ compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. In conclusion, the unusual redox processes in this system are elucidated using a suite of short range characterization tools including 51V Nuclear Magnetic Resonance spectroscopy (NMR), S Kedge X-ray Absorption Near Edge Spectroscopy (XANES) and Pair Distribution Function (PDF) Analysis of X-ray data.« less

  13. Recent Developments and Trends in Redox Flow Batteries - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2015, Research Highlights Recent Developments and Trends in Redox Flow Batteries Different flow batteries schemes were investigated. The classic flow battery (top left, ...

  14. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow JCESR investigates the replacement of solid electrodes with energy-dense liquids that charge and discharge as they flow through the battery and undergo reduction and oxidation ("redox") reactions. These redox flow batteries store large amounts of energy inexpensively and are well-suited to the grid. JCESR introduced a new direction in flow battery research: using inexpensive and versatile organic molecules as the energy storing redox materials. Organic molecules are highly

  15. Porous Polymeric Composite Separators for Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Bin; Wang, Wei

    2015-04-03

    This invited review paper describes the current status of the porous separator for redox flow battery application.

  16. Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

    SciTech Connect (OSTI)

    Britto, Sylvia; Leskes, Michal; Hua, Xiao; Hébert, Claire-Alice; Shin, Hyeon Suk; Clarke, Simon; Borkiewicz, Olaf; Chapman, Karena W.; Seshadri, Ram; Cho, Jaephil; Grey, Clare P.

    2015-06-08

    Vanadium sulfide VS4 in the patronite mineral structure, is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2]2–. 51V NMR shows that the material, despite having V formally in the d1 configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 Å and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S2–, including via an internal redox process whereby an electron from V4+ is transferred to [S2]2– resulting in oxidation of V4+ to V5+ and reduction of the [S2]2– to S2- to form Li3VS4 containing tetrahedral [VS4]3– anions. On further lithiation this is followed by reduction of the V5+ in Li3VS4 to form Li3+xVS4 (x=0.5-1), a mixed valent V4+/V5+ compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. In conclusion, the unusual redox processes in this system are elucidated using a suite of short range characterization tools including 51V Nuclear Magnetic Resonance spectroscopy (NMR), S Kedge X-ray Absorption Near Edge Spectroscopy (XANES) and Pair Distribution Function (PDF) Analysis of X-ray data.

  17. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Subject: energy storage; flow battery; grid storage; lithium-ion battery; manufacturing ...

  18. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR (1) Symmetric Nonaqueous flow battery based on ambipolar PTIO (cell voltage ...

  19. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  20. Redox Flow - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow March 10, 2016, Research Highlights A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR A symmetric nonaqueous flow battery based on the highly soluble, ambipolar PTIO achieved a cell voltage of ~1.7V and decent cyclability. We demonstrated FTIR as an effective method to monitor the state of charge (SOC) of this flow battery. Read More Redox Flow December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe

  1. Fe-V redox flow batteries

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  2. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  3. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect (OSTI)

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  4. New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" - Joint Center for Energy Storage Research October 17, 2014, Research Highlights New concepts in Redox Flow: "Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents" Simple porous Celgard separators allow ionic transport while rejecting redox-active polymer (RAP), thus avoiding

  5. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  6. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  7. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  8. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  9. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  10. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  11. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Office of Environmental Management (EM)

    temperature window by 83%, so the battery can operate between -5 and 50C. Other ... Old Battery Technology New Battery Technology The benefits of the new electrolyte include: ...

  12. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. ...

  13. Electrochemical Model of the Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.

    2012-11-05

    This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.

  14. Materials for Use with Aqueous Redox Flow Batteries | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Materials for Use with Aqueous Redox Flow Batteries The invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated

  15. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect (OSTI)

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  16. Transitioning from Fuel Cells to Redox Flow Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning From Fuel Cells to Redox Flow Cells T. Zawodzinski and Matt Mench University of Tennessee and ORNL Managed by UT-Battelle for the Department of Energy 2 Acknowledgments $$ DOE-OE EPRI GCEP NSF EPSCOR (TN SCORE) UTK Governor's Chair Fund Partner in Crime Matt Mench Managed by UT-Battelle for the Department of Energy Peeling the Onion' Personalized History of PEM Fuel Cells We May Recapitulate This for RFBs Catalysis Test System * Small Single Cell * Large Single Cell * Stack *

  17. Microporous Separators for Fe/V Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Liyu; Luo, Qingtao; Nie, Zimin; Wang, Wei; Li, Bin; Xia, Guanguang; Miller, Eric; Chambers, Jeff; Yang, Zhenguo

    2012-06-28

    The Fe/V redox flow battery has demonstrated promising performance that is advantageous over other redox flow battery systems. The less oxidative nature of the Fe(III) species enables use of hydrocarbon - based ion exchange membranes or separators. Daramic(reg. sign) microporous polyethylene separators were tested on Fe/V flow cells using the sulphuric/chloric mixed acid - supporting electrolytes. Among them, Daramic(reg. sign) C exhibited good flow cell cycling performance with satisfactory repeatability over a broad temperature range of 5 - 50 degrees C. Energy efficiency (EE) of C remains above 67% at current densities of 50 - 80 cm{sup -2} in the temperature range from room temperature to 50 degrees C. The capacity decay problem could be circumvented through hydraulic pressure balancing by applying different pump rates to the positive and negative electrolytes. Stable capacity and energy were obtained over 40 cycles at room temperature and 40 degrees C. These results manifest that the extremely low-cost separators ($10/cm2) are applicable in the Fe/V flow battery system at an acceptable sacrifice of energy efficiency. This stands for a remarkable breakthrough in significant reduction of the capital cost of the Fe/V flow battery system, and is promising to promote its market penetration in grid stabilization and renewable integration.

  18. Systems and methods for rebalancing redox flow battery electrolytes

    DOE Patents [OSTI]

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  19. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  20. Monitoring electrolyte concentrations in redox flow battery systems

    SciTech Connect (OSTI)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  1. Composite separators and redox flow batteries based on porous separators

    DOE Patents [OSTI]

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  2. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  3. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  4. Transitioning from Fuel Cells to Redox Flow Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning from Fuel Cells to Redox Flow Cells Transitioning from Fuel Cells to Redox Flow Cells Presentation by Tom Zawodzinski, University of Tennessee and Oak Ridge National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_zawodzinski.pdf (5.16 MB) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 Energy Storage Systems 2014 Peer Review Presentations - Session 2 Energy

  5. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric D.; Lawrence, Chad W.; Vijayakumar, M.; Henderson, Wesley A.; Liu, Tianbiao L.; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

    2015-07-20

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimization sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.

  6. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  7. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  8. Mixed-Metal, Structural, and Substitution Effects of Polyoxometalates on Electrochemical Behavior in a Redox Flow Battery

    SciTech Connect (OSTI)

    Pratt, Harry D; Pratt, William R; Fang, Xikui; Hudak, Nicholas S; Anderson, Travis M

    2014-08-01

    A pair of redox flow batteries containing polyoxometalates was tested as part of an ongoing program in stationary energy storage. The iron-containing dimer, (SiFe3W9(OH)3O34)2(OH)311−, cycled between (SiFe3W9(OH)3O34)2(OH)311−/(SiFe3W9(OH)3O34)2(OH)314−and (SiFe3W9(OH)3O34)2(OH)317−/(SiFe3W9(OH)3O34)2(OH)314− for the positive and negative electrode, respectively. This compound demonstrated a coulombic efficiency of 83% after 20 cycles with an electrochemical yield (measured discharge capacity as a percentage of theoretical capacity) of 55%. Cyclic voltammetry on the Lindqvist ion, cis-V2W4O194−, showed quasi-reversible vanadium electrochemistry, but tungsten reduction was mostly irreversible. In a flow cell configuration, cis-V2W4O194−had a coulombic efficiency of 45% (for a two-electron process) and an electrochemical yield of 16% after 20 cycles. The poor performance of cis-V2W4O194−was attributed primarily to its higher charge density. Collectively, the results showed that both polyoxometalate size and charge density are both important parameters to consider in battery material performance.

  9. The Lightest Organic Radical Cation for Charge Storage in Redox Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research August 25, 2016, Research Highlights The Lightest Organic Radical Cation for Charge Storage in Redox Flow Batteries A family of dimethoxybenzene derivatives have been designed and screened using a systematic pruning approach and a stepwise work flow. Compound 6 and 7 not only show promising results in the screening work flow, including cyclic voltammetry, bulk electrolysis cell tests, flow cell tests and EPR kinetic test, but also offer

  10. Membranes Optimized for High Conductivity and Low Crossover of Redox Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells 2015-033 - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Membranes Optimized for High Conductivity and Low Crossover of Redox Flow Cells 2015-033 Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Tucker, M. C., Cho, K. T., Spingler, F. B., Weber, A. Z., Lin, G. "Impact of membrane characteristics on the performance and cycling of the Br2-H2 redox flow cell," Journal of

  11. Operating a redox flow battery with a negative electrolyte imbalance

    DOE Patents [OSTI]

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  12. A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Charge Diagnostics by FTIR - Joint Center for Energy Storage Research March 10, 2016, Research Highlights A Symmetric Organic - Based Nonaqueous Redox Flow Battery and Its State of Charge Diagnostics by FTIR (1) Symmetric Nonaqueous flow battery based on ambipolar PTIO (cell voltage 1.7V; solubility 2.6M in MeCN; good cyclability) (2) FTIR-based state of charge monitoring Scientific Achievement A symmetric nonaqueous flow battery based on the highly soluble, ambipolar PTIO achieved a cell

  13. Performance Evaluation of Microporous Separator in Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Luo, Qingtao; Li, Bin; Nie, Zimin; Miller, Eric; Chambers, Jeff; Sprenkle, Vincent L.; Wang, Wei

    2013-04-08

    The newly developed Fe/V redox flow battery has demonstrated attractive cell performance. However, the deliverable energy density is relatively inferior due to the low cell voltage. To compensate this disadvantage and compete with other redox flow battery systems, cost reduction of the Fe/V system is necessary. This paper describes evaluation of hydrocarbon-based Daramic® microporous separators for use in the Fe/V system. The separator B having ion exchange capacity demonstrated excellent capacity retention capability. Separator B exhibited energy efficiency above 65% over a broad temperature range of 5-50oC and at current densities up to 80mA/cm2. Plus, separator B is very inexpensive and has exceptional mechanical properties. Therefore, this separator shows great potential to replace the expensive Nafion® membrane. This will drive down the capital cost and make the Fe/V system a promising low-cost energy storage technology.

  14. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.

  15. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  16. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  17. Some Lessons Learned from 20 Years in RedOx Flow Battery R&d | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Some Lessons Learned from 20 Years in RedOx Flow Battery R&d Some Lessons Learned from 20 Years in RedOx Flow Battery R&d Presentation by Steve Clarke, Applied Intellectual Capital, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_clarke.pdf (1.38 MB) More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Flow Cells for Energy Storage Workshop Overview Energy Storage Systems 2014 Peer

  18. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

  19. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  20. Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less

  1. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemoreof the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.less

  2. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; Laramie, Sydney; Dmello, Rylan D.; Huang, Jinhua; Zhang, Lu; Hu, Dehong; Vijayakumar, M.; Wang, Wei; et al

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  3. Practical Thermodynamic Quantities for Aqueous Vanadium- and...

    Office of Scientific and Technical Information (OSTI)

    Practical Thermodynamic Quantities for Aqueous Vanadium- and Iron-Based Flow Batteries. Citation Details In-Document Search Title: Practical Thermodynamic Quantities for Aqueous...

  4. VANADIUM ALLOYS

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  5. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less

  6. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  7. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  8. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  9. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  10. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  11. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  12. Optimization of electrode characteristics for the Br?/H? redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2015-01-01

    The Br?/H? redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and () electrode architecture are investigated. Increasing hydrogen pressure and depositing the () catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt () electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  13. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiencymore » of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  14. Optimization of electrode characteristics for the Br-2/H-2 redox flow cell

    SciTech Connect (OSTI)

    Tucker, MC; Cho, KT; Weber, AZ; Lin, GY; Nguyen, TV

    2014-10-17

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (-) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (-) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm(-2) and a peak power density of 1.4 W cm(-2). Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (-) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  15. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    SciTech Connect (OSTI)

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  16. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    SciTech Connect (OSTI)

    Yang, B; Hoober-Burkhardt, L; Wang, F; Prakash, GKS; Narayanan, SR

    2014-05-21

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonic acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  17. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    SciTech Connect (OSTI)

    Tucker, MC; Cho, KT; Spingler, FB; Weber, AZ; Lin, GY

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and addition of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.

  18. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; Weber, Adam Z.; Lin, Guangyu

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and addition of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.

  19. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; Weber, Adam Z.; Lin, Guangyu

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less

  20. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOE Patents [OSTI]

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  1. Stack developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Reed, David M.; Thomsen, Edwin C.; Li, Bin; Wang, Wei; Nie, Zimin; Koeppel, Brian J.; Kizewski, James P.; Sprenkle, Vincent L.

    2015-11-21

    Over the past several years, efforts have been focused on improving the performance of kW class stacks with increasing current density. The influence of the Nafion membrane resistance, an interdigitated design to reduce the pressure drop in the electrolyte circuit, the temperature of the electrolyte, and the electrode structure will be discussed and correlated to the electrical performance. Furthermore, improvements to the stack energy efficiency and how those translate to the overall system efficiency will also be discussed.

  2. Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; Lindsey, Melanie; Zawodzinski, Thomas A

    2015-11-28

    Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggest that themore » diffusion pathways in SDAPP are very different than in Nafion.« less

  3. Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes

    SciTech Connect (OSTI)

    Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; Lindsey, Melanie; Zawodzinski, Thomas A

    2015-11-28

    Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggest that the diffusion pathways in SDAPP are very different than in Nafion.

  4. Doing Business at PNNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNNL's vanadium redox flow battery technology licensed by WattJoule Read this

  5. Slag recycling of irradiated vanadium

    SciTech Connect (OSTI)

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  6. Recent Advances in Molecular Engineering of Redox Active Organic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Nonaqueous Flow Batteries - Joint Center for Energy Storage Research August 20, 2016, Research Highlights Recent Advances in Molecular Engineering of Redox Active Organic Molecules for Nonaqueous Flow Batteries Summary of organic couples and the corresponding supporting salts demonstrated in either a coin cell, Swagelok cell, H-cell, or flow cell. Scientific Achievement This review article summarizes the recent work on organic molecules for redox flow batteries, both redox couples and

  7. Research and development on vanadium alloys for fusion applications

    SciTech Connect (OSTI)

    Zinkle, S.J.; Rowcliffe, A.F.; Matsui, H.; Abe, K.; Smith, D.L.; Osch, E. van; Kazakov, V.A.

    1998-03-01

    The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

  8. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  9. How Atomic Vibrations Transform Vanadium Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy November 10, 2014 Contact: Dawn Levy, levyd@ornl.gov, 865.576.6448 Budaivibe Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. Image credit: Oak Ridge National Laboratory For more than 50 years, scientists have

  10. Complexes Containing Redox Non-Innocent Ligands for Symmetric,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Electron Transfer Non-Aqueous Redox Flow Batteries - Joint Center for Energy Storage Research May 28, 2015, Research Highlights Complexes Containing Redox Non-Innocent Ligands for Symmetric, Multi-Electron Transfer Non-Aqueous Redox Flow Batteries (Top) Functionalized chromium bipyridine complexes (left), and solubility data for the charged and neutral species (right). (Bottom) Charge-discharge curves for the Cr(L3)3 complex: A) Full H-cell potential, B) Positive electrode potential,

  11. Vanadium removal from petroleum refinery wastewater

    SciTech Connect (OSTI)

    Nurdogan, Y.; Meyer, C.L.

    1996-11-01

    Although a numerical effluent limit has not been proposed for vanadium, San Francisco Bay Area refineries have been investigating reasonable source control and treatment measures to limit the discharge of vanadium as part of their National Pollution Discharge Elimination System (NPDES) permit requirements because vanadium may contribute to aquatic toxicity. The NPDES permit issued for the Shell Martinez Manufacturing Complex (MMC) by the Regional Water Quality Control Board (CRWQCB) required that in the investigation of control strategies for vanadium, consideration must be given to source control measures that would reduce the discharge to the extent practicable. This paper summarizes the results of bench- and pilot-scale studies to remove vanadium from process effluent of the Shell MMC. This study has resulted in the following conclusions: vanadium in the Shell MMC refinery wastewater is generated by two major sources--the Flexicoker and Stretford processes; ferric and ferrous salts are both effective in removing vanadium from wastewaters; there are tradeoffs between the initial vanadium concentration, the final pH, and the final dissolved vanadium concentration, for both ferrous and ferric reagents; recycle of iron hydroxide sludge can reduce the amount of reagent needed to attain a given vanadium concentration; other things being equal, less ferric than ferrous reagent is required to produce the same removal of vanadium; the dewatered sludge from the pilot plant was tested for its hazardous waste characteristics; a high pH sludge regeneration and reuse process appears to be a promising method of cleaning up the hazardous iron sludge.

  12. American Vanadium | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Vanadium NREL researchers are collaborating with American Vanadium, an integrated energy storage company, to evaluate and demonstrate the first North American CellCube battery management system. Photo of the American Vanadium CellCube device in a laboratory in the Energy Systems Integration Facility Photo by Dennis Schroeder CellCubes can store megawatts of energy, providing an uninterrupted supply of power from solar and wind power stations, no matter the outdoor conditions. Work at

  13. Growth control of the oxidation state in vanadium oxide thin...

    Office of Scientific and Technical Information (OSTI)

    Growth control of the oxidation state in vanadium oxide thin films Prev Next Title: Growth control of the oxidation state in vanadium oxide thin films Authors: Lee, Shinbuhm ...

  14. Vanadium oxides nanostructures: Hydrothermal synthesis and electrochemical properties

    SciTech Connect (OSTI)

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2014-12-15

    Highlights: • Vanadium oxides nanostructures were synthesized hydrothermally. • Reversible redox behavior with doping/dedoping process. • Doping/dedoping is easier for Li{sup +} to Na{sup +}. • Energy-related applications such as cathodes in lithium batteries. - Abstract: A facile and template-free one-pot strategy is applied to synthesize nanostructured vanadium oxide particles via a hydrothermal methodology. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the structure and morphology of the samples. The products are gradually changed from sheet-shaped VO{sub 2}(B) to rod-like V{sub 3}O{sub 7}·H{sub 2}O with decreasing cyclohexanediol as both protective and reducing agent. The specific surface area of the VO{sub 2}(B) nanosheets and V{sub 3}O{sub 7}·H{sub 2}O nanorods was found to be 22 and 16 m{sup 2} g{sup −1}, respectively. Thin films of VO{sub 2}(B) and V{sub 3}O{sub 7}·H{sub 2}O deposited on ITO substrates were electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The voltammograms show reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/de-intercalation into the crystal lattice of the nanorods/nanosheets. This process is easier for the small Li{sup +} cation than larger ones Na{sup +}.

  15. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  16. Minerals yearbook, 1992: Vanadium. Annual report

    SciTech Connect (OSTI)

    Hilliard, H.E.

    1993-09-01

    In 1992, steelmaking continued to account for more than 80% of domestic vanadium demand. Consumption showed a modest increase, from 3,300 tons in 1991 to 4,032 tons in 1992. Although overall imports of vanadium raw materials decreased when compared with 1991, imports of ash, residues, and spent catalysts increased. Total U.S. exports of vanadium materials increased from 1,560 tons in 1991 to about 1,700 tons in 1992. The oversupply of vanadium that began in late 1989 persisted throughout 1992 despite reduced production by the world's largest producer, Highveld Steel Vanadium Corp. of the Republic of South Africa. A result of the oversupply was continuously lower prices in 1992.

  17. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    SciTech Connect (OSTI)

    Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

    2013-11-13

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of

  18. Methods for making lithium vanadium oxide electrode materials

    DOE Patents [OSTI]

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  19. Method for preparing high purity vanadium

    DOE Patents [OSTI]

    Schmidt, Frederick; Carlson, O. Norman

    1986-09-09

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  20. Method for preparing high purity vanadium

    DOE Patents [OSTI]

    Schmidt, F.; Carlson, O.N.

    1984-05-16

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  1. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  2. Growth control of the oxidation state in vanadium oxide thin...

    Office of Scientific and Technical Information (OSTI)

    Growth control of the oxidation state in vanadium oxide thin films Citation Details In-Document Search Title: Growth control of the oxidation state in vanadium oxide thin films ...

  3. Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Rifle Processing Site, Colorado | Department of Energy and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado

  4. Redox Biochemistry | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Biochemistry We study biomolecular reactions that convert electrochemical energy into chemical bonds of reduced products. This research advances the development of enzyme-based and microbial-based systems for the production of energy compounds and carriers. Illustration of an H-cluster and the conserved proton-transfer pathway (labeled with an arrow as PT) in [FeFe]-hydrogenase. A cartoon of a grey blob represents the structure with surface representations of blue spirals and helixes. An

  5. Slag remelt purification of irradiated vanadium alloys

    SciTech Connect (OSTI)

    Carmack, W.J.; Smolik, G.R.; McCarthy, K.A.; Gorman, P.K.

    1995-07-01

    This paper describes theoretical and scoping experimental efforts to investigate the decontamination potential of a slag remelting process for decontaminating irradiated vanadium alloys. Theoretical calculations, using a commercial thermochemical computer code HSC Chemistry, determined the potential slag compositions and slag-vanadium alloy ratios. The experiment determined the removal characteristics of four surrogate transmutation isotopes (Ca, Y - to simulate Sc, Mn, and Ar) from a V-5Ti-5Cr alloy with calcium fluoride slag. An electroslag remelt furnace was used in the experiment to melt and react the constituents. The process achieved about a 90 percent removal of calcium and over 99 percent removal of yttrium. Analyses indicate that about 40 percent of the manganese may have been removed. Argon analyses indicates that 99.3% of the argon was released from the vanadium alloy in the first melt increasing to 99.7% during the second melt. Powder metallurgy techniques were used to incorporate surrogate transmutation products in the vanadium. A powder mixture was prepared with the following composition: 90 wt % vanadium, 4.7 wt % titanium, 4.7 wt % chromium, 0.35 wt % manganese, 0.35 wt % CaO, and 0.35 wt % Y{sub 2}O{sub 3}. This mixture was packed into 2.54 cm diameter stainless steel tubes. Argon was introduced into the powder mixture by evacuating and backfilling the stainless steel containers to a pressure of 20 kPa (0.2 atm). The tubes were hot isostatically pressed at 207 MPa (2000 atm) and 1473 K to consolidate the metal. An electroslag remelt furnace (crucible dimensions: 5.1 cm diameter by 15.2 cm length) was used to process the vanadium electrodes. Chemical analyses were performed on samples extracted from the slags and ingots. Ingot analyses results are shown below. Values are shown in percent removal of the four targeted elements of the initial compositions.

  6. Partial oxidation of vanadium-containing heavy liquid hydrocarbonaceous and solid carbonaceous fuels

    SciTech Connect (OSTI)

    Najjar, M.S.; Becker, M.W.; Stevenson, J.S.

    1988-03-22

    In a partial oxidation process for the production of gaseous mixtures comprising H/sub 2/+CO in the reaction zone of a down flowing gas generator, the improvements are described comprising: (1) mixing together the following materials to produce a feed mixture (i) a vanadium-containing fuel whose ash includes a minimum of 2.0 weight % of vanadium selected from the group consisting of liquid hydrocarbonaceous fuel, a slurry of solid carbonaceous fuel, and mixtures thereof; (ii) supplemental copper-containing additive; and (iii) at least a portion of the remainder of the copper-containing slag after separation of the coarse slag fraction in (5); (2) reacting by partial oxidation in a refractory-lined free-flow unpacked reaction zone of the gas generator the vanadium-containing feed mixture from (1) with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO along with vanadium-containing molten slag comprising a liquid phase washing agent that collects and transports vanadium-containing laths and spinels and other ash components and refractory out of the reaction zone; (3) passing the hot raw effluent gas stream down through a coaxial discharge passage in the bottom of the reaction zone of the gas generator; (4) passing through the quench tank at least a portion of the hot effluent gas stream leaving the slag separation chamber to produce the gaseous mixture comprising H/sub 2/+CO, and solidifying molten slag; and (5) passing the water and solids from the bottom of the quench tank into a water-solids separation zone.

  7. Redox Chemistry of Anthraquinone Derivatives Via Simulations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 27, 2014, Research Highlights Redox Chemistry of Anthraquinone Derivatives Via ... S. Assary, Investigation of the Redox Chemistry of Anthraquinone Derivatives Using ...

  8. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  9. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  10. Modified lithium vanadium oxide electrode materials products and methods

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  11. Creep properties of vanadium-base alloys

    SciTech Connect (OSTI)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Vanadium-base alloys are promising candidate materials for application in fusion reactor structural components because of several important advantages. V-4Cr-4Ti has been identified as one of the most promising candidate alloys and was selected for comprehensive tests and examination. In the present investigation, thermal creep rates and stress-rupture life of V-4Cr-4Ti and V-10Cr-5Ti alloys were determined at 600C. The impurity composition and microstructural characteristics of creep-tested specimens were analyzed and correlated with measured creep. Results show that V-4Cr-4Ti, which contains impurity compositions typical of a commercially fabricated vanadium-based alloy, exhibits creep strength substantially superior to that of V-20Ti, HT-9, or Type 316 stainless steel. The V-10Cr-5Ti alloy exhibits creep strength somewhat higher than that of V-4Cr-4Ti.

  12. Controlling vanadium from high metals crude oils

    SciTech Connect (OSTI)

    Golden, S.W.; Martin, G.R.

    1995-09-01

    Processing heavier high metals crude oils continues to be an objective of many refiners. Refiners manage the vanadium and other contaminants with hydroprocessing and FCC catalysts that are more tolerant to metals. Although hydroprocessing and FCC catalyst formulations are critical and will be required for the bulk of the metals removal, many times primary distillation impacts on vanadium are ignored. Distillation system designs can significantly impact the metals content of the gas oil pool or the total gas yields for a targeted metals level. Commercial experience shows that total gas oil metals to the hydroprocessing unit can be reduced by 20 to 40% for a given gas yield or the total gas oil yield can be increased for a given metals target by optimizing primary distillation system performance. Total gas oil vanadium content has varied from 5 to 2 weight ppm depending on crude oil metals level, unit process design, distillation unit operation, and equipment design. An actual example using a 22.0 API Bochequero Field blend will be used to illustrate the points covered. The source of the vanadium in the various gas oil pool components will be evaluated and show potential gas oil quality improvements based on primary distillation system design and operation modifications. In the example, the refiner processes 145,000 bpd of crude oil through a conventional integrated atmospheric/vacuum unit and processes the vacuum residue in a delayed coker. The gas oil blend streams consists of atmospheric gas oil, light vacuum gas oil, and heavy vacuum gas oil from the crude unit and heavy coker gas oil from the delayed coker. All the modifications which will be discussed have been operating successfully for several years.

  13. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    SciTech Connect (OSTI)

    Hohn, Keith, L.

    2006-01-09

    methanol oxidation were used to probe the chemical differences between sol-gel prepared and conventionally prepared metal oxides. Both V/MgO and V/SiO2 were studied. For both catalysts, similar product selectivities were noted for either preparation method, suggesting similar acid/base and redox properties for the catalysts. At lower weight loadings (<5%), activity was also similar, but at higher weight loadings the sol-gel prepared catalysts were more active. This was attributed to the greater dispersion of vanadium on sol-gel prepared catalysts, and it was suggested that small vanadium oxide domains were more active in methanol oxidation than polymeric and bulk domains. A novel sol-gel method was developed for preparation of VPO catalysts, which are used industrially in butane oxidation to maleic anhydride. In this method vanadium (V) triisopropoxide was reacted with orthophosphoric acid in THF to form a gel. Drying this gel under air resulted in an intercalated VOPO4 compound, where solvent molecules were trapped between layers of the vanadium phosphate compound. Higher surface areas could be achieved by drying this gel at high pressure in an autoclave. The amount of solvent (THF) placed in the autoclave was important in this process. Low amounts of solvent led to a lower surface area, as the solvent evaporated before reaching the critical point and collapsed the gel's pores. In addition, vanadium reduction occurred in the autoclave due to reaction of isopropanol with the vanadium phosphate. Higher amounts of THF reduced the concentration of isopropanol, leading to less reduction. Surfaces areas in excess of 100 m2/g were achieved with this method, and the product was confirmed through XPS and IR to be VOHPO4*0.5H2O, the common precursor for industrial VPO catalysts. Furthermore, this product displayed a platelet morphology, which is desirable for butane oxidation. Further work showed that this material could be transformed to (VO)2P2O7 (the industrial catalyst for

  14. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOE Patents [OSTI]

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  15. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  16. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  17. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  18. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  19. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  20. Nuclear reactor fuel element with vanadium getter on cladding

    DOE Patents [OSTI]

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  1. Redox Shuttle Additives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttle Additives Technology available for licensing: A series of novel redox shuttle additives for lithium-ion batteries Seven-technology suite helps reduce battery costs Provides overcharge protection and increased battery safety and reliability PDF icon redox_shuttles

  2. Method to remove uranium/vanadium contamination from groundwater

    SciTech Connect (OSTI)

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  3. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  4. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  5. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide

    SciTech Connect (OSTI)

    Dejoz, A.; Vazquez, I.; Nieto, J.M.L.; Melo, F.

    1997-07-01

    The reaction kinetics of the oxidative dehydrogenation (ODH) of n-butane over vanadia supported on a heat-treated Mg/Al hydrotalcite (37.3 wt % of V{sub 2}O{sub 5}) was investigated by both linear and nonlinear regression techniques. A reaction network including the formation of butenes (1-, 2-cis-, and 2-trans-butene), butadiene, and carbon oxides by parallel and consecutive reactions, at low and high n-butane conversions, has been proposed. Langmuir-Hinshelwood (LH) models can be used as suitable models which allows reproduction of the global kinetic behavior, although differences between oxydehydrogenation and deep oxidation reactions have been observed. Thus, the formation of oxydehydrogenation products can be described by a LH equation considering a dissociative adsorption of oxygen while the formation of carbon oxides is described by a LH equation with a nondissociative adsorption of oxygen. Two different mechanisms operate on the catalyst: (i) a redox mechanism responsible of the formation of olefins and diolefins and associated to vanadium species, which is initiated by a hydrogen abstraction; (ii) a radical mechanism responsible of the formation of carbon oxides from n-butane and butenes and associated to vanadium-free sites of the support. On the other hand, the selectivity to oxydehydrogenation products increases with the reaction temperature. This catalytic performance can be explained taking into account the low reducibility of V{sup 5+}-sites and the higher apparent activation energies of the oxydehydrogenation reactions with respect to deep oxidation reactions.

  6. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOE Patents [OSTI]

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  7. Reduction-Oxidation Plant (REDOX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Reduction-Oxidation Plant (REDOX) About Us About Hanford Cleanup Hanford ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  8. Selective oxidation of n-butane and butenes over vanadium-containing catalysts

    SciTech Connect (OSTI)

    Nieto, J.M.L.; Concepcion, P.; Dejoz, A.; Knoezinger, H.; Melo, F.; Vazquez, M.I.

    2000-01-01

    The oxidative dehydrogenation (OXDH) of n-butane, 1-butene, and trans-2-butene on different vanadia catalysts has been compared. MgO, alumina, and Mg-Al mixed oxides with Mg/(Al + Mg) ratios of 0.25 and 0.75 were used as supports. The catalytic data indicate that the higher the acid character of catalysts the lower is both the selectivity to C{sub 4}-olefins from n-butane and the selectivity to butadiene from both 1-butene or trans-2-butene. Thus, OXDH reactions are mainly observed from n-butane and butenes on basic catalysts. The different catalytic performance of both types of catalysts is a consequence of the isomerization of olefins on acid sites, which appears to be a competitive reaction with the selective way, i.e., the oxydehydrogenation process by a redox mechanism. Infrared spectroscopy data of 1-butene adsorbed on supported vanadium oxide catalysts suggest the presence of different adsorbed species. O-containing species (carbonyl and alkoxide species) are observed on catalysts with acid sites while adsorbed butadiene species are observed on catalysts with basic sites. According to these results a reaction network for the oxydehydrogenation of n-butane is proposed with parallel and consecutive reactions.

  9. Method for characterization of the redox condition of cementitious materials

    SciTech Connect (OSTI)

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  10. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  11. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  12. DOE - Office of Legacy Management -- Vanadium Corp of America - PA 15

    Office of Legacy Management (LM)

    Vanadium Corp of America - PA 15 Site ID (CSD Index Number): PA.15 Site Name: Vanadium Corp. of America Site Summary: Site Link: http://www.lm.doe.gov/canonsburg/Sites.aspx External Site Link: Alternate Name(s): UMTRAP Vicinity Property No. CA-401 Vanadium Corp of America Alternate Name Documents: PA.15-5 Location: Mayer Street - Collier Township , Bridgeville , Pennsylvania Location Documents: PA.15-1 Historical Operations (describe contaminants): Faclility used to grind pitchblende ore during

  13. Insulator-to-Metal Transition of Vanadium Dioxide | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as smart windows and ultrafast field effect transistors, exhibits an insulator to ... vanadium dioxide driven by large phonon entropy," Nature 515, 535-539, 2014. DOI: ...

  14. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide

    SciTech Connect (OSTI)

    Qi Ji [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Department of Chemical Engineering, Dalian Life Science College, Dalian Nationalities University, 18 Laohe West Road, Dalian 116600 (China); Ning Guiling [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Lin Yuan [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2008-08-04

    A novel process was developed for synthesizing pure thermochromic vanadium dioxide (VO{sub 2}) by thermal reduction of vanadium pentoxide (V{sub 2}O{sub 5}) in ammonia gas. The process of thermal reduction of V{sub 2}O{sub 5} was optimized by both experiments and modeling of thermodynamic parameters. The product VO{sub 2} was characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The experimental results indicated that pure thermochromic VO{sub 2} crystal particles were successfully synthesized. The phase transition temperature of the VO{sub 2} is approximately 342.6 K and the enthalpy of phase transition is 44.90 J/g.

  15. Present Status of Vanadium Alloys for Fusion Applications

    SciTech Connect (OSTI)

    Muroga, Takeo; Chen, J. M.; Chernov, V. M.; Kurtz, Richard J.; Le Flem, M.

    2014-12-01

    Vanadium alloys are advanced options for low activation structural materials. After more than two decades of research, V-4Cr-4Ti has been emerged as the leading candidate, and technological progress has been made in reducing the number of critical issues for application of vanadium alloys to fusion reactors. Notable progress has been made in fabricating alloy products and weld joints without degradation of properties. Various efforts are also being made to improve high temperature strength and creep-rupture resistance, low temperature ductility after irradiation, and corrosion resistance in blanket conditions. Future research should focus on clarifying remaining uncertainty in the operating temperature window of V-4Cr-4Ti for application to near to middle term fusion blanket systems, and on further exploration of advanced materials for improved performance for longer-term fusion reactor systems.

  16. ORNUTM-13249 DRAFT AN ECOLOGICAL INVESTIGATION OF A VANADIUM

    Office of Legacy Management (LM)

    ORNUTM-13249 DRAFT AN ECOLOGICAL INVESTIGATION OF A VANADIUM AND URANIUM MILL TAILINGS SITE 1. G. Smith, M. J. Peterson, and M. G. Ryon Biological Monitoring and Abatement Program Environmental Sciences Division Oak RidgeNational Laboratory Oak Ridge, Tennessee May 1996 Prepared for Gretchen A. Pierce Healthand Safety Research Division Environmental Technology Section Oak RidgeNational Laboratory GrandJunction, Colorado Prepared by the Environmental Sciences Division Oak RidgeNational Laboratory

  17. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect (OSTI)

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  18. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be ...

  19. Theoretical Study of High-Valent Vanadium Oxo-Porphyrins as a Dopant of Crude Oil

    SciTech Connect (OSTI)

    Salcedo, Roberto; Martinez, LMR; Martinez-Magadan, Jose M.

    2001-06-15

    The role played by the vanadyl porphyrinate as a dopant for zeolites in the refinement process of crude oil is analyzed using DFT calculations. The pair formed by the vanadium atom and its bonded oxygen atoms seems to be the responsible items in the dopant reaction. However, the present paper shows the participation of the vanadium atom as being the most important.

  20. Isotope Effects and Helium Retention Behavior in Vanadium Tritide

    SciTech Connect (OSTI)

    Bowman, Jr., R. C.; Attalla, A.; Craft, B. D.

    1985-04-01

    The relaxation times of the H, T, and 3He nuclei have been measured in vanadium hydride and tritide samples. Substantial isotope effects in both the phase transition temperatures and diffusion parameters have been found. When compared to hydrides, the tritide samples have lower transition temperatures and faster mobilities. The differences in the occupancies of the interstitial sites are largely responsible for these isotope effects. Most of the helium atoms generated by tritium decay remain trapped in microscopic bubbles formed with the VTx lattice. Evidence is presented for the gradual growth of the helium bubbles over periods of hundreds of days.

  1. Methods for using redox liposome biosensors

    DOE Patents [OSTI]

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  2. Vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Stambaugh, R.D.; Trester, P.W.; Smith, D.; Bloom, E.

    1995-10-01

    Vanadium alloys provide an attractive solution for fusion power plants as they exhibit a potential for low environmental impact due to low level of activation from neutron fluence and a relatively short half-life. They also have attractive material properties for use in a reactor. General Atomics along with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan to utilize vanadium alloys as part of the Radiative Divertor Project (RDP) modification for the DIII-D tokamak. The goal for using vanadium alloys is to provide a meaningful step towards developing advanced materials for fusion power applications by demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak in conjunction with developing essential fabrication technology for the manufacture of full-scale vanadium alloy components. A phased approach towards utilizing vanadium in DIII-D is being used starting with small coupons and samples, advancing to a small component, and finally a portion of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. A major portion of the program is research and development to support fabrication and resolve key issues related to environmental effects.

  3. Structural investigation of phosphate - bismuth glasses with vanadium

    SciTech Connect (OSTI)

    Stănescu, R.; Vedeanu, N.; Cozar, I. B.; Măgdaş, A.

    2013-11-13

    The xV{sub 2}O{sub 5}(1−dx)[0.5P{sub 2}O{sub 5}⋅0.5Bi{sub 2}O{sub 3}] glass system with 0 ≤ x ≤ 50 mol% is investigated by IR and Raman spectroscopy. Both P{sub 2}O{sub 5} and Bi{sub 2}O{sub 3} oxides are known as network formers, but Bi{sub 2}O{sub 3} is an unconventional one. At low content of vanadium oxide (x ≤ 5 mol%), both IR and Raman spectra are dominated by vibration bands characteristics to structural groups of phosphate and bismuthate lattices. Due to the network modifier role, vanadium oxide acts mainly on the Bi{sub 2}O{sub 3} network allowing the phosphate groups to impose their characteristics absorption bands in spectra. These bands are strongly reduced for x ≥ 20 mol% due to the phosphate network depolymerization and the appearance of new vibrations characteristic to P-O-V, Bi-O-V and V-O-V groups showing the network former role of V{sub 2}O{sub 5}.

  4. Nitridation under ammonia of high surface area vanadium aerogels

    SciTech Connect (OSTI)

    Merdrignac-Conanec, Odile [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)]. E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); L'Haridon, Paul [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2005-01-15

    Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... integration of a low-cost Cu temperature sensor onto a flexible polymer substrate. less ... Hydrogen Evolution at the Negative Electrode of the All-Vanadium Redox Flow Batteries Sun, ...

  6. Cellstrom | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Austria based developer of vanadium redox flow batteries for solar plants. References: Cellstrom1 This article is a stub. You can help OpenEI by expanding it....

  7. Structure and Electrochemistry of Vanadium-Modified LiFePO4 ...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Structure and Electrochemistry of Vanadium-Modified LiFePO4 Authors: Hong, Jian ; Wang, Xiao-Liang ; Wang, Qi ; Omenya, Fredrick O. ; ...

  8. Can Vanadium Be Substituted into LiFePO[subscript 4]? (Journal...

    Office of Scientific and Technical Information (OSTI)

    the solid solution LiFesub 1-3y2Vsub yPOsub 4, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter...

  9. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  10. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  11. Palladium-coated Vanadium-alloy membranes for Hydrogen Separation.

    SciTech Connect (OSTI)

    Paglieri, S. N. (Stephen N.); Pesiri, D. R. (David R.); Dye, R. C. (Robert C.); Birdsell, S. A. (Stephen A.); Snow, R. C. (Ronny C.)

    2005-01-01

    Hydrogen-separating membranes have the potential to generate pure hydrogen from abundant fossil fuel supplies such as coal, for use in fuel cells. Foils of V{sub 0.95}Ti{sub 0.05} and V{sub 0.88}Cu{sub 0.12} (at. %) coated with thin films of Pd or Pd alloy (Pd-Ag) were fabricated and tested for hydrogen permeability and stability during operation at temperatures from 320-450 C. Vanadium-alloy foils were ion-milled and coatings between 50 and 200 nm thick were applied to both sides insitu, via electron beam evaporation PVD. The membranes were completely permselective for hydrogen. Hydrogen flux stability was dependent on palladium coating thickness, with constant flux observed during tests at 350 C, and slow decline observed at 400 C that accelerated at higher temperatures.

  12. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect (OSTI)

    Paulenova, Alena; Vandegrift, III, George F.

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  13. Redox systematics of martian magmas with implications for magnetite...

    Office of Scientific and Technical Information (OSTI)

    with implications for magnetite stability Citation Details In-Document Search Title: Redox systematics of martian magmas with implications for magnetite stability Authors: ...

  14. Final Report: Manganese Redox Mediation of UO2 Stability and...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter ...

  15. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries ...

  16. Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide using Solar Energy ... the hercynite cycle allows faster, more efficient cycling and less wear on the equipment ...

  17. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  18. Redox Shuttle Additives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Redox Shuttle Additives Argonne National Laboratory Contact ANL About This Technology <p align="LEFT"> <i><font color="#808285" size="1"><font color="#808285" size="1">Charge Transfer Mechanism for Li-ion Battery Overcharge Protection &mdash; The boron and fluorine additive is in the electrolyte. When the battery is

  19. First-Principles Study of Redox End-Members in Li-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Study of Redox End-Members in Li-Sulfur Batteries Images for Redox ... and surface characteristics of solid-phase redox end-members in Li-S batteries. ...

  20. Can Vanadium Be Substituted into LiFePO[subscript 4]?

    SciTech Connect (OSTI)

    Omenya, Fredrick; Chernova, Natasha A.; Upreti, Shailesh; Zavalij, Peter Y.; Nam, Kyung-Wan; Yang, Xiao-Qing; Whittingham, M. Stanley

    2015-10-15

    Vanadium is shown to substitute for iron in the olivine LiFePO{sub 4} up to at least 10 mol %, when the synthesis is carried out at 550 C. In the solid solution LiFe{sub 1-3y/2}V{sub y}PO{sub 4}, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter increases slightly. However, when the synthesis is performed at 650 C, a NASICON phase, Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}, is also formed, showing that solid solution is a function of the synthesis temperature. X-ray absorption near-edge structure indicates vanadium is in the 3+ oxidation state and in an octahedral environment. Magnetic studies reveal a shift of the antiferromagnetic ordering transition toward lower temperatures with increasing vanadium substitution, confirming solid solution formation. The addition of vanadium enhances the electrochemical performance of the materials especially at high current densities.

  1. Chemical leaching of coal to remove ash, alkali and vanadium

    SciTech Connect (OSTI)

    Smit, F.J.; Huggins, D.K.; Berggren, M.; Anast, K.R.

    1986-04-15

    A process is described for upgrading powdered coal to improve the usefulness thereof as a fuel for internal combustion engines which consists of: (a) pressure-leaching powdered coal having a particle size ranging from about 28 mesh to about 200 mesh in an aqueous caustic solution at a temperature ranging from about 175/sup 0/C, to about 350/sup 0/C., the amount of caustic in the solution ranging from about 5% to about 30% by weight, the amount of coal being sufficient to form a slurry comprising about 10% to 30% by weight of solids, (b) hydrochloric acid leaching the caustic leached coal to dissolve acid-soluble constituents resulting from the caustic leach, (c) pressure leaching the acid-leached coal with a liquid from the group consisting of water and dilute aqueous ammonia to remove sodium and chlorine, and thereafter (d) filtering and washing the pressure leached coal, whereby the coal is characterized by up to about 0.85% by weight of ash, up to about 150 ppm of alkali metals and up to about 4 ppm vanadium.

  2. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect (OSTI)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  3. 99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally...

    Office of Scientific and Technical Information (OSTI)

    Reduction, and Redox Rate Scaling in Naturally Reduced Sediments Citation Details In-Document Search Title: 99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in ...

  4. Lithiated vanadium oxide (LVO), gamma-lithium vanadium bronze (gamma-LiV2O5) and vanadium dioxide (Vo2) as thermal-battery cathode materials. Technical report

    SciTech Connect (OSTI)

    Richie, A.G.; Warner, K.

    1991-05-01

    Thermal batteries are high temperature reserve batteries, predominantly used in missiles. Modern designs use a lithium (or lithium alloy) anode, an immobilized molten salt electrolyte and an iron-disulphide cathode. These batteries have many advantages: high reliability, long storage life without maintenance, wide temperature range of operation and, sometimes, high power. However, the energy density is rather low and this could be improved if the individual cell voltage could be raised above the present 2.2 V/cell open circuit-voltage for the lithium iron-disulphide couple. A new cathode material, lithiated vanadium oxide (LVO), been invented at RAE with the advantage of the much higher open-circuit voltage of 2.6 V/cell versus lithium. The properties of LVO have been investigated and it has been shown that LVO consists of vanadium dioxide as the major component. Some lithium bromide is also present.

  5. Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures

    SciTech Connect (OSTI)

    Sydorchuk, V.; Zazhigalov, V.; Khalameida, S.; Diyuk, E.; Skubiszewska-Zieba, J.; Leboda, R.; Kuznetsova, L.

    2010-09-15

    Regularities and peculiarities of physicochemical changes, first of all phase transformations, during solvothermal treatment (with conventional and microwave heating) of the vanadium pentoxide and orthophosphoric acid mixture in organic solvents in the presence of reducing agents have been studied. Hemihydrate of vanadium hydrophosphate - the precursor of vanadium pyrophosphate, the active phase for n-butane to maleic anhydride oxidation, and ion exchanger with variable physicochemical characteristics, i.e. crystal structure, specific surface area, crystallite size and acidic properties - has been synthesized in the temperature range 170-200 {sup o}C. The obtained phases were examined using XRD, DTA-TG, SEM, FTIR spectroscopy, nitrogen adsorption as well as gas chromatographic determination of acidity through organic bases adsorption. The catalytic activity of prepared samples for n-butane oxidation has been investigated.

  6. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sander, Kyle B.; Wilson, Charlotte M.; M. Rodriquez, Jr.; Klingeman, Dawn Marie; Davison, Brian H.; Brown, Steven D.; Rydzak, T.

    2015-12-12

    Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. As a result, towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential.

  7. Computation of the Redox and Protonation Properties of Quinones: Towards the Prediction of Redox Cycling Natural Products.

    SciTech Connect (OSTI)

    Cape, Jonathan L.; Bowman, Michael K.; Kramer, David M.

    2006-08-01

    Quinone metabolites perform a variety of key functions in plants, including pathogen protection, oxidative phosphorylation, and redox signaling. Many of these structurally diverse compounds have been shown to exhibit potent antimicrobial, anticancer, and anti-inflammatory properties, although the exact mechanisms of action are far from understood. Redox cycling has been proposed as a possible mechanism of action for many quinine species. Experimental determination of the essential thermodynamic data (i.e. electrochemical and pKa values) required to predict the propensity towards redox cycling is often difficult or impossible to obtain due to the experimental limitations. We demonstrate a practical computational approach to obtain reasonable estimates of these parameters.

  8. A bioinspired redox relay that mimics radical interactions of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.J., Kodis, G., Poluektov, O.G., Rajh, T., Mujica, V., Groy, T. L., Gust, D., Moore, T.A., Moore, A.L. Title: A bioinspired redox relay that mimics radical interactions...

  9. Structural effect on the redox thermodynamics of poly(thiophenes)

    SciTech Connect (OSTI)

    Marque, P. ); Roncali, J. )

    1990-11-15

    The redox thermodynamics of poly(thiophene) (PT), poly(3-methylthiophene) (MeT), and poly(3-nonylthiophene) (PNT) have been analyzed by using the Nernst plots E vs log (O)/(R) constructed from the in situ absorbance measurements performed at various doping levels. The apparent standard potential E{degree}{prime} and the initial slope of the Nernst plots of the oxidation process decrease in the order PT > PMeT > PNT. Concurrently, the redox process becomes progressively more complex with an increasing deviation from linearity above E{degree}{prime} and the appearance of two distinct oxidation stages for PMeT and PNT. Whereas hysteresis is evident for PT and PMeT, the redox process appears fully reversible in the case of PNT. Although the slope corresponding to initial step of the charging process decreases from PT to PNT, it remains of much larger magnitude than expected for a simple one-electron redox couple.

  10. Redox Active Catalysts Utilizing Earth Abundant Metals | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of...

  11. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  12. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  13. Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Paranthaman, Mariappan Parans; Idrobo Tapia, Juan C; Manthiram, Arumugam; Goodenough, J. B.; Segre, C; Katsoudas, John; Maroni, V. A.

    2013-01-01

    Vanadium-doped olivine LiFePO4 cathode materials have been synthesized by a novel low-temperature microwave-assisted solvothermal (MW-ST) method at 300 oC. Based on chemical and powder neutron/X-ray diffraction analysis, the compositions of the synthesized materials were found to be LiFe1-3x/2Vx x/2PO4 (0 x 0.2) with the presence of a small number of lithium vacancies charge-compensated by V4+, not Fe3+, leading to an average oxidation state of ~ 3.2+ for vanadium. Heating the pristine 15 % V-doped sample in inert or reducing atmospheres led to a loss of vanadium from the olivine lattice with the concomitant formation of a Li3V2(PO4)3 impurity phase; after phase segregation, a partially V-doped olivine phase remained. For comparison, V-doped samples were also synthesized by conventional ball milling and heating, but only ~ 10 % V could be accommodated in the olivine lattice in agreement with previous studies. The higher degree of doping realized with the MW-ST samples demonstrates the temperature dependence of the aliovalent-vanadium doping in LiFePO4.

  14. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, Richard H.

    1986-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  15. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  16. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1985-05-17

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  17. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, Richard H.

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  18. Leaching nickel cobalt molybdenum tungsten and vanadium from spent hydroprocessing catalysts

    SciTech Connect (OSTI)

    Hubred, G. L.

    1985-04-30

    A process for removing nickel, cobalt, molybdenum, and vanadium from spent hydroprocessing catalyst particles by roasting the catalyst at between 400/sup 0/ C. and 600/sup 0/ C. and leaching the catalyst particles with an aqueous solution of ammonia and an ammonium salt.

  19. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  20. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect (OSTI)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  1. Catalytic hydroprocessing of aromatic compounds: Effects of nickel and vanadium sulfide deposits on reactivities and reaction networks

    SciTech Connect (OSTI)

    Yumoto, Mitsugu |; Kukes, S.G.; Klein, M.T.; Gates, B.C. |

    1996-09-01

    Ni-Mo/{gamma}-Al{sub 2}O{sub 3} hydroprocessing catalysts enriched in nickel and vanadium by contacting with solutions of the respective metal naphthenates were sulfided and tested for hydroprocessing of naphthalene, dibenzothiophene, and quinoline in a batch reactor at 350 C and 165 atm. Approximately reaction networks were determined for each reactant, and the data showed the dependence of the pseudo-first-order rate constants on the catalyst nickel and vanadium contents. The nickel sulfide deposits only slightly affected the rate constants for hydrogenation, but the vanadium sulfide deposits led to decreases in the rate constants for hydrogenation reactions in the naphthalene network and to increases in those for hydrogenation reactions in the dibenzothiophene network. Nickel sulfide deposits led to almost no change in the rate constants for hydrogenolysis of dibenzothiophene, but vanadium sulfide deposits led to decreased rate constant for this reaction. The nickel sulfide deposits have little activity for reactions giving lower-molecular-weight (cracking) products, but the vanadium sulfide deposits have a relatively high activity for cracking, which suggests that they are acidic; the effects are reversed by the presence of the basic quinoline in the reactants. The results indicate a need for representing the nickel and vanadium sulfide deposits separately in process models for heavy oil hydroprocessing.

  2. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane

    SciTech Connect (OSTI)

    Chen Xiaowei; Zhu Zhenping; Haevecker, Michael; Su Dangsheng . E-mail: dangsheng@fhi-berlin.mpg.de; Schloegl, Robert

    2007-02-15

    A vanadium oxide-carbon nanotube composite was prepared by solution-based hydrolysis of NH{sub 4}VO{sub 3} in the presence of carbon nanotubes. The carbon nanotubes induce the nucleation of the 1D vanadium oxide nanostructures, with the nuclei growing into long freestanding nanorods. The vanadium oxide nanorods with the lengths up to 20 {mu}m and the widths of 5-15 nm exhibit a well-ordered crystalline structure. Catalytic tests show that the composite with nanostructured vanadium oxide is active for the partial oxidation of n-butane to maleic anhydride at 300 deg. C.

  3. Phase-selective vanadium dioxide (VO{sub 2}) nanostructured thin films by pulsed laser deposition

    SciTech Connect (OSTI)

    Masina, B. N. E-mail: slafane@cdta.dz; Lafane, S. E-mail: slafane@cdta.dz; Abdelli-Messaci, S.; Kerdja, T.; Wu, L.; Akande, A. A.; Mwakikunga, B.

    2015-10-28

    Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO{sub 2}) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ∼43 °C, without any doping, paving the way to switchable transparency in optical materials at room temperature.

  4. PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION

    DOE Patents [OSTI]

    Ellis, D.A.; Lindblom, R.O.

    1957-09-24

    A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).

  5. Phase transition and strength of vanadium under shock compression up to 88 GPa

    SciTech Connect (OSTI)

    Yu, Yuying Tan, Ye; Dai, Chengda; Li, Xuemei; Li, Yinghua; Wu, Qiang; Tan, Hua

    2014-11-17

    A series of reverse-impact experiments were performed on vanadium at shock pressure ranging from 32 GPa to 88 GPa. Particle velocity profiles measured at sample/LiF window interface were used to estimate the sound velocities, shear modulus, and yield stress in shocked vanadium. A phase transition at ∼60.5 GPa that may be the body-centered cubic (BCC) to rhombohedral structure was identified by the discontinuity of the sound velocity against shock pressure. This transition pressure is consistent with the results from diamond anvil cell (DAC) experiments and first-principle calculations. However, present results show that the rhombohedral phase has higher strength and shear modulus than the BCC phase, which is contrast to the findings from DAC experiments and theoretical work.

  6. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    SciTech Connect (OSTI)

    Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-28

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  7. Electrochemical biosensor based on immobilized enzymes and redox polymers

    DOE Patents [OSTI]

    Skotheim, Terje A.; Okamoto, Yoshiyuki; Hale, Paul D.

    1992-01-01

    The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

  8. Redox mediation and hydrogen-generation with bipyridinium reagents

    DOE Patents [OSTI]

    Wrighton, Mark S.; Bookbinder, Dana C.; Bruce, James A.; Dominey, Raymond N.; Lewis, Nathan S.

    1984-03-27

    A variety of redox mediating agents employing bipyridinium reagents and such reagents in conjunction with dispersed noble metals, such as platinium, are disclosed as coatings for substrates and electrodes. The agents may be charged by an applied voltage or by photoelectric effects or may be equilibrated with hydrogen. The agents are useful in reducing biological materials and electrolytic hydrogen production.

  9. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries Compatible with current battery technologies Provides overcharge protection, increased safety and long-term stability PDF icon redox_shuttles_overcharge

  10. Flow Battery Solution for Smart Grid Applications

    SciTech Connect (OSTI)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  11. Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDE and SECM - Joint Center for Energy Storage Research November 9, 2015, Research Highlights Investigation of Charge Transfer Mechanisms on Redox Active Polymers Using RDE and SECM Generalized schematic explaining three potential chemical steps that precede electron transfer for a RAP. RDE and SECM experiments were used to elucidate an electrochemical mechanism and the kinetics of electron transfer for RAPs. Scientific Achievement This study is a first step to evaluate rate determining

  12. Chemical structure of vanadium-based contact formation on n-AlN

    SciTech Connect (OSTI)

    Pookpanratana, S.; France, R.; Blum, M.; Bell, A.; Bar, M.; Weinhardt, L.; Zhang, Y.; Hofmann, T.; Fuchs, O.; Yang, W.; Denlinger, J. D.; Mulcahy, S.; Moustakas, T. D.; Heske, Clemens

    2010-05-17

    We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed.

  13. Effects of irradiation to 4 dpa at 390 C on the fracture toughness of vanadium alloys

    SciTech Connect (OSTI)

    Gruber, E.E.; Galvin, T.M.; Chopra, O.K.

    1998-09-01

    Fracture toughness J-R curve tests were conducted at room temperature on disk-shaped compact-tension DC(T) specimens of three vanadium alloys having a nominal composition of V-4Cr-4Ti. The alloys in the nonirradiated condition showed high fracture toughness; J{sub IC} could not be determined but is expected to be above 600 kJ/m{sup 2}. The alloys showed very poor fracture toughness after irradiation to 4 dpa at 390 C, e.g., J{sub IC} values of {approx}10 kJ/m{sup 2} or lower.

  14. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F.; Hilton, David J.

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  15. Spontaneous and reversible interaction of vanadium(V) oxyanions with amine derivatives

    SciTech Connect (OSTI)

    Crans, D.C.; Shin, P.K.

    1988-05-18

    The interaction between vanadate and tri- or tetradentate ethanolamine derivatives has been studied by using /sup 51/V NMR spectroscopy. The reactions occur spontaneously in aqueous solutions, at ambient temperatures and in the physiological pH range. In addition to one amine group and one hydroxyl group, the ethanolamine derivative should contain a third and/or fourth functionality that is an alcohol, a carboxylic acid, a phosphonium acid, or an amine. The reactions are highly dependent on pH, concentrations of monomeric vanadate, amine. The stability constants for the complexes are minimum orders of magnitude greater than those found for vanadate derivatives of corresponding ether derivatives, and the high stability is associated with the central nitrogen. Only one vanadium complex is formed in substantial amounts in the reaction of ethanolamine derivatives with vanadate, and that complex is mononuclear in vanadium. Several of the ethanolamine derivatives that form complexes are commonly used buffers in biological and biomedical studies in vitro. 22 refs., 10 figs., 7 tabs.

  16. HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM

    SciTech Connect (OSTI)

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü. E-mail: sophie.kroeger@htw-berlin.de

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm{sup –1}). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d {sup 3}4s4p and 55 to the configuration 3d {sup 4}4p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d {sup 3}4s4p and 44 to 3d {sup 4}4p.

  17. Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Collectors in Lithium-Sulfur Batteries - Joint Center for Energy Storage Research 21, 2015, Research Highlights Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon Current Collectors in Lithium-Sulfur Batteries Controlling the electrodeposition of Li2S onto C using a redox mediator, BPI. With BPI, sulfur utilization improves in Li-S cells due to remote reduction of polysulfides to Li2S. Scientific Achievement Developed, from computation and experiment, redox

  18. Liquid Catholyte Molecules for Non-aqueous Redox Flow Batteries - Joint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6

  19. Some Lessons Learned from 20 Years in RedOx Flow Battery R&d

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    metals recovery Advanced materials and nano-structures Novel catalysts High ... (low p) Materials Novel nano-structured non- carbon electrodes ...

  20. Weldability of cast and heat treated uranium-0.25% vanadium alloy

    SciTech Connect (OSTI)

    Sunwoo, A.

    1997-09-01

    Weldability of a grain refined cast uranium-0.2% vanadium (U-0.2% V) alloy is a concern since the alloy is reported to be sensitive to delay weld cracking. Welding of unalloyed wrought U is not free of weld defects. Deep, single-pass electron beam welds in U have been plagued by cold-shuts in the fusion zone. Cold-shuts have not been observed in the cast U-0.2% V alloy. The purpose of this work was to address the weldability concern for a cast and helium isothermally transformed U-0.25% V alloy and to determine the effects of welding on the weldment properties.

  1. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect (OSTI)

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5?}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  2. Thermally driven analog of the Barkhausen effect at the metal-insulator transition in vanadium dioxide

    SciTech Connect (OSTI)

    Huber-Rodriguez, Benjamin; Ji, Heng; Chen, Chih-Wei; Kwang, Siu Yi; Hardy, Will J.; Morosan, Emilia; Natelson, Douglas

    2014-09-29

    The physics of the metal-insulator transition (MIT) in vanadium dioxide remains a subject of intense interest. Because of the complicating effects of elastic strain on the phase transition, there is interest in comparatively strain-free means of examining VO{sub 2} material properties. We report contact-free, low-strain studies of the MIT through an inductive bridge approach sensitive to the magnetic response of VO{sub 2} powder. Rather than observing the expected step-like change in susceptibility at the transition, we argue that the measured response is dominated by an analog of the Barkhausen effect, due to the extremely sharp jump in the magnetic response of each grain as a function of time as the material is cycled across the phase boundary. This effect suggests that future measurements could access the dynamics of this and similar phase transitions.

  3. Site-specific incorporation of redox active amino acids into proteins

    DOE Patents [OSTI]

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  4. Site-specific incorporation of redox active amino acids into proteins

    DOE Patents [OSTI]

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  5. Site-specific incorporation of redox active amino acids into proteins

    DOE Patents [OSTI]

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  6. Site-specific incorporation of redox active amino acids into proteins

    DOE Patents [OSTI]

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  7. Sorption of redox-sensitive elements: critical analysis

    SciTech Connect (OSTI)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH/sup -/, CO/sup - -//sub 3/) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states.

  8. Microbial mineral colonization across a subsurface redox transition zone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; Roden, Eric E.

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ formore » 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH4+, H2, Fe(II), and HS- oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.« less

  9. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry for Isotopes of Scandium, Titanium, Vanadium, Chromium, Manganese, and Iron

    SciTech Connect (OSTI)

    Kelley, K; Hoffman, R D; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of scandium, titanium, vanadium, chromium, manganese, and iron (21 {le} Z {le} 26, 20 {le} N {le} 32).

  10. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    SciTech Connect (OSTI)

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  11. Redox control of electric melters with complex feed compositions. Part I: analytical methods and models

    SciTech Connect (OSTI)

    Bickford, D F; Diemer, Jr, R B

    1985-01-01

    The redox state of glass from electric melters with complex feed compositions is determined by balance between gases above the melt, and transition metals and organic compounds in the feed. Part I discusses experimental and computational methods of relating flowrates and other melter operating conditions to the redox state of glass, and composition of the melter offgas. Computerized thermodynamic computational methods are useful in predicting the sequence and products of redox reactions and in assessing individual process variations. Melter redox state can be predicted by combining monitoring of melter operating conditions, redox measurement of fused melter feed samples, and periodic redox measurement of product. Mossbauer spectroscopy, and other methods which measure Fe(II)/Fe(III) in glass, can be used to measure melter redox state. Part II develops preliminary operating limits for the vitrification of High-Level Radioactive Waste. Limits on reducing potential to preclude the accumulation of combustible gases, accumulation of sulfides and selenides, and degradation of melter components are the most critical. Problems associated with excessively oxidizing conditions, such as glass foaming and potential ruthenium volatility, are controlled when sufficient formic acid is added to adjust melter feed rheology.

  12. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation

    SciTech Connect (OSTI)

    Sander, Kyle B.; Wilson, Charlotte M.; M. Rodriquez, Jr.; Klingeman, Dawn Marie; Davison, Brian H.; Brown, Steven D.; Rydzak, T.

    2015-12-12

    Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. As a result, towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential.

  13. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect (OSTI)

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  14. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  15. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  16. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect (OSTI)

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  17. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    SciTech Connect (OSTI)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E.; Lu, Y.; Epstein, A. J.

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  18. Growth of oriented vanadium pentaoxide nanostructures on transparent conducting substrates and their applications in photocatalysis

    SciTech Connect (OSTI)

    Liu, Hongjiang; Gao, Yanfeng; Zhou, Jiadong; Liu, Xinling; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2014-06-01

    A novel, hydrothermal and hard-template-free method was developed for the first time to grow oriented, single-crystalline monoclinic VO{sub 2} (B) flower-like nanorod films on transparent conductive fluorine-doped tin oxide (FTO) substrates. The length and morphology of the nanorods can be tuned by changing the growth parameters, such as growth time and initial precursor concentration. The flower-like V{sub 2}O{sub 5} films were obtained after post-calcination treatment of VO{sub 2} (B) films. The photocatalytic activity of V{sub 2}O{sub 5} films was investigated by the degradation of methylene blue (MB) under UV and visible light. The prepared V{sub 2}O{sub 5} film exhibited good photocatalytic performance (74.6% and 63% under UV and visible light for 210 min, respectively) and more practical application in industry. - Graphical abstract: Flower nanostructured vanadium oxide film was prepared by hydrothermal reaction for photocatalysis application. - Highlights: Monoclinic VO{sub 2} nanorod array and flower-like nanostructure were directly grown on FTO substrate by hydrothermal reaction. The growth mechanism was analyzed by FESEM at different time. V{sub 2}O{sub 5} flower-like nanostructure film was obtained after calcining VO{sub 2} film. V{sub 2}O{sub 5} film exhibited good light activity and potential application in photocatalysis.

  19. Selective Binding of O2 over N2 in a Redox-Active Metal-Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selective Binding of O2 over N2 in a Redox-Active Metal-Organic Framework with Open Iron(II) Coordination Sites Previous Next List E. D. Bloch, L. J. Murray, W. L. Queen, S. ...

  20. Method of reduction of nitroaromatics by enzymatic reaction with redox enzymes

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with redox enzymes, such as Oxyrase (Trademark of Oxyrase, Inc., Mansfield, Ohio).

  1. Controllable positive exchange bias via redox-driven oxygen migration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, amore » few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  2. Effects of Protonation State on a Tyrosine-Histidine Bioinspired Redox

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mediator Effects of Protonation State on a Tyrosine-Histidine Bioinspired Redox Mediator Authors: Moore, G. F., Hambourger, M., Kodis, G., Michl, W., Gust, D., Moore, T. A., and Moore, A. L. Title: Effects of Protonation State on a Tyrosine-Histidine Bioinspired Redox Mediator Source: Journal of Physical Chemistry B Year: 2010 Volume: 114 Pages: 14450-14457 ABSTRACT: The conversion of tyrosine to the corresponding tyrosyl radical in photosytem II (PSII) is an example of proton-coupled

  3. Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate

    Office of Scientific and Technical Information (OSTI)

    in the Subsurface: Molecular and Meter Scale Dynamics (Technical Report) | SciTech Connect Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics One strategy to remediate U contamination in the subsurface is the immobilization of U via injection of an

  4. Project Profile: High-Temperature Thermochemical Storage with Redox-Stable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perovskites for Concentrating Solar Power | Department of Energy Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power Colorado School of mines Colorado School of Mines (CSM), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP:

  5. A metal-free organic-inorganic aqueous flow battery

    SciTech Connect (OSTI)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  6. Simultaneous recovery of vanadium and nickel from power plant fly-ash: Optimization of parameters using response surface methodology

    SciTech Connect (OSTI)

    Nazari, E.; Rashchi, F. Saba, M.; Mirazimi, S.M.J.

    2014-12-15

    Highlights: • Leaching of vanadium and nickel from fly ash (14.43% V and 5.19% Ni) in sulfuric acid was performed. • Optimization of leaching parameters was carried out using a response surface methodology. • Using optimum conditions, 94.28% V and 81.01% Ni “actual recovery” was obtained. - Abstract: Simultaneous recovery of vanadium (V) and nickel (Ni), which are classified as two of the most hazardous metal species from power plant heavy fuel fly-ash, was studied using a hydrometallurgical process consisting of acid leaching using sulfuric acid. Leaching parameters were investigated and optimized in order to maximize the recovery of both vanadium and nickel. The independent leaching parameters investigated were liquid to solid ratio (S/L) (5–12.5 wt.%), temperature (45–80 °C), sulfuric acid concentration (5–25 v/v%) and leaching time (1–5 h). Response surface methodology (RSM) was used to optimize the process parameters. The most effective parameter on the recovery of both elements was found to be temperature and the least effective was time for V and acid concentration for Ni. Based on the results, optimum condition for metals recovery (actual recovery of ca.94% for V and 81% for Ni) was determined to be solid to liquid ratio of 9.15 wt.%, temperature of 80 °C, sulfuric acid concentration of 19.47 v/v% and leaching time of 2 h. The maximum V and Ni predicted recovery of 91.34% and 80.26% was achieved.

  7. Role of vanadium(V) in the aging of the organic phase in the extraction of uranium(VI) by Alamine 336 from acidic sulfate leach liquors

    SciTech Connect (OSTI)

    Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.

    2008-07-01

    The present work is focussed on the chemical degradation of Alamine 336-tridecanol-n-dodecane solvent which used in the recovery of uranium by solvent extraction. Degradation occurs due to the presence of vanadium(V), an oxidant, in the feed solution. After a brief overview of the chemistry of vanadium, the kinetics of degradation of the solvent when contacted with acidic sulfate leach liquor was investigated and interpreted by the Michelis-Menten mechanism. GCMS analyses evidenced the presence of tridecanoic acid and dioctylamine as degradation products. A mechanism of degradation is discussed. (authors)

  8. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  9. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu; Crozier, Peter; Adams, James

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  10. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect (OSTI)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mssbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mssbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  11. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect (OSTI)

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  12. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    DOE Patents [OSTI]

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  13. Final Technical Report

    SciTech Connect (OSTI)

    Logan, Jesse, L; Witmer, Dennis, PhD

    2012-07-29

    The overall goal of this project was to design, evaluate, and engineer a Vanadium Red-Ox Flow Battery's integration into an existing wind site and micro-grid environment to determine if it is possible to achieve a fifteen percent reduction of diesel fuel usage during periods of peak load and otherwise stabilize the grid in potential high wind penetration systems. The bulk of the work was done by modeling the existing hybrid wind-diesel system and the proposed system with added flow battery storage. The flow battery was changed from a Vanadium Red-Ox to a Zinc Bromine flow battery by a different manufacturer during the modeling process. Several complications arose, but modeling proved to be successful and is ongoing. The development of a modeling platform for flow battery energy storage is a key element in evaluating both economic benefits and dispatch strategies for high penetration in micro-grid wind-diesel systems.

  14. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  15. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  16. In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids (Top Left) Cyclic Voltammagram of Fe((OHCH2CH2)2NH)6-(CF3SO3)3 in disk electrode (solid) and in in-situ redox XANES cell (dashed). (Top Right) XANES spectra showing IL in fully oxidized and fully reduced states, showing change in Fe Kα edge on oxidation state change (Bottom) EXAFS data showing position of fully oxidized (Fe+3) state of IL,

  17. An Organophosphine Oxide Redox Shuttle Additive that Delivers Long-term

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overcharge Protection for 4 V Lithium-ion Batteries - Joint Center for Energy Storage Research 4, 2015, Research Highlights An Organophosphine Oxide Redox Shuttle Additive that Delivers Long-term Overcharge Protection for 4 V Lithium-ion Batteries Organophosphine oxide groups not only can provide suitable steric protection of the generated radical cation, but also can increase the redox potential to 4.5 V, which is suitable for overcharge protection of LiMn2O4 cathode material Scientific

  18. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Yong-Min; Bang, Suhee; Yoon, Heejung; Bae, Seong Hee; Hong, Seungwoo; Cho, Kyung-Bin; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-06-19

    Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII-(O2)-Zn(CF3SO3)2 (1-Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn2+. This further changes the reactivities of 1-Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn2+, whereas 1-Zn2+ coordinatingmore » two water molecules, (TMC)FeIII-(O2)-Zn(CF3SO3)2-(OH2)2 [1-Zn2+-(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn2+-(OH2)2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.« less

  19. PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry

    SciTech Connect (OSTI)

    Karakoti, Ajay S.; Singh, Sanjay; Kumar, Amit; Malinska, M.; Kuchibhatla, Satyanarayana V N T; Wozniak, K.; Self, William; Seal, Sudipta

    2009-10-14

    Cerium oxide nanoparticles (CNPs) have shown tremendous potential in various applications such as water gas shift catalysis, chemical mechanical planarization (CMP), solid oxide fuel cells (SOFC), solar cells4 and high temperature oxidation protection coatings1. Recently, CNPs have been demonstrated to protect biological tissues against radiation induced damage, scavenging of superoxide anions, prevention of laser induced retinal damage, reduction of spinal injury in a tissue culture model, prevention of cardiovascular myopathy, pH dependent antioxidant properties, as a tool for immunoassays as well as other inflammatory diseases2. In most biomedical applications it is speculated that nanoceria is a regenerative radical scavenger with the ability to regenerate its active 3+ oxidation state for radical scavenging. Thus far there are no reports to control the regeneration of Ce3+ oxidation state which is the most important parameter in the application of CNPs as a reliable and regenerative radical scavenger. Thus, there is an imminent need to increase the potency of CNPs to achieve higher degree of protection against reactive oxygen species (ROS), to increase the residence time of CNPs in body and to control the regeneration of 3+ oxidation state. PEG has been reported to increase the residence time of nanoparticles and proteins inside cells and provide biocompatibility3. PEGylated counterparts of the SOD enzymes have shown improved performance over non-PEGylated enzymes. Herein, we report our efforts to synthesize CNPs directly in polyethylene glycol (mol wt 600) solution and determine the effect of increasing concentration of PEG (PEG vol % as 5, 10, 20, 40, 60 and 80) on the SOD mimetic properties exhibited by nanoceria. We also report how the active Ce3+ oxidation state can be regenerated or further tuned to regenerate at faster rate. We further demonstrate the role of PEG on the redox chemistry of CNPs catalyzed by hydrogen peroxide. Several complexes of PEGs

  20. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    SciTech Connect (OSTI)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  1. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria

    SciTech Connect (OSTI)

    Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-07-03

    Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified several novel putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to the high-level understanding of post-translational mechanisms regulating flux distributions and therefore present potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  2. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect (OSTI)

    Gehring, A.U.; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  3. Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels

    DOE Patents [OSTI]

    Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.

    2002-01-01

    This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.

  4. EERE Success Story—Redox Shuttle Additive, Wins 2014 R&D 100 Award

    Broader source: Energy.gov [DOE]

    Sandia National Laboratory and the Argonne National Laboratory have developed a chemical solution, known as a redox shuttle additive, a chemical that prevents overcharging by electrochemically “locking in” a maximum voltage that is dependent on the chemical structure of the additive and the nature of the battery material.

  5. Visible light photocatalytic degradation of 4-chlorophenol using vanadium and nitrogen co-doped TiO{sub 2}

    SciTech Connect (OSTI)

    Jaiswal, R.; Kothari, D. C.; Patel, N.; Miotello, A.

    2013-02-05

    Vanadium and Nitrogen were codoped in TiO{sub 2} photocatalyst by Sol-gel method to utilize visible light more efficiently for photocatalytic reactions. A noticeable shift of absorption edge to visible light region was obtained for the singly-doped namely V-TiO{sub 2}, N-TiO{sub 2} and codoped V-N-TiO{sub 2} samples in comparison with undoped TiO{sub 2}, with smallest band gap obtained with codoped-TiO{sub 2}. The photocatalytic activities for all TiO{sub 2} photocatalysts were tested by 4-chlorophenol (organic pollutant) degradation under visible light irradiation. It was found that codoped TiO{sub 2} exhibits the best photocatalytic activity, which could be attributed to the synergistic effect produced by V and N dopants.

  6. Synthesis and characterization of vanadium oxide aerogels. Technical report No. 2, 1 June 1994-31 May 1995

    SciTech Connect (OSTI)

    Chaput, F.; Dunn, B.; Fuqua, P.; Salloux, K.

    1995-07-14

    Vanadium pentoxide aerogels were synthesized by supercritical drying with CO2. The aerogels were prepared using a variety of sol compositions from the system VO(OC3H7)3/H2O/acetone. The materials were found to be of fairly low density (0.04g/cu cm to 0.lg/cu cm) with surface areas in the range of 300 to 400 meters squared/g. Chemical and structural studies indicate that the aerogels are hydrated oxides of composition V2O5 nH2O with n = 2.0 to 2.2 and possess a fibrous morphology. When partially dehydrated, the vanadate aerogels exhibit electron transport with conductivity and activation energy values comparable to those of aerogels. Electrochemical measurements demonstrate that lithium can be intercalated reversibly into the structure.

  7. Effect of Reducing Groundwater on the Retardation of Redox-Sensitive Radionuclides

    SciTech Connect (OSTI)

    Hu, Q; Zavarin, M; Rose, T P

    2008-04-21

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions used during these experiments were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, the radionuclide distribution coefficients varied with the mineralogical composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for {sup 99}Tc and {sup 237}Np in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for {sup 99}Tc, which tends to be mobile under oxidizing conditions. Unlike other redox-sensitive radionuclides, iodine sorption may decrease under reducing conditions when I{sup -} is the predominant species. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing redox conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH){sub 4}. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides {sup 99}Tc and {sup 237}Np, which are commonly identified as long-term dose contributors in the risk assessment in various nuclear facilities.

  8. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    SciTech Connect (OSTI)

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin Shammel; Chu, Rosalie K.; Robinson, Errol W.; Dahl, Christiane; Saraiva, Ligia M.; Pereira, Ines Ac

    2013-11-29

    Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC having two conserved cysteine residues. Here, we report a study of the distribution of DsrC in cell extracts, a cysteine-labelling gel-shift assay to monitor its redox state and behaviour, and procedures to produce the different redox forms. We show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we successfully produced DsrC with an intramolecular disulfide bond (oxidized state) by treatment with arginine.

  9. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    SciTech Connect (OSTI)

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  10. Redox Protein Expression Predicts Radiotherapeutic Response in Early-Stage Invasive Breast Cancer Patients

    SciTech Connect (OSTI)

    Woolston, Caroline M.; Al-Attar, Ahmad; Storr, Sarah J.; Ellis, Ian O.; Morgan, David A.L.; Martin, Stewart G.

    2011-04-01

    Purpose: Early-stage invasive breast cancer patients have commonly undergone breast-conserving surgery and radiotherapy. In a large majority of these patients, the treatment is effective; however, a proportion will develop local recurrence. Deregulated redox systems provide cancer cells protection from increased oxidative stress, such as that induced by ionizing radiation. Therefore, the expression of redox proteins was examined in tumor specimens from this defined cohort to determine whether such expression could predict response. Methods and Materials: The nuclear and cytoplasmic expression of nine redox proteins (glutathione, glutathione reductase, glutaredoxin, glutathione peroxidase 1, 3, and 4, and glutathione S-transferase-{theta}, -{pi}, and -{alpha}) was assessed using conventional immunohistochemistry on a tissue microarray of 224 tumors. Results: A high cytoplasmic expression of glutathione S-transferase-{theta} significantly correlated with a greater risk of local recurrence (p = .008) and, when combined with a low nuclear expression (p = .009), became an independent predictive factor (p = .002) for local recurrence. High cytoplasmic expression of glutathione S-transferase-{theta} also correlated with a worse overall survival (p = .009). Low nuclear and cytoplasmic expression of glutathione peroxidase 3 (p = .002) correlated with a greater risk of local recurrence and was an independent predictive factor (p = .005). These proteins did not correlate with tumor grade, suggesting their function might be specific to the regulation of oxidative stress rather than alterations of tumor phenotype. Only nuclear (p = .005) and cytoplasmic (p = .001) expression of glutathione peroxidase 4 correlated with the tumor grade. Conclusions: Our results support the use of redox protein expression, namely glutathione S-transferase-{theta} and glutathione peroxidase 3, to predict the response to radiotherapy in early-stage breast cancer patients. If incorporated into

  11. Taking snapshots of different redox states of the water oxidation catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Photosystem II Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Taking snapshots of different redox states of the water oxidation catalyst in Photosystem II 9 Jul 2014 BISfuel, July 9, 2014 - Deciphering the puzzles of the natural photosynthetic water oxidation

  12. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    SciTech Connect (OSTI)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to the interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane WS lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of WW bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.

  13. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    SciTech Connect (OSTI)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to the interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.

  14. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    SciTech Connect (OSTI)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-12-31

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, {approximately}77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of {approximately}60 {mu}g/L to below the detection limit of the analytical methods.

  15. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  16. The kinetic significance of V{sup 5+} in n-butane oxidation catalyzed by vanadium phosphates

    SciTech Connect (OSTI)

    Coulston, G.W.; Harlow, R.; Herron, N.

    1997-01-10

    Maleic anhydride, a precursor to polyester resins, is made by oxidation of n-butane over vanadium phosphate catalysts. This system is of general interest because it is the only heterogeneously catalyzed, alkane-selective oxidation reaction in commercial use. Time-resolved in situ x-ray absorption spectroscopy shows that when either {alpha}{sub 1}-VOPO{sub 4}/SiO{sub 2} or (VO){sub 2}P{sub 2}O{sub 7}/SiO{sub 2} catalysts are exposed to n-butane, the rate of maleic anhydride formation is proportional to the rate of decay of V{sup 5+} species in the catalyst. Thus V{sup 5+} species are kinetically significant for the production of maleic anhydride and not just for the production of by-products. The results also suggest that V{sup 5+} species in the catalyst. Thus V{sup 5+} species are kinetically significant for the production of maleic anhydride and not just for the production of by-products. The results also suggest that V{sup 5+} species may play a role in the initial hydrogen abstraction from n-butane, the rate-determining step in the reaction sequence. V{sup 4+} sites appear to be responsible for by-product formation.

  17. Wetting and Mechanical Performance of Zirconia Brazed with Silver/Copper Oxide and Silver/Vanadium Oxide Alloys

    SciTech Connect (OSTI)

    Sinnamon, Kathleen E.; Meier, Alan; Joshi, Vineet V.

    2014-12-01

    The wetting behavior and mechanical strength of silver/copper oxide and silver/vanadium oxide braze alloys were investigated for both magnesia-stabilized and yttria-stabilized (Mg-PSZ and Y-TZP) transformation toughened zirconia substrates. The temperatures investigated were 1000 to 1100°C, with oxide additions of 1 to 10 weight percent V2O5 or CuO, and hold times of 0.9 to 3.6 ks. Increasing either the isothermal hold temperature or time had a distinctly negative effect on the joint strength. The maximum strengths for both braze alloys were obtained for 5 wt. % oxide additions at 1050°C with a hold time of 0.9 ks. The Mg-PSZ/Ag-CuO system exhibited a average fracture strength of 255 MPa (45% of the reported monolithic strength), and the Y-TZP/Ag-CuO system had an average fracture strength of 540 MPa (30% of the reported monolithic strength). The fracture strengths were lower for the Ag-V2O5 braze alloys, with fracture strengths of approximately 180 MPa (30% of the monolithic strength) for Mg-PSZ versus approximately 160 MPa (10% of the monolithic strength) for Y-TZP. No interfacial products were observed in low magnification SEM analysis for the brazing alloys containing V2O5 additions, while there were interfacial products present for brazes prepared with CuO additions in the braze alloy.

  18. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The ...

  19. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  20. Complex Flow Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ETC.) ...... 20 1C IMPACT OF PHYSICS ON THE FLOW (RADIATION, MOISTURE, ETC.) ... shear across scales, global scale physics, flow forcing, coupling kilometer-scale ...

  1. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  2. EIN Cash Flow Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIN Cash Flow Model Energy Independence Now (EIN) Objectives Identify financial risks in early hydrogen infrastructure systems and illustrate hydrogen station cash flows under a ...

  3. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    SciTech Connect (OSTI)

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  4. Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Hetero-Nanosheets in Hierarchical Architectures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahmood, Qasim; Bak, Seong-Min; Kim, Min G.; Yun, Sol; Yang, Xiao-Qing; Shin, Hyeon S.; Kim, Woo S.; Braun, Paul V.; Park, Ho S.

    2015-03-03

    Two-dimensional (2D) heteronanosheets are currently the focus of intense study due to the unique properties that emerge from the interplay between two low-dimensional nanomaterials with different properties. However, the properties and new phenomena based on the two 2D heteronanosheets interacting in a 3D hierarchical architecture have yet to be explored. Here, we unveil the surface redox charge storage mechanism of surface-exposed WS2 nanosheets assembled in a 3D hierarchical heterostructure using in situ synchrotron X-ray absorption and Raman spectroscopic methods. The surface dominating redox charge storage of WS2 is manifested in a highly reversible and ultrafast capacitive fashion due to themore » interaction of heteronanosheets and the 3D connectivity of the hierarchical structure. In contrast, compositionally identical 2D WS2 structures fail to provide a fast and high capacitance with different modes of lattice vibration. The distinctive surface capacitive behavior of 3D hierarchically structured heteronanosheets is associated with rapid proton accommodation into the in-plane W–S lattice (with the softening of the E2g bands), the reversible redox transition of the surface-exposed intralayers residing in the electrochemically active 1T phase of WS2 (with the reversible change in the interatomic distance and peak intensity of W–W bonds), and the change in the oxidation state during the proton insertion/deinsertion process. This proposed mechanism agrees with the dramatic improvement in the capacitive performance of the two heteronanosheets coupled in the hierarchical structure.« less

  5. Aqua-vanadyl ion interaction with Nafion membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  6. Aqua-vanadyl ion interaction with Nafion® membranes

    SciTech Connect (OSTI)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  7. Electrical current suppression in Pd-doped vanadium pentoxide nanowires caused by reduction in PdO due to hydrogen exposure

    SciTech Connect (OSTI)

    Kim, Byung Hoon; Oh, Soon-Young; Yu, Han Young; Yun, Yong Ju; Kim, Yark Yeon; Hong, Won G.; Jeong, Hu Young; Lee, Jeong Yong; Kim, Hae Jin

    2010-04-19

    Pd nanoparticle-doped vanadium pentoxide nanowires (Pd-VONs) were synthesized. Electrical current suppression was observed when the Pd-VON was exposed to hydrogen gas, which cannot be explained by the work function changes mentioned in previous report such as Pd-doped carbon nanotubes and SnO{sub 2} nanowires. Using the x-ray photoelectron spectroscopy, we found that the reduction in PdO due to hydrogen exposure plays an important role in the current suppression of the Pd-VON.

  8. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Irradiation-induced precipitation and mechanical properties of vanadium alloys at <430 C

    SciTech Connect (OSTI)

    Chung, H.M.; Gazda, J.; Smith, D.L.

    1998-09-01

    Recent attention to V-base alloys has focused on the effect of low-temperature (<430 C) irradiation on tensile and impact properties of V-4Cr-4Ti. In previous studies, dislocation channeling, which causes flow localization and severe loss of work-hardening capability, has been attributed to dense, irradiation-induced precipitation of very fine particles. However, efforts to identify the precipitates were unsuccessful until now. In this study, analysis by transmission electron microscopy (TEM) was conducted on unalloyed V, V-5Ti, V-3Ti-1Si, and V-4Cr-4Ti specimens that were irradiated at <430 C in conventional and dynamic helium charging experiments. By means of dark-field imaging and selected-area-diffraction analysis, the characteristic precipitates were identified to be (V,Ti{sub 1{minus}x})(C,O,N). In V-3Ti-1Si, precipitation of (V,Ti{sub 1{minus}x})(C,O,N) was negligible at <430 C, and as a result, dislocation channeling did not occur and work-hardening capability was high.

  11. Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2005-02-01

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons percolate through the films via electron exchange between nanoparticles.

  12. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    SciTech Connect (OSTI)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; Wogelius, Roy A.; Manning, Phillip L.; Poduska, Kristin M.; Layne, Graham D.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Bergmann, Uwe

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ13Corg~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significant neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological (in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.

  13. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore » function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  14. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; Wogelius, Roy A.; Manning, Phillip L.; Poduska, Kristin M.; Layne, Graham D.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Bergmann, Uwe

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ13Corg~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significant neo-formation ofmore » early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological (in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  15. Nevaro Capital Corporation Formerly VRB Power Systems | Open...

    Open Energy Info (EERE)

    Vancouver, British Columbia, Canada Zip: V6E2Y3 Product: Vancouver-based electrochemical energy storage company that has commercialised the patented Vanadium Redox Battery Energy...

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. ... Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, ...

  17. Non-axisymmetric Flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be different than the classical Sweet-Parker picture with symmetric inward flows. ... . 60 5 Reconnection Flow Patterns 64 5.1 Sweet-Parker and tearing reconnection . . . . . ...

  18. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  19. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  20. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  1. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    SciTech Connect (OSTI)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.; Kot, Wing K.; Joseph, Innocent

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

  2. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  3. A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte

    SciTech Connect (OSTI)

    Wang, B; Macia-Agullo, JA; Prendiville, DG; Zheng, X; Liu, D; Zhang, Y; Boettcher, SW; Ji, X; Stucky, GD

    2014-04-11

    A significant challenge for energy storage technologies is to realize battery-level energy density and capacitor-level durability and power density in one device. By introducing an electrolyte composed of an anionic catholyte and a cationic anolyte into a symmetric carbon-based supercapacitor configuration, a hybrid electrochemical battery-supercapacitor system using soluble redox species delivers significantly improved energy density from 20 to 42 W.h/kg (based on the electrode mass) and stable capacities for > 10(4) cycles. The ionic species formed in the electrolyte are studied by UV-Vis, Raman and mass spectroscopy to probe the energy storage mechanism. The strategy is general and may provide a route to critically-needed fast-charging devices with both high energy density and power. (C) 2014 The Electrochemical Society. All rights reserved.

  4. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  5. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  6. Tensile properties of vanadium-base alloys irradiated in the Fusion-1 low-temperature experiment in the BOR-60 reactor

    SciTech Connect (OSTI)

    Tsai, H.; Gazda, J.; Nowicki, L.J.; Billone, M.C.; Smith, D.L.

    1998-09-01

    The irradiation has been completed and the test specimens have been retrieved from the lithium-bonded capsule at the Research Institute of Atomic Reactors (RIAR) in Russia. During this reporting period, the Argonne National Laboratory (ANL) tensile specimens were received from RIAR and initial testing and examination of these specimens at ANL has been completed. The results, corroborating previous findings showed a significant loss of work hardening capability in the materials. There appears to be no significant difference in behavior among the various heats of vanadium-base alloys in the V-(4-5)Cr-(4-5)Ti composition range. The variations in the preirradiation annealing conditions also produced no notable differences.

  7. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  8. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  9. [beta]-BaV[sub 2](P[sub 2]O[sub 7])[sub 2]: A new polymorph of barium vanadium (III) pyrophosphate characterized by intersecting tunnels

    SciTech Connect (OSTI)

    Hwu, Shiou-Jyh; Carroll, R.I.; Serra, D.L. )

    1994-06-01

    Investigation into the synthesis of reduced vanadium phosphate has led to the formation of a new form of the barium vanadium (III) pyrophosphate compound [beta]-BaV[sub 2](P[sub 2]O[sub 7])[sub 2]. It is a polymorph of the previously known BaV[sub 2](P[sub 2]O[sub 7])[sub 2], which is now labeled as the [alpha]-phase. The title compound crystallizes in the P-1 (No. 2) space group with a = 6.269 (1) [angstrom], b = 7.864 (3) [angstrom], c = 6.1592 (9) [angstrom], [alpha] = 101.34 (2)[degree], [beta] = 105.84 (1)[degree], and [gamma] = 96.51 (2)[degree]. The structure consists of corner-shared VO[sub 6] octahedra and PO[sub 4] tetrahedra that are connected in V-O-P-O-V and V-O-P-O-P-O-V bonding arrangements. This interesting three-dimensional framework is characterized by seven types of intersecting tunnels, three of which are occupied by the barium cation, while the others are empty. It is important to know that one of the empty tunnels has a relatively large window with a minimum diagonal distance of 4.4 [angstrom], which facilitates a possible framework for a lithium ion insertion reaction. The barium atom has a 10-coordination sphere, BaO[sub 10], in which the oxygen atoms can be viewed as forming two intersecting pseudohexagonal planes. [beta]-BaV[sub 2](P[sub 2]O[sub 7])[sub 2] appears to form at a relatively higher temperature than its polymorph, [alpha]-BaV[sub 2](P[sub 2]O[sub 7])[sub 2]. A detailed structural analysis and structural comparison with the [alpha]-phase, as well as a brief comparison with SrV[sub 2](P[sub 2]O[sub 7])[sub 2], are presented.

  10. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  11. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  12. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  13. New Mexico Heat Flow

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    This is an updated and simplified version of the New Mexico heat flow data already on the NGDS that was used for Play Fairway analysis.

  14. Vanadium Carbide Coating Process

    Broader source: Energy.gov [DOE]

    Traditional methods of coating steel surfaces with a layer of hard metal carbide require large capital investment, produce toxic and hazardous gases, are costly to operate, and require multiple...

  15. Zirconium vanadium chromium alloy

    DOE Patents [OSTI]

    Mendelsohn, M.H.; Gruen, D.M.

    1980-10-14

    A ternary intermetallic compound having the formula Zr(V/sub 1-x/Cr/sub x/)/sub 2/ where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200/sup 0/C, at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  16. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    SciTech Connect (OSTI)

    Lu, Qingquan; Zhang, Jian; Peng, Pan; Zhang, Guanghui; Huang, Zhiliang; Yi, Hong; Miller, Jeffrey T.; Lei, Aiwen

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfones are synthesized with good to excellent yields under mild conditions.

  17. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Qingquan; Zhang, Jian; Peng, Pan; Zhang, Guanghui; Huang, Zhiliang; Yi, Hong; Miller, Jeffrey T.; Lei, Aiwen

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less

  18. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  19. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  20. Stable-isotope probe of nano-scale mineral-fluid redox interactions

    SciTech Connect (OSTI)

    Kavner, Abby

    2014-11-26

    The project examined how stable isotopes fractionate at an aqueous/solid interface during electrochemical reduction reactions. Measurements in a wide variety of metal deposition systems including Fe, Zn, Li, Mo, and Cu, have led to observations of large isotope fractionations which strongly vary as a function of rate and temperature. For the Fe, Zn, and Li systems, our electrochemical deposition methods provide the largest single-pass fractionation factors that are observed for these systems. Based on these and other experiments and theory showing and predicting significant and rate-dependent fractionations of isotopes at reacting interfaces, we have developed a simple statistical mechanics framework that predicts the kinetic isotope effect accompanying phase transformations in condensed systems. In addition, we have begun to extend our studies of mineral-fluid redox interactions to high pressures and temperatures in the diamond anvil cell. We performed a series of experiments to determine solubilities of Cu and Ni at elevated pressure and temperature conditions relevant to ore-formation.

  1. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; et al

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation ofmore » a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.« less

  2. Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions

    SciTech Connect (OSTI)

    Stewart, B.D.; Nico, P.S.; Fendorf, S.

    2009-04-01

    Reaction pathways resulting in uranium bearing solids that are stable (i.e., having limited solubility) under both aerobic and anaerobic conditions will limit dissolved concentrations and migration of this toxin. Here we examine the sorption mechanism and propensity for release of uranium reacted with Fe (hydr)oxides under cyclic oxidizing and reducing conditions. Upon reaction of ferrihydrite with Fe(II) under conditions where aqueous Ca-UO{sub 2}-CO{sub 3} species predominate (3 mM Ca and 3.8 mM CO{sub 3}-total), dissolved uranium concentrations decrease from 0.16 mM to below detection limit (BDL) after 5 to 15 d, depending on the Fe(II) concentration. In systems undergoing 3 successive redox cycles (15 d of reduction followed by 5 d of oxidation) and a pulsed decrease to 0.15 mM CO{sub 3}-total, dissolved uranium concentrations varied depending on the Fe(II) concentration during the initial and subsequent reduction phases - U concentrations resulting during the oxic 'rebound' varied inversely with the Fe(II) concentration during the reduction cycle. Uranium removed from solution remains in the oxidized form and is found both adsorbed on and incorporated into the structure of newly formed goethite and magnetite. Our 15 results reveal that the fate of uranium is dependent on anaerobic/aerobic conditions, aqueous uranium speciation, and the fate of iron.

  3. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    SciTech Connect (OSTI)

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.

  4. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    SciTech Connect (OSTI)

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; Doeff, Marca M.; Yang, Xiao-Qing; Stach, Eric A.; Li, Ju; Lin, Feng; Su, Dong

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  5. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; et al

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²⁺→Ni⁰) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²⁺→Ni⁰ can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore » time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  6. The V{sup 4}+/V{sup 5+} balance as a criterion of selection of vanadium phosphorus oxide catalysts for n-butane oxidation to maleic anhydride: A proposal to explain the role of Co and Fe dopants

    SciTech Connect (OSTI)

    Sananes-Schulz, M.T.; Tuel, A.; Volta, J.C.; Hutchings, G.J.

    1997-03-01

    Vanadium phosphorous oxide catalysts (VPO) are well known for the oxidation of n-butane to maleic anhydride, and many papers and patents have been published in the literature on this catalytic system. Concerning the valence state of vanadium in the active surface, a V{sup 4+}/V{sup 5+} equilibrium on the surface of a vanadyl pyrophosphate during n-butane oxidation has been demonstrated which is dependent on the time of activation. In the present note, we study the modifications, as determined by {sup 31}P NMR by spin echo mapping, which are induced in the physicochemical characteristics of VPO catalysts which have major differences in their morphologies when doped with iron and cobalt at a low percentage (1%) and the correlation with their catalytic performances. 21 refs., 5 figs., 2 tabs.

  7. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  8. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties

    SciTech Connect (OSTI)

    Osipov, Evgeny [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Polyakov, Konstantin [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Engelhardt Institute of Molecular Biology, Vavilova Str. 32, Moscow 119991 (Russian Federation); Kittl, Roman [BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Shleev, Sergey [RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Malm University, 205 06 Malm (Sweden); Dorovatovsky, Pavel [RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation); Tikhonova, Tamara, E-mail: ttikhonova@inbi.ras.ru [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); Hann, Stephan; Ludwig, Roland [BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Wien (Austria); Popov, Vladimir [A. N. Bach Institute of Biochemistry, Leninsky Prospect 33/2, Moscow 119071 (Russian Federation); RSC Kurchatov Institute, Acad. Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2014-11-01

    The structures of the ascomycetous B. aclada laccase and its L499M T1-site mutant have been solved at 1.7 resolution. The mutant enzyme shows a 140 mV lower redox potential of the type 1 copper and altered kinetic behaviour. The wild type and the mutant have very similar structures, which makes it possible to relate the changes in the redox potential to the L499M mutation Laccases are members of a large family of multicopper oxidases that catalyze the oxidation of a wide range of organic and inorganic substrates accompanied by the reduction of dioxygen to water. These enzymes contain four Cu atoms per molecule organized into three sites: T1, T2 and T3. In all laccases, the T1 copper ion is coordinated by two histidines and one cysteine in the equatorial plane and is covered by the side chains of hydrophobic residues in the axial positions. The redox potential of the T1 copper ion influences the enzymatic reaction and is determined by the nature of the axial ligands and the structure of the second coordination sphere. In this work, the laccase from the ascomycete Botrytis aclada was studied, which contains conserved Ile491 and nonconserved Leu499 residues in the axial positions. The three-dimensional structures of the wild-type enzyme and the L499M mutant were determined by X-ray crystallography at 1.7 resolution. Crystals suitable for X-ray analysis could only be grown after deglycosylation. Both structures did not contain the T2 copper ion. The catalytic properties of the enzyme were characterized and the redox potentials of both enzyme forms were determined: E{sub 0} = 720 and 580 mV for the wild-type enzyme and the mutant, respectively. Since the structures of the wild-type and mutant forms are very similar, the change in the redox potential can be related to the L499M mutation in the T1 site of the enzyme.

  9. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  10. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  11. Strong reduction of V{sup 4+} amount in vanadium oxide/hexadecylamine nanotubes by doping with Co{sup 2+} and Ni{sup 2+} ions: Electron paramagnetic resonance and magnetic studies

    SciTech Connect (OSTI)

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sanchez, R. D.; Malta, M.; Torresi, R. M.

    2011-05-01

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO{sub x}/Hexa NT's) doped with Co{sup 2+} and Ni{sup 2+} ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co{sup 2+}, S = 3/2 and Ni{sup 2+}, S = 1) decreases notably the amount of V{sup 4+} ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V{sup 4+} in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  12. Low pressure stagnation flow reactor with a flow barrier

    DOE Patents [OSTI]

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  13. Pressure and flow characteristics of restrictive flow orifice...

    Office of Scientific and Technical Information (OSTI)

    an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. ...

  14. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  15. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  16. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  17. Electrochemical flow capacitors

    SciTech Connect (OSTI)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  18. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  19. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  20. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Use of Conducting Polymers for Electronic Communication with Redox Active Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2004-08-08

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications.1-4 This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries.5-11 Our recent work has focused on synthesizing MnO2 nanoparticles and using conducting polymers to electronically address these particles in nanoparticle assemblies. This presentation will focus on those efforts. MnO2 nanoparticles that are encapsulated with poly(3,4-ethylenedioxythiophene) (PEDOT) are prepared using 3,4-ethylenedioxythiophene (EDOT) as a chemical reductant for permanganate anion. This non-aqueous preparation is based on a recent report of a similar method for preparation of PEDOT-encapsulated Au nanoparticles.12 We also describe the synthesis of MnO2 colloidal nanoparticles prepared using an aqueous route involving reduction of permanganate anion with butanol using a previously described route.13 We report the synthesis and characterization of the PEDOT material, and the aqueous colloidal material. We show that the aqueous colloidal nanoparticles can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. This is illustrated in Figure 1 below, which shows cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride (PDDA). Finally, we report on the use of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) to characterize the oxidation state and coordination environment

  2. Uranium Mobility During In Situ Redox Manipulation of the 100 Areas of the Hanford Site

    SciTech Connect (OSTI)

    Szecsody, James E.; Krupka, Kenneth M.; Williams, Mark D.; Cantrell, Kirk J.; Resch, Charles T.; Fruchter, Jonathan S.

    1998-12-03

    A series of laboratory experiments and computer simulations was conducted to assess the extent of uranium remobilization that is likely to occur at the end of the life cycle of an in situ sediment reduction process. The process is being tested for subsurface remediation of chromate and chlorinated solvent-contaminated sediments at the Hanford Site in southeastern Washington. Uranium species that occur naturally in the +6 valence state [U(VI)] at 10 ppb in groundwater at Hanford will accumulate as U(IV) through the reduction and subsequent precipitation conditions of the permeable barrier created by in situ redox manipulation. The precipitated uranium will be remobilized when the reductive capacity of the barrier is exhausted and the sediment is oxidized by the groundwater containing dissolved oxygen and other oxidants such as chromate. Although U(IV) accumulates from years or decades of reduction/precipitation within the reduced zone, U(VI) concentrations in solution are only somewhat elevated during aquifer oxidation because oxidation and dissolution reactions that release U(IV) precipitate to solution are slow. The release rate of uranium into solution was found to be controlled mainly by the oxidation/dissolution rate of the U(IV) precipitate (half-life 200 hours) and partially by the fast oxidation of adsorbed Fe(II) (halflife 5 hours) and the slow oxidation of Fe(II)CO3 (half-life 120 hours) in the reduced sediment. Simulations of uranium transport that incorporated these and other reactions under site-relevant conditions indicated that 35 ppb U(VI) is the maximum concentration likely to result from mobilization of the precipitated U(IV) species. Experiments also indicated that increasing the contact time between the U(IV) precipitates and the reduced sediment, which is likely to occur in the field, results in a slower U(IV) oxidation rate, which, in turn, would lower the maximum concentration of mobilized U(VI)...

  3. Redox-active tyrosine residue in the microcin J25 molecule

    SciTech Connect (OSTI)

    Chalon, Miriam C.; Wilke, Natalia; Pedersen, Jens; Rufini, Stefano; Morero, Roberto D.; Cortez, Leonardo; Chehin, Rosana N.; Farias, Ricardo N.; Vincent, Paula A.

    2011-03-18

    Research highlights: {yields} Cyclic voltammetry measurements showed irreversible oxidation of MccJ25 and MccJ25 (Y9F). {yields} Infrared spectroscopy studies showed that only Tyr9 could be deprotonated upon chemical oxidation. {yields} Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated. {yields} Tyr9 but not Tyr20 can be easily oxidized and form a tyrosyl radical. -- Abstract: Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal 'tail' passing through the ring. We have previously reported two cellular targets for this antibiotic, bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H{sub 2}O{sub 2} was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.

  4. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  5. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    SciTech Connect (OSTI)

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity; Du, Dan; Zhang, Weiying; Prabhakaran, Venkateshkumar; Lin, Yuehe; Laskin, Julia

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply charged anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.

  6. Bioinspired design of redox-active ligands for multielectron catalysis: Effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jurss, Jonah W.; Khnayzer, Rony S.; Panetier, Julien A.; El Roz, Karim A.; Nichols, Eva M.; Head-Gordon, Martin; Long, Jeffrey R.; Castellano, Felix N.; Chang, Christopher J.

    2015-06-09

    Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyrazines. These donor moieties are locked into key positions within a pentadentate ligand scaffold in order to evaluate the effects of positioning redox non-innocent ligands on hydrogen evolution catalysis. Both metal- and ligand-centered redox features are observed in organic as well as aqueous solutions over a range of pHmore » values, and comparison with analogs bearing redox-inactive zinc(II) allows for assignments of ligand-based redox events. Varying the geometric placement of redox non-innocent pyrazine donors on isostructural pentadentate ligand platforms results in marked effects on observed cobalt-catalyzed proton reduction activity. Electrocatalytic hydrogen evolution from weak acids in acetonitrile solution, under diffusion-limited conditions, reveals that the pyrazine donor of axial isomer 1-Co behaves as an unproductive electron sink, resulting in high overpotentials for proton reduction, whereas the equatorial pyrazine isomer complex 2-Co is significantly more active for hydrogen generation at lower voltages. Addition of a second equatorial pyrazine in complex 3-Co further minimizes overpotentials required for catalysis. The equatorial derivative 2-Co is also superior to its axial 1-Co congener for electrocatalytic and visible-light photocatalytic hydrogen generation in biologically relevant, neutral pH aqueous media. Density functional theory calculations (B3LYP-D2) indicate that the first reduction of catalyst isomers 1-Co, 2-Co, and 3-Co is largely metal-centered while the second reduction occurs at pyrazine. Taken together, the data establish that proper

  7. Bioinspired design of redox-active ligands for multielectron catalysis: Effects of positioning pyrazine reservoirs on cobalt for electro- and photocatalytic generation of hydrogen from water

    SciTech Connect (OSTI)

    Jurss, Jonah W.; Khnayzer, Rony S.; Panetier, Julien A.; El Roz, Karim A.; Nichols, Eva M.; Head-Gordon, Martin; Long, Jeffrey R.; Castellano, Felix N.; Chang, Christopher J.

    2015-06-09

    Mononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyrazines. These donor moieties are locked into key positions within a pentadentate ligand scaffold in order to evaluate the effects of positioning redox non-innocent ligands on hydrogen evolution catalysis. Both metal- and ligand-centered redox features are observed in organic as well as aqueous solutions over a range of pH values, and comparison with analogs bearing redox-inactive zinc(II) allows for assignments of ligand-based redox events. Varying the geometric placement of redox non-innocent pyrazine donors on isostructural pentadentate ligand platforms results in marked effects on observed cobalt-catalyzed proton reduction activity. Electrocatalytic hydrogen evolution from weak acids in acetonitrile solution, under diffusion-limited conditions, reveals that the pyrazine donor of axial isomer 1-Co behaves as an unproductive electron sink, resulting in high overpotentials for proton reduction, whereas the equatorial pyrazine isomer complex 2-Co is significantly more active for hydrogen generation at lower voltages. Addition of a second equatorial pyrazine in complex 3-Co further minimizes overpotentials required for catalysis. The equatorial derivative 2-Co is also superior to its axial 1-Co congener for electrocatalytic and visible-light photocatalytic hydrogen generation in biologically relevant, neutral pH aqueous media. Density functional theory calculations (B3LYP-D2) indicate that the first reduction of catalyst isomers 1-Co, 2-Co, and 3-Co is largely metal-centered while the second reduction occurs at pyrazine. Taken together, the data establish that proper

  8. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  9. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  10. Better Catalysts through Microscopy: Mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium Based Complex Oxide Catalysts for Propane Ammoxidation

    SciTech Connect (OSTI)

    He, Qian; Woo, Jungwon; Belianinov, Alexei; Guliants, Vadim V.; Borisevich, Albina Y.

    2015-03-06

    Catalysis research has transformed from the predominantly empirical field to one where it is possible to control the catalytic properties via characterization and modification of the atomic-scale active centers. Many phenomena in catalysis, such as synergistic effect, however, transcend the atomic scale and also require the knowledge and control of the mesoscale structure of the specimen to harness. Our paper, we use our discovery of atomic-scale epitaxial interfaces in molybdenum vanadium based complex oxide catalysts systems (i.e., MoVMO, M = Ta, Te, Sb, Nb, etc.) to achieve control of the mesoscale structure of this complex mixture of very different active phases. We can now achieve true epitaxial intergrowth between the catalytically critical M1 and M2 phases in the system that are hypothesized to have synergistic interactions, and demonstrate that the resulting catalyst has improved selectivity in the initial studies. Finally, we highlight the crucial role atomic scale characterization and mesoscale structure control play in uncovering the complex underpinnings of the synergistic effect in catalysis.

  11. Better Catalysts through Microscopy: Mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium Based Complex Oxide Catalysts for Propane Ammoxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Qian; Woo, Jungwon; Belianinov, Alexei; Guliants, Vadim V.; Borisevich, Albina Y.

    2015-03-06

    Catalysis research has transformed from the predominantly empirical field to one where it is possible to control the catalytic properties via characterization and modification of the atomic-scale active centers. Many phenomena in catalysis, such as synergistic effect, however, transcend the atomic scale and also require the knowledge and control of the mesoscale structure of the specimen to harness. Our paper, we use our discovery of atomic-scale epitaxial interfaces in molybdenum vanadium based complex oxide catalysts systems (i.e., MoVMO, M = Ta, Te, Sb, Nb, etc.) to achieve control of the mesoscale structure of this complex mixture of very different activemore » phases. We can now achieve true epitaxial intergrowth between the catalytically critical M1 and M2 phases in the system that are hypothesized to have synergistic interactions, and demonstrate that the resulting catalyst has improved selectivity in the initial studies. Finally, we highlight the crucial role atomic scale characterization and mesoscale structure control play in uncovering the complex underpinnings of the synergistic effect in catalysis.« less

  12. West Valley glass product qualification durability studies, FY 1987--1988: Effects of composition, redox state, thermal history, and groundwater

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Piepel, G.F.; Mellinger, G.B.; Bunnell, L.R.

    1988-11-01

    The product qualification subtask of the West Valley Support Task (WVST) at Pacific Northwest Laboratory (PNL) provides support for the waste form qualification efforts at West Valley Nuclear Services Co. Testing is being conducted to determine waste form chemical durability in support of these efforts. The effects of composition, ferrous/ferric ratio (redox state), thermal history, and groundwater are being investigated. Glasses were tested using modified Materials Characterization Center (MCC) -3 and MCC-1 test methods. Results obtained in fiscal years (FY) 1987 and 1988 are presented here. 13 refs., 27 figs., 36 tabs.

  13. Uranium Mobility During In Situ Redox Manipulation of the 100 Areas of the Hanford Site

    SciTech Connect (OSTI)

    CT Resch; JE Szecsody; JS Fruchter; KJ Cantrell; KM Krupka; MD Williams

    1998-12-03

    A series of laboratory experiments and computer simulations was conducted to assess the extent of uranium remobilization that is likely to occur at the end of the life cycle of an in situ sediment reduction process. The process is being tested for subsurface remediation of chromate- and chlorinated solvent-contaminated sediments at the Hanford Site in southeastern Washington. Uranium species that occur naturally in the +6 valence state {approximately}(VI) at 10 ppb in groundwater at Hanford will accumulate as U(N) through the reduction and subsequent precipitation conditions of the permeable barrier created by in situ redox manipulation. The precipitated uranium will W remobilized when the reductive capacity of the barrier is exhausted and the sediment is oxidized by the groundwater containing dissolved oxygen and other oxidants such as chromate. Although U(N) accumulates from years or decades of reduction/precipitation within the reduced zone, U(W) concentrations in solution are only somewhat elevated during aquifer oxidation because oxidation and dissolution reactions that release U(N) precipitate to solution are slow. The release rate of uranium into solution was found to be controlled mainly by the oxidation/dissolution rate of the U(IV) precipitate (half-life 200 hours) and partially by the fast oxidation of adsorbed Fe(II) (half- life 5 hours) and the slow oxidation of Fe(II)CO{sub 3} (half-life 120 hours) in the reduced sediment. Simulations of uranium transport that incorporated these and other reactions under site-relevant conditions indicated that 35 ppb U(VI) is the maximum concentration likely to result from mobilization of the precipitated U(IV) species. Experiments also indicated that increasing the contact time between the U(IV) precipitates and the reduced sediment, which is likely to occur in the field, results in a slower U(IV) oxidation rate, which, in turn, would lower the maximum concentration of mobilized U(W). A six-month-long column

  14. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  15. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  16. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  17. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  18. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    SciTech Connect (OSTI)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L.

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  19. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  20. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pdmore » deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  1. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Toms

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related specieshydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200?C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5?eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  2. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect (OSTI)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e?aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e?aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e?aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e?aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  3. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  4. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  5. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  6. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  7. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  8. Ethane and n-butane oxidation over supported vanadium oxide catalysts: An in situ UV-visible diffuse reflectance spectroscopic investigation

    SciTech Connect (OSTI)

    Gao, X.; Banares, M.A.; Wachs, I.E.

    1999-12-10

    The coordination/oxidation states of surface vanadium oxide species on several oxide supports (Al{sub 2}O{sub 3}, ZrO{sub 2}, SiO{sub 2}) during ethane and n-butane oxidation were examined by in situ UV-vis diffuse reflectance spectroscopy (DRS). Only a small amount of the surface V(V)cations are reduced to V(IV)/V(III) cations under present steady-state reaction conditions. The extents of reduction of the surface V(V) species are a strong function of the specific oxide support, V{sub 2}O{sub 5}/ZrO{sub 2} {gt} V{sub 2}O{sub 5}/Al{sub 2}O{sub 5}/Al{sub 2}O{sub 3} {gt} V{sub 2}O{sub 5}/SiO{sub 2}, and also correlate with their reactivities (turnover frequencies) for ethane and n-butane oxidation reactions. For ZrO{sub 2}-supported samples, the polymerized surface vanadia species were found to be more easily reduced than the isolated surface vanadia species in reducing environments (i.e., ethane or n-butane in He), but no significant differences in the extents of reduction were observed under present steady-state reaction conditions (i.e., ethane/O{sub 2}/He or n-butane/O{sub 2}/He). This observation is also consistent with the ethane oxidation catalytic study, which revealed that the polymerization degree, the domain size, of the surface vanadia species does not appear to significantly affect the reactivity of the supported vanadia catalysts for ethane oxidation.

  9. Virtual Flow Simulator

    Energy Science and Technology Software Center (OSTI)

    2015-10-05

    Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, themore » two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user’s manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482

  10. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  11. Flowing effects in gas lasers

    SciTech Connect (OSTI)

    Zhi, G.

    1984-05-01

    Currently accepted theory states that saturation intensity and gain (or optical power density) increase without limit with the increase of the flow speed. These conclusions are not true. It is shown instead that they tend to be limiting values with the increase of flow speed. The variations of the parameters mentioned above with flow speed are presented.

  12. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  13. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  14. Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same

    DOE Patents [OSTI]

    De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.

    1990-01-01

    A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  15. Incompressible Flows Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  16. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  17. FINAL REPORT INTEGRATED DM1200 MELTER TESTING OF REDOX EFFECTS USING HLW AZ-101 AND C-106/AY-102 SIMULANTS VSL-04R4800-1 REV 0 5/6/

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; LUTZE W; BIZOT PM; CALLOW RA; BRANDYS M; KOT WK; PEGG IL

    2011-12-29

    This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of AZ-101 and C-106/AY-102 HLW simulants. The tests reported herein are a subset of three tests from a larger series of tests described in the Test Plan for the work; results from the remaining tests will be reported separately. Three nine day tests, one with AZ-101 and two with C-106/AY-102 feeds were conducted with variable amounts of added sugar to address the effects of redox. The test with AZ-101 included ruthenium spikes to also address the effects of redox on ruthenium volatility. One of tests addressed the effects of increased flow-sheet nitrate levels using C-106/AY-102 feeds. With high nitrate/nitrite feeds (such as WTP LAW feeds), reductants are required to prevent melt foaming and deleterious effects on glass production rates. Sugar is the baseline WTP reductant for this purpose. WTP HLW feeds typically have relatively low nitrate/nitrite content in comparison to the organic carbon content and, therefore, have typically not required sugar additions. However, HLW feed variability, particularly with respect to nitrate levels, may necessitate the use of sugar in some instances. The tests reported here investigate the effects of variable sugar additions to the melter feed as well as elevated nitrate levels in the waste. Variables held constant to the extent possible included melt temperature, bubbling rate, plenum temperature, cold cap coverage, the waste simulant composition, and the target glass composition. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW feeds with variable amounts of added sugar and increased nitrate levels; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and

  18. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  19. Annular flow diverter valve

    DOE Patents [OSTI]

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  20. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  1. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  2. UZ Flow Models and Submodels

    SciTech Connect (OSTI)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  3. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromatography - Energy Innovation Portal Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention looks at method to detect targeted analytes. DescriptionThe method most often used now is Lateral Flow Chromatography (LFC) which has many drawbacks including: the need for extensive optimization, sensitivity, specificity, lack of quantitative data and extensive

  4. Category:Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Flow Test Jump to: navigation, search Geothermalpower.jpg Looking for the Flow Test page? For detailed information on Flow Test, click here. Category:Flow Test Add.png Add a new...

  5. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  6. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume IV Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  7. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  8. Active combustion flow modulation valve

    DOE Patents [OSTI]

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  9. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section 8.0 Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada 8-10 8.3 Flow Model Sensitivity to Steady-State Temperature Distribution 8.3.1 Introduction The Pahute Mesa CAU flow model spans an area 50 by 53 km with elevations between 3.5 km bmsl to 1.5 km amsl. Within the domain, there are three volcanic caldera complexes and extensive extra-caldera zones as well. Temperatures are not the same everywhere in this model domain. In the flow model,

  10. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Flow Test At Raft River Geothermal Area (2004) Raft River Geothermal Area...

  11. Financing Program Implementation Process Flow

    Broader source: Energy.gov [DOE]

    The implementation process flow for financing with two models: a generic option for primary markets and a conceptual option for secondary markets.

  12. Module bay with directed flow

    DOE Patents [OSTI]

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  13. Flow Batteries: A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Robert Savinell, Case Western Reserve University, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  14. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    SciTech Connect (OSTI)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  15. Research Highlights - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2015, Research Highlights Recent Developments and Trends in Redox Flow Batteries The recent activity for redox flow batteries and semi-flow systems was compiled and ...

  16. Toward Quantitatively Accurate Calculation of the Redox-Associated Acid–Base and Ligand Binding Equilibria of Aquacobalamin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.; Parks, Jerry M.

    2016-07-08

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for CoIII, CoII, and CoI species, respectively, and the second model features saturation of each vacant axial coordination site on CoII and CoI species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pKas and 2.3 log units for two log Kon/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in predicted

  17. Apparatus for measuring fluid flow

    DOE Patents [OSTI]

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  18. Direct flow crystal growth system

    DOE Patents [OSTI]

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  19. Apparatus for measuring fluid flow

    DOE Patents [OSTI]

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  20. /sup 234/U//sup 230/Th ratio as an indicator of redox state, and U, Th and Ra behavior in briney aquifers

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1985-06-01

    The /sup 234/U//sup 230/Th ratio serves as an in-situ indicator of the redox state in groundwater aquifers. The higher this ratio, the more U there is in the +6 state and thus a lesser reducing environment. Radium is retarded in the shallow aquifer and its sorption is dependent on the CaSO/sub 4/ content and redox state. Relative to Ra, U and Th are highly sorbed. The total retardation factor for Th is approx.1400 and mean sorption time for /sup 228/Th is approx.10 days in the shallow zone. The desorption rate of Ra is significantly slower in the shallow than in the deep aquifer. There is no effect of colloids in brines. 6 refs., 5 figs., 2 tabs.

  1. /sup 234/U//sup 230/Th ratio as an indicator of redox state, and U/sub 2/, Th, and Ra behavior in Briney aquifers

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Hubbard, N.

    1986-01-01

    The /sup 234/U//sup 230/Th ratio serves as an in-situ indicator of the redox state in groundwater aquifers. The higher this ratio, the more U there is in the +6 valance state and thus a less reducing environment. Radium sorption is retarded in the shallow aquifer and is dependent on the CaSO/sub 4/ content and the redox state. Relative to Ra, U and Th are highly sorbed. The total retardation factor for Th is approx. 1400 and mean sorption time for /sup 228/Th is approx. 10 days in the shallow zone. The desorption rate of Ra is significantly slower in the shallow than in the deep aquifer. There is no effect of colloids in brines.

  2. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  3. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  4. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect (OSTI)

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2?]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow, J. Fluid Mech. 722, 554595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst, J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  5. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    SciTech Connect (OSTI)

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element. Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.

  6. Fluid Flow Phenomena during Welding

    SciTech Connect (OSTI)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  7. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  8. Flow distribution channels to control flow in process channels

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Arora, Ravi; Kilanowski, David

    2014-10-28

    The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.

  9. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  10. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  11. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada Appendix A A-59 Table A.11-3 CPU Times in Minutes for FEHM Test Problem Simulations Model Faults Radionuclides Source Location Matrix Diffusion Simulation Time (Yrs) CPU Time (min) Flow No - - - - 19 Flow Yes - - - - 15 F-E Transport No Tritium SCOTCH/SERENA* No 200 71 F-E Transport No Tritium SCOTCH CHVTA** No 200 82 F-E Transport Yes Tritium SCOTCH/SERENA No 200 77 F-E Transport Yes Tritium SCOTCH

  12. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect (OSTI)

    Guerrero, H.N.; Hart, C.M.

    1992-12-31

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m{sup 2}-sec, and inlet water temperatures of 25{degrees}C and 40{degrees}C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  13. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect (OSTI)

    Guerrero, H.N.; Hart, C.M.

    1992-01-01

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m[sup 2]-sec, and inlet water temperatures of 25[degrees]C and 40[degrees]C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  14. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  15. Flow Batteries: A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    articles- documented progress *Early NASA Work- some learning *Fuel Cell and Flow ... Soc., 41, 1137-1164 (2011) 5 Early NASA RFB Program FeTi System *1975 Cost estimates ...

  16. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  17. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  18. Coupled reactive mass transport and fluid flow: Issues in model verification

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Ibaraki, Motomu

    2003-01-03

    Model verification and validation are both important steps in the development of reactive transport models. In this paper, a distinction is made between verification and validation, and the focus is on codifying the issues of verification for a numerical, reactive transport flow model. First, the conceptual basis of model verification is reviewed, which shows that verification should be understood as a first step in model development, and be followed by a protocol that assures that the model accurately represents system behavior. Second, commonly used procedures and methods of model verification are presented. In the third part of this paper, an intercomparison of models is used to demonstrate that model verification can be performed despite differences in hydrogeochemical transport code formulations. Results of an example simulation of transport are presented in which the numerical model is tested against other hydrogeochemical codes. Different kinetic formulations between solid and aqueous phases used among numerical models complicates model verification. This test problem involves uranium transport under conditions of varying pH and oxidation potential, with reversible precipitation of calcium uranate and coffinite. Results between the different hydrogeochemical transport codes show differences in oxidation potentials, but similarities in mineral assemblages and aqueous transport patterns. Because model verification can be further complicated by differences in the approach for solving redox problems, a comparison of a fugacity approach to both the external approach (based on hypothetical electron activity) and effective internal approach (based on conservation of electrons) is performed. The comparison demonstrates that the oxygen fugacity approach produces different redox potentials and mineral assemblages than both the effective internal and external approaches.

  19. V Fuel Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    company set up by Magnam Technologies to commercialise the vanadium redox battery. References: V-Fuel Pty Ltd1 This article is a stub. You can help OpenEI by...

  20. CX-006145: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Painesville Municipal Power Vanadium Redox Battery Demonstration ProgramCX(s) Applied: B3.6Date: 07/14/2011Location(s): Painesville, OhioOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  1. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  2. Appendix F Stream Flow.xls

    Office of Legacy Management (LM)

    ... begins at T01-27. Noticably less flow than station Appendix F Stream Flow Measurement Results Since 2000 Collect Date Surface ID Calculated Flow (ft 3 sec) Comments 812001 ...

  3. Pressure and flow characteristics of restrictive flow orifice devices.

    SciTech Connect (OSTI)

    Shrouf, Roger D.

    2003-06-01

    A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

  4. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  5. Enviro Hurdles: Instream Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enviro Hurdles: Instream Flow File 76enviornlbevelhimer4.pptx More Documents & Publications Instream Flow Project Development and Demonstration of Advanced Forecasting, Power ...

  6. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  7. Validation Data Plan Implementation: Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Data Plan Implementation: Subcooled Flow Boiling Case Study Anh Bui and Nam ... INLMIS-12-27303 September 2012 Validation Data Plan Implementation: Subcooled Flow ...

  8. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  9. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  10. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  11. Pressure compensated flow control valve

    DOE Patents [OSTI]

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  12. Stream flow and analysis study

    SciTech Connect (OSTI)

    Jackson, D.G.

    1983-11-04

    Lockwood Greene Engineers, Inc. (LGE) was retained by E.I. duPont de Nemours and Co., Inc., Savannah River Plant, Aiken, South Carolina, to conduct on-site flow measurements and sampling of tributaries and outfalls flowing into a portion of Tim`s Branch Creek. Water samples were analyzed for chemical characteristics. This report presents the results of the flow and analytical data collected during the 24 hour monitoring period, October 5 and 6, 1983. Tim`s Branch Creek is a tributary of the Upper Three Runs Creek which in turn is a tributary of the Savannah River. A map outlining the drainage area within the Savannah River Plant is included in this report.

  13. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M. Daniel (Idaho Falls, ID)

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  14. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    DOE Patents [OSTI]

    Kerr, John B.; Tian, Minmin

    2000-01-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  15. Stochastic models for turbulent reacting flows

    SciTech Connect (OSTI)

    Kerstein, A.

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  16. Capacitance densitometer for flow regime identification

    DOE Patents [OSTI]

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  17. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B.; Altman, David A.; Singleton, Norman R.

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  18. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  19. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  20. Instream Flow Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instream Flow Project Instream Flow Project As a part of the Department of Energy's Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations. Characterizing Sub-Daily Flow Regimes May 2014 (1.41 MB) Updating the U.S. Hydrologic Classification July 2013 (1.26 MB) A Holistic Framework for Environmental

  1. Mirrored serpentine flow channels for fuel cell

    DOE Patents [OSTI]

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  2. Radical Compatibility with Nonaqueous Electrolytes and Its Impact...

    Office of Scientific and Technical Information (OSTI)

    Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed ... of capacity fading in flow batteries employing organic radical-based redox ...

  3. Rinse trough with improved flow

    DOE Patents [OSTI]

    O'Hern, Timothy J.; Grasser, Thomas W.

    1998-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

  4. EFM units monitor gas flow

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This paper describes the radio-controlled pipeline monitoring system established by Transcontinental Gas Pipe Line Corp. which was designed to equip all its natural gas purchasing metering facilities with electronic flow measurement computers. The paper describes the actual radio equipment used and the features and reliability of the equipment.

  5. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  6. Rinse trough with improved flow

    DOE Patents [OSTI]

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  7. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  8. (Air flow patterns within buildings)

    SciTech Connect (OSTI)

    Harrje, D.T.

    1990-10-15

    As Annex 20 enters the final year, deliverables in the form of reports, guidelines, and data formats are nearing completion. The Reporting Guidelines for the Measurement of Air Flows and Related Factors in Buildings will be published by the AIVC next month and was presented to the research community at the 11th AIVC Conference. Measurement guidelines and state-of-the-art equipment descriptions are part of a comprehensive manual, Measurement Techniques Related to Air Flow Patterns Within Buildings -- An Application Guide, in the final stages of preparation in Part 2 of Annex 20, together with reports on how to estimate the effects of flow through large openings, as well as contaminant movements in buildings. The Measurement Manual will include the latest information from the AIVC. The next AIVC Conference, in Ottawa, September 1991, will feature more than 12 presentations of Annex 20 results, including the information from Part 1 which has focused on the detailed air flow patterns in a variety of single-room configurations. Both complex modelling (including CFD) and detailed measurements have been completed, and it is now desirable that added tests be made in the next months by the University of Illinois, BERL, representing the US in Part 1 for the first time.

  9. Cyclic Thermodynamics with Open Flow

    SciTech Connect (OSTI)

    Reid, R.S.; Ward, W.C.; Swift, G.W.

    1998-05-01

    Some general features of a new class of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process are discussed and experimentally demonstrated in the context of a thermoacoustic refrigerator. {copyright} {ital 1998} {ital The American Physical Society}

  10. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  11. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  12. Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus

    SciTech Connect (OSTI)

    Poor, Catherine B.; Chen, Peng R.; Duguid, Erica; Rice, Phoebe A.; He, Chuan

    2010-01-20

    SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys{sup 13}, to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys{sup 13} sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys{sup 13} sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.

  13. Redox probing study of the potential dependence of charge transport through Li2O2

    SciTech Connect (OSTI)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as a function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.

  14. Determination of redox reaction rates and orders by in-situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect (OSTI)

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e?aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e?aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e?aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e?aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  15. Comparative Study on Redox Properties of Nanosized CeO2 and CuO/Ce2 Under CO/O2

    SciTech Connect (OSTI)

    Martinez-Arias,A.; Gamarra, D.; Fernandez-Garcia, M.; Wang, X.; Hanson, J.; Rodriguez, J.

    2006-01-01

    Nanosized CeO{sub 2} and CuO/CeO{sub 2} samples, active for CO-PROX or related processes were comparatively examined by O{sub 2} probe electron paramagnetic resonance and in situ Raman and X-ray diffraction techniques. Their behavior toward CO reduction, as well as the oxygen-handling properties of the CO-reduced samples, was explored. An appreciable reduction of the ceria bulk was detected on treatment under CO at 473 K. On the basis of the analysis of the evolution of different oxygen-derived species (superoxide, peroxide, O-) on low-temperature (77-300 K) oxygen chemisorption on the CO-reduced samples, a general picture of the redox properties of the samples is presented. Results demonstrate that the presence of copper promotes completion of the redox cycle under CO/O{sub 2} by favoring both ceria reduction and oxidation. This can be relevant to explaining the remarkable oxidation activity and synergetic effects observed for catalysts combining CuO and CeO{sub 2}.

  16. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  17. Fluid Flow Within Fractured Porous Media

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.

    2006-10-01

    Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

  18. Catalytic reaction in confined flow channel

    DOE Patents [OSTI]

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  19. Pressurized water reactor flow skirt apparatus

    DOE Patents [OSTI]

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  20. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  1. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  2. Countercurrent flow absorber and desorber

    DOE Patents [OSTI]

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  3. Countercurrent flow absorber and desorber

    DOE Patents [OSTI]

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  4. Cyclotron resonance in plasma flow

    SciTech Connect (OSTI)

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>?>kv{sub sw}??{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ? and ?{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  5. Apparatus for monitoring two-phase flow

    DOE Patents [OSTI]

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  6. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  7. Radial flow pulse jet mixer (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Radial flow pulse jet mixer Title: Radial flow pulse jet mixer The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing ...

  8. Free Flow 69 | Open Energy Information

    Open Energy Info (EERE)

    Flow 69 Jump to: navigation, search Name: Free Flow 69 Address: Unit 9 Windmill Ind Est Windmill Place: Fowey Zip: PL23 1HB Region: United Kingdom Sector: Marine and Hydrokinetic...

  9. gtp_flow_power_estimator.xlsx

    Broader source: Energy.gov [DOE]

    This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

  10. Complex Flow Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Flow Workshop Report Complex Flow Workshop Report A discussion on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales. complex_flow_workshop_report.pdf (7.35 MB) More Documents & Publications Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Offshore Resource Assessment and Design Conditions Public Meeting Summary Report

  11. HELM(tm) Flow - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search HELM(tm) Flow Holomorphic Embedded Load flow Method Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication HELM(tm) Flow Brochure (1,017 KB) PDF Document Publication US Patent 7519506B2 (159 KB) PDF Document Publication US Patent 7979239B (172 KB) Technology Marketing Summary HELM(tm) Flow is a simulation and analysis tool for transmission and distribution power systems. It provides

  12. Method and device for measuring fluid flow

    DOE Patents [OSTI]

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  13. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    SciTech Connect (OSTI)

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.; Sharma, Ajay; Hoffman, Brian M.; Zuiderweg, Erik R. P.; Ragsdale, Stephen W.

    2015-05-05

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts

  14. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ57/54Fe observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  15. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bagai, Ireena; Sarangi, Ritimukta; Fleischhacker, Angela S.; Sharma, Ajay; Hoffman, Brian M.; Zuiderweg, Erik R. P.; Ragsdale, Stephen W.

    2015-05-05

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O₂₋ and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs).more » While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second

  16. Liquid cooled counter flow turbine bucket

    DOE Patents [OSTI]

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  17. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect (OSTI)

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  18. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (OSTI)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  19. Continuous flow dielectrophoretic particle concentrator

    DOE Patents [OSTI]

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  20. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  1. Self-regulating flow control device

    DOE Patents [OSTI]

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  2. Multiple sort flow cytometer (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Multiple sort flow cytometer Citation Details In-Document Search Title: Multiple sort flow cytometer A flow cytometer utilizes multiple lasers for excitation and respective ...

  3. Microfluidic devices and methods for integrated flow cytometry...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods for integrated flow cytometry Title: Microfluidic devices and methods for integrated flow cytometry Microfluidic devices and methods for flow ...

  4. Multiple sort flow cytometer (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    each event is independently tagged upon separation from the flow by an electrical charge ... flow; event; independently; tagged; separation; flow; electrical; charge; 60; 120; ...

  5. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function During Nanoparticle-Induced Oxidative Stress

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Jicheng; Kodali, Vamsi K.; Gaffrey, Matthew J.; Guo, Jia; Chu, Rosalie K.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Wei-Jun

    2015-12-23

    Engineered nanoparticles (ENPs) are emerging functional materials increasingly utilized for commercial and medical applications. Due to the potential hazard effects of ENPs to human health, it is significant to assess and understand the underlying mechanisms of nanotoxicity. Here, we investigate protein S-glutathionylation (SSG) as an underlying regulatory mechanism for ENP-induced oxidative stress in macrophages by applying a recently developed quantitative redox proteomics approach for site-specific measurements of SSG. Three high-volume production ENPs (SiO2, Fe3O4 and CoO) were selected as representative ENPs with low, moderate, and high reactive oxygen species (ROS) activity, respectively. Among these nanoparticles, we observe that CoO ledmore » to the most significant dose-dependent oxidative stress and increase of protein SSG modifications in macrophages. Our site-specific SSG changes highlighted a broad set of redox sensitive proteins and their specific Cys residues potentially implicated in stress response. Functional analysis revealed that the most significantly enriched functional categories for SSG-modified proteins were stress response, cellular structure change, and cell death or survival. Moreover, ENPs-induce oxidative stress levels (CoO > Fe3O4 > SiO2) were found to correlate well with the levels of impairment of macrophage phagocytic activity and the overall degrees of increases in SSG. RNA silencing knockdown experiment of glutaredoxin 1 (Grx1) also led to a decreased phagocytic activity in macrophages, which suggested a regulatory role of SSG in phagocytosis. Together, the results provided valuable insights of protein SSG as a potential regulatory mechanism in response to nanomaterial-induced oxidative stress and immunity dysfunction.« less

  6. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function During Nanoparticle-Induced Oxidative Stress

    SciTech Connect (OSTI)

    Duan, Jicheng; Kodali, Vamsi K.; Gaffrey, Matthew J.; Guo, Jia; Chu, Rosalie K.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Weijun

    2015-12-23

    Engineered nanoparticles (ENPs) are emerging functional materials increasingly utilized for commercial and medical applications. Due to the potential hazard effects of ENPs to human health, it is significant to assess and understand the underlying mechanisms of nanotoxicity. Herein, we investigate protein S-glutathionylation (SSG) as an underlying regulatory mechanism for ENP-induced oxidative stress in macrophages by applying a recently developed quantitative redox proteomics approach for site-specific measurements of SSG. Three high-volume production ENPs (SiO2, Fe3O4 and CoO) were selected as representative ENPs with low, moderate, and high reactive oxygen species (ROS) activity, respectively. Among these nanoparticles, we observe that CoO led to the most significant dose-dependent oxidative stress and increase of protein SSG modifications in macrophages. Our site-specific SSG changes highlighted a broad set of redox sensitive proteins and their specific Cys residues potentially implicated in stress response. Functional analysis revealed that the most significantly enriched functional categories for SSG-modified proteins were stress response, cellular structure change, and cell death or survival. Moreover, ENPs-induce oxidative stress levels (CoO > Fe3O4 > SiO2) were found to correlate well with the levels of impairment of macrophage phagocytic activity and the overall degrees of increases in SSG. RNA silencing knockdown experiment of glutaredoxin 1 (Grx1) also led to a decreased phagocytic activity in macrophages, which suggested a regulatory role of SSG in phagocytosis. Together, the results provided valuable insights of protein SSG as a potential regulatory mechanism in response to nanomaterial-induced oxidative stress and immunity dysfunction.

  7. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  8. General Transient Fluid Flow Algorithm

    Energy Science and Technology Software Center (OSTI)

    1992-03-12

    SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less

  9. DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS

    SciTech Connect (OSTI)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-03-10

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0.''3), high-cadence ({approx_equal} 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval {Delta}t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter {sigma} used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, {tau}. For {Delta}t > {tau}, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and {Delta}t.

  10. NMR Studies of the Vanadium Spin Dynamics and Spin Structure in LiV2O4, CaV2O4, and (LixV1-x)3BO5 (x is almost equal to 0.33, 0.40)

    SciTech Connect (OSTI)

    Xiaopeng Zong

    2007-12-01

    Strong electron correlation is believed to be an essential and unifying factor in diverse properties of condensed matter systems. Ground states that can arise due to electron correlation effects include Mott insulators, heavy fermion, ferromagnetism and antiferromagnetism, spin glasses, and high-temperature superconductivity. The electronic systems in transition metal oxide compounds are often highly correlated. In this thesis, the author presents experimental studies on three strongly correlated vanadium oxide compounds: LiV{sub 2}O{sub 4}, (Li{sub x}V{sub 1-x}){sub 3}BO{sub 5}, and CaV{sub 2}O{sub 4}, which have completely different ground states.

  11. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  12. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  13. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  14. Flow cytometer jet monitor system

    DOE Patents [OSTI]

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  15. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  16. East Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  17. Hawaii Island Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  18. West Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  19. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  20. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.