Sample records for vanadium redox battery

  1. Upgrading the Vanadium Redox Battery | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

  2. Fact Sheet: Vanadium Redox Flow Batteries (October 2012) | Department...

    Energy Savers [EERE]

    Batteries (October 2012) Fact Sheet: Vanadium Redox Flow Batteries (October 2012) DOE's Energy Storage Program is funding research to develop next-generation vanadium redox flow...

  3. A Stable Vanadium Redox-Flow Battery with High Energy Density...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy...

  4. Numerical modeling of an all vanadium redox flow battery.

    SciTech Connect (OSTI)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01T23:59:59.000Z

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  5. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H.; Wang, Chong M.; Dai, Sheng; Liu, Jun; Yang, Zhenguo; Lin, Yuehe

    2010-03-22T23:59:59.000Z

    We demonstrate a novel electrode material?nitrogen-doped mesoporous carbon (NMC)?for vanadium redox flow batteries. Mesoporous carbon (MC) is prepared using a soft-template method and doped with nitrogen by heat-treating MC in NH3. NMC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of VO2+/VO2+ is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple VO2+/VO2+ is significantly enhanced on NMC electrode compared with MC and graphite electrodes. The reversibility of the redox couple VO2+/VO2+ is greatly improved on NMC (0.61 for NMC vs. 0.34 for graphite). Nitrogen doping facilitates the electron transfer on the electrode/electrolyte interface for both oxidation and reduction processes. NMC is a promising electrode material for redox flow batteries.

  6. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect (OSTI)

    Dai, Sheng [ORNL; Shao, Yuyan [Pacific Northwest National Laboratory (PNNL); Wang, Xiqing [ORNL; Engelhard, Mark H [Pacific Northwest National Laboratory (PNNL); Wang, Congmin [ORNL; Liu, Jun [Pacific Northwest National Laboratory (PNNL); YANG, ZHENGUO [Pacific Northwest National Laboratory (PNNL); Lin, Yuehe [ORNL

    2010-01-01T23:59:59.000Z

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  7. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.; Skyllas-Kazacos, Maria

    2010-11-15T23:59:59.000Z

    The vanadium (IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O Nuclear Magnetic Resonance (NMR) spectroscopy. The structure and kinetics of vanadium (IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium (IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)5]2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3M and in the temperature range of 240 to 340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  8. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01T23:59:59.000Z

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  9. Capacity Decay Mechanism of Microporous Separator?Based All?Vanadium Redox Flow Batteries and its Recovery

    SciTech Connect (OSTI)

    Li, Bin; Luo, Qingtao; Wei, Xiaoliang; Nie, Zimin; Thomsen, Edwin C.; Chen, Baowei; Sprenkle, Vincent L.; Wang, Wei

    2014-02-01T23:59:59.000Z

    For all vanadium redox flow batteries (VRBs) with porous separators as membranes, convection effect is found to play a dominant role in the capacity decay of the cells over cycling by investigating the relationship between electrical performances and electrolyte compositions at both positive and negative sides. Although the concentration of total vanadium ions hardly changes at both sides over cycling, the net transfer of solutions from one side to another and thus asymmetrical valance of vanadium ions at both sides lead to the capacity fading and lower energy efficiency, which is confirmed to result from the hydraulic pressure differential at both sides of separators. In this paper, the hydraulic pressures of solutions at both sides can be in-situ monitored, and regulated by varying the gas pressures in electrolyte tanks. It is found that the capacity can be stabilized and the net transfer of solutions can be prevented by slightly tailoring the hydraulic pressure differential at both sides of separators, which, however, doesn’t work for Nafion membranes, suggesting the negligible convection factor in flow cells using Nafion membranes. Therefore, the possibility of porous separators allows long-term running for VRBs without capacity loss, highlighting a new pathway to develop membranes used in VRBs.

  10. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04T23:59:59.000Z

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  11. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Sun, Che Nan [ORNL] [ORNL; Delnick, Frank M [ORNL] [ORNL; Aaron, D [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Mench, Matthew M [ORNL] [ORNL; Zawodzinski, Thomas A [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  12. Accepted Manuscript Title: Dramatic Performance Gains in Vanadium Redox Flow

    E-Print Network [OSTI]

    Mench, Matthew M.

    ) are a potentially enabling technology for intermittent, renewable energy sources such as wind and solar power [1, for most stationary power uses, the #12;Page 3 of 18 Accepted M anuscript energy density per seAccepted Manuscript Title: Dramatic Performance Gains in Vanadium Redox Flow Batteries Through

  13. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15T23:59:59.000Z

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  14. Short communication All-vanadium redox photoelectrochemical cell: An approach to store

    E-Print Network [OSTI]

    Liu, Fuqiang

    rechargeable batteries [8,9] in PEC energy storage, integrating a hydrogen bromine-embedded Si system and fuel demonstrated combin- ing PEC energy storage with a vanadium redox-flow battery (VRB), a well commercialized demonstrated facile photo- oxidation kinetics of VO2+ by a wide-band-gap TiO2 photoanode, presenting

  15. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery . Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for...

  16. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22T23:59:59.000Z

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes. Abstract: The Vanadium (V) cation structures in mixed acid based...

  18. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19T23:59:59.000Z

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  19. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    battery configuration. Lead-acid batteries do not shuttleincluding lead-acid, nickel-based, and lithium-ion batteries

  20. Redox flow batteries based on supporting solutions containing chloride

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14T23:59:59.000Z

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  1. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01T23:59:59.000Z

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  2. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01T23:59:59.000Z

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  3. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24T23:59:59.000Z

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  4. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01T23:59:59.000Z

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  5. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  6. Rebalancing electrolytes in redox flow battery systems

    DOE Patents [OSTI]

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23T23:59:59.000Z

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  7. Fe-V redox flow batteries

    DOE Patents [OSTI]

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-07-08T23:59:59.000Z

    A redox flow battery having a supporting solution that includes Cl.sup.- anions is characterized by an anolyte having V.sup.2+ and V.sup.3+ in the supporting solution, a catholyte having Fe.sup.2+ and Fe.sup.3+ in the supporting solution, and a membrane separating the anolyte and the catholyte. The anolyte and catholyte can have V cations and Fe cations, respectively, or the anolyte and catholyte can each contain both V and Fe cations in a mixture. Furthermore, the supporting solution can contain a mixture of SO.sub.4.sup.2- and Cl.sup.- anions.

  8. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04T23:59:59.000Z

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  9. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    SciTech Connect (OSTI)

    D McKeown; I Muller; H Gan; Z Feng; C Viragh; I Pegg

    2011-12-31T23:59:59.000Z

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V{sub 2}O{sub 5} was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO{sub 2} mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V{sup 4+}/V{sub total} ranges from 8 to 35%, while Cr{sup 3+}/Cr{sub total} can range from 15 to 100% and even to population distributions including Cr{sup 2+}. As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V{sup 4+} populations increase after initial bubbling, but as bubbling time increases, V{sup 4+} populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr{sup 2+} populations.

  10. Layered Vanadium and Molybdenum Oxides: Batteries and Electrochromics

    SciTech Connect (OSTI)

    Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S.

    2009-01-01T23:59:59.000Z

    The layered oxides of vanadium and molybdenum have been studied for close to 40 years as possible cathode materials for lithium batteries or electrochromic systems. The highly distorted metal octahedra naturally lead to the formation of a wide range of layer structures, which can intercalate lithium levels exceeding 300 Ah/kg. They have found continuing success in medical devices, such as pacemakers, but many challenges remain in their application in long-lived rechargeable devices. Their high-energy storage capability remains an encouragement to researchers to resolve the stability concerns of vanadium dissolution and the tendency of lithium and vanadium to mix changing the crystal structure on cycling the lithium in and out. Nanomorphologies have enabled higher reactivities to be obtained for both vanadium and molybdenum oxides, and with the latter show promise for electrochromic displays.

  11. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01T23:59:59.000Z

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  12. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17T23:59:59.000Z

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  13. Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries

    E-Print Network [OSTI]

    Mui, Simon C., 1976-

    2005-01-01T23:59:59.000Z

    Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

  14. Membraneless Vanadium Redox Fuel Cell Using Laminar Flow Rosaria Ferrigno, Abraham D. Stroock, Thomas D. Clark, Michael Mayer, and

    E-Print Network [OSTI]

    Prentiss, Mara

    Membraneless Vanadium Redox Fuel Cell Using Laminar Flow Rosaria Ferrigno, Abraham D. Stroock This communication describes a small redox fuel cell fabricated using a design that omits the membrane normally used this concept by operating a millimeter-scale redox fuel cell that uses the redox couples V(V)/V(IV) (cathodic

  15. Electrochimica Acta 52 (2007) 49424946 High-performance microfluidic vanadium redox fuel cell

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    2007-01-01T23:59:59.000Z

    vanadium redox fuel cell Erik Kjeanga,c, Brenton T. Proctora,c, Alexandre G. Brolob,c, David A. Harringtonb a new microfluidic fuel cell design with high-surface area porous carbon electrodes and high aspect-effective and rapid fabrication, and would be applicable to most microfluidic fuel cell architectures. © 2007 Elsevier

  16. Recent Progress in Redox Flow Battery Research and Development

    SciTech Connect (OSTI)

    Wang, Wei; Luo, Qingtao; Li, Bin; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

    2013-02-20T23:59:59.000Z

    With the increase need to seamlessly integrate the renewable energy with the current grid which itself is evolving into a more intelligent, efficient, and capable electrical power system, it is envisioned that the energy storage system will play a more prominent role in bridging the gap between the current technology and a clean sustainable future in grid reliability and utilization. Redox flow battery technology is leading the way in this perspective in providing a well balanced approach for current challenges. Recent progress in the research and development of redox flow battery technology is reviewed here with a focus on new chemistries and systems.

  17. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Chen, Zonghai (Downers Grove, IL); Wang, Qingzheng (San Jose, CA)

    2010-12-14T23:59:59.000Z

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  18. ORIGINAL PAPER Redox flow batteries: a review

    E-Print Network [OSTI]

    Mench, Matthew M.

    conducting phase O Oxidant R Reductant 1 Introduction Renewable-energy sources, such as solar and wind · Philip N. Ross · Jeffrey T. Gostick · Qinghua Liu Received: 12 July 2011 / Accepted: 16 August 2011 Ó batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy

  19. City of Painesville, Ohio Vanadium Redox Battery Demonstration Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock &EnergyDepartmentCity of Los Angeles

  20. Fact Sheet: Vanadium Redox Flow Batteries (October 2012)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers New Training on Energy ManagementAugustin2012) | Department ofFactTechnology

  1. Fact Sheet: Vanadium Redox Battery Demonstration Program (August 2013) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY Fact

  2. Fact Sheet: Vanadium Redox Battery Demonstration Program (August 2013) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLastSodium-BetaDepartment of Energy

  3. Anthraquinone with Tailored Structure for Nonaqueous Metal-Organic Redox Flow Battery

    SciTech Connect (OSTI)

    Wang, Wei; Xu, Wu; Cosimbescu, Lelia; Choi, Daiwon; Li, Liyu; Yang, Zhenguo

    2012-06-08T23:59:59.000Z

    A nonaqueous, hybrid metal-organic redox flow battery based on tailored anthraquinone structure is demonstrated to have an energy efficiency of {approx}82% and a specific discharge energy density similar to aqueous redox flow batteries, which is due to the significantly improved solubility of anthraquinone in supporting electrolytes.

  4. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    No. 5,763,119. “Redox Shuttle Additives for Overchargeprotection, electrolytes, additives, redox shuttleREDOX SHUTTLE ADDITIVES FOR OVERCHARGE PROTECTION IN LITHIUM

  5. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  6. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03T23:59:59.000Z

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  7. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect (OSTI)

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01T23:59:59.000Z

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  8. all-vanadium redox flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3. Eutrophication 4. Water treatment 1. Redox chemistry 15; Principle of equilibration of chemical...

  9. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  10. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOE Patents [OSTI]

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08T23:59:59.000Z

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  11. Facile synthesized nanorod structured vanadium pentoxide for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries....

  12. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01T23:59:59.000Z

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  13. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.

    SciTech Connect (OSTI)

    Tepavcevic, S.; Xiong, H.; Stamenkovic, V.R.; Zuo, X.; Balasubramanian, M.; Prakapenka, V.B.; Johnson, C.S.; Rajh, T. (Accelerator Systems Division (APS)); ( CNM); ( MSD); (University of Chicago)

    2012-01-01T23:59:59.000Z

    Tailoring nanoarchitecture of materials offers unprecedented opportunities in utilization of their functional properties. Nanostructures of vanadium oxide, synthesized by electrochemical deposition, are studied as a cathode material for rechargeable Na-ion batteries. Ex situ and in situ synchrotron characterizations revealed the presence of an electrochemically responsive bilayered structure with adjustable intralayer spacing that accommodates intercalation of Na{sup +} ions. Sodium intake induces organization of overall structure with appearance of both long- and short-range order, while deintercalation is accompanied with the loss of long-range order, whereas short-range order is preserved. Nanostructured electrodes achieve theoretical reversible capacity for Na{sub 2}V{sub 2}O{sub 5} stoichiometry of 250 mAh/g. The stability evaluation during charge-discharge cycles at room temperature revealed an efficient 3 V cathode material with superb performance: energy density of {approx}760 Wh/kg and power density of 1200 W/kg. These results demonstrate feasibility of development of the ambient temperature Na-ion rechargeable batteries by employment of electrodes with tailored nanoarchitectures.

  14. Vanadium redox-flow batteries Installation at Ris for characterisation measurements

    E-Print Network [OSTI]

    and investigating distributed power systems. SYSLAB consists of two wind turbines, a pv-array, a diesel genset it provides different services to grid including smoothing of wind turbine output, load balancing and similar in August 2007. Power systems with high penetration of Wind energy/Renewable energy Renewable energy

  15. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  16. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  17. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

  18. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    2011Year #12;Flow Battery Research at PNNL and Sandia #12 with industries and universities New Generation Redox Flow Batteries, PNNL Developed new generation redox flow

  19. Redox Shuttle Additives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    available for licensing: A series of novel redox shuttle additives for lithium-ion batteries Seven-technology suite helps reduce battery costs Provides overcharge...

  20. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  1. Modified lithium vanadium oxide electrode materials products and methods

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Visser, Donald R. (Naperville, IL); Dees, Dennis W. (Downers Grove, IL); Benedek, Roy (Western Springs, IL)

    1999-12-21T23:59:59.000Z

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  2. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    or novel hydrogen-storage materials are is needed. Althoughof storage tank volume, and thus hydrogen compression

  3. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    DC, 2008). "Energy Storage Technology Valuation Primer:storage technologies and does not require specific geographical siting, as pumped hydroelectric and compressed-air energyenergy. There are some technologies that enable practical storage

  4. Spectroscopic Investigations of the Fouling Process on Nafion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Flow Batteries. Abstract: The Nafion-117 membrane used in vanadium redox flow battery (VRFB) is analyzed by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic...

  5. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  6. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05T23:59:59.000Z

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  7. Effects of additives on the stability of electrolytes for all...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Effects of additives on the stability of electrolytes for all-vanadium redox flow...

  8. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contracting Activity (HCA)Storage

  9. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  10. What's Next for Vanadium Dioxide?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory (ORNL) has made an important advancement in understanding a classic transition-metal oxide, vanadium dioxide, by quantifying the thermodynamic forces driving...

  11. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01T23:59:59.000Z

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  12. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27T23:59:59.000Z

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  13. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

  14. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  15. Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.

    SciTech Connect (OSTI)

    Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

    2010-01-01T23:59:59.000Z

    Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

  16. Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized.25V3O8 nanobelts are promising cathode materials for secondary lithium batteries. KEYWORDS: sodium vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because

  17. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  18. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  19. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in...

  20. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    144 Granite Street, Worcester, MA Premium Power Distributed Energy Storage Demonstration for National Grid Install and operate 500 kW Vanadium Redox flow battery at Worcester, MA....

  1. Method for preparing high purity vanadium

    SciTech Connect (OSTI)

    Schmidt, F.; Carlson, O.N.

    1986-09-09T23:59:59.000Z

    A method is described of preparing high-purity, low-silicon vanadium metal from vanadium pentoxide containing silicon, iron and other impurities comprising: mixing the vanadium pentoxide with aluminum to form a reaction mixture, the quantity of aluminum in the mixture being from about stoichiometric to about 10% deficient in the amount necessary to completely reduce the vanadium pentoxide to vanadium metal: heating the mixture under reducing conditions to a temperature sufficient to react the mixture to reduce the vanadium pentoxide and form a vanadium-aluminum alloy containing silicon, iron and from about 0.6 to about 3 weight percent oxygen; heating the alloy under reduced pressure to a temperature sufficient to vaporize the aluminum and iron in the alloy and to react the silicon with some of the oxygen to form volatile silicon monoxide which vaporizes away from the alloy thereby removing aluminum, iron, silicon and some of the oxygen from the vanadium metal, and heating the vanadium metal in the presence of calcium metal to a temperature and for a period of time sufficient for the oxygen to diffuse from the vanadium and react with the calcium to form calcium oxide, thereby removing oxygen from the vanadium metal, forming a high-purity, low-silicon vanadium metal.

  2. Synthesis of Nanodispersed Oxides of Vanadium, Titanium, Molybdenum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanodispersed Oxides of Vanadium, Titanium, Molybdenum, and Tungsten on Mesoporous Silica using Atomic Layer Synthesis of Nanodispersed Oxides of Vanadium, Titanium, Molybdenum,...

  3. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  4. Thin film battery and method for making same

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1994-08-16T23:59:59.000Z

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

  5. Preparation of high purity vanadium

    SciTech Connect (OSTI)

    Carlson, O.N.; Burkholder, H.R.; Martsching, G.A.; Schmidt, F.A.

    1981-01-01T23:59:59.000Z

    The paper reviews the various reduction and refining methods that have been used to prepare vanadium metal. Earlier work on metallothermic and carbothermic reduction processes is discussed. Recent work on improving the scaling up the aluminothermic reduction process is described in detail. Iron and silicon are first removed from commercial V/sub 2/O/sub 5/ by an ion exchange separation technique and the purified oxide is then exothermically reduced with aluminum metal. The resulting V-Al ingot is heated in a vacuum to 1700/sup 0/C to remove the aluminum and dissolved oxygen, and the sponge is then electron-beam melted to remove residual volatile impurities to yield vanadium metal of 99.98% purity. Precautions taken during each processing stage to minimize carbon, nitrogen and oxygen contamination are described. Metal containing < 50 ppmw each of C, N and O, < 20 ppmw Si, and < 10 ppmw of Fe and Al has been prepared in kilogram quantities by this method. The hardness of the beam melted is 60 to 70 DPH. Experiments designed to scale up the reduction process and to increase the efficiency of the separation and melting steps are described. Various refining techniques that have been applied to the preparation of high purity vanadium are described and comparisons made between the quality of metal obtained by each.

  6. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  7. Solid Electrolyte Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Present Li-ion Batteries Insertion compounds have limited capacity Li Air batteries are inefficient if used for electrical energy storage Li S batteries have too...

  8. Vanadium catalysts break down biomass for fuels

    E-Print Network [OSTI]

    - 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. The Department

  9. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, Leslie D. (Livermore, CA)

    1982-01-01T23:59:59.000Z

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  10. Methods for making lithium vanadium oxide electrode materials

    DOE Patents [OSTI]

    Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

    2000-01-01T23:59:59.000Z

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  11. Method for preparing high purity vanadium

    DOE Patents [OSTI]

    Schmidt, Frederick (Ames, IA); Carlson, O. Norman (Ames, IA)

    1986-09-09T23:59:59.000Z

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  12. Method for preparing high purity vanadium

    DOE Patents [OSTI]

    Schmidt, F.; Carlson, O.N.

    1984-05-16T23:59:59.000Z

    A method for preparing high purity vanadium having a low silicon content has been developed. Vanadium pentoxide is reduced with a stoichiometric, or slightly deficient amount of aluminum to produce a vanadium-aluminum alloy containing an excess of oxygen. Silicon is removed by electron-beam melting the alloy under oxidizing conditions to promote the formation of SiO which is volatile at elevated temperatures. Excess oxygen is removed by heating the alloy in the presence of calcium metal to form calcium oxide.

  13. Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.

    1986-11-01T23:59:59.000Z

    GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

  14. Electrochemical Characterization of Vanadium Oxide Nanostructured Electrode

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    microstructures called aerogels in the case of supercritical or freeze-drying and ambigels in the case of solvent for intercalated ions.7 When cycled between 4.0 and 1.5 V, vanadium oxide aerogels achieved capaci- ties of 410 mAh/g at C/40.6 Baudrin et al. have used the vanadium oxide aerogel structure to access a metastable phase

  15. Vanadium hydride deuterium-tritium generator

    DOE Patents [OSTI]

    Christensen, L.D.

    1980-03-13T23:59:59.000Z

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  16. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12T23:59:59.000Z

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  17. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  18. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  19. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01T23:59:59.000Z

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  20. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  1. Computation of the Redox and Protonation Properties of Quinones...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of the Redox and Protonation Properties of Quinones: Towards the Prediction of Redox Cycling Natural Products. Computation of the Redox and Protonation Properties of...

  2. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Energy Savers [EERE]

    DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  3. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  4. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  5. This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 10841--10848 10841 Cite this: Phys.Chem.Chem.Phys.,2013,

    E-Print Network [OSTI]

    Zhao, Tianshou

    of vanadium ions through the porous electrodes of vanadium redox flow batteries Qian Xu and T. S. Zhao flow batteries (VRFBs), unique experimental setups for electrochemically determining the two transport-level mass-transfer coefficient through the porous electrode made of graphite felt, a typical material

  6. Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL

    E-Print Network [OSTI]

    Rubinstein, Benjamin

    Holme et al. Soil Redox Sensor Networks RADIO FREQUENCY ENABLED SOIL REDOX POTENTIAL SENSOR technologies that may be combined into a cost effective soil redox sensor network, discuss the merits of each as a component of said network, describe a prototype soil redox sensor network and perform basic laboratory

  7. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  8. Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

    E-Print Network [OSTI]

    Britto, Sylvia; Leskes, Michal; Hua, Xiao; Hébert, Claire-Alice; Shin, Hyeon Suk; Clarke, Simon; Borkiewicz, Olaf; Chapman, Karena W.; Seshadri, Ram; Cho, Jaephil; Grey, Clare P.

    2015-06-08T23:59:59.000Z

    via the internet at http://pubs.acs.org. REFERENCES (1) Mizushima, K., Jones, P. C., Wiseman. P. J., Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783–789. (2) Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Science 1995, 270, 590–593. (3...

  9. Short communication Effect of vanadium redox species on photoelectrochemical behavior of TiO2

    E-Print Network [OSTI]

    Liu, Fuqiang

    . Alternative and sustainable energy sources such as solar, wind, tidal power, geothermal, hydroelectricity to 1 M. This finding might render this approach a very promising way of solar energy conversion are getting depleted. Among them, solar energy is considered to be the most reliable and inexhaustible source

  10. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  11. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01T23:59:59.000Z

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  12. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14T23:59:59.000Z

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  13. Investigation of Local Environments in Nafion-SiO2 Composite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the analysis of the Nafion-SiO2 composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy...

  14. CX-006145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Painesville Municipal Power Vanadium Redox Battery Demonstration ProgramCX(s) Applied: B3.6Date: 07/14/2011Location(s): Painesville, OhioOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  15. Transition from supercapacitor to battery behavior in electrochemical energy storage

    SciTech Connect (OSTI)

    Conway, B.E. (Ottawa Univ., ON (Canada). Dept. of Chemistry)

    1991-06-01T23:59:59.000Z

    In this paper the storage of electrochemical energy in battery, supercapacitor, and double-layer capacitor devices is considered. A comparison of the mechanisms and performance of such systems enables their essential features to be recognized and distinguished, and the conditions for transition between supercapacitor and battery behavior to be characterized. Supercapacitor systems based on two-dimensional underpotential deposition reactions are highly reversible and their behavior arises from the pseudocapaccitance associated with potential-dependence of two-dimensional coverage of electroactive adatoms on an electrode substrate surface. Such capacitance can be 10-100 times the double-layer capacitance of the same electrode area. An essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants. Quai-two-dimensional systems, such as hyperextended hydrous RuP{sub 2}, also exhibit large pseudocapacitance which, in this case, is associated with a sequence of redox redox processes that are highly reversible.

  16. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  17. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01T23:59:59.000Z

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  18. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  19. Vanadium-pumped titanium x-ray laser

    DOE Patents [OSTI]

    Nilsen, J.

    1992-05-26T23:59:59.000Z

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  20. VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS*

    E-Print Network [OSTI]

    ERL 03-8 VACUUM PUMPING STUDY OF TITANIUM-ZIRCONIUM-VANADIUM THIN FILMS* Yulin Li# and Simon Ho high vacuum. As part of R&D efforts for the proposed Energy Recovery Linac at Cornell, the pumping performance of Titanium- Zirconium-Vanadium (TiZrV) NEG thin films was investigated to provide `engineering

  1. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  2. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  3. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  4. Anisotropic reactive ion etching of vanadium dioxide 

    E-Print Network [OSTI]

    Radle, Byron K

    1990-01-01T23:59:59.000Z

    Facility for Submicron Structures, Cornell University, Ithaca, New York [7]. In these studies thin film VO2 was etched with a SF6/CO2 chemistry. SF6 chemistry was chosen because volatile vanadium fluorides can be formed easily. CO2 supplied the carbon... (Silicon Doped GaAs) Semi-Insulating GaAs Metal (AuGe, Ni, Au) Fig. 19. This is a step by step drawn representation of the fabrication procedure. 53 1. Pattern Photo Resist for Optical Stack etch mask. P Etched VOz in CFe plasma. 3. Etched Alz...

  5. Vanadium catalysts break down biomass for fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps toValidatingCloudPoissonVENIndustrialVanadium

  6. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  7. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  8. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid. Summary Researchers from the...

  9. Boosting batteries | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way for widespread adoption of lithium ion batteries for applications such as powering electric vehicles and storing renewable energy on the grid. The Science Rechargeable...

  10. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  11. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  12. Patterns of vanadium accumulation in petroleum and natural bitumen

    SciTech Connect (OSTI)

    Gol'dberg, I.S.; Kaplan, Z.G.; Ponomarev, V.S.

    1986-06-01T23:59:59.000Z

    Vanadium is one of the most abundant metals in oils and natural bitumens, with concentrations ranging from 10/sup -2/ to 1.5 x 10/sup 3/ ppm in oils and to as much as 0.6% in bitumens. Vanadium contents in some oil and bitumen deposits are comparable with those of vanadium-bearing titanomagnetite ores. The authors have examined the distributions of vanadium and associated trace elements (Ni, Mo, Co, etc.) in oils and bitumens for the Volga-Ural and Timan-Pechora basins, which are petroleum-metallogenic provinces of the vanadium-nickel type. The vanadium and nickel concentrations in the oils and bitumens, in bulk and by fractions, have been determined, without ashing the samples, by X-ray fluorescence analysis using /sup 55/Fe and /sup 238/Pu radionuclides and a semiconductor spectrometer. The ash was examined by emission spectrography and X-ray structural methods. The data reveal regularities in the vanadium concentration related to the physicochemical parameters. The authors also used previously published analyses to extend the statistical sample. 16 references.

  13. Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2005-02-01T23:59:59.000Z

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons percolate through the films via electron exchange between nanoparticles.

  14. Vanadium-base alloys for fusion reactor applications

    SciTech Connect (OSTI)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01T23:59:59.000Z

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  15. REVIEW ARTICLE Redox regulation of intercellular transport

    E-Print Network [OSTI]

    Jackson, David

    REVIEW ARTICLE Redox regulation of intercellular transport Yoselin Benitez-Alfonso & David Jackson research has suggested the participa- tion of ROS in the regulation of PD transport. The study of several in cell redox homeostasis and PD transport, and the histological detection of hydrogen peroxide

  16. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with Redox reactions of reduced flavin mononucleotide (FMN),...

  17. Enrichment of Functional Redox Reactive Proteins and Identification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Reactive Proteins and Identification by Mass Spectrometry Results in Several Terminal Fe(III) Enrichment of Functional Redox Reactive Proteins and Identification by Mass...

  18. Redox Chemistry in Thin Layers of Organometallic Complexes Prepared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Chemistry in Thin Layers of Organometallic Complexes Prepared Using Ion Soft Landing. Redox Chemistry in Thin Layers of Organometallic Complexes Prepared Using Ion Soft...

  19. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  20. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  1. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  2. Overview of the vanadium alloy researches for fusion reactors

    SciTech Connect (OSTI)

    Chen, J. M.; Chernov, V. M.; Kurtz, Richard J.; Muroga, Takeo

    2011-03-05T23:59:59.000Z

    Various vanadium alloys are being developed as one of the options of structural materials for advanced blankets of fusion reactors. Besides the large heats made in Japan and US, a 110 kg V-4Cr-4Ti ingot was produced in RF recently. Development of advanced vanadium alloys were also carried out, such as the ultra-fine grain alloys containing Y and that with W and TiC strengthening particles. Investigations were performed for further widening of temperature and mechanical application windows of the reference V-4Cr-4Ti alloy by plastic deformation and heat treatments. Neutron irradiation effects combined with lithium corrosion were studied. In addition, some efforts are oriented to issues related to DEMO blanket manufacturing technology, such as W coating for first wall protection and the welding technologies to fabricate large vanadium component. This paper highlights the recent activities of these vanadium alloy researches, discusses the critical issues and summarizes the remaining issues to be addressed.

  3. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  4. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01T23:59:59.000Z

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  5. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12T23:59:59.000Z

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  6. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  7. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  8. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  9. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  10. Pollution of Natural Waters 1. Redox chemistry

    E-Print Network [OSTI]

    Schofield, Jeremy

    . Eutrophication 4. Water treatment 1. Redox chemistry #15; Principle of equilibration of chemical system R Keq;sh and other aquatic life { Shift to anaerobic metabolic mechanisms #15; Eutrophication: agin

  11. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13T23:59:59.000Z

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  12. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  13. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  14. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  15. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  16. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  17. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  18. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  19. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  20. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  1. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  2. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  3. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  4. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  5. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  6. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  7. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  9. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  10. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the study could pave the way for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid....

  11. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01T23:59:59.000Z

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  12. Battery Charger Efficiency

    Office of Environmental Management (EM)

    Marine Battery Banks don't look like power tools Marine and RV Chargers Differ from Automotive Chargers * The core strategy in the CEC standard is to shut down the charger when...

  13. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16T23:59:59.000Z

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  14. Battery SEAB Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from

  15. a-dependent redox biology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3. Eutrophication 4. Water treatment 1. Redox chemistry 15; Principle of equilibration of chemical...

  16. auto-protective redox buffering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3. Eutrophication 4. Water treatment 1. Redox chemistry 15; Principle of equilibration of chemical...

  17. all-uranium redox flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters Outline: 1. Redox chemistry 2. Redox potential in aquatic systems 3. Eutrophication 4. Water treatment 1. Redox chemistry 15; Principle of equilibration of chemical...

  18. A User Programmable Battery Charging System

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age...

  19. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29T23:59:59.000Z

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  20. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

    1993-01-01T23:59:59.000Z

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  1. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  2. Electroslag remelting of a vanadium alloy

    SciTech Connect (OSTI)

    Nafziger, R.H. [Bureau of Mines, Albany, OR (United States); Smolik, G.R.; Carmack, W.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31T23:59:59.000Z

    The Bureau of Mines, in cooperation with the Idaho National Engineering Laboratory, has electroslag melted a V-5Ti-5Cr alloy using a fused CaF{sub 2} flux. The alloy is a candidate for use in future fusion reactors. One objective of this research was to evaluate the feasibility of the electroslag melting process in separating simulated radioactive isotopes from the V alloy to demonstrate recyclability. Small amounts of Ca, Y, and Mn were added as surrogates for radioactive isotopes. Results showed that this vanadium alloy can be electroslag melted satisfactorily. The impurities added intentionally were removed or decreased successfully. Among the major alloying constituents, Cr was retained but there were some Ti losses. The latter may be controlled with process refinements. This research suggests that the electroslag melting process could be a suitable method for recycling V alloys after use in future fusion reactors, or for processing other reactive metal alloys with more immediate applications. 3 refs., 1 fig., 5 tabs.

  3. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  4. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  5. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  6. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  7. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  8. Testimonials - Partnerships in Battery Technologies - Capstone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

  9. Theoretical and Experimental Study of Vanadium-Based Fluorophosphate Cathodes for Rechargeable Batteries

    E-Print Network [OSTI]

    Henkelman, Graeme

    for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, P. R. China ABSTRACT and solar energy.1-3 An assessment of lithium reserves reveals that most of them are located in politically of the material were considered to activate the third Na with an oxidation energy in the electrolyte stability

  10. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -power applications, such as plug-in hybrid electrical vehicles, alternative cost-effective cathode materials aerogels fabricated with the supercritical drying method

  11. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01T23:59:59.000Z

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  12. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  13. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01T23:59:59.000Z

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  14. Sorption preconcentration of vanadium for its determination in sea water

    SciTech Connect (OSTI)

    Andreeva, I.Yu.; Lebedeva, L.I.; Izotova, Yu.A.; Danilova, E.Ya.

    1987-08-10T23:59:59.000Z

    This work is devoted to a study of the conditions of vanadium sorption by a fibrous sorbent with a view to evolving a procedure for its determination in sea water. The sorbent was the same as used by them earlier for molybdenum preconcentration. It is a fiber based on polyethylenepolyamine-modified polyacrylonitrile. The sorbent contained 80% tertiary and approx. = 20% primary and secondary amino groups. Static exchange capacity of the sorbent relative to HCl 2 mmole/g, swelling 34%, fiber diameter 0.016 mm. The vanadium content was determined photometrically using acidic chromium blue K.

  15. Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass

    E-Print Network [OSTI]

    Hughes, M; Rutt, H; Hewak, D

    2014-01-01T23:59:59.000Z

    Vanadium doped gallium lanthanum sulphide glass (V:GLS) displays three absorption bands at 580, 730 and 1155 nm identified by photoluminescence excitation measurements. Broad photoluminescence, with a full width half maximum (FWHM) of 500 nm, is observed peaking at 1500 nm when exciting at 514, 808 and 1064 nm. The fluorescence lifetime and quantum efficiency at 300 K were measured to be 33.4 us and 4 % respectively. From the available spectroscopic data we propose the vanadium ions valence to be 3+ and be in tetrahedral coordination The results indicate potential for development of a laser or optical amplifier based on V:GLS.

  16. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31,

  17. Batteries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. Try watching this

  18. Food Battery Competition Sponsored by

    E-Print Network [OSTI]

    Tennessee, University of

    and outstanding lithium-ion batteries, you can recognize the progress. Lithium provides good voltages and powerFood Battery Competition Sponsored by: The University of Tennessee, Materials Advantage (MA not have enough natural resources to support our growing populations and energy needs forever. Batteries

  19. Composite cathodes for lithium rechargeable batteries

    E-Print Network [OSTI]

    Olivetti, Elsa A

    2007-01-01T23:59:59.000Z

    The utility of incorporating continuous, nanoscale vanadium oxide phases within preferred domains of self-organizing copolymers was investigated towards the fabrication of composite, nanoarchitectured electrode materials ...

  20. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  1. Redox, haem and CO in enzymatic catalysis and regulation

    E-Print Network [OSTI]

    Ragsdale, Stephen W.

    The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood–Ljungdahl pathway, which involves the conversion of CO or ...

  2. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Energy Savers [EERE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  3. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

  4. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  5. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01T23:59:59.000Z

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  6. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01T23:59:59.000Z

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  7. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides

    E-Print Network [OSTI]

    Cao, Guozhong

    intercalation properties of nanostructured vanadium oxides for energy storage as well as other applications-volume, and environment friendly energy storage/conversion devices are developed, and nanomaterials are attracting great-18 The nanostructured form of this material has been employed in FETs,19 sensors,20,21 spintronic devices,22

  8. Method and apparatus for smart battery charging including a plurality...

    Office of Scientific and Technical Information (OSTI)

    Re-direct Destination: A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger...

  9. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Energy Savers [EERE]

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  10. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; et al

    2015-02-11T23:59:59.000Z

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni˛??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni˛??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore »time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  11. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhao, Kejie [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Norlund, Dennis [SLAC National Accelerator Lab., Menlo Park, CA (United States); Weng, Tsu-Chien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Jing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Jiang, Yi [Cornell Univ., Ithaca, NY (United States); Cadigan, Christopher A. [Colorado School of Mines, Golden, CO (United States); Richards, Ryan M. [Colorado School of Mines, Golden, CO (United States); Doeff, Marca M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stach, Eric A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Ju [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Lin, Feng [Colorado School of Mines, Golden, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)

    2015-02-11T23:59:59.000Z

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni˛??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni˛??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  12. (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached

    E-Print Network [OSTI]

    Zhao, Tianshou

    does. Ó 2012 Elsevier Ltd. All rights reserved. 1. Introduction Renewable energies like solar and wind in revised form 5 December 2012 Accepted 13 December 2012 Keywords: Flow battery Vanadium redox flow battery with the serpentine flow field at the optimal flow rate shows the high- est energy-based efficiency and round

  13. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  14. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance...

  15. United States Advanced Battery Consortium

    Broader source: Energy.gov (indexed) [DOE]

    of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

  16. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07T23:59:59.000Z

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  17. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03T23:59:59.000Z

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  18. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  19. Advanced battery modeling using neural networks

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  20. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  1. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage & Battery Leading the charge in battery R&D Argonne National Laboratory is a global leader in the development of advanced battery technologies and has a portfolio of...

  2. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  3. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  5. Good upkeep adds to battery life

    SciTech Connect (OSTI)

    Jackson, D.

    1983-01-01T23:59:59.000Z

    The care and maintenance of underground mine batteries is discussed. A guide to motive power battery manufacturers in USA is included, plus a list of definitions of battery terms.

  6. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    to Thermal Rise in Lead-Acid Batteries Used in Electricon Advances in Lead-Acid Batteries, The Electrochemicalbattery market is for lead-acid batteries for SLI (starting,

  7. Redox Shuttle Additives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contracting ActivityRedox

  8. Temperature relationship of the elastic constants of vanadium

    SciTech Connect (OSTI)

    Belousov, O.K.

    1987-09-01T23:59:59.000Z

    Information on the elastic constants of vanadium and their temperature relationship is limited and ambiguous. This article gives the values of these characteristics for VEL-2 electron beam remelted vanadium with a purity of about 99.8%. The elastic properties were measured in heating from 20 to 1600/sup 0/C in a vacuum. The relationship of the modulus of elasticity to temperature has two almost linear portions in the 20-300 and 300-1350/sup 0/C ranges and then a more intense reduction in it is observed. The shear modulus drops sharply starting with 800/sup 0/C and decreases to G = 36 kN/mm/sup 2/ at 1600/sup 0/C. Poisson's ratio has values close to 0.3. Its most significant increase starts with 1400/sup 0/C.e

  9. Sandia National Laboratories: Evaluating Powerful Batteries for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

  10. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes...

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  12. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  13. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  14. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  15. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  16. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  17. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery...

  18. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    lithium-ion battery is the most advanced rechargeable battery technology in use today. These batteries

  19. High power density self-cooled lithium-vanadium blanket.

    SciTech Connect (OSTI)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01T23:59:59.000Z

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  20. Strong reduction of V{sup 4+} amount in vanadium oxide/hexadecylamine nanotubes by doping with Co{sup 2+} and Ni{sup 2+} ions: Electron paramagnetic resonance and magnetic studies

    SciTech Connect (OSTI)

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sanchez, R. D. [Centro Atomico Bariloche, CNEA, (8400) S. C. de Bariloche (Argentina); Malta, M. [Depto. de Cs. Exatas e da Terra, Univ. do Estado da Bahia, Cabula Salvador CP 2555 (Brazil); Torresi, R. M. [Instituto de Quimica, Universidad de Sao Paulo, Sao Paulo CP 26077, 05513-970 (Brazil)

    2011-05-01T23:59:59.000Z

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO{sub x}/Hexa NT's) doped with Co{sup 2+} and Ni{sup 2+} ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co{sup 2+}, S = 3/2 and Ni{sup 2+}, S = 1) decreases notably the amount of V{sup 4+} ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V{sup 4+} in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  1. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV Battery Cost

  2. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    SciTech Connect (OSTI)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24T23:59:59.000Z

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  3. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  4. Some lessons learned from 20 years in RedOx Flow Battery R&D

    E-Print Network [OSTI]

    balancing pressure (low p) Materials Novel nano-structured non- carbon electrodes Novel low cost option Now ubiquitous on all large wind farms Utilities understand them ­ and feed them Extensively must power itself and this imposes complex trade offs, e.g: High voltage couples and reactive

  5. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contracting Activity

  6. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  7. Influence of Iron Redox Transformations on Plutonium Sorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings...

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  9. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    , nickel cadmium (Nicad), nickel metal hydride, lithium ion, silver button, mercury, magnesium carbon. Recycling rechargeable batteries Rechargeable batteries are often referred to as nickel cadmium, nickel Battery Per Bag Please sort the batteries by battery type, using a separate receptacle for nickel cadmium

  10. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    battery electrolytes; we also describe a general approach toward performing fundamental in situ characterization

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    CHARACTERIZATION ON HIGHLY ORIENTED PYROLYTIC GRAPHITE cator of electrode passivation in realistic battery

  12. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  13. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    (submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

  14. Batteries, mobile phones & small electrical devices

    E-Print Network [OSTI]

    , mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

  15. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    of Vanadium Oxide Aerogels. J. Non. Cryst. Solids (102)of composite V 2 O 5 aerogel electrodes. 26electrolyte and a V 2 O 5 aerogel cathode. There are few

  16. Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09

    SciTech Connect (OSTI)

    Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

    2013-11-13T23:59:59.000Z

    The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.

  17. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  18. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  19. Real-Time Redox Measurements during Endoplasmic Reticulum Stress Reveal

    E-Print Network [OSTI]

    Mullins, Dyche

    Real-Time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding.10.011 SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumu is active. Because ER redox po- tential is optimized for oxidative protein folding, we reasoned

  20. Redox Transformations and Transport of Cesium and Iodine

    E-Print Network [OSTI]

    isotopes of cesium (137 Cs) and iodine (131 I and 129 I) are environmental contaminants derived fromRedox Transformations and Transport of Cesium and Iodine (-1, 0, +5) in Oxidizing and Reducing, to study the redox chemistry (I) and transport (Cs, I) of cesium and iodine in a field setting. Injection

  1. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics

    E-Print Network [OSTI]

    Sparks, Donald L.

    reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors often controls the release or sequestration of inorganic contaminants. Redox processes control Thebiogeochemicalcyclesofmanymajorandtraceelements are driven by redox processes. Examples include the cycles of carbon (C), nitrogen (N), sulfur (S

  2. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    electrochemical characterization, and battery performance ofthe battery cell for electrochemical characterization. TheBattery Highlights 13 2.3 Electrochemical Characterization ..

  3. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  4. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  5. EES and Batteries: The Basics | University of Texas Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES AND BATTERIES: THE BASICS Virtually all portable electronic devices, including cell phones, PDAs and laptop computers, rely on chemical energy stored in batteries. Batteries...

  6. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  7. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  8. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  9. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  10. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  11. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  12. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  13. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  14. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  16. Making Li-air batteries rechargeable: material challenges. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

  17. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01T23:59:59.000Z

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  18. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  19. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  20. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  2. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  3. Carbon-enhanced VRLA batteries.

    SciTech Connect (OSTI)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01T23:59:59.000Z

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  4. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  5. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01T23:59:59.000Z

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  6. Kinetic model of whole-body vanadium metabolism: studies in sheep

    SciTech Connect (OSTI)

    Patterson, B.W.; Hansard, S.L. II; Ammerman, C.B.; Henry, P.R.; Zech, L.A.; Fisher, W.R.

    1986-08-01T23:59:59.000Z

    A compartmental model for vanadium metabolism in sheep has been proposed. The model is consistent with data obtained from sheep fed a control diet (2.6 ppm vanadium) containing 0 or 200 ppm supplemental vanadium. Sheep were administered UYV dioxovanadium either orally or intravenously. Blood feces, and urine radioactivity were monitored for 6 days postdosing. Several new insights regarding vanadium metabolism are suggested and tested against the data using the model. Some of these include 1) significant absorption of UYV occurs from the upper gastrointestinal tract; 2) an in vivo process is necessary in order for UYV dioxovanadium to be converted into a more biologically reactive species; 3) at steady state the upper and lower gastrointestinal tracts contain at least 10- and 100-fold more mass of vanadium, respectively, than does blood. No statistically significant differences in transport rate constants were found between animals receiving 0 and 200 ppm supplemental dietary vanadium. The availability of a model will enable the refinement of future studies regarding vanadium metabolism in the ruminant.

  7. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31T23:59:59.000Z

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  8. Nitridation under ammonia of high surface area vanadium aerogels

    SciTech Connect (OSTI)

    Merdrignac-Conanec, Odile [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)]. E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); L'Haridon, Paul [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2005-01-15T23:59:59.000Z

    Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

  9. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

  10. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13T23:59:59.000Z

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  11. Methane oxidation over dual redox catalysts

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  12. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01T23:59:59.000Z

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  13. Study to establish cost projections for production of redox chemicals

    SciTech Connect (OSTI)

    Walther, J.F.; Greco, C.C.; Rusinko, R.N.; Wadsworth, A.L. III

    1982-11-01T23:59:59.000Z

    A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

  14. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  15. Batteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    ;Lithium-ion battery Modern Li-ion Battery Cathode:Anode: e-e- u o b e y e- Electrolyte LiPF6 in Ethylene Electronic Li-ion Batteries Theoretical Energy Density Source: TIAX, LLC #12;Lithium-ion battery BatteryBatteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan Staff Scientist Lawrence

  16. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing

    SciTech Connect (OSTI)

    Warwick, Michael E.A. [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Binions, Russell, E-mail: r.binions@qmul.ac.uk [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)

    2014-06-01T23:59:59.000Z

    Vanadium dioxide is a thermochromic material that undergoes a semiconductor to metal transitions at a critical temperature of 68 °C. This phase change from a low temperature monoclinic structure to a higher temperature rutile structure is accompanied by a marked change in infrared reflectivity and change in resistivity. This ability to have a temperature-modulated film that can limit solar heat gain makes vanadium dioxide an ideal candidate for thermochromic energy efficient glazing. In this review we detail the current challenges to such glazing becoming a commercial reality and describe the key chemical vapour deposition technologies being employed in the latest research. - Graphical abstract: Schematic demonstration of the effect of thermochromic glazing on solar radiation (red arrow represents IR radiation, black arrow represents all other solar radiation). - Highlights: • Vanadium dioxide thin films for energy efficient glazing. • Reviews chemical vapour deposition techniques. • Latest results for thin film deposition for vanadium dioxide.

  17. Spectrophotometric determination of vanadium in metallurgical products with carminic acid and cetyltrimethylammonium chloride

    SciTech Connect (OSTI)

    Babenko, N.L.; Blokh, M. Sh.; Guseva, T.D.

    1985-11-01T23:59:59.000Z

    According to the authors, there is an increasing demand for sensitive, selective, and rapid methods of determining low levels of vanadium in metallurgical products, and solvent-extraction methods do not meet the requirements. The authors used an anthraquinone dye carminic acid (CA) as a chromophoric organic reagent: 1, 3, 4, 6-tetrahydroxy-2-R-5carboxy-8-methylanthra-9, 10-quinone. The CSA was cetyltrimethylammonium chloride CTA. The three-component system was examined in order to devise a reasonably sensitive and rapid method of determining vanadium in metallurgical products. A study is made of the complexing in the system formed by vanadium (IV) with CA and the CSA. The optimum conditions for the formation of the complex have been established together with the spectrophotometric characteristics. A spectrophotometric method has been devised for determining from 0.05 to 5% of vanadium in metallurgical products with a relative standard deviation of not more than 0.04.

  18. Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides

    E-Print Network [OSTI]

    Iglesia, Enrique

    Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

  19. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  20. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  1. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    of the range and charging-time issues. INTRODUCTION TO BATTERIES Several electrical energy storage be achieved by a high-energy Li-ion cell (similar to the batteries used in the Tesla Roadster).a However

  5. Batteries lose in game of thorns | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries lose in game of thorns Batteries lose in game of thorns Released: January 30, 2013 Scientists see how and where disruptive structures form and cause voltage fading Images...

  6. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  7. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  9. Final Technical Report

    SciTech Connect (OSTI)

    Logan, Jesse, L; Witmer, Dennis, PhD

    2012-07-29T23:59:59.000Z

    The overall goal of this project was to design, evaluate, and engineer a Vanadium Red-Ox Flow Battery's integration into an existing wind site and micro-grid environment to determine if it is possible to achieve a fifteen percent reduction of diesel fuel usage during periods of peak load and otherwise stabilize the grid in potential high wind penetration systems. The bulk of the work was done by modeling the existing hybrid wind-diesel system and the proposed system with added flow battery storage. The flow battery was changed from a Vanadium Red-Ox to a Zinc Bromine flow battery by a different manufacturer during the modeling process. Several complications arose, but modeling proved to be successful and is ongoing. The development of a modeling platform for flow battery energy storage is a key element in evaluating both economic benefits and dispatch strategies for high penetration in micro-grid wind-diesel systems.

  10. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  11. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, Arthur J. (Columbus, OH); Morin, Brian G. (Columbus, OH)

    1998-01-01T23:59:59.000Z

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  12. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, A.J.; Morin, B.G.

    1998-10-13T23:59:59.000Z

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  13. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    of the low power battery status until nodes start to fail. Moreover, it requires extra time and effort

  14. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24T23:59:59.000Z

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  15. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  16. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01T23:59:59.000Z

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  17. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  18. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  19. Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. Non-monotonous decay of the elastic wave in vanadium

    SciTech Connect (OSTI)

    Zaretsky, E. B. [Department of Mechanical Engineering, Ben Gurion University, 84105 Beer Sheva (Israel); Kanel, G. I. [Joint Institute for High Temperatures RAS, Izhorskaya 13, bld.2, 125412 Moscow (Russian Federation)

    2014-06-28T23:59:59.000Z

    The evolution of the elastic precursor waves in pure tantalum and vanadium is presented at normal and elevated temperatures over propagation distances that ranged from 0.125 to 3?mm. Measurements were performed in order to obtain experimental data about the temperature-rate dependence of the yield stress of the two metals. With increasing propagation distance, the rate of the decay of elastic precursor decreases, as the shear stress in the elastic precursor wave approaches the Peierls stresses. It has been found that the decay, with propagation distance, of the post-spike minimum of the spike-like elastic precursor wave in vanadium is essentially non-monotonous. The experiments also revealed that annealing of tantalum and vanadium increases their Hugoniot elastic limit. The anomalous increase of the high strain rate yield stress with temperature, as observed earlier for some FCC and HCP metals, has not been detected in these measurements.

  20. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  1. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March

  2. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet in embedded systems. It describes the prominent battery models with their advantages and draw- backs of the battery. With the tremendous increase in the comput- ing power of hardware and the relatively slow growth

  3. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  4. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  5. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  6. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  7. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01T23:59:59.000Z

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  8. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  9. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  10. AN UPDATE ON BIAXIAL THERMAL CREEP OF VANADIUM ALLOYS

    SciTech Connect (OSTI)

    Kurtz, Richard J.; Ermi, August M.

    2002-09-01T23:59:59.000Z

    A study of the thermal creep properties of two vanadium alloys was performed using pressurized tube specimens. Creep tubes nominally 4.57 mm OD by 0.25 mm wall thickness were pressurized with high-purity helium gas to mid-wall effective stresses below the effective (Von Mises) yield strength. Specimens were fabricated from V-4Cr-4Ti (Heat No. 832665) and a V-3Fe-4Ti alloy. The samples were heated to 650, 700, 725, and 800 degrees C in an ultra-high vacuum furnace and periodically removed to measure the change in tube outer diameter with a high-precision laser profilometer. The normalized minimum creep rate was found to be power-law dependent on the modulus compensated applied stress. The value of the stress exponent varied with the applied stress. At normalized stresses ranging from 0.002 to 0.008 the stress exponent was about 4 and the activation energy was about 300 kJ/mole, which is quite close to the activation energy for self-diffusion in pure vanadium. These results suggest that the predominant mechanism of creep in this regime is climb-assisted dislocation motion. At lower stresses the value of the stress exponent is near unity suggesting that viscous creep mechanisms such as Coble creep or grain boundary sliding may be operative, but the data are too sparse to be conclusive. The reported creep rates from uniaxial tests [1] in vacuum are several times higher than the creep rates measured here. This is probably due to the larger interstitial oxygen concentration of the creep tubing (699 wppm) compared to the sheet stock (310 wppm) used for tensile specimen fabrication. Finally, the creep strength of V-4Cr-4Ti at 700 and 800 degrees C was superior to the V-3Fe-4Ti alloy.

  11. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    SciTech Connect (OSTI)

    Benzine, Jason; Shelobolina, Evgenya S.; Xiong, Mai Yia; Kennedy, David W.; McKinley, James P.; Lin, Xueju; Roden, Eric E.

    2013-01-01T23:59:59.000Z

    Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  12. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  13. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01T23:59:59.000Z

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  14. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  16. CX-004648: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Painesville Municipal Power Vanadium Redox Battery Demonstration ProgramCX(s) Applied: A11, B3.6, B5.1Date: 12/09/2010Location(s): Johnstown, PennsylvaniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  17. Battery research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Thackeray, M.M.

    1997-10-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  18. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  19. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01T23:59:59.000Z

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  20. Chemical bath deposition and characterization of electrochromic thin films of sodium vanadium bronzes

    SciTech Connect (OSTI)

    Najdoski, Metodija, E-mail: metonajd@yahoo.com [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)] [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of); Koleva, Violeta [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)] [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Demiri, Sani [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)] [Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162, Arhimedova 5, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We report a new chemical bath method for the deposition of vanadium bronze thin films. Black-Right-Pointing-Pointer The films are phase mixture of NaV{sub 6}O{sub 15} and Na{sub 1.1}V{sub 3}O{sub 7.9} with 10.58% lattice water. Black-Right-Pointing-Pointer The as-deposited vanadium bronze films exhibit two-step electrochromism. Black-Right-Pointing-Pointer They change their yellow-orange color to green and then from green to blue color. Black-Right-Pointing-Pointer The method allows the preparation of films on substrates with low melting point. -- Abstract: Thin yellow-orange films of sodium vanadium oxide bronzes have been prepared from a sodium-vanadium solution (1:1) at 75 Degree-Sign C and pH = 3. The composition, structure and morphology of the films have been studied by XRD, IR spectroscopy, TG and SEM-EDX analyses. It has been established that the prepared films are a phase mixture of hydrated NaV{sub 6}O{sub 15} (predominant component) and Na{sub 1.1}V{sub 3}O{sub 7.9} with total water content of 10.58%. The sodium vanadium bronze thin films exhibit two-step electrochromism followed by color change from yellow-orange to green, and then from green to blue. The cyclic voltammetry measurements on the as-deposited and annealed vanadium bronze films reveal the existence of different oxidation/reduction vanadium sites which make these films suitable for electrochromic devices. The annealing of the films at 400 Degree-Sign C changes the composition, optical and electrochemical properties.

  1. An evaluation of the acute toxicity of vanadium to five estuarine species: Penaeus aztecus, Rangia cuneata, Cyprinodon variegatus, Neanthes arenaceodentata and Brachionus plicatilis / b

    E-Print Network [OSTI]

    Hobson, David Wayne

    1978-01-01T23:59:59.000Z

    the living world, vanadium is found in great quantities only in '. few species wiib no consistency in the freouency of occurrence 'between members of the same genus. Bertrand. (1 943) noted, , for example, that the mushroom Amanita muscaria contained... genus! In the animal kingdom, vanadium also occurs sporadically. Henze (1911) found 42, 000 ppm vanadium in the blood of the ascidian Phsllusi~ mamillata and was first to indicate the presence'of vanadium in an animal, Bertrand (1950) reviewed...

  2. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  3. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  4. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31T23:59:59.000Z

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  5. Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: Single photon ionization at 26.5 eV

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: Single photon 2006; accepted 7 September 2006; published online 25 October 2006 Neutral vanadium, niobium neutral clusters of vanadium, niobium, and tantalum oxides are of the general form MO2 0,1 M2O5 y. M2O5

  6. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30T23:59:59.000Z

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  7. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    ] " Electrical circuit model: A spice model of the lithium-ion batteries [Gold-97] " Electro-chemical model: Generic dual-foil lithium-ion battery model [Doyle-94] ! Battery Management " Discharge rate-based policyBattery-Aware Power Management Based on Markovian Decision Processes Battery-Aware Power Management

  8. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  9. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  10. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  11. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  12. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  13. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  14. EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  15. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-01-01T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  16. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-12-31T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  17. Effects of Dioxin on Clock, Melatonin Biosynthetic, and Redox Sensitive Genes on Chick Pinealocytes In Vitro

    E-Print Network [OSTI]

    Hunt, Jayme

    2006-07-11T23:59:59.000Z

    shown to occur via redox dependent activity of nuclear factor 1 X-type (NF1X) and cellular redox potential can regulate the circadian clock. As such we hypothesized that exposure to dioxin could affect circadian rhythmicity. We explored...

  18. Testing the ancient marine redox record from oxygenic photosynthesis to photic zone euxina

    E-Print Network [OSTI]

    French, Katherine L. (Katherine Louise)

    2015-01-01T23:59:59.000Z

    Tracing the evolution of Earth's redox history is one of the great challenges of geobiology and geochemistry. The accumulation of photosynthetically derived oxygen transformed the redox state of Earth's surface environments, ...

  19. Metal-ligand redox interaction in the multielectron chemistry of porphyrinogen coordination compounds

    E-Print Network [OSTI]

    Bachmann, Julien

    2006-01-01T23:59:59.000Z

    Metal complexes of the macrocycle porphyrinogen (calix[4]pyrrole) are studied with an emphasis on the redox activity ("non-innocence") of the ligand (Chapter I). Porphyrinogen complexes of spherical, redox-inert metal ...

  20. Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures

    SciTech Connect (OSTI)

    Sydorchuk, V.; Zazhigalov, V. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Khalameida, S., E-mail: svkhal@ukr.net [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Diyuk, E. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Skubiszewska-Zieba, J.; Leboda, R. [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland)] [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland); Kuznetsova, L. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)] [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)

    2010-09-15T23:59:59.000Z

    Regularities and peculiarities of physicochemical changes, first of all phase transformations, during solvothermal treatment (with conventional and microwave heating) of the vanadium pentoxide and orthophosphoric acid mixture in organic solvents in the presence of reducing agents have been studied. Hemihydrate of vanadium hydrophosphate - the precursor of vanadium pyrophosphate, the active phase for n-butane to maleic anhydride oxidation, and ion exchanger with variable physicochemical characteristics, i.e. crystal structure, specific surface area, crystallite size and acidic properties - has been synthesized in the temperature range 170-200 {sup o}C. The obtained phases were examined using XRD, DTA-TG, SEM, FTIR spectroscopy, nitrogen adsorption as well as gas chromatographic determination of acidity through organic bases adsorption. The catalytic activity of prepared samples for n-butane oxidation has been investigated.

  1. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low for using the fuzzy logic methodology for determining the SOC/SOH of an automotive SLI lead acid battery controller. Introduction Automotive start, light ignition (SLI) lead acid batteries are the most widely used

  2. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01T23:59:59.000Z

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  3. Celgard and Entek - Battery Separator Development

    Broader source: Energy.gov (indexed) [DOE]

    Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

  4. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    to: navigation, search Name: Panasonic Corporation Energy Company (formerly Matsushita Battery Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of...

  5. Batteries for energy storage: part 2

    SciTech Connect (OSTI)

    Douglas, D.L.; Birk, J.R.

    1983-02-01T23:59:59.000Z

    Explores 4 large battery RandD programs. Two are individual electrochemical systems for electric utility energy storage: zinc-chlorine and sodium sulfur. The third is a high-temperature battery, lithium-iron sulfide, which is expected to be applicable in electric vehicles. Reviews the nearer term EV battery development programs, which include zinc-nickel oxide, iron-nickel oxide, and lead-acid batteries. Suggests that batteries appear to be an ideal companion to coal- and nuclear power-derived electrical energy, to play a key role in electrical generation and distribution networks and to power vehicles. Batteries could augment solarderived electrical energy to attain continuity and reliability of power. Battery systems now under development represent a broad range of possible approaches encompassing extremes of the periodical table, a wide variety of operating temperatures, and limitless design concepts. Along with substantial international emphasis on battery development, this range of approaches suggests that one or more candidate systems can be demonstrated to have commercial viability. While commercial viability can be demonstrated, actual implementation will be deterred by high capital cost, substantial commercialization costs, and buyer reluctance. Concludes that because oil has an unstable future, legislation or regulation coupled with personal inconvenience (rationing or waiting in gas lines) can override the economics of utility battery energy storage.

  6. Coordination Chemistry in magnesium battery electrolytes: how...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited...

  7. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

  8. Sandia National Laboratories: lithium-ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion battery Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  9. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  10. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials...

  11. Sandia National Laboratories: thin-film battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013, in Energy Storage Systems,...

  12. Ambient Operation of Li/Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

    2010-07-01T23:59:59.000Z

    In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

  13. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High...

  14. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High...

  15. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  16. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  17. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  18. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  19. Batteries as they are meant to be seen | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries as they are meant to be seen Batteries as they are meant to be seen Released: December 26, 2013 The search for long-lasting, inexpensive rechargeable batteries...

  20. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  1. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  2. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  3. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  4. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  5. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  6. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01T23:59:59.000Z

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  7. Structure and properties of a rapidly solidified dispersion strengthened aluminum-iron-vanadium-silicon alloy

    E-Print Network [OSTI]

    Little, Stafford Dean

    1991-01-01T23:59:59.000Z

    Dispersion Strengthened Aluminum-Iron-Vanadium-Silicon Alloy. (December 1991) Stafford Dean Little, B. S. , Texas A&M University Co-Chairs of Advisory Committee: Dr. M. N. Srinivasan Dr. A. Wolfenden A research program has been completed at Texas A...&M University in which the structure and properties of a rapidly solidified dispersion strengthened aluminum-iron- vanadium-silicon alloy were evaluated. A series of melt spun ribbons of FVS1212 (Fe- 11. 5%, V-1. 4%, Si-2. 2%, Al-bal) were produced...

  8. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    reactivity of vanadium oxide aerogels." Electrochimica Acta,B. Dunn. “Vanadium Oxide Aerogels: Nanostructured MaterialsE. & Dunn, B. V 2 O 5 aerogel as a versatile host for metal

  9. DNA binding shifts the redox potential of the transcription factor SoxR

    E-Print Network [OSTI]

    Dietrich, Lars

    DNA binding shifts the redox potential of the transcription factor SoxR Alon A. Gorodetsky , Lars E-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site

  10. Species-specific residues calibrate SoxR sensitivity to redox-active molecules

    E-Print Network [OSTI]

    Dietrich, Lars

    to viologens, which have redox potentials below -350 mV. Using a mutagenic approach, we pin- pointed threeSpecies-specific residues calibrate SoxR sensitivity to redox-active molecules Rebecca Sheplock,1, the transcription factor SoxR triggers a global stress response by sensing a broad spectrum of redox

  11. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  12. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  13. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  14. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  15. Factors Affecting the Battery Performance of Anthraquinone-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

  16. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9han2012o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  17. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  18. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetime and capacity, opening a path to wider use of these batteries in conjunction with renewable energy sources. Lithium ion batteries power mobile devices and electric cars and...

  19. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  20. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  1. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  2. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  3. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. Batteries - Simulation software aids design ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Simulation software aids design ... Designers of safe high-performance batteries for electric vehicles are getting a hand with a new computational toolset created by a...

  5. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells...

  6. alkaline storage battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  7. alkaline storage batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  8. aerospace flight battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  9. alkaline zinc batteries quarterly: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  10. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  11. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  12. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  13. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. advanced battery systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Systems - Part I: SOC Estimation S. J- cles and renewable energy resources is battery energy storage. Advanced battery systems represent Krstic, Miroslav 2 PDE...

  15. 2008 Annual Merit Review Results Summary - 4. Exploratory Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Exploratory Battery Research 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview4.pdf More...

  16. Overview and Progress of United States Advanced Battery Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric...

  17. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

  18. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  19. Overview of the Batteries for Advanced Transportation Technologies...

    Energy Savers [EERE]

    the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the U.S....

  20. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

  1. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

  2. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  3. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  4. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  5. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  6. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  7. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  8. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Material BATT and the Battery Industry Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo, Inc. Advanced cathode materials (Manthiram)...

  9. Battery Company Puts New Nanowire Technology into Production...

    Office of Environmental Management (EM)

    batteries for niche market applications. Silicon offers a number of advantages over pure graphite, the current material of choice for lithium ion batteries. In particular,...

  10. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

  11. Redox Processes and Water Quality of Selected Principal Aquifer Systems

    E-Print Network [OSTI]

    . Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated observed at a regional scale. An important finding of this study was that samples indicating mixed redox such as dissolved ferrous iron (Fe21), hydrogen sulfide (H2S), and methane (CH4) (Back and Barnes 1965; Baedecker

  12. Redox Shuttles DOI: 10.1002/anie.201002181

    E-Print Network [OSTI]

    (dicarbollide) Redox Shuttles in Dye-Sensitized Solar Cells** Alexander M. Spokoyny, Tina C. Li, Omar K. Farha, Charles* Dye-sensitized solar cells (DSCs) are potential next-gener- ation solar electricity sources since molecular dyes to increase light absorption,[3] evaluation of alternative semiconducting photoanodes

  13. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

    2000-01-01T23:59:59.000Z

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  14. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  15. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01T23:59:59.000Z

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  16. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25T23:59:59.000Z

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  17. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalystsMolten-SaltAssessmentBattery

  18. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social Jump to:OpenOptima Batteries

  19. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhode Island:Battery Ventures

  20. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    SciTech Connect (OSTI)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15T23:59:59.000Z

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ?Adaptive changes in renal mitochondrial and redox status in diabetic rats. ?Modest renal dysfunction even prior to onset of nephropathy. ?Elevated concentrations of mitochondrial GSH in diabetic kidneys. ?Change in GSH due partly to increased protein expression of transporter. ?Oxidatively modified proteins in renal mitochondria from diabetic rats.

  1. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  2. Battery requirements for urban electric vans

    SciTech Connect (OSTI)

    Patil, P.G.; Walsh, W.J.

    1986-01-01T23:59:59.000Z

    The Department of Energy (DOE) has carried out an intensive study of battery requirements for electric vans, and developed a mission-directed goals package for each of the principal battery contenders for this application. These goals were based on the assumption that vehicle range and acceleration must be fully met throughout each battery discharge. Under this assumption, the design point is the end-of-life condition, defined as the last cycle in which both power and energy requirements can be fulfilled. A light-weight, low-rolling-resistance van with an improved version of the ac powertrain being developed by Eaton was chosen as the hypothetical baseline vehicle. A modified FUDS cycle was selected along with assumptions of 3 M/sup 2/ frontal area, 0.37 drag coefficient, and a rolling resistance of 0.008. State-of-art characteristics and design interrelationships were developed for each battery technology, and the degree of advance expected by 1995 was projected. For each battery candidate, a least-cost combination of performance and operating characteristics was determined. The analysis included the peak power vs specific energy and depth-of-discharge (DOD), cycle life vs DOD, cost vs onboard energy and power, and kWh size effects. The resultant R and D goals for the electric van battery are presented, including early-in-life and end-of-life energy over the drive cycle, peak power, battery weight and volume, battery life, costs, and allowable frequency of repair.

  3. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal...

  4. Alloys of clathrate allotropes for rechargeable batteries

    DOE Patents [OSTI]

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09T23:59:59.000Z

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  5. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao-Qing; Lee, Hung-Sui; Qu, Deyang

    2015-08-01T23:59:59.000Z

    Oxygen reduction and oxygen evolution reactions were studied on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently andmore »a new strategy of developing the catalyst for oxygen evolution reaction.« less

  6. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science; Zhang, Xuran [Wuhan Univ. of Technology, Wuhan (China). School of Science; Qu, Deyu [Wuhan Univ. of Technology, Wuhan (China). School of Science; Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science

    2015-08-01T23:59:59.000Z

    Oxygen reduction and oxygen evolution reactions were studied on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.

  7. The BATINTREC process for reclaiming used batteries

    SciTech Connect (OSTI)

    Xia Yueqing; Li Guojian

    2004-07-01T23:59:59.000Z

    The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

  8. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  9. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  10. Development and application of a redox indicator method for the kinetics of oxidation of vanadium(II) ions by hydrogen peroxide and alkyl hydroperoxides

    SciTech Connect (OSTI)

    Kim, H.P.; Espenson, J.H.; Bakac, A.

    1987-12-02T23:59:59.000Z

    The addition of the methyl viologen radical cation (PQ/sup .+/) to solutions of V(H/sub 2/O)/sub 6//sup 2 +/ and hydrogen peroxide or alkyl hydroperoxide provides a method for measuring the initial reaction rate. The kinetic data so obtained are consistent with the rate equation -d(peroxide)/dt = k/sub 1/(V/sup 2 +/)(peroxide). Kinetic data are given for H/sub 2/O/sub 2/ (k/sub 1/ = 15.4 M/sup -1/ s/sup -1/ at 25.0/sup 0/C) and for RC(CH/sub 3/)/sub 2/OOH, with R = CH/sub 3/ (3.0 M/sup -1/ s/sup -1/), C/sub 2/H/sub 5/ (5.2 M/sup -1/ s/sup -1/), and CH/sub 2/C/sub 6/H/sub 5/ (4.8 M/sup -1/ s/sup -1/). 27 references, 2 figures, 2 tables.

  11. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01T23:59:59.000Z

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  12. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOE Patents [OSTI]

    Fish, R.H.

    1987-04-21T23:59:59.000Z

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  13. Hydrogen-impurity binding energy in vanadium and niobium A. Mokrani and C. Demangeat

    E-Print Network [OSTI]

    Boyer, Edmond

    2243 Hydrogen-impurity binding energy in vanadium and niobium A. Mokrani and C. Demangeat IPCMS, UM by the hydrogen) contribution, ii) the band structure contribution, iii) the electron-electron interaction without. Strong H-H repulsion is observed when the hydrogen atoms are at first nearest neighbouring positions

  14. Thermodynamic considerations for the use of vanadium alloys with ceramic breeder materials

    SciTech Connect (OSTI)

    Johnson, C.E.; Johnson, I.; Kopasz, J.P.

    1995-12-31T23:59:59.000Z

    Fusion energy is considered to be an attractive energy form because of its minimal environmental impact. In order to maintain this favorable status, every effort needs to be made to use low activation materials wherever possible. The tritium breeder blanket is a focal point of system design engineers who must design environmentally attractive blankets through the use of low activation materials. Of the several candidate lithium-containing ceramics being considered for use in the breeder blanket, Li{sub 2}O, Li{sub 2}TiO{sub 3}, are attractive choices because of their low activation. Also, low activation materials like the vanadium alloys are being considered for use as structural materials in the blanket. The suitability of vanadium alloys for containment of lithium ceramics is the subject of this study. Thermodynamic evaluations are being used to estimate the compatibility and stability of candidate ceramic breeder materials (Li{sub 2}O, Li{sub 2}TiO{sub 3}, and Li{sub 2}ZrO{sub 3}) with vanadium and vanadium alloys. This thermodynamic evaluation will focus first on solid-solid interactions. As a tritium breeding blanket will use a purge gas for tritium recovery, gas-solid systems will also receive attention.

  15. Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films

    E-Print Network [OSTI]

    Artuso, Florinda

    Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

  16. Abundances of Vanadium and Bromine in 3 Cen A: Additional Odd-Z Anomalies

    E-Print Network [OSTI]

    C. R. Cowley; G. M. Wahlgren

    2005-12-12T23:59:59.000Z

    We report abundance excesses of 1.2 and 2.6 dex, respectively, for vanadium and bromine in the hot, peculiar star 3 Cen A. Abundances for these two odd-Z elements have not been previously reported for this star. Taken with previous work, they strengthen the case of the origin of the abundance peculiarities by diffusion.

  17. Removal of arsenic, vanadium, and/or nickel compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1985-05-17T23:59:59.000Z

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids (shale oil, SRC, etc.) by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20/sup 0/ to 100/sup 0/C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  18. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  19. Fused ring and linking groups effect on overcharge protection for lithium-ion batteries.

    SciTech Connect (OSTI)

    Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

    2011-02-01T23:59:59.000Z

    The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li{sup +} with better solubility in a commercial electrolyte (1.2 M LiPF{sub 6}) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12}/LiFePO{sub 4} cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

  20. Production and fabrication of vanadium alloys for the radiative divertor program of DIII-D

    SciTech Connect (OSTI)

    Johnson, W.R.; Smith, J.P.; Stambaugh, R.D.

    1996-04-01T23:59:59.000Z

    V-4Cr-4-Ti alloy has been recently selected for use in the manufacture of a portion of the DIII-D Radiative Divertor modification, as part of an overall DIII-D vanadium alloy deployment effort developed by General Atomics (GA) in conjunction with the Argonne and Oak Ridge National Laboratories (ANL or ORNL). The goal of this work is to produce a production-scale heat of the alloy and fabricate it into product forms for the manufacture of a portion of the Radiative Divertor (RD) for the DIII-D tokamak, to develop the fabrications technology for manufacture of the vanadium alloy radiative Divertor components, and to determine the effects of typical tokamak environments in the behavior of the vanadium alloy. The production of a {approx}1300-kg heat of V-4Cr-4Ti alloy is currently in progress at Teledyne Wah Chang of Albany, oregon (TWCA) to provide sufficient material for applicable product forms. Two unalloyed vanadium ingots for the alloy have already been produced by electron beam melting of raw processes vanadium. Chemical compositions of one ingot and a portion of the second were acceptable, and Charpy V-Notch (CVN) impact test performed on processed ingot samples indicated ductile behavior. Material from these ingots are currently being blended with chromium and titanium additions, and will be vacuum-arc remelted into a V-4Cr-4Ti alloy ingot and converted into product forms suitable for components of the DIII-D RD structure. Several joining methods selected for specific applications in fabrication of the RD components are being investigated, and preliminary trials have been successful in the joining of V-alloy to itself by both resistance and inertial welding processes and to Inconel 625 by inertial welding.

  1. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Batteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Batterybatteries with Nano-Li4Ti5O12 electrodes, Advanced Automotive Battery and Ultracapacitor Conference, Third International Symposium on Large Lithium-ion Battery

  2. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  3. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Wilcock, William

    Labpack 113 ENV XX MCID: 51618 Chem Id: 317 Codes: None Lead Acid Batteries Recycle 114 ACI XX MCID: 51620 batteries into Mixed, Lithium (button batteries) or Lead Acid. We can collect all types at the same timeLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf

  4. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    -ion batteries like on the inside Anode Separator Cathode 500 nm 20 um20 um Anode: Graphite SeparatorMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

  5. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  6. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25T23:59:59.000Z

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  7. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  8. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01T23:59:59.000Z

    Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cellrevenue – cost). Peak power Battery, full function Battery,sources of distributed power; battery-EDVs, fuel cell EDVs,

  9. Some Lessons Learned from 20 Years in RedOx Flow Battery R&d | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State Lighting Videos On thisEnergy Moreof

  10. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  11. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  12. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  13. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  14. Battery Chargers | Electrical Power Conversion and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine MarchBattery

  15. 1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries

    E-Print Network [OSTI]

    Lehman, Brad

    1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries Florent Boico, Brad Lehman, Member, IEEE, and Khalil Shujaee Abstract--This paper proposes new solar battery chargers for NiMH batteries. First, it is shown that existing charge

  16. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    . Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

  17. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    array on the performance for a diesel/battery/inverter/pv system. It seeks to determine whetherThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 k

  18. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    dreisner@usnanocorp.com Abstract Automotive starting, lighting, and ignition (SLI) lead acid batteries of SLI lead acid batteries. Since 1997, Villanova University and US Nanocorp, Inc. have collaborated1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

  19. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  20. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    NONE

    1999-09-01T23:59:59.000Z

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  1. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  2. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    Measuring Energy Efficiency Improvements in Industrial Battery Chargers Ryan Matley, Sr. Program Manager, Pacific Gas and Electric Company, San Francisco, CA ABSTRACT Industrial battery chargers have provided the energy requirements... to 100 GWh per year. There are three areas of energy losses in the battery and charger system: ? Power Conversion Efficiency (energy out of charger vs. energy into charger) ? Charge Return (energy out of battery vs. energy into battery): some...

  3. The Importance of Nanometric Passivating Films on Cathodes forLi - Air Batteries

    SciTech Connect (OSTI)

    Adams, Brian D.; Black, Robert; Radtke, Claudio; Williams, Zach; Mehdi, Beata L.; Browning, Nigel D.; Nazar, Linda F.

    2014-12-23T23:59:59.000Z

    Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methods to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm*can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.

  4. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  5. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Miller, M. , Emerging Lithium-ion Battery Technologies forCharacteristics of Lithium-ion Batteries of Variousand Simulation Results with Lithium-ion Batteries, paper

  6. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  7. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  8. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    in Secondary Lithium Batteries Guoying Chen, Karen E.protection agents in lithium batteries is relatively new,rechargeable lithium batteries with a variety of different

  9. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  10. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  11. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  12. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  13. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01T23:59:59.000Z

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  14. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  15. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  16. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  17. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  18. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Řstergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  19. The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site

    E-Print Network [OSTI]

    Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

    2009-01-01T23:59:59.000Z

    lead smelting and battery recycling. Areas near Pb recyclingof soil with lead. A battery recycling site is a locationnear an automobile battery recycling facility. The soil was

  20. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun