Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovery of valuable materials from waste liquid crystal display panel  

Science Conference Proceedings (OSTI)

Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 deg. C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO{sub 3}:H{sub 2}O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 deg. C.

Li Jinhui [Department of Environmental Science and Engineering, Tsinghua University (China); Sino-Italia Environmental Energy Building, Room 804, Haidian District, Beijing 100084 (China)], E-mail: jinhui@tsinghua.edu.cn; Gao Song; Duan Huabo; Liu Lili [Department of Environmental Science and Engineering, Tsinghua University (China)

2009-07-15T23:59:59.000Z

2

Evaluation of residual shale oils as feedstocks for valuable carbon materials  

Science Conference Proceedings (OSTI)

Oil shale represents one of the largest fossil fuel resources in the US and in other pans of the world. Beginning in the 1970s until recently, there was considerable research and development activity directed primarily to technologies for the production of transportation fuels from oil shale. Due to the low cost of petroleum, as with other alternate fuel strategies, oil shale processing is not economically viable at present. However, future scenarios can be envisaged in which non-petroleum resources may be expected to contribute to the demand for hydrocarbon fuels and chemicals, with the expectation that process technologies can be rendered economically attractive. There is potential to improve the economics of oil shale utilization through broadening the spectrum of products that can be derived from this resource, and producing added-value materials that are either unavailable or more difficult to produce from other sources. This concept is by no means original. The history of oil shale development shows that most attempts to commercialize oil shale technology have relied upon the marketing of by-products. Results are presented on carbonization and the potential for generating a pitch that could serve as a precursur material.

Fei, You Qing; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

3

Making IGCC slag valuable  

SciTech Connect

All indications are that integrated gasification combined-cycle (IGCC) technology will play a major role in tomorrow's generation industry. But before it does, some by-products of the process must be dealt with, for example unburned carbon that can make IGCC slag worthless. Charah Inc.'s processing system, used at Tampa Electric's Polk Station for years, segregates the slag's constituents by size, producing fuel and building materials. 3 figs.

Wicker, K.

2005-12-01T23:59:59.000Z

4

Commercially Valuable Smart Grid Data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 4, 2010 1 February 4, 2010 1 Commercially Valuable Smart Grid Data Commercially Valuable Smart Grid Data Question: What is the Department of Energy's (DOE's) approach for ensuring confidentiality of information that contains confidential and/or proprietary information that recipients are required to submit in carrying out their Metrics and Benefits Reporting Plan obligations? Answer: DOE does not anticipate requiring delivery of any "proprietary" information, i.e., confidential information developed at private expense outside the DOE grant. For data developed under a SGIG grant, DOE has the right to obtain and publish such data. However, certain "commercially valuable data" as set forth in more detail below, may be protected from publication.

5

Advisory Board Makes Valuable Contributions to EM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM July 2, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The eight local boards of the EM Site-Specific Advisory Board (EM SSAB) provided 56 recommendations collectively in 2011, according to a recent assessment of board input into the EM program. The Board has offered recommendations to the EM sites around the DOE complex championing public participation activities, emphasizing safe disposal of contaminated material and, in some cases, yielding significant taxpayer savings. "I've read through recommendations that were highlighted by site managers and I am impressed by the breadth and significance of the issues that the EM SSAB members tackle," Senior Advisor for Environmental

6

Advisory Board Makes Valuable Contributions to EM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM July 2, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The eight local boards of the EM Site-Specific Advisory Board (EM SSAB) provided 56 recommendations collectively in 2011, according to a recent assessment of board input into the EM program. The Board has offered recommendations to the EM sites around the DOE complex championing public participation activities, emphasizing safe disposal of contaminated material and, in some cases, yielding significant taxpayer savings. "I've read through recommendations that were highlighted by site managers and I am impressed by the breadth and significance of the issues that the EM SSAB members tackle," Senior Advisor for Environmental

7

A Novel Process for Recovering Valuable Materials from Spent ...  

Science Conference Proceedings (OSTI)

The positive electrode of the lithium-ion secondary battery is mainly made of lithium oxide as well as cobalt, nickel, manganese, etc. Thus, an effective recycling ...

8

Winter, a valuable cooling energy resource  

DOE Green Energy (OSTI)

Frigid winters can now be thought of as a valuable energy resource. Ice frozen naturally during the winter could prove to be an energy-saving summertime blessing for cost-conscious owners of buildings or homes in the near future. Modern techniques involve freezing large blocks of ice in insulated storage tanks under or near the building to be cooled. Cooling with winter's ice is an idea whose time has come. The author discusses some methods of growing blocks of ice. These methods under development at various research organizations are heat pipes, layer by layer, earth freezing, and water spray.

Gorski, A.J.

1985-01-01T23:59:59.000Z

9

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

10

Technologies for Extracting Valuable Metals and Compounds from...  

Open Energy Info (EERE)

Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Project...

11

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts October 31, 2013 - 3:09pm Addthis 1 of 13 A Boy Scout attends a class to earn a merit badge for Energy Action Month. | Photo by Matty Greene. 2 of 13 Girl Scouts ask questions about college life during their class on nuclear science. | Photo by Matty Greene. 3 of 13 An adult volunteer sets up ping pong balls on mouse traps to illustrate what atoms in a nuclear reaction look like. | Photo by Matty Greene. 4 of 13 A Girl Scout works on building an electroscope as part of the nuclear science class. | Photo by Matty Greene. 5 of 13 A Boy Scout uses static electricity from his hair to test charge with the electroscope he built. | Photo by Matty Greene.

12

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning Valuable Lessons About Energy with Scouts Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts Addthis 1 of 13 A Boy Scout attends a class to earn a merit badge for Energy Action Month. | Photo by Matty Greene. 2 of 13 Girl Scouts ask questions about college life during their class on nuclear science. | Photo by Matty Greene. 3 of 13 An adult volunteer sets up ping pong balls on mouse traps to illustrate what atoms in a nuclear reaction look like. | Photo by Matty Greene. 4 of 13 A Girl Scout works on building an electroscope as part of the nuclear science class. | Photo by Matty Greene. 5 of 13 A Boy Scout uses static electricity from his hair to test charge with the electroscope he built. | Photo by Matty Greene. 6 of 13 An adult volunteer talks with Scouts about energy -- including saving,

13

Accidental Innovation: Supporting Valuable Unpredictability in the Creative Process  

Science Conference Proceedings (OSTI)

Historical accounts of human achievement suggest that accidents can play an important role in innovation. In this paper, we seek to contribute to an understanding of how digital systems might support valuable unpredictability in innovation processes ... Keywords: accidental discovery, accidental innovation, accidental invention, design of information systems, digital technology, innovation, serendipity

Robert D. Austin; Lee Devin; Erin E. Sullivan

2012-09-01T23:59:59.000Z

14

Guidelines for Capturing Valuable Undocumented Knowledge from Energy Industry Personnel  

Science Conference Proceedings (OSTI)

This report provides guidance for capturing the valuable undocumented knowledge of managers and workers and making it available to other personnel when needed. The guidance, developed through strategic research performed in conjunction with four cooperating energy companies, is designed to help mitigate negative consequences as experienced personnel become unavailable due to retirement or other reasons.

2002-03-22T23:59:59.000Z

15

NREL: Education Programs - Wind Applications Center Valuable Resource for  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

16

Catalytic Transformation of Waste Carbon Dioxide into Valuable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Transformation of Waste Catalytic Transformation of Waste Carbon Dioxide into Valuable Products Background Many industrial processes contribute large amounts of carbon dioxide (CO 2 ) to the earth's atmosphere. In an effort to reduce the amount of CO 2 released to the atmosphere, the U.S. Department of Energy (DOE) is funding efforts to develop CO 2 capture and storage technologies. In addition to permanent storage of CO 2 in underground reservoirs, some

17

Continuous Commissioning: A Valuable Partner to Retrofit Projects  

E-Print Network (OSTI)

Continuous Commissioning (CC) or HVAC system optimization is not only a valuable stand-alone energy saving measure for commercial buildings, but it is also an important escort solution to retrofit projects. Energy retrofit projects typically achieve projected savings. But in cases where savings goals are not being met, optimizing HVAC system performance can be the difference in an underachieving versus a successful project. This paper presents a real-world study of pairing a CC project with an energy retrofit in a 107,000 square foot hospital building. Applying the CC strategy to an underperforming retrofit, projected energy savings were achieved and even increased. Additionally, by increasing supply air capacity, patients, staff and visitors now enjoy improved comfort conditions. This paper also explores the working relationship between an ESCO and a university research laboratory, whose combined efforts led to this remarkable turn around.

Turner, W. D.; Banks, K.; Athar, A.; Yazdani, B.; Zhu, Y.; Culp, C.

2001-01-01T23:59:59.000Z

18

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

19

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

20

Green Materials and Processes for Managing Electronic Waste - TMS  

Science Conference Proceedings (OSTI)

Disassembly — selective disassembly, targeting hazardous or valuable components ... materials for the refining process, such as grinding plastics into powders.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Shelters to Teach a Valuable Lesson on Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-Shelters to Teach a Valuable Lesson on Energy E-Shelters to Teach a Valuable Lesson on Energy E-Shelters to Teach a Valuable Lesson on Energy March 12, 2010 - 5:01pm Addthis Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? A minimum of 90 Florida schools will receive a 10-kilowatt or larger solar system Teachers will incorporate the systems into their lesson plans, educating students about solar power and energy efficiency. Students will be able to log on to energywhiz.com to learn how much energy their school's solar shelter has created and how long electronic devices can be powered. Florida Energy Center Susan Schleith, SunSmart E-Shelters program manager at Florida Solar Energy Center, stands next to a 10kW photovoltaic system similar to ones that will be installed on

22

Photo of the Week: Scouting for Valuable Lessons in Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: Scouting for Valuable Lessons in Energy Photo of the Week: Scouting for Valuable Lessons in Energy Photo of the Week: Scouting for Valuable Lessons in Energy December 11, 2013 - 3:40pm Addthis During National Energy Action Month, Girl Scouts and Boy Scouts visited the Energy Department in Washington, D.C., to learn about energy and earn merit badges and patches. In this photo, a Boy Scout watches light shine on a solar panel that’s powering a hydrogen fuel cell system, showing how photovoltaic panels work and energy systems can be integrated. Check out more photos from the scouts’ Energy Action Month workshops. | Photo by Matty Greene, Energy Department. During National Energy Action Month, Girl Scouts and Boy Scouts visited the

23

Report on D&D of Large Components with Valuable EM Contributions is  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on D&D of Large Components with Valuable EM Contributions is Report on D&D of Large Components with Valuable EM Contributions is Available on Powerpedia Report on D&D of Large Components with Valuable EM Contributions is Available on Powerpedia November 26, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM's Office of Deactivation and Decommissioning/Facility Engineering (D&D/FE), representing DOE on the Nuclear Energy Agency's (NEA) Working Party on Decommissioning and Dismantling (WPDD) of the Radioactive Waste Management Committee, provided significant contributions to the recently published report titled, "The Management of Large Components from Decommissioning to Storage and Disposal." Read the report on Powerpedia here. The WPDD focuses on the analysis of decommissioning policy, strategy and

24

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian Period  

E-Print Network (OSTI)

Coal is a combustible sedimentary rock and a valuable economic resource. During the Pennsylvanian of years produced the bituminous coals currently found in southwestern Indiana. Bituminous coals in Indiana currently ranks as the seventh-largest coal-producing state in the nation and has an estimated 17.57 billion

Polly, David

25

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

26

Conducting Private R&D at PNNL Tapping valuable government resources with a unique Use Permit  

E-Print Network (OSTI)

Conducting Private R&D at PNNL Tapping valuable government resources with a unique Use Permit What, Battelle has built a rich history of technology deployment at PNNL that reaches even beyond American. Unique to PNNL is a powerful technology development and transfer mechanism known as the Use Permit

27

Using Social Networks for Exchanging Valuable Real Time Public Transport Information among Travellers  

Science Conference Proceedings (OSTI)

Public transport users are increasingly connected in real time through mobile devices to social networks, such as Twitter and Facebook. This allows them both to access and to provide valuable operational and emotional information from and to fellow travellers. ... Keywords: mobile, transport, social network, service science, innovation, business model, serious game

Antonio A. Nunes; Teresa Galvao; Joao Falcao e Cunha; Jeremy V. Pitt

2011-09-01T23:59:59.000Z

28

Recovery of Valuable Chlorosilane Intermediates by a Novel Waste Conversion Process  

DOE Green Energy (OSTI)

From 1994 to 2001, Dow Corning studied a waste recycling process to recover direct process residues (DPR) resulting from the production of silicone precursors. Over the course of eight years, Dow Corning constructed and operated a pilot plant, a small scale commercial plant, and a full scale plant. The process reacts DPR with hydrogen and chlorosilane monomers at high temperature and high pressure. The process converted 85% of the DPR to valuable chlorosilane monomers such as dimethyldichlorosilane and methyldichlorosilane. When feeding methyltrichlorosilane, the process converted 30% of the MeSiCl3 to other monomers. Alternate co-feed monomers were tested. By converting waste DPR to valuable intermediates, the technology significantly reduces waste from the basic silicones manufacturing process.

J. Ashley Brinson

2002-06-20T23:59:59.000Z

29

Program on Technology Innovation: Use of Visualization Technology to Support Valuable Knowledge Capture and Delivery  

Science Conference Proceedings (OSTI)

Pressurizer room and valve virtual modelssimulating three-dimensions (3-D) based on virtual reality (VR) technologyhave successfully been applied to weld overlay and valve maintenance jobs. The models were available to support valuable knowledge capture and job planning as well as worker orientation and training. This report presents results of the project, which was conducted at the Luminant Energy Comanche Peak Nuclear Power Plant.

2008-11-20T23:59:59.000Z

30

Recovery of Valuable Chlorosilane Intermediates by a Novel Waste Conversion Process, Phase IIIB (Progress)  

Science Conference Proceedings (OSTI)

From June 1998 through September 1999, direct process residue (DPR, a waste byproduct) hydrogenolysis has been studied at a large pilot plant within Dow Corning's Carrollton, KY, facility. The system reacts filtered DPR with chlorosilane monomers at high temperature and pressure. The process routinely demonstrates DPR conversions from 59% to 89% on a monthly basis. The reaction product contains high concentrations of valuable monomers such as dimethyldichlorosilane and methyldichlorosilane. An expansion of the current unit's capacity is planned to be on-line by the end of CY2000. Furthermore, a larger DPR hydrogenolysis reactor based on these results is being designed for operation in Europe at Dow Corning's Barry, Wales, site.

Kurt E. Anderson

2000-03-31T23:59:59.000Z

31

New Superconducting Materials  

Science Conference Proceedings (OSTI)

Superconductors with higher superconducting transition temperatures, higher critical currents, and better mechanical properties would be valuable. This report presents criteria to guide the search for higher transition temperature materials. To determine if candidate materials are suitably metallic, the study carried out detailed electronic structure calculations. These calculations identified boron-containing hydrides as particularly promising as a new class of possible superconducting materials that ma...

1994-11-04T23:59:59.000Z

32

Injection of Alternative Carbon Containing Materials in the BF  

Science Conference Proceedings (OSTI)

By injection of the materials preparation methods in terms e.g. drying and/or ... Efficiency in recovery of valuable compounds as well as the behaviour of ...

33

Classification of public lands valuable for geothermal steam and associated geothermal resources  

DOE Green Energy (OSTI)

The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

1973-01-01T23:59:59.000Z

34

Modification of the EIC hydrogen sulfide abatement process to produce valuable by-products. Final report, May 4, 1981-May 4, 1982  

DOE Green Energy (OSTI)

A program of analytical and experimental studies has been carried out to develop modifications of the CUPROSUL process for the desulfurization of geothermal steam. The objective of the program was to devise practical means to manipulate the chemistry of the process so that the consumption of raw materials could be controlled and a variety of valuable by-products could be produced. The process had been demonstrated, at one-tenth commercial scale, for steam of the Geysers' average composition in a configuration which resulted in essentially complete oxidation of sulfide to sulfate. The ability to control the extent of oxidation would increase process flexibility and extend its range of applicability to steams of widely varying composition. Preliminary market surveys of raw materials required for the process and by-products which could be produced indicated that controlling the oxidation of sulfides to produce elemental sulfur would probably be the preferred process option. Use of lime to treat sulfate-containing purge streams to produce by-product gypsum and ammonia for recycle or sale could also be justified for certain steam compositions. Recovery of ammonium sulfate alone from the purge stream would not normally be justified unless corecovery of other valuable by-products, such as boric acid, was possible at incremental cost. It was found that ferric sulfate was a highly effective, selective oxidant for the controlled oxidation of copper sulfide solids to produce elemental sulfur for sale and copper sulfate for recycle.

Offenhartz, P. O'D.

1982-06-01T23:59:59.000Z

35

Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries  

Science Conference Proceedings (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

Sun Liang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China (China); Qiu Keqiang, E-mail: qiuwhs@sohu.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China (China)

2012-08-15T23:59:59.000Z

36

Reductive Leaching Behavior of Valuable Metals from Spent Li-Ion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Commercial trend of cathode material for Li-ion batteries, LiCoO2, ... The Challenge of Allocation in LCA: The Case of Open-Loop Recycling.

37

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

38

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

39

The European Solar Radiation Atlas 1 Page J., M. Albuisson, L. Wald, 2001. The European solar radiation atlas: a valuable digital tool. Solar Energy,  

E-Print Network (OSTI)

radiation atlas: a valuable digital tool. Solar Energy, 71, 81-83, 2001.1 The European Solar Radiation Atlas Author manuscript, published in "Solar Energy 71, 1 (2001) 81-83" DOI : 10.1016/S0038-092X(00)00157-2 #12 provided address the four most widely developed solar energy applications using simplified design methods

Paris-Sud XI, Université de

40

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

42

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

43

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

44

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

45

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

46

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

47

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

48

Training Materials  

Science Conference Proceedings (OSTI)

Training Materials. NIST Handbook 44 Self-Study Course. ... Chapter 3 – Organization and Format of NIST Handbook 44 DOC. ...

2011-08-10T23:59:59.000Z

49

Material matting  

Science Conference Proceedings (OSTI)

Despite the widespread use of measured real-world materials, intuitive tools for editing measured reflectance datasets are still lacking. We present a solution inspired by natural image matting and texture synthesis to the material matting problem, ... Keywords: appearance models, material separation, matting, spatially-varying BRDFs, texture synthesis

Daniel Lepage; Jason Lawrence

2011-12-01T23:59:59.000Z

50

Materializing energy  

Science Conference Proceedings (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

51

The Most Valuable Lesson - CECM  

E-Print Network (OSTI)

At a time in the history of communications when technology is having a real-time impact on how people express themselves, we have had an opportunity to ...

52

Commercially Valuable Smart Grid Data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

build metrics, impact metrics, and raw data sets, and it will be posted on the Smartgrid.gov website. Build metrics, e.g., those associated with the deployment and costs of...

53

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

54

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

55

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium · Superalloys. Emerging Materials ...

56

Characterization of Thin Films by XAFS: Application to Spintronics Materials  

SciTech Connect

X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy; Chambers, Scott A.

2009-10-25T23:59:59.000Z

57

Minor Materials  

Science Conference Proceedings (OSTI)

Table 1   Materials used in glass manufacture...Table 1 Materials used in glass manufacture Material Purpose Antimony oxide (Sb 2 O 3 ) Decolorizing and fining agent Aplite (K, Na, Ca, Mg, alumina silicate) Source of alumina Aragonite (CaCO 3 ) Source of calcium oxide Arsenic oxide (As 2 O 3 ) Fining and decolorizing agent Barite/barytes (BaSO 4 )...

58

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

59

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

60

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

62

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

63

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Materials Negotiable Licensing Microseismic Tracer Particles for Hydraulic Fracturing Negotiable Licensing A Photo-Stimulated Low Electron Temperature High Current...

64

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and ...

65

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

66

Materials Studio  

Science Conference Proceedings (OSTI)

Jan 14, 2008 ... G. Fitzgerald; G. Goldbeck-Wood; P. Kung; M. Petersen; L. Subramanian; J. Wescott, " Materials Modeling from Quantum Mechanics to The ...

67

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and ...

68

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

69

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

70

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

71

thermoelectric materials  

E-Print Network (OSTI)

It has been proven that the maximum cooling temperature of a thermoelectric material can be increased by using either pulsed operation or graded Seebeck profiles. In this paper, we show that the maximum cooling temperature can be further increased by the pulsed operation of optimal inhomogeneous thermoelectric materials. A random sampling method is used to obtain the optimal electrical conductivity profile of inhomogeneous materials, which can achieve a much higher cooling temperature than the best uniform materials under the steady-state condition. Numerical simulations of pulsed operation are then carried out in the time domain. In the limit of low thermoelectric figure-of-merit ZT, the finite-difference time-domain simulations are verified by an analytical solution for homogeneous material. This numerical method is applied to high ZT BiTe materials and simulations show that the effective figure-of-merit can be improved by 153 % when both optimal graded electrical conductivity profiles and pulsed operation are used. 1.

Q Zhou; Z Bian; A Shakouri

2007-01-01T23:59:59.000Z

72

Hardfacing material  

SciTech Connect

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

73

Cryogenic Material Properties Database Cryogenic Material ...  

Science Conference Proceedings (OSTI)

... properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither ...

2000-10-27T23:59:59.000Z

74

FE Categorical Exclusions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/30/2010 Location(s): Ithaca, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 29, 2010 CX-004968: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/29/2010 Location(s): Baton Rogue, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory

75

Green Materials  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Incorporation of Granite Waste Diamond Wire in Cementitious Matrices: ... determination method simplex from a stroke cement using standard CP-V, ... its property in building materials manufacture, alumina recovery, etc. ... as well as their changes during heat treatment were studied by XRD, FTIR and XPS.

76

MSD Molecular Materials - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Molecular Materials Molecular Materials Group carries out synthesis and characterization of novel materials whose unique properties originate at the molecular level. Our...

77

Alloy materials  

DOE Patents (OSTI)

An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

2002-01-01T23:59:59.000Z

78

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

79

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

80

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

ESTABLISHED MATERIALS TECHNOLOGIES ... Specifically, digital resources are available relating to materials for nuclear power, materials sustainability, and  ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Information about Materials Properties  

Science Conference Proceedings (OSTI)

Table 6   Examples of materials information required during detail design...identification Material class (metal, plastic, ceramic composite) Material subclass Material industry designation Material product form Material condition designation (temper, heat treatment, etc.) Material specification Material alternative names Material component designations (composite/assembly)...

82

Materials Science Evaluation Portal  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Evaluation Portal. Materials Science Evaluation Portal. Subject Areas. Modeling; Nondestructive; ...

2013-08-08T23:59:59.000Z

83

Materials Performance Staff  

Science Conference Proceedings (OSTI)

... Kinetics Staff; Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Materials Performance ...

2013-08-20T23:59:59.000Z

84

Alloy and Materials Preparation II  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Copper-Based Multi-Component Alloys by Vacuum Distillation to Separate Copper Enriched Lead, Silver and Other Valuable Metals Research: ...

85

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

86

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

87

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

accident tolerant fuels, and providing the materials underpinning for fusion energy. The nuclear materials program leverages off both fundamental and applied capabilities within...

88

Sandia National Labs: Materials Science & Engineering, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS SCIENCE & ENGINEERING HOME OrganizationMission Capabilities Awards & Accomplishments Patents MATERIALS SCIENCE AND ENGINEERING CENTER Techniques 1 2 3 4 5 6 7 These are...

89

Materials Project: A Materials Genome Approach  

DOE Data Explorer (OSTI)

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

90

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Defect Physics Lightweight Related Research Functional Materials for Energy Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems...

91

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Materials High Temperature Materials The environment inside a slagging gasifier is one of the worst imaginable from a materials standpoint. Another extreme...

92

Nuclear Materials Committee  

Science Conference Proceedings (OSTI)

The Nuclear Materials Committee is part of the Structural Materials Division. Our Mission: Includes the scientific and technical aspects of materials which are ...

93

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Administrative & Policy Manual .... Materials and Society: Energy Technology, Policy, and Education; Materials Processing and Production; and ...

94

Magnetic Materials Staff  

Science Conference Proceedings (OSTI)

... Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Magnetic Materials Group Robert Shull, Group Leader. ...

2012-10-09T23:59:59.000Z

95

Anisotropic Curie Temperature Materials  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Anisotropic Curie Temperature Materials. Author(s), Harsh Deep Chopra, Jason ...

96

Material Properties References  

Science Conference Proceedings (OSTI)

... Thermal Conductivity. LNG Materials and Fluids. Ed. ... Aluminum 3003. Linear thermal expansion. LNG Materials and Fluids. Ed. ...

2013-02-05T23:59:59.000Z

97

emerging materials - TMS  

Science Conference Proceedings (OSTI)

…plenary discussion. Energy and Security; Nuclear Materials; Fuel Cells; Materials for Alternative Energy Applications. Advanced Metallic Composites and  ...

98

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2014 ... structured functional materials with improved and designed (piezo )electrical, magnetic, optical, ...

99

Multiscale Modeling of Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Parametric materials design integrating materials science, applied mechanics and quantum physics within a systems engineering framework ...

100

Radiation Shields Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Radiation ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nanomechanical Materials Behavior Committee  

Science Conference Proceedings (OSTI)

The Nanomechanical Materials Behavior Committee is part of the Materials Processing & Manufacturing Division;. Our Mission: Focuses on the nanomechanical ...

102

Method for forming materials  

DOE Patents (OSTI)

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

103

Materials Informatics: Fast Track to New Materials  

SciTech Connect

Current methods for new materials development focus on either deeper fundamental-level studies or generation of large quantities of data. The data challenge in materials science is not only the volume of data being generated by many independent investigators, but its heterogeneity and also its complexity that must be transformed, analyzed, correlated and communicated. Materials informatics addresses these issues. Materials informatics is an emerging information-based field combining computational, statistical, and mathematical approaches with materials sciences for accelerating discovery and development of new materials. Within the informatic framework, the various different forms of information form a system architecture, an iterative cycle for transforming data into knowledge.

Ferris, Kim F.; Peurrung, Loni M.; Marder, James M.

2007-01-01T23:59:59.000Z

104

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

105

New York | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 12, 2011 January 12, 2011 CX-004976: Categorical Exclusion Determination New York State Retail Ethanol Fueling Station Project (Summary Categorical Exclusion - Seven Sites) CX(s) Applied: B5.1 Date: 01/12/2011 Location(s): Kings Park, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/30/2010

106

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

107

Disability Insurance: Protect Your Most Valuable Asset  

E-Print Network (OSTI)

An 18% chance of becoming disabled for 3 months or longera 41% chance of becoming disabled for 3 months or longer. AA 13% chance of becoming disabled for 3 months or longer

Borgia, Andy G

2013-01-01T23:59:59.000Z

108

Commerce's NIST Receives Valuable Chemical Data from ...  

Science Conference Proceedings (OSTI)

... scientific community,” said Richard M. Gross, Dow vice president for global research and ... Infrared spectra provide insight into molecular structure. ...

2010-10-05T23:59:59.000Z

109

Advanced Materials Processing  

Science Conference Proceedings (OSTI)

Feb 15, 2010... the copper bearing materials which did not contain inflammable materials due to a restriction on capacity of furnace waste heat boilers.

110

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

111

Material Properties References  

Science Conference Proceedings (OSTI)

... Cryogenics June 1962 p.230-235. Thermal Conductivity. LNG Materials and Fluids. Ed. ... Linear thermal expansion. LNG Materials and Fluids. Ed. ...

2013-02-05T23:59:59.000Z

112

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

113

TMS Materials Cyberinfrastructure Portal  

Science Conference Proceedings (OSTI)

The Materials Cyber- infrastructure Portal serves as an online access point to critical tools and resources—including computational models and materials ...

114

Material Design Tools  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... In this presentation, we will discuss our activities in developing an infrastructure, named MaterialsGenome® (Trademark of MaterialsGenome, ...

115

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Defining the data challenges associated with building the materials innovation infrastructure at the core of the U.S. Materials Genome Initiative (MGI) was the ...

116

Novel Materials and Phenomenon  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Magnetic Materials for Energy Applications -III: Novel Materials and ... In traditional Permanent Magnet Machines, such as motors and ...

117

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

118

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

119

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

DOE Awards $45 Million to Deploy Advanced Transportation Technologies · Novel Electrode Material Offers Alternative for Li-ion Batteries · New Materials Make ...

120

IOMMMS Global Materials Forum  

Science Conference Proceedings (OSTI)

Natural Fiber Composites – Significant Contribution to a Green Economy · Recent Development of Materials for Green Energy in Korea · The Role of Materials ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

122

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

123

DUF6 Materials Use Roadmap  

Science Conference Proceedings (OSTI)

The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

Haire, M.J.

2002-09-04T23:59:59.000Z

124

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4   Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

125

Cementitious Materials Workshop - Presentations  

Cementitious Materials for Waste Treatment, Disposal, Remediation and Decommissioning Workshop. December 12-14, 2006

126

Cementitious Materials Workshop - Contacts  

Cementitious Materials for Waste Treatment, Disposal, Remediation and Decommissioning Workshop. December 12-14, 2006

127

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4 Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

128

Materials Innovation Committee - TMS  

Science Conference Proceedings (OSTI)

... SMD Council, - General Committees, ---- Accreditation Committee, ---- Audit Committee, ---- Education Committee, ---- Materials and Society Committee ...

129

About Materials Week '97  

Science Conference Proceedings (OSTI)

LINKS ABOUT INDIANAPOLIS · TOUR INFORMATION · STUDENT ACTIVITIES · SPECIAL EVENTS · MATERIALS EXPOSITION · CALENDAR OF EVENTS

130

Advanced Materials in MML  

Science Conference Proceedings (OSTI)

... Advanced Materials Characterization. Fusion Wall Development Research by Neutron Depth Profiling. < Previous 1 2 3 Next ». ...

2012-06-12T23:59:59.000Z

131

Joining of dissimilar materials  

DOE Patents (OSTI)

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

132

Effects of stabilization temperature on surface area and grain size of representative plutonium materials.  

DOE Green Energy (OSTI)

Calcination at 400-1000C is used throughout the Department of Energy (DOE) complex to stabilize plutonium material for transportation and storage . The objectives of this stabilization are to remove moisture and other potentially water-producing phases, and to ensure that readsorption will not occur before material is placed in welded containers .Such moisture may threaten the integrity of containers through pressurization with radiolytically generated hydrogen. It is also considered valuable to reduce the fine (respirable) fraction of the material to mitigate potential impact of accidents.

Boak, J. M. (Jeremy M.); Dale, D. J. (Deborah J.); Eller, P. G. (Phillip Gary)

2003-01-01T23:59:59.000Z

133

Comprehensive Nuclear Materials  

Science Conference Proceedings (OSTI)

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

134

Materials science and engineering  

Science Conference Proceedings (OSTI)

During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

Lesuer, D.R.

1997-02-01T23:59:59.000Z

135

Computer-Aided Materials Selection  

Science Conference Proceedings (OSTI)

Table 42   Examples of materials information required during product design...identification Material class (metal, plastic, ceramic, composite) Material subclass Material industry designation Material product form Material condition designation (temper, heat treatment, etc.) Material specification Material alternative names Material component designations (composite/assembly)...

136

Lightweighting Materials | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL conducts lightweighting materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

137

EC Transmission Line Materials  

SciTech Connect

The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

Bigelow, Tim S [ORNL

2012-05-01T23:59:59.000Z

138

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

139

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

140

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Structural Materials - Characterization  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Cr, are important structural materials for use in advanced nuclear ... holds promise for grain boundary engineering of surface and near-surface ... nuclear structural material Alloy 690 to illustrate the effects of shield gas, travel ...

142

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

143

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

144

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered bulk-scale properties. The energy absorbing material has 3D patterned architectures specially designed for ...

145

Factors of material consumption  

E-Print Network (OSTI)

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Díaz, Pamela Cristina

2012-01-01T23:59:59.000Z

146

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

147

Orlando Materials Innovation  

Science Conference Proceedings (OSTI)

Ford Motor Company. Buddy Damm. Manager, Metallurgical Applications and Modeling Dept. The Timken Company. Frank Preli. Chief Engineer,. Materials and ...

148

Electronics Materials Staff  

Science Conference Proceedings (OSTI)

... Biomaterials Staff; Complex Fluids Staff; Sustainable Polymers Staff; Materials Science and Engineering Division Staff Directory; MML Organization. ...

2012-10-07T23:59:59.000Z

149

Standard Reference Materials  

Science Conference Proceedings (OSTI)

... Inn, KGW, Liggett, WS, and Hutchinson, JMR (1984), "The National Bureau of Standards Rocky Flats Soil Standard Reference Material," Nuclear ...

150

Enabling Materials Resource Sustainability  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... REWAS 2013: Enabling Materials Resource Sustainability: Enabling Sustainability through Education and Consumer Awareness Sponsored ...

151

Materials and Society Initiatives  

Science Conference Proceedings (OSTI)

broader cross-section of TMS membership on topics including: resource sustainability, energy, environment, and sustainable materials design and processing.

152

Materials Reference Books  

Science Conference Proceedings (OSTI)

Materials Science Reference Books. ... The Smithells Metals Reference Book Brandis and Brook; Butterworth-Heinemann; Published 1992; ISBN ...

2010-10-05T23:59:59.000Z

153

Materials Processing Fundamentals  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Materials Processing Fundamentals. Sponsorship, The Minerals, Metals ...

154

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process ...

155

Materials Science/Crystallography  

Science Conference Proceedings (OSTI)

... Understanding the ormation of Methane Hydrate F ... J.247 agnetic Excitation Spectrum in Spin ... eutron Vibrational Spectroscopy of Organic Materials ...

2003-11-12T23:59:59.000Z

156

SRNL - Cementitious Materials Workshop  

... the Department of Energy, ... engineers, project managers, ... status and future direction of the cement materials technology in radioactive waste ...

157

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 10, 2010 ... ESTABLISHED MATERIALS TECHNOLOGIES ... A new, exciting development is the application of these techniques to biological systems, ...

158

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... ESTABLISHED MATERIALS TECHNOLOGIES ... These projects include the development and validation of modeling tools to deliver higher ...

159

Materials Analysis - TMS  

Science Conference Proceedings (OSTI)

Mar 17, 2004 ... 2004 TMS Annual Meeting & Exhibition: Materials Analysis: Understanding ... with the leading failure scenario based on visual observations.

160

Energetic Material – Explosives  

INL has invented a process for creating energetic materials, including trinitrotoluene (TNT).  By using a carbon dioxide environment, which reduces ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Materials Processing Fundamentals  

Science Conference Proceedings (OSTI)

Symposium, Materials Processing Fundamentals ... to be covered in the symposium are all aspects of the fundamentals, synthesis, analysis, design, monitoring, ...

162

Genomics of Electronic Materials  

Science Conference Proceedings (OSTI)

... Metamaterials; Highly correlated electron materials, eg superconductors, such as ... A near-field scanning microwave microscope for characterization ...

2013-08-08T23:59:59.000Z

163

What are Soft Materials  

Science Conference Proceedings (OSTI)

... They form the basis of plastics used in consumer goods, automobiles ... important proteins within foods, preservative agents, and packaging materials. ...

2013-02-20T23:59:59.000Z

164

Inorganic Materials Group  

Science Conference Proceedings (OSTI)

... experimental and computational materials science research. This work will help the US construction industry be competitive in advanced concrete ...

2011-11-08T23:59:59.000Z

165

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 10, 2012... for Learning and Dialogue on Energy Topics, Materials Sustainability ... and electronic equipment and infrastructure, energy production and ...

166

MATERIALS PROCESSING FUNDAMENTALS: II  

Science Conference Proceedings (OSTI)

... Deodoro Trani Capocchi, Department of Metallurgical and Materials Engineering, Escola Politecnica de Universidade de Sao Paulo, Sao Paulo SP-

167

About - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home · TMS Committees Home · Electronic, Magnetic & Photonic Materials ...

168

Materials Bowl application  

Science Conference Proceedings (OSTI)

PROMOTING THE GLOBAL SCIENCE AND ENGINEERING PROFESSIONS ... Bowl. Rules. Official Rules. 1. This contest is open to all Material Advantage ...

169

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

... MI; Elizabeth Holm, Carnegie Mellon University, Pittsburgh, PA; Peter Gumbsch, Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany.

170

Powder Materials Committee  

Science Conference Proceedings (OSTI)

Powder Materials for Energy Efficiency in Transportation; January 2011: Organized By: Fernand Marquis Nanomaterials for Renewable Energy ...

171

Advanced neutron absorber materials  

DOE Patents (OSTI)

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

172

CANMET Gasifier Liner Coupon Material Test Report  

Science Conference Proceedings (OSTI)

This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

2007-01-31T23:59:59.000Z

173

Tailored Porous Materials  

Science Conference Proceedings (OSTI)

Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

1999-11-09T23:59:59.000Z

174

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

175

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

176

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

177

United States Automotive Materials Partnership LLC (USAMP)  

Science Conference Proceedings (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

178

CFD Modeling in Materials Processing II  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... Erosion related problems in industrial appliances causes huge loss of valuable resources especially due to the presence of solid particles in ...

179

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

180

Nonconforming Material Process  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

182

NUCLEAR FUEL MATERIAL  

DOE Patents (OSTI)

An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

Goeddel, W.V.

1962-06-26T23:59:59.000Z

183

Absolute nuclear material assay  

DOE Patents (OSTI)

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

2010-07-13T23:59:59.000Z

184

Absolute nuclear material assay  

DOE Patents (OSTI)

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

2012-05-15T23:59:59.000Z

185

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

186

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

187

Processing Materials for Properties  

Science Conference Proceedings (OSTI)

Functional Products: Fuel Cells, Solar Cells, Flat Panel Display, LED,. Data Storage, Environmental (materials for CO2 sequestration, soil remediation, water

188

Cytomegalovirus Standard Reference Material  

Science Conference Proceedings (OSTI)

... and reagent manufacturers in production of their own calibrants and standards. ... control materials which would be traceable to a NIST standard. ...

2013-03-15T23:59:59.000Z

189

Heterogeneous and Brittle Materials  

Science Conference Proceedings (OSTI)

Structural materials are increasingly being required to be stronger and lighter in support of energy conservation and global security. At the same time they are ...

190

DETE TION MATERIALS  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security ... Enhanced detection of special nuclear materials

191

Composite of refractory material  

DOE Patents (OSTI)

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

1994-01-01T23:59:59.000Z

192

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2011 ... Lactic acid is a renewable starting material, produced by bacteria grown in vats of biomass, such as glucose and starch from plants. It has been ...

193

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

... the pace of advanced materials discovery, innovation, manufacture, and commercialization. At a White House event on June 24, the second anniversary of .

194

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 11, 2010 ... Advanced materials, off-shore wind power, quantum physics, nanoscience, and metrology are a few of the research areas that will be pursued ...

195

Integrated Computational Materials Education  

Science Conference Proceedings (OSTI)

This short course is based on the Summer School for Integrated Computational Materials Education, which was developed to meet this need. We will present a ...

196

Hazardous Material Security (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

197

Emerging Materials Technology  

Science Conference Proceedings (OSTI)

Posted on: 6/19/2013 12:00:00 AM... As materials science and engineering expands to encompass new technologies, such as nanomaterials, biomaterials, and ...

198

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Though well established as materials science and engineering fields, constant improvements are being made to the production of metals, the processing of ...

199

Ultrafine Grained Materials IV  

Science Conference Proceedings (OSTI)

Nov 1, 2006 ... Print Book and CD-ROM: Advances in Superplasticity and Superplastic Forming 2004. Print Book: Ultrafine Grained Materials III. Print Book: ...

200

Characterization of Advanced Materials  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... In this study, the binary and ternary thermal energy storage materials have been performed the phase equilibrium and characterization studies ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Structural Materials II  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Materials Corrosion in Molten Fluoride Salts: Kumar Sridharan1; Robert Sellers1; Guiqiu Zheng1; Guoping Cao1; Mark Anderson1; Todd ...

202

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials data related to hydrogen embrittlement - Modeled after existing metals handbooks - Data culled from open literature * Peer-reviewed scientific articles * Public...

203

Composite of refractory material  

DOE Patents (OSTI)

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, C.E.; Morrow, M.S.

1994-07-19T23:59:59.000Z

204

Materials Degradation and Aging  

Science Conference Proceedings (OSTI)

Aug 28, 2007 ... Improve plant capacity, reliability, and availability. Materials Degradation and Aging - An EPRI Nuclear Power Action Plan, Report No.

205

Materials Design Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

enhancement. The materials community at LANL constitutes a very broad spectrum of cross-organizational interactions, and therefore, an inclusive multidisciplinary approach is...

206

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Novel bioinspired materials for sustainability and clean energy as emerging applications are also in the scope of the symposium. Presentations including ...

207

Materials - Deformation Joining  

NLE Websites -- All DOE Office Websites (Extended Search)

ways to combine advanced materials such as ceramic, intermetallics, cermets, and metal matrix composites (MMCs) together for use in complex vehicle engine components, as well as...

208

Materials and Society  

Science Conference Proceedings (OSTI)

Electrical Energy Storage for Renewable Integration and Grid Applications: Status, Challenges and ... Materials R&D to Enable a Nuclear Energy Renaissance.

209

Exhibitor: STELLAR MATERIALS INC.  

Science Conference Proceedings (OSTI)

Booth #637 Detroit, Michigan. Thermbond is a unique new refractory material with features and benefits unavailable in traditional refractories. Thermbond is ...

210

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 7, 2013... engineering, computer science, mathematics, chemistry, biology, materials science, neutron research, and/or physics are eligible to nominate ...

211

Orlando Materials Innovation - TMS  

Science Conference Proceedings (OSTI)

We will create a materials innovation infrastructure with common resources for data and knowledge sharing that can be openly utilized for model development ...

212

Diagnostics and Structural Materials  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... The entire MaRIE complex is predicated on a predictive theory, ... are primary candidate materials in fusion reactor cladding design due to their ...

213

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 9, 2009... achieve the ultimate goal of developing superconducting materials for real- world devices, such as zero-loss power transmission lines.

214

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 9, 2011 ... This team will focus on developing and manufacturing materials technologies that can be pushed to these extremes in next generation energy ...

215

Materials Reading Room  

Science Conference Proceedings (OSTI)

FEBRUARY 2004 ISSUE - "Materials Analysis: A Key to Unlocking the Mystery of ... Scenarios and Guidance (PDF); Future Female (Microsoft Word Document) ...

216

Standard Reference Materials  

Science Conference Proceedings (OSTI)

... The Minerals, Metals and Material Society - TMS 2010 February 14-18, 2010 Booth #609 Washington State Convention Center Seattle, WA. ...

2011-03-02T23:59:59.000Z

217

Defects in Materials  

Science Conference Proceedings (OSTI)

Sep 17, 2009... Kazuyuki Ueda3; Takashi Sekiguchi1; 1National Institute for Materials Science (NIMS); 2IMEM-CNR Institute; 3Toyota Technological Institute

218

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 1, 2013 ... Researchers at Penn State University have designed a special material ... and less power consumption than possible with current technology.

219

Multiphase and Multicomponent Materials  

Science Conference Proceedings (OSTI)

The microstructure of the adhered material consisted of oxide ligaments ( nanowires, NWs) that served to attach the debris to tool steel surface as revealed by ...

220

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010... in my opinion, is raising the consciousness of the materials science ... quality and human health is spreading more rapidly than innovation in ...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

JOM - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 10, 2010 ... The garment represents a futuristic makeover of that traditional and popular clothing material standby, cotton. Scientists in the Textiles ...

222

Biological Materials Science Symposium  

Science Conference Proceedings (OSTI)

The structure and properties of biological materials exhibit a breadth and complexity .... Protective Role of Arapaima Scales: Structure and Mechanical Behavior.

223

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Apr 26, 2010... in part, on an earlier discovery by Jay Narayan, a 1999 TMS Fellow and John C. Fan Distinguished Chair Professor of Materials Science and ...

224

Electrochemistry of Porous Materials  

Science Conference Proceedings (OSTI)

Dec 31, 2012 ... Electrochemistry of Porous Materials is the book under review. The book is written by Antonio Domenech Carbo,and published by CRC press.

225

Building Materials Portal  

Science Conference Proceedings (OSTI)

... In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with ...

2013-04-08T23:59:59.000Z

226

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered ...

227

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 17, 2009 ... Electronic, Magnetic & Photonic Materials .... will support the development of low- cost batteries for electric and plug-in hybrid electric vehicles.

228

Structural Materials Division  

Science Conference Proceedings (OSTI)

Structural materials are everywhere ? from medical implants to skyscrapers ? and the SMD reflects that diversity in its thirteen technical committees. If you have ...

229

Structural Materials Division Council  

Science Conference Proceedings (OSTI)

Structural materials are everywhere – from medical implants to skyscrapers – and the SMD reflects that diversity in its thirteen technical committees. If you have ...

230

Materials and Society Community  

Science Conference Proceedings (OSTI)

According to Apelian, another advantage for TMS in taking on the “Materials and Society challenge” is the diversity of its members and the array of viewpoints ...

231

Integrated Computational Materials Engineering  

Science Conference Proceedings (OSTI)

Mar 4, 2013... behave if extrapolated to areas where data does not currently exist. ... With the executive directive of the Materials Genome Initiative (MGI), ...

232

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010 ... Next-generation materials for renewable energy production and ... have made concerted efforts to work principles of industrial ecology and life ...

233

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 17, 2010... to the lithium ion-metal oxide batteries currently on the market. ... The team tested how much electricity the material could store after charging ...

234

Structural Materials III  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Materials and Fuels for the Current and Advanced Nuclear Reactors II: ... On the Evolution Late Blooming Phases in RPV Steels: Theoretical ...

235

Electrochemistry and Materials Properties  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... In the frame of the development of a Molten Salt Fast Reactor concept, the corrosion behavior of structural metallic materials in contact with the ...

236

Composite Materials Committee  

Science Conference Proceedings (OSTI)

Metal-Matrix Composites in Industry: A Database of Companies, Materials, and Products (TMS Members Only) · Technical Questions @ TMS: Metal-Matrix ...

237

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Oct 5, 2010 ... A mechanical engineer who later became interested in materials science and biology, Suresh has done pioneering work studying the ...

238

Microwave Processing of Materials  

Science Conference Proceedings (OSTI)

Furthermore, lower energy consumption is another aspect that the world should consider to cope with this matter. Microwave processing of materials is a clean, ...

239

Bearing Material Systems  

Science Conference Proceedings (OSTI)

Table 2   Single-metal bearing material systems...Bronze C C C D B 14 2 Electric motor bushings, home appliance bearings,

240

Materials Property Database (MPD)  

Science Conference Proceedings (OSTI)

Feb 8, 2007... generate the material data as a function of temperature. For Windows and Linux Pentium. CITATION: "Details of MPDB," JAHM Software, Inc..

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 30, 2011 ... Harvesting electricity from waste heat requires a material that is good at conducting electricity but poor at conducting heat. One of the most ...

242

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Bioinspired Crystal Growth by Organic/Inorganic Crystal Engineering · Bioinspired Materials Design from Renewable Resources · Biological Synthesis of TiNi ...

243

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 22, 2009... smart grid technologies, batteries, and high-temperature materials) ... 15th Int'l Conference on Environmental Degradation in Nuclear Power ...

244

The Entire Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archives, Since January 2005 Table of Contents: Materials Scientist Two Phase Materials Nano-technology Projections Scents in Scented Candles Rubber Band Materials Metallic...

245

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

246

MULTISCALE PHENOMENA IN MATERIALS  

Science Conference Proceedings (OSTI)

This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

A. BISHOP

2000-09-01T23:59:59.000Z

247

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

248

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

249

Nanocrystalline Heterojunction Materials  

DOE Patents (OSTI)

Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

2004-02-03T23:59:59.000Z

250

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

251

Materials of Gasification  

DOE Green Energy (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

252

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

253

Material Challenges and Perspectives  

Science Conference Proceedings (OSTI)

General history and principals of Li-ion battery, characterization techniques and terminology of its operation will be discussed and explained. Current Li-ion battery applications and comparison to other energy storage and conversion systems will be outlined. Chemistry, material and design of currently commercialized Li-ion batteries will be discussed including various electrode materials for cathodes and anodes. The electrode material candidates and its physical and chemical properties including crystal structure, capacity, cycling stability, cost and safety. Also, current limitations of Li-ion batteries will be discussed.

Choi, Daiwon; Wang, Wei; Yang, Zhenguo

2011-12-14T23:59:59.000Z

254

ATS materials/manufacturing  

SciTech Connect

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

255

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 The Department of Energy (Department),...

256

Chemical Transformations of Nanostructured Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Solution-based Processing for Ceramic Materials. Presentation Title, Chemical ...

257

Perspectives for Emerging Materials Professionals  

Science Conference Proceedings (OSTI)

Mar 31, 2013 ... Materials Science and Engineering in the Canadian Oil Sands - Challenges & Opportunities · Materials Science and Engineering: The Gateway ...

258

Laser Application for Material Processing  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Advanced Materials, Processes and Applications for Additive Manufacturing: Laser Application for Material Processing Program Organizers: ...

259

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

... Materials Science Programs & Projects. ... In this project we measure the fundamental electrical properties of materials from bulk to nanoscale from ...

2010-09-22T23:59:59.000Z

260

Mechanical Behavior of Materials Committee  

Science Conference Proceedings (OSTI)

The Mechanical Behavior of Materials Committee is part of the Structural Materials Division. Our Mission: Covers relationships between microstructure and

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Computational Discovery of Novel Materials  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Design and Discovery of Novel Energy Materials · Design of ... Design of Multifunctional Material Architectures Using Topology Optimization.

262

Materials Genome Architecture and Framework  

Science Conference Proceedings (OSTI)

Oct 8, 2012 ... The DARPA-AIM initiative broadened computational materials engineering to address acceleration of the materials development and ...

263

Argonne TDC: Material Transfer Agreements  

Material Transfer Agreements. Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector.

264

Graphene Materials in the Flatland  

Science Conference Proceedings (OSTI)

Graphene Materials in the Flatland. Purpose: ... The 2-dimensional material called graphene remained undiscovered until a few years ago. ...

2011-10-25T23:59:59.000Z

265

Materials at LANL  

Science Conference Proceedings (OSTI)

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

266

Materials at LANL  

SciTech Connect

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

267

Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative  

DOE Green Energy (OSTI)

As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear materials are becoming increasingly difficult to replace because manufacturing methods and formulations have evolved in such a way as to render formerly available materials unprofitable, unsafe, or otherwise obsolete. Subtle formulation changes in available materials that occur without the knowledge of the weapons community for proprietary reasons have frequently affected the long-term performance of materials in the nuclear weapon environment. Significant improvements in performance, lifetime, or production cost can be realized with modern synthesis, modeling, and manufacturing methods. For example, there are currently supply and aging issues associated with the insensitive high explosive formulations LX-17 and PBX 9502 that are based on triaminotrinitrobenzene (TATB) and Kel-F, neither of which are commercially available today. Assuring the reliability of the stockpile through surveillance and regularly scheduled Life Extension Programs is an increasingly expensive endeavor. Transforming our current stockpile surveillance--a system based on destructive testing of increasingly valuable assets--to a system based on embedded sensors has a number of potential advantages that include long-term cost savings, reduced risk associated with asset transportation, state-of-health assessments in the field, and active management of the stockpile.

Maxwell, R; Fried, L; Campbell, G; Saab, A; Kotovsky, J; Carter, C; Chang, J

2009-10-11T23:59:59.000Z

268

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

269

Materials research at CMAM  

SciTech Connect

The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

Zucchiatti, Alessandro [Centro de Micro Analisis de Materiales CMAM, Universidad Autonoma de Madrid, c/ Faraday 3, 28049 Madrid (Spain)

2013-07-18T23:59:59.000Z

270

Public Scoping Meeting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Scoping Meeting Materials Public Scoping Meeting Materials Public Scoping Meeting Materials Fact sheets, presentations, and other information from the Conversion EIS Public Scoping Meetings. The following materials were made available during the DUF6 Conversion EIS public scoping meetings held near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky, November - December, 2001. Notice of Intent PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details Presentation PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program 5.97 MB details DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB details PDF Icon NEPA Activities for the Depleted Uranium Hexafluoride Management Program

271

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

272

Mesoporous carbon materials  

SciTech Connect

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

273

FOR MATERIALS LICENSEES  

E-Print Network (OSTI)

To request Commission approval to publish in the Federal Register a final rule that amends financial assurance requirements for certain materials licensees in 10 CFR Parts 30, 40, and 70. The amendments would bring financial assurance requirements more in line with actual decommissioning costs for these materials licensees. SUMMARY: This paper contains a final rule amending financial assurance requirements for certain materials licensees. Eight comments were received on the proposed rule. Staff analysis of these comments concludes that the only recommended change from the proposed rule should be to use the existing definitions of waste processor and waste collector in 10 CFR Part 20, Appendix G, rather than introducing a new definition of waste broker in the regulations. BACKGROUND: The staff notified the Commission of its intent to develop a rulemaking to amend financial assurance requirements for materials licensees in SECY-01-0084 (May, 9, 2001). The staff

William D. Travers; Thomas Fredrichs Nmss/dwm

2002-01-01T23:59:59.000Z

274

Structural Materials Modeling  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Sponsored by: TMS Materials Processing and Manufacturing Division, TMS ... Fei Gao2; Kiran Solanki3; Xin Sun2; 1Mississippi State University; 2PNNL; ... A Multiscale Metal/Hydride Mechanical Model for Used-Fuel Zircaloy ...

275

The Materials of Medicine  

Science Conference Proceedings (OSTI)

Oct 1, 2008 ... “The natural human desire to reduce the limitations caused by disability ... pushing this skyrocketing demand for biomedical materials and devices. ... real- time monitoring of hormone concentrations, gas concentrations, and ...

276

Material Safety Data Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Safety Data Sheet MSDS of LITHIUM POLYMER battery (total 3pages) 1. Product and Company Identification Product 1.1 Product Name: LITHIUM- POLYMER Battery 1.2 System:...

277

Automotive materials usage trends  

SciTech Connect

The materials composition of US passenger cars is traced from 1960 and projected into 1990's. Sales-weighted average vehicle-weight trends are analyzed in terms of shifts in the large/small car mix, downsizing, and downweighting. The growth in the usage of lightweight materials: -high strength steels, cast/wrought aluminum, plastics and composites - are examined in detail. Usage trends in a host of other materials such as alloy steels, zinc, lead, copper, etc. are also discussed. An approximate quantitative analysis of changes in the usage of steel by the automotive industry worldwide show that about 10% of total decline in Western-World steel consumption is accounted for by the automotive industry. An assessment is presented for automotive industry use of critical materials such as chromium in alloy steels/cast irons and the platinum group metals in exhaust-gas catalysts. 10 references, 13 figures, 9 tables.

Gjostein, N.A.

1986-01-01T23:59:59.000Z

278

Small Building Material Loan  

Energy.gov (U.S. Department of Energy (DOE))

The Alaska Housing Finance Corporation (AHFC) offers a Small Building Materials Loan for applicants to complete or renovate property located within a "small community", as defined in the AHFC [http...

279

Nanostructured Materials for Advanced  

E-Print Network (OSTI)

of electric vehicles (EVs) and hybrid electric vehicles (HEVs). High energy and high power densitiesT Nanostructured Materials for Advanced Li-Ion Rechargeable Batteries THE RECENT INCREASE IN demand

Cao, Guozhong

280

Advanced material appearance modeling  

Science Conference Proceedings (OSTI)

For many years, appearance models in computer graphics focused on general models for reflectance functions coupled with texture maps. Recently, it has been recognized that even very common materials such as hair, skin, fabric, and rusting metal require ...

Julie Dorsey; Holly Rushmeier

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2010 Critical Materials Strategy  

Energy.gov (U.S. Department of Energy (DOE))

This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

282

Heavy Vehicle Propulsion Materials  

DOE Green Energy (OSTI)

The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

Ray Johnson

2000-01-31T23:59:59.000Z

283

Bespoke Materials Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

284

Biomimetic hydrogel materials  

DOE Patents (OSTI)

Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

2000-01-01T23:59:59.000Z

285

Biomimetic Hydrogel Materials  

DOE Patents (OSTI)

Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

2003-04-22T23:59:59.000Z

286

Container for radioactive materials  

DOE Patents (OSTI)

A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

Fields, Stanley R. (Richland, WA)

1985-01-01T23:59:59.000Z

287

Nuclear Material Management Abstract  

Science Conference Proceedings (OSTI)

Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed.

Jesse C. Schreiber

2007-07-10T23:59:59.000Z

288

ATS materials support  

SciTech Connect

The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S. [Oak Ridge National Lab., TN (United States); Rawlins, M.H. [Dept. of Energy, Oak Ridge, TN (United States)

1996-12-31T23:59:59.000Z

289

BUILDING MATERIALS RECLAMATION PROGRAM  

Science Conference Proceedings (OSTI)

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

2010-08-31T23:59:59.000Z

290

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent tc the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1991-03-13T23:59:59.000Z

291

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1992-12-31T23:59:59.000Z

292

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

293

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

294

Bioinspired Materials Design from Renewable Resources  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Bioinspired Materials Engineering. Presentation Title, Bioinspired Materials ...

295

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

296

Geothermal materials development  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

297

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

298

Apparatus for dispensing material  

DOE Patents (OSTI)

An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

Sutter, Peter Werner (Beach, NY); Sutter, Eli Anguelova (Beach, NY)

2011-07-05T23:59:59.000Z

299

Optimized nanoporous materials.  

Science Conference Proceedings (OSTI)

Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

2009-09-01T23:59:59.000Z

300

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

302

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

303

Materials for geothermal production  

DOE Green Energy (OSTI)

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

304

Detection of dynamical transitions in hydrogenous materials using transmission measurements with very cold neutrons  

SciTech Connect

We have tested the transmission of very cold neutrons as a method to measure dynamical transitions in hydrogenous materials. Transmitted intensities vs. temperature at 30 A neutron wavelength were measured for four materials that undergo phase transformations associated with changes in dynamics: ammonium iodide, sodium borohydride, hexamethylbenzene, and dicesium dodecahydro-closo-dodecaborate. In some cases, neutron vibrational spectra above and below the transformation temperatures are compared to the transmission results. The measurements show changes in transmission at or near the transition for all these compounds, reflecting dynamical changes. The results demonstrate that the transmission method is sensitive to motional changes due to a wide range of structural transitions, from first-order to much more subtle order-disorder effects and for both small molecular species and larger molecules. The technique is valuable for rapid (ca. hours) scans of new materials to guide neutron inelastic scattering experiments or to complement the results of other techniques. - Graphical abstract: The transmission of very long wavelength neutrons is a highly sensitive probe of dynamical transitions in hydrogenous materials. Highlights: > Transmission of very long wavelength neutrons can probe dynamical transitions. > The technique is sensitive for both first-order and order-disorder transformations. > Changes in dynamical behavior of small and large molecular species can be detected. > This method can be a valuable guide for complex neutron scattering experiments.

Verdal, Nina, E-mail: nina.verdal@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Udovic, Terrence J.; Copley, John R.D. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States)

2011-10-15T23:59:59.000Z

305

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

306

DISASTER PLAN Library Materials  

E-Print Network (OSTI)

New York: Neal-Schuman; 1992. Kahn, Miriam. Disaster Response and Prevention for Computer And DataDISASTER PLAN Library Materials For the University of Toronto Library System September 2013 disaster planning for archives, libraries and record centres. Second edition. Boston: Scarecrow Press, 2002

Sokolowski, Marla

307

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

308

Advanced desiccant materials research  

DOE Green Energy (OSTI)

The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

Czanderna, A.W.; Thomas, T.M.

1986-05-01T23:59:59.000Z

309

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

310

Radiation in Building Materials  

E-Print Network (OSTI)

After years of studies and experiments scientists know that Radon is everywhere but found in high concentrations particularly in rocks and soil enriched in uranium Many of these rocks and soils are treated and compacted to create everyday building materials that are found in homes in which we live and work. A new

Iap Assignment; Katharine Chu

2007-01-01T23:59:59.000Z

311

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

312

New Materials for Spintronics  

SciTech Connect

One of the critical materials needs for the development of spin electronics is diluted magnetic semiconductors (DMS) which retain their ferromagnetism at and above room temperature. Spin polarization in DMS materials leads to the possibility of spin-polarized current injection into nonmagnetic semiconductor heterostructures. Such transport is of critical importance in the development of devices that utilize spin (e.g. spin-LEDs and spin-FETs). New magnetically-doped semiconducting oxides that show promise because of Curie points which exceed room temperature are currently being investigated in our lab and elsewhere. However, the detailed materials properties and mechanism(s) of magnetism in these systems have been elusive. In this talk, I will present recent results from our laboratory focused on the MBE synthesis and properties of these ferromagnetic oxide semiconductors. This work was funded by the PNNL Nanoscience and Technology Initiative, the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics, and the DARPA Spins in Semiconductors (SPINS) Initiative.

Chambers, Scott A.; Yoo, Young K.

2003-10-10T23:59:59.000Z

313

Additive Manufacturing - Materials by Design  

Livermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and density as well as thermal expansion and stiffness. This is ...

314

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

315

NETL: Onsite Research- Materials Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Performance Onsite Research Materials Performance Emerging energy-production technologies such as gasification, solid oxide fuel cells, and ultra supercritical, fluidized...

316

Independent Materials Testing Laboratories, Inc.  

Science Conference Proceedings (OSTI)

... [02/L24] ASTM D2974 Moisture, Ash, and Organic Matter of Peat Material. ... Engaged in the Testing and/or Inspection of Materials Used in ...

2013-08-16T23:59:59.000Z

317

MULTIDISCIPLINARY FREE MATERIAL OPTIMIZATION 1 ...  

E-Print Network (OSTI)

We present a mathematical framework for the so-called multidisciplinary free material ... Free material optimization (FMO) is a branch of structural optimiza- tion.

318

Structural Materials - Irradiation Studies II  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Materials and Fuels for the Current and Advanced Nuclear Reactors: Structural Materials - Irradiation Studies II Sponsored by: The Minerals, ...

319

Materials for Infrastructure Applications - TMS  

Science Conference Proceedings (OSTI)

Jun 18, 2008 ... This presentation was given as part of the special Materials in Society session " Materials for Infrastructure: Building Bridges in the Global ...

320

OOF.File.Save.Materials  

Science Conference Proceedings (OSTI)

... discussed in Section 2.6. The materials parameter is a Python list of names of Materials , eg, ['granite', 'schist', 'pumice'] . ...

2013-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical and biological agents and explosives. Argonne...

322

Sustainability: The Materials Role - TMS  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... home ... Improvements in processing, in materials substitution, in design to minimize materials usage, and in recycling of metals and polymers ...

323

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

cultivate a collaborative and interdisciplinary approach to materials research and help train the next generation of materials scientists. Quick Facts Established in 1962 Number of...

324

Integrated Computational Materials Engineering (ICME)  

Science Conference Proceedings (OSTI)

The long term goal is to capture this information in efficient computational models and ... Generic Materials Property Data Storage and Retrieval for Alloy Material ...

325

Nuclear Materials Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

data and reports on accountable nuclear material to NMMSS and Nuclear Materials Inventory Assessments.", to "The accounting system provides data for reporting on accountable...

326

Advanced Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical...

327

Metallurgical and Materials Transactions. A.  

Science Conference Proceedings (OSTI)

Materials for Energy Systems will publish peer-reviewed, original research and review ... This monthly publication focuses on physical metallurgy and materials ...

328

Vehicle Technologies Office: Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

stiffness, and ductility) Improving their manufacturing (material cost, production rate, or yield) Developing alloys of advanced materials In the short term, replacing heavy...

329

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

330

CX-000735: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-000735: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01222010...

331

CX-000737: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-000737: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01222010...

332

CX-000736: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-000736: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01222010...

333

Improved Materials for High-Temperature Black Liquor Gasification  

SciTech Connect

The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

2006-06-29T23:59:59.000Z

334

ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES  

SciTech Connect

This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

Blanton, P.; Eberl, K.

2010-07-09T23:59:59.000Z

335

Laser Detection Of Material Thickness  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection Of Material Thickness Detection Of Material Thickness Laser Detection Of Material Thickness There is provided a method for measuring material thickness. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Detection Of Material Thickness There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of

336

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 CX-004857: Categorical Exclusion Determination Building Operations Certification License CX(s) Applied: A9, A11, B5.1 Date: 01/04/2011 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 4, 2011 CX-004854: Categorical Exclusion Determination Missouri-City-St. Peters CX(s) Applied: A1, A9, B2.5, B5.1 Date: 01/04/2011 Location(s): St. Peters, Missouri Office(s): Energy Efficiency and Renewable Energy January 3, 2011 CX-004853: Categorical Exclusion Determination Louisiana-County-St. Landry CX(s) Applied: A9, A11, B2.5, B5.1 Date: 01/03/2011 Location(s): St. Landry Parish, Louisiana Office(s): Energy Efficiency and Renewable Energy December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials

337

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-005094: Categorical Exclusion Determination Dissolution, Valence Adjustment, and Precipitation of Actinides CX(s) Applied: B3.6 Date: 01/03/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 3, 2011 CX-005093: Categorical Exclusion Determination Development of Cooling Towers as Non-Traditional Collectors of Particles, Biological Agents: Concentration, and Detection CX(s) Applied: B3.6 Date: 01/03/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory

338

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

339

NEWTON: Determining Material Degradation  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Material Degradation Determining Material Degradation Name: Hamish Status: student Grade: 6-8 Location: CA Country: USA Date: Summer 2013 Question: I am working on a science project about photo-degradation of plastic film. My question is how much degraded a plastic film should be to say that it was 100% photo-degraded? The plastic film I am photo-degrading is turning into dust when I touch it, what level of degradation is that? Replies: Hi Hamish, Thanks for the question. You will need to define what you mean by photo-degraded. 100% photo-degraded could be that the film becomes translucent and lets through only blurry images. Or it could mean that the film turns to dust when you touch it. As long as you clearly state in your science project what you mean by 100% photo-degraded, you will be doing a good job.

340

Geothermal materials development activities  

DOE Green Energy (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NUCLEAR MATERIAL PACKAGING MANUAL  

E-Print Network (OSTI)

The enclosed copy ofdraft DOE Manual M44I.I, Nuclear Material Packaging Manual, is forwarded for your review and comment. This satisfies commitment 5.1-3 in Appendix o ofthe implementation plan (IP) for recommendation 2005-1, Nuclear Material Packaging. The next milestone in Section 5.1 ofthe 2005-1 IP is forwarding the manual to the DOE 2005-1 Technical Review Board (TRB) by April 30, 2006 to begin the final TRB review. Therefore, your comments are requested by April 21, 2006, in order to allow one week for resolution and updating the manual before it is sent to the TRB. Please contact me at 301-903-4407 ifyou have any questions. t

The Honorable; A. J. Eggenberger; M. Whitaker Dr-i

2006-01-01T23:59:59.000Z

342

Inorganic polymer engineering materials  

Science Conference Proceedings (OSTI)

Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

Stone, M.L.

1993-06-01T23:59:59.000Z

343

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

344

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

345

Vibrational Thermodynamics of Materials  

E-Print Network (OSTI)

Abstract. The literature on vibrational thermodynamics of materials is reviewed. The emphasis is on metals and alloys, especially on the progress over the last decade in understanding differences in the vibrational entropy of different alloy phases and phase transformations. Some results on carbides, nitrides, oxides, hydrides and lithium-storage materials are also covered. Principles of harmonic phonons in alloys are organized into thermodynamic models for unmixing and ordering transformations on an Ising lattice, and extended for non-harmonic potentials. Owing to the high accuracy required for the phonon frequencies, quantitative predictions of vibrational entropy with analytical models prove elusive. Accurate tools for such calculations or measurements were challenging for many years, but are more accessible today. Ab-initio methods for calculating phonons in solids are summarized. The experimental techniques of calorimetry, inelastic neutron scattering, and inelastic x-ray scattering are explained with enough detail to show the issues of using these methods for investigations of vibrational thermodynamics. The explanations extend to methods of data analysis that affect the accuracy of thermodynamic information. It is sometimes possible to identify the structural and chemical origins of the differences in vibrational entropy of materials, and the number of these assessments is growing. There has been

Brent Fultz

2009-01-01T23:59:59.000Z

346

Coated ceramic breeder materials  

DOE Patents (OSTI)

A lithium containing ceramic breeder material is described which is coated with a neutron multiplier such as Beryllium (Be), Beryllium Oxide (BeO), or other material having a higher thermal conductivity than the lithium ceramic material itself. In addition to exhibiting certain thermal conductivity properties, the neutron multiplier must be capable of withstanding the high temperatures (700/sup 0/ to 1300/sup 0/K) experienced in a breeder blanket of a fusion reactor. State of the art considerations have indicated several possible configurations for the lithium containing ceramic breeders, including a sphere-pac arrangement or sintered pellets or blocks. When one adds a neutron multiplier such as Be or BeO into a sphere-pac bed of lithium containing ceramic breeders, current concepts include mixing the neutron multiplier randomly into the sphere-pac bed in the form of small spheres of a size comparable to that of the lithium ceramic particles. The present invention shows that a sphere-pac bed of breeder particles coated with a neutron multiplier such as Be and BeO has an improved thermal conductivity when compared with that of a bed of uncoated breeder particles randomly mixed with Be or BeO spheres having the same breeder/multiplier composition ratio.

Tam, S.W.; Johnson, C.E.

1986-08-22T23:59:59.000Z

347

Hazardous materials (HAZMAT) Spill Center strategic plan  

SciTech Connect

This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

1996-01-01T23:59:59.000Z

348

Electronic, Magnetic & Photonic Materials Division  

Science Conference Proceedings (OSTI)

... Committee · Energy Conversion and Storage Committee · Magnetic Materials Committee · Nanomaterials Committee · Thin Films and Interfaces Committee.

349

EL Program: Sustainable Engineered Materials  

Science Conference Proceedings (OSTI)

... surface damage, electrical aging, and dispersion of ... power industry and utilities, construction and infrastructure materials specifiers ...

2013-01-02T23:59:59.000Z

350

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

351

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

352

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

353

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

354

Structural Materials: 95. Concrete  

SciTech Connect

Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

Naus, Dan J [ORNL

2012-01-01T23:59:59.000Z

355

Material containment enclosure  

DOE Patents (OSTI)

An isolation enclosure and a group of isolation enclosures was designed which is useful when a relatively large containment area is required. The enclosure is in the form of a ring having a section removed so that a technician may enter the center area of the ring. in a preferred embodiment, an access zone is located in the transparent wall of the enclosure and extends around the inner perimeter of the ring so that a technician can insert his hands into the enclosure to reach any point within. The inventive enclosures provide more containment area per unit area of floor space than conventional material isolation enclosures.

Carlson, D.O.

1991-04-01T23:59:59.000Z

356

Heavy Vehicle Propulsion Materials Program  

DOE Green Energy (OSTI)

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

Sidney Diamond; D. Ray Johnson

1999-04-26T23:59:59.000Z

357

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced...

358

TMS 2010: Materials Processing and Production  

Science Conference Proceedings (OSTI)

Materials Processing and Production Advances in the vitally important field of materials processing will receive extensive coverage. Materials processing ...

359

Laser Materials Processing: Past, Present and Future  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Presentation Title, Laser Materials ...

360

Mesoscale Computational Materials Science - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Symposium, Mesoscale Computational Materials Science of Energy Materials. Sponsorship ... materials for advanced batteries and fuel cells

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS ...

362

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s) ...

363

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

364

Data Topology as a Framework for Materials Discovery and Material ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Data Analytics for Materials Science and Manufacturing. Presentation Title ...

365

Computational Materials Science: from Basic Principles to Material ...  

Science Conference Proceedings (OSTI)

Feb 8, 2007... Thermodynamics Software/Codes, Visualization Software/Codes ... Topic Title: Computational Materials Science: from Basic Principles to ...

366

Sandia National Laboratories: Careers: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials science worker Sandia materials scientists are creating scientifically tailored materials for U.S. energy applications and critical defense needs....

367

Materials Theory, Modeling and Simulation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Quantum...

368

Materials - Coatings & Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

369

MATERIAL BALANCE REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 (08-98) Previous editions are obsolete. MANDATORY DATA COLLECTION AUTHORIZED BY 10 CFR 30, 40, 50, 70, 75, 150. Public Laws 83-703, 93-438, 95-91. U.S. DEPARTMENT OF ENERGY AND U.S. NUCLEAR REGULATORY COMMISSION MATERIAL BALANCE REPORT 18 U.S.C. SECTION 1001; ACT OF JUNE 25, 1948; 62 STAT. 749; MAKES IT A CRIMINAL OFFENSE TO MAKE A WILLFULLY FALSE STATEMENT OR REPRESENTATION TO ANY DEPARTMENT OR AGENCY OF THE UNITED STATES AS TO ANY MATTER WITHIN ITS JURISDICTION. Printed with soy ink on recycled paper OMB Control No. 1910-1800 OMB Burden Disclosure Statement on Reverse SECTION A 7. DOE/NRC 740M ATTACHED 8. BEGINNING INVENTORY - DOE OWNED 9. BEGINNING INVENTORY - NOT DOE OWNED RECEIPTS 11. PROCUREMENT FROM DOE FROM: 13. PROCUREMENT - FOR THE ACCOUNT OF DOE 14. DOD RETURNS - USE A 15. DOD RETURNS - USE B

370

Engineering Tables: Reinforcement Materials  

Science Conference Proceedings (OSTI)

Table 1   Properties of key reinforcement materials...3 GPa 10 6 psi GPa 10 6 psi GPa 10 6 psi Carbon fiber (pitch) E = 55 � 10 6 psi 2.0 0.072 380 55 � � 190 28 E = 75 � 10 6 psi 2.0 0.072 520 75 � � 260 38 E = 100 � 10 6 psi 2.2 0.078 690 100 5 0.7 314 46 E = 120 � 10 6 psi 2.2 0.078 830 120 5 0.7 377 55 E = 130 � 10 6 psi 2.2 0.078 895 130 5 0.7 407...

371

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

372

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

373

Materials Guidelines for Gasification Plants  

Science Conference Proceedings (OSTI)

This report distills and condenses EPRI's knowledge of materials performance in numerous pilot and commercial-scale gasifiers into guidelines for the application and expected performance of materials in key parts of gasification-combined-cycle power plants.

1998-06-16T23:59:59.000Z

374

Vehicle Technologies Office: Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Lightweight Material Mass Reduction Magnesium 30-70% Carbon fiber composites 50-70% Aluminum and Al matrix composites 30-60% Titanium 40-55% Glass fiber...

375

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

376

Microstructural Processes in Irradiated Materials  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... TMS/ASM: Nuclear Materials Committee ... Both experimental and theoretical studies are solicited with a particular emphasis on linking state-of-the-art modeling with ... Radiation damage in fusion & fission reactor materials

377

Materials Performance in Extreme Environments  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Materials Solutions for the Nuclear Renaissance: Materials Performance ... moderated and cooled, beryllium-reflected nuclear research reactor with a ... and pinning site populations considered, in many theories, essential to ...

378

Additive assembly of digital materials  

E-Print Network (OSTI)

This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

Ward, Jonathan (Jonathan Daniel)

2010-01-01T23:59:59.000Z

379

Radioactivity Standard Reference Material Program  

Science Conference Proceedings (OSTI)

... Summary: The Standard Reference Materials Program of the National Institute of Standards and Technology (NIST) provides science, industry, and ...

2013-03-27T23:59:59.000Z

380

Chemistry Standard Reference Materials Portal  

Science Conference Proceedings (OSTI)

... Bombings. photo of Gulf of Mexico crude oil SRM NIST Releases Gulf of Mexico Crude Oil Reference Material. canine officer ...

2013-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Jun 13, 2012 ... 06/13 - TMS Launches New Open Access Journal: Integrating Materials and Manufacturing Innovation. Patti Dobranski Communication ...

382

Integrated Computational Materials Engineering (ICME)  

Science Conference Proceedings (OSTI)

Presentation Title, Integrated Computational Materials Engineering (ICME) in the Automotive Industry: Successes and Opportunities. Author(s), Louis Gerard ...

383

Materials and Structural Systems Division  

Science Conference Proceedings (OSTI)

... Wind Engineering. Groups. Structures; Inorganic Materials; ... Internally Cured Concrete in Indiana Bridges. ... Modulus and Chemical Mapping of Multi ...

2012-02-08T23:59:59.000Z

384

Transport Phenomena in Materials Processing  

Science Conference Proceedings (OSTI)

Jul 1, 1998 ... Print Book: Handbook on Material and Energy Balance Calculations in Metallurgical ... Fundamentals; Molten Metal and Solidification; ...

385

Hybrid and Hierarchical Composite Materials  

Science Conference Proceedings (OSTI)

Chang Soo Kim, University of Wisconsin -Milwaukee. Scope, Hybrid and hierarchical composite materials have several advantageous characteristics that  ...

386

SuperComputing | Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Institute Polymer-based Multicomponent Materials Molecular Dynamics Molecular Mechanics Course Grained Models Mathematics National Security Systems Modeling Engineering...

387

ADVANCED MATERIALS Phase Equilibrium Data  

Science Conference Proceedings (OSTI)

... types, including phosphates (batteries, laser and ... engineered optical materials, electron-transport ... oxide systems (electrode processing, catalysis ...

2013-01-30T23:59:59.000Z

388

NVLAP Thermal Insulation Materials LAP  

Science Conference Proceedings (OSTI)

... for thermal insulation materials. The final report for Round 31 was released in February 2010. Proficiency testing is on hold ...

2013-07-18T23:59:59.000Z

389

Nano Materials – Permeable Reactive Barrier  

Scientists at Idaho National Laboratory have developed improved nano-composite materials composed of an organic polymer constituent, an inorganic ...

390

Materials Processing Fundamentals Symposium I  

Science Conference Proceedings (OSTI)

Sponsored by: Jt. EPD/MDMD Synthesis, Control, and Analysis in Materials Processing Committee, EPD Process Fundamentals, Aqueous Processing, Copper, ...

391

Electronic Materials: Books/Articles  

Science Conference Proceedings (OSTI)

FORUMS > ELECTRONIC MATERIALS: BOOKS/ARTICLES, Replies, Views, Originator, Last Post. Search Category: [ advanced search ]. rss feed. Spacer

392

Handbook of Materials Selection - TMS  

Science Conference Proceedings (OSTI)

Feb 9, 2007 ... This handbook offers a comprehensive resource for materials properties, their evaluation, and industrial applications. It includes analytical ...

393

Energy Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

... superconductivity; materials issues related to biomass and biotechnology; ... Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the ...

394

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

395

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

396

Testing of Replacement Bag Material  

Science Conference Proceedings (OSTI)

Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties.

Laurinat, J.E.

1998-11-03T23:59:59.000Z

397

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

398

Combinatorial synthesis of ceramic materials  

DOE Patents (OSTI)

A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

Lauf, Robert J. (Oak Ridge, TN); Walls, Claudia A. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

2010-02-23T23:59:59.000Z

399

Preparation of asymmetric porous materials  

SciTech Connect

A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

Coker, Eric N. (Albuquerque, NM)

2012-08-07T23:59:59.000Z

400

Composite materials for electromagnetic shielding  

Science Conference Proceedings (OSTI)

The paper shows up the research results on processing and characterization of composite materials with polymeric matrix (silicone rubber). The materials obtained in laboratory contain metallized nettling like reinforcement material and powdery graphite ... Keywords: attenuation, filling additions, frequency, plated nettling, polymeric composite on de basis of silicone rubber, shielding effectiveness

Stoian Elena Valentina; Rizescu Cristiana; Iordache Iulian; Ionita Gheorghe; Bacinschi Zorica

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Argonne CNM: Materials Synthesis Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis Facilities Materials Synthesis Facilities Capabilities biosynthesis View larger image. Biosynthesis Methods Peptide and DNA synthesis (E. Rozhkova, Nanobio Interfaces Group) Nanobio hybrid synthesis (T. Rajh, Nanobio Interfaces Group) Hierarchal assembly View larger image. Hierarchical Assembly Bottom-up polymeric and bio-templating as well as lithographically directed self-assembly (S. Darling, Electronic & Magnetic Materials & Devices Group; E. Rozhkova, Nanobio Interfaces Group) Molecular beam epitaxy View high-resolution image. Molecular Beam Epitaxy Complex oxide nanoferroelectric and nanoferromagnetic materials and devices created using a DCA R450D Custom MBE instrument (A. Bhattacharya, Electronic & Magnetic Materials & Devices Group) Nanoparticle synthesis

402

Materials Reliability Program: Characterizations of Type 316 Cold-Worked Stainless Steel Highly Irradiated Under PWR Operating Condi tions (MRP-73)  

Science Conference Proceedings (OSTI)

Irradiation-induced material degradations such as irradiation-assisted stress corrosion cracking (IASCC), irradiation-induced void swelling, and irradiation-caused embrittlement have been observed in core internals components in pressurized water reactors (PWRs). This report describes hot cell testing and characterization of a bottom-mounted instrument tube (flux thimble) that was exposed in an operating PWR for about 23 years, providing valuable data for assessing radiation effects in PWRs.

2002-08-26T23:59:59.000Z

403

Materials Reliability Program: Characterization of Type 316 Cold Worked Stainless Steel Highly Irradiated Under PWR Operating Conditions (International IASCC Advisory Committee Phase 3 Program Final Report) (MRP-214)  

Science Conference Proceedings (OSTI)

Various types of irradiation-induced material degradation such as irradiation-assisted stress corrosion cracking (IASCC), irradiation-induced void swelling, and irradiation-caused embrittlement have been observed in core internals components in pressurized water reactors (PWR). This report describes hot cell testing and characterization of bottom-mounted instrument tubes (flux thimble) that were exposed in operating PWRs for about 10 to 20 effective full power years (EFPY), providing valuable data for as...

2007-09-06T23:59:59.000Z

404

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

405

Argonne TDC: Material Transfer Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

406

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

407

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

408

PROCESS OF FORMING POWDERED MATERIAL  

DOE Patents (OSTI)

A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

Glatter, J.; Schaner, B.E.

1961-07-14T23:59:59.000Z

409

Surface Protection for Enhanced Materials Performance: Science ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Surface Protection for Enhanced Materials Performance: Science, ...

410

Materials Sustainability: Digital Resource Center - Titanium: The ...  

Science Conference Proceedings (OSTI)

Jul 9, 2008 ... Navigation: Select, Sandbox, Open Discussion Regarding Materials Sustainability, ==== Materials Sustainability ==== Recycling - General ...

411

Materials Measurement Science Division Staff Directory  

Science Conference Proceedings (OSTI)

... Patricia Ridgley Division Office Manager 301-975-3914. ... Material Measurement Laboratory Materials Measurement Science Division. ...

2013-03-19T23:59:59.000Z

412

Catalyzed Ceramic Burner Material  

SciTech Connect

Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

Barnes, Amy S., Dr.

2012-06-29T23:59:59.000Z

413

Commercial Products Show Potential to serve as Nuclear Material...  

National Nuclear Security Administration (NNSA)

here. The workshop hosted a team of independent and international experts to identify developing and existing commercial products that may be valuable to meet these challenges....

414

Session VI: Rare Earth Advanced Materials, Recycling and Separation  

Science Conference Proceedings (OSTI)

HAB two-solvent extracting system using Sec-octylphenoxy acetic acid as main ... that usually contains more than 10 valuable elements of different prices.

415

Materials compatibility of hydride storage materials with austenitic stainless steels  

DOE Green Energy (OSTI)

This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

Clark, E.A.

1992-09-21T23:59:59.000Z

416

Materials compatibility of hydride storage materials with austenitic stainless steels  

DOE Green Energy (OSTI)

This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

Clark, E.A.

1992-09-21T23:59:59.000Z

417

Materials Week '97: ASM's Materials Solutions Conference Program  

Science Conference Proceedings (OSTI)

Monday AM--Modeling; Monday PM--Ferrous Trends; Tuesday AM--Power Transmission Components; Tuesday PM--Issues in Materials Selection I; Wednesday ...

418

The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary  

Science Conference Proceedings (OSTI)

Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it provides an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.

Lamont, Stephen Philip [Los Alamos National Laboratory; Brisson, Marcia [DOE-IN; Curry, Michael [DEPT. OF STATE

2011-02-17T23:59:59.000Z

419

Argonne TTRDC - Experts - Materials Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Technologies Battery Technologies Combustion Analysis Engines & Emissions Fuel Cell Technologies Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Materials Experts Click on a name to see a full résumé. Deformation Joining Cinta Lorenzo-Martin, Postdoctoral Appointee phone: 630/252-8577, fax: 630/525-5568, e-mail: lorenzo-martin@anl.gov PhD, Material Science, University of Seville, Spain Joining of different materials at high temperature Research on reduction of friction and wear to minimize energy losses Scuffing, wear and friction studies of ceramics 21+ publications and presentations Dileep Singh, Materials Scientist phone: 630/252-5009, fax: 630/252-2785, e-mail: dsingh@anl.gov PhD, Material Science, University of Utah Structure-mechanical property relationships in advanced energy materials

420

Alternative Materials for Ground Electrodes  

Science Conference Proceedings (OSTI)

Power utility companies struggle with issues resulting from copper theftespecially on transmission line support structures accessible to the public and fitted with copper grounding conductors. It is increasingly important to identify alternative materials that can be used to provide a durable grounding system yet not be targeted for theft. In response, EPRI is investigating the use of alternative materials for electrode designsexamining life expectancy, corrosion, material compatibility and current handl...

2010-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Magnetic Materials for Green Innovation  

Science Conference Proceedings (OSTI)

... Magnetic Materials for Use in Energy-efficient Distribution Transformers ... Novel Morphology of Highly Efficient Two-phase Ferrite Cores for Power Systems

422

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

enhance the sensitivity of NMRMRI experiments in bulk materials, in nuclear-based spintronics, and quantum computation in diamond. Summary Dynamic nuclear polarization, which...

423

SRS - Programs - Nuclear Materials Management  

NLE Websites -- All DOE Office Websites (Extended Search)

built in the mid-1950s, housed various Special Nuclear Materials missions including plutonium storage, shipping and handling; billet production for reactor target fabrication...

424

Ultrafine-Grained Materials II  

Science Conference Proceedings (OSTI)

Aug 2, 2010... University of Technology; 2National Institute for Materials Science; 3Toyohashi University of Technology and Universiti Sains Malaysia

425

Materials for Energy and Sustainability  

Science Conference Proceedings (OSTI)

Materials Aspects of Corrosion and Fouling in Oil Refining and Exploration ... This symposium will focus on silicon feedstock production, silicon refining and ...

426

SMT Reflow Jig Material Analysis  

Science Conference Proceedings (OSTI)

The most wildly used composite material is scattering glass fiber composite ... Properties of Closed-Cell Aluminum Foams Reinforced with Fly Ash Particles.

427

Mechanical Properties of Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Edgar Lara-Curzio, Oak Ridge National Laboratory. Scope, Thermoelectric materials can directly convert waste heat into electricity without moving parts or fluids.

428

2003 ELECTRONIC MATERIALS CONFERENCE (EMC)  

Science Conference Proceedings (OSTI)

National Renewable Energy Lab. Michael N. Alexander ... Agilent Technologies Inc. Griff Carpenter. Epichem ... National Institute for Materials Sci. Philip T. Chiu.

429

Fractography of Powder Metal Materials  

Science Conference Proceedings (OSTI)

Failure Prevention: Supporting Safe Storage of Plutonium-Bearing Materials through Science, Engineering and Surveillance · Fish Mouth Failure of tThe ...

430

Technology Transfer in Materials Science  

Science Conference Proceedings (OSTI)

Novel Bioceramic Scaffolds for Regenerative Medicine ... The Energy Challenge and the Role of Advanced Materials Fernando Rizzo CGEE/PUC-Rio.

431

Breakthrough Materials for Energy Storage  

Title: Breakthrough Materials for Energy Storage Subject: A presentation at the 22nd NREL Industry Growth Forum by Amprius about its lithium ion battery technology

432

Introduction to Materials Modelling - TMS  

Science Conference Proceedings (OSTI)

Oct 23, 2006... simply described by modeling, even if it involves fundamental ideas ... least Handbook of Materials Modelling (2005) by Sidney Yip (editor).

433

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

434

Nanostructured Cobalt Ferrites, Multifunctional Materials  

Science Conference Proceedings (OSTI)

... perspective of combining many functionalities in future generations of remote switchable ... Graphene-like 2D-layered Materials for Nanoelectronics & Sensing

435

THE MINERALS, METALS & MATERIALS SOCIETY  

Science Conference Proceedings (OSTI)

Materials Transactions B are available to members at discounted prices. They may be purchased through Springer publishing at www.springerlink.com.

436

Patenting Materials-Related Inventions  

Science Conference Proceedings (OSTI)

The following article appears in the journal JOM, 52 (4) (2000), p. 48. JOM is a publication of The Minerals, Metals & Materials Society ...

437

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Feb 1, 2012 ... “I see 'IMMI' as critical to the creation of what's being called the 'materials innovation infrastructure' because it establishes a forum where the ...

438

Development of Alternative Engine Materials  

Science Conference Proceedings (OSTI)

ature strength(31,32), and reinforced rings are envisioned in various IHPTET engine tests. The development of r-based materials with a balance of properties.

439

New Opportunities for Materials Science  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... O. Advanced Neutron and Synchrotron Studies of Materials: New ... Status of China Spallation Neutron Source and Perspectives of Neutron ...

440

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Programs and Projects. ... the structure of crack tips, the rates ... as health care, communications, energy and electronics ...

2010-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Motors and Critical Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Suggestions (Have an idea of how to get there) * Integration of motor, power converter, and speed reducer * Soft magnetic core material with high saturation...

442

Materials Story of 2010 - TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010... has escalated the demand for new lightweight materials throughout the ... Thanks to these developments, the maximum speed of a smashed ...

443

Thermodynamic Database for Nuclear Materials  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This resource features an interactive index to thermodynamic properties included on the International Nuclear Safety Center Material Properties ...

444

Vehicle Technologies Office: Materials Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer composites can directly reduce the weight of a vehicle's body...

445

WSRC Nuclear Materials Cost Module  

National Nuclear Security Administration (NNSA)

Office (GAO) WSRC NM Cost Module Generates WSRC monthly and fiscal year to date Inventory and Manufacturing Statement for government owned accountable nuclear materials....

446

The Orlando Materials Innovation Principles  

Science Conference Proceedings (OSTI)

The Orlando Materials Innovation Principles calls upon the diversity of disciplines and sectors vital to the U.S. manufacturing economy. This includes ...

447

Incremental Nanotechnology for Structural Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Incremental Nanotechnology for Structural Materials. Author(s) , Enrique J. Lavernia. On-Site Speaker (Planned), Enrique J. Lavernia. Abstract ...

448

Advanced Materials Research Highlights | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 44 Results Prev 12345 Next Topotactic valence state control in epitaxial multivalent oxides July 17, 2013 -...

449

Advanced Cladding Materials for Fuels  

Science Conference Proceedings (OSTI)

Fuel Cycle Research and Development. Advanced Cladding Materials for. Fuels. Stuart A. Maloy. M. Nastasi, A. Misra. Los Alamos National Laboratory.

450

Materials Engineer Unravels Mutation Mystery  

Science Conference Proceedings (OSTI)

Aug 31, 2010 ... Just ask Kalina Hristova, an associate professor of materials science and engineering at Johns Hopkins University, who has spent more than ...

451

Physical Chemistry of Materials Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis by Design Zeolites Materials for Catalysis Photocatalytic CO2 Facilities Battery Membrane Separations Research Program Documents ORNLTM-2011151 Related Links...

452

Novel Methods for Materials Discovery  

Science Conference Proceedings (OSTI)

Mar 4, 2013... for materials from fuel cell electrolytes to battery cathodes to nuclear .... Properties originating from atomic-level interactions are accurately ...

453

Computational Discovery of Novel Materials  

Science Conference Proceedings (OSTI)

... play an increasing role in materials discovery, development and optimization. ... and applications of novel empirical energy models from atomistic potentials to  ...

454

Special Topics: Nuclear Materials: Videos  

Science Conference Proceedings (OSTI)

The Living Textbook of Nuclear Chemistry, ACS. ... Webcast on response of structural materials in nuclear power systems to irradiation, 0, 761, Cathy Rohrer  ...

455

WEB RESOURCE: Nuclear Materials Database  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Mechanical properties data for stainless steels and superalloys; mechanical properties data for nuclear materials as a database for research ...

456

Advanced materials research areas | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Theory and Simulation Energy Frontier Research Centers Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and...

457

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Electron Microscopy Center for X-ray Optics Joint Center for Artificial Photosynthesis, North Research Highlights Research & Facilities Core Programs Materials...

458

Material-based design computation  

E-Print Network (OSTI)

The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

Oxman, Neri

2010-01-01T23:59:59.000Z

459

Materials Technology @ TMS Home Page  

Science Conference Proceedings (OSTI)

Welcome to the TMS Digital Resource Center, an archive of electronic, contributed resources on a variety of materials science and engineering topics.

460

Materials Science Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Microstructural Processes in Irradiated Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Both experimental and theoretical studies are solicited with a particular ... of Structural Materials Pre-Selected for Advanced Nuclear Reactors.

462

TMS 2010: Materials and Society  

Science Conference Proceedings (OSTI)

Mechanical Performance for Current and Next-Generation Nuclear Reactors ... or theoretical investigations of the mechanical behavior of materials in nuclear ...

463

Waste Material Management: Energy and materials for industry  

DOE Green Energy (OSTI)

This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

Not Available

1993-05-01T23:59:59.000Z

464

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

465

Materials and Science in Sports: Exhibition - TMS  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held  ...

466

Materials and Science in Sports: Destination Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held  ...

467

Materials for Fuel Cells and CSP Applications  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Materials in Clean Power Systems VIII: Durability of Materials : Materials for Fuel Cells and CSP Applications Sponsored by: TMS Structural ...

468

Federal Energy Management Program: Campaign Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Materials to someone by E-mail Share Federal Energy Management Program: Campaign Materials on Facebook Tweet about Federal Energy Management Program: Campaign Materials on...

469

Inertial Fusion Energy and its Materials Challenges  

Science Conference Proceedings (OSTI)

Symposium, IOMMMS Global Materials Forum: Materials in a Green Economy: An International ... Recent Development of Materials for Green Energy in Korea.

470

Helpful links for materials transport, safety, etc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

471

2000 Electronic Materials Conference: Airline Information  

Science Conference Proceedings (OSTI)

Sponsored by the Electronic Materials Committee of The Minerals, Metals & Materials Society (TMS), the 42nd Electronic Materials Conference (EMC) will be

472

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics...

473

Materials Research in the Information Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials Science,...

474

Material selection for electrooptic deflectors  

SciTech Connect

The selection of a material for a practical device is generally guided by a number of criteria, including cost, size, difficulty of fabrication, durability, driver requirements, and system constraints. A quantitative analysis can usually be made for comparison, or a figure of merit can be computed. In the case of materials for electrooptical (EO) devices the choice is often made based on the availability of materials meeting some minimum system requirement. For fast EO deflectors, where a large number of resolvable spots is required, the choice of materials is quite limited. A model of just such a device is proposed; it is based on the resolution of 400 spots and reasonable boundary conditions. The model predicts that to be successful, an EO material must be chosen that has a linear EO coefficient (r/sub 33/) of at least 336 pm/V. A survey was conducted of the EO materials which are generally available. Based on the model and the survey, Czochralski crystal growth of strontium barium niobate (SBN:60) is recommended. Although SBN:60 does not have the largest EO coefficient, it may be the easiest to grow in the required size and optical quality, thus satisfying the availability criterion. It should be borne in mind that many materials may be grown by this technique and there are many new and potential applications for EO materials. 92 refs., 18 figs., 14 tabs.

Not Available

1988-09-01T23:59:59.000Z

475

Material stabilization characterization management plan  

SciTech Connect

This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

GIBSON, M.W.

1999-08-31T23:59:59.000Z

476

The toxicity of X material  

SciTech Connect

This report addresses toxicity (largely chemical) of Manhattan Project materials from the point of worker protection. Known chemical toxicities of X material (uranium), nitrous fumes, fluorine, vanadium, magnesium, and lime are described followed by safe exposure levels, symptoms of exposure, and treatment recommendations. The report closes with an overview of general policy in a question and answer format.

Ferry, J.L.

1943-12-31T23:59:59.000Z

477

Materials science aspects of coal  

Science Conference Proceedings (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

478

Emerging Materials CD-ROM  

Science Conference Proceedings (OSTI)

The cost per CD-ROM will be $150 with a student price of $75. ... 7th Global Innovations Symposium: Trends in Materials R&D for Sensor ... Applications; Advanced Materials for Energy Conversion III: A Symposium in Honor of Gary Sandrock, ...

479

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-01-01T23:59:59.000Z

480

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill  

SciTech Connect

Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

2002-02-26T23:59:59.000Z

482

Ambush avoidance in vehicle routing for valuable delivery  

E-Print Network (OSTI)

of an armored vehicle carrying a sum of money for deposit at one or more banks in a relatively stable urban

Bierlaire, Michel

483

Information On Wind Is More Valuable Than Wind Power  

– WindPole has 6,000 towers – everywhere you need. – Cost savings, 90 day launch are motivation. – $10k/yr subscription vs $65k one time DIY.

484

ISASMELT™ for Recycling of Valuable Elements Contributing to a ...  

Science Conference Proceedings (OSTI)

Metals recycling is essential if we are to build a more sustainable society. ISASMELT™ Top Submerged Lance (TSL) technology can enable plant operators to ...

485

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts...  

NLE Websites -- All DOE Office Websites (Extended Search)

photo, a Boy Scout watches light shine on a solar panel that's powering a hydrogen fuel cell system, showing how photovoltaic panels work and energy systems can be integrated....

486

Production of valuable hydrocarbons by flash pyrolysis of oil shale  

DOE Patents (OSTI)

A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

Steinberg, M.; Fallon, P.T.

1985-04-01T23:59:59.000Z

487

Volatilization Behavior of Valuable Metals in Electronic Substrate ...  

Science Conference Proceedings (OSTI)

Selective Recovery of Gold from E-wastes by Using Cellulosic Wastes · Stabilization of Chromium-Based Slags with FeS2 and FeSO4 · Sulphide Precipitation ...

488

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

489

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

490

Success Stories: Materials Discovery - Symyx  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Discovery Materials Discovery Until Lawrence Berkeley National Laboratory scientist Peter Schultz thought of a better way, materials discovery was a costly, slow, and laborious process. In the early 1990s Dr. Schultz and colleagues invented a super efficient materials research process that combined minaturizing with parallel processing. In 1994 the start-up company Symyx Technologies, Inc. licensed the invention and began developing research tools that can create and screen new materials hundreds to thousands of times faster than traditional methods at a fraction of the cost. Combinatorial techniques had been successfully applied in the pharmaceutical industry to discover new drugs when Schultz and co-workers in the Molecular Design Institute of Berkeley Lab proposed that the same

491

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

492

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

493

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

494

Solar Thermal Reactor Materials Characterization  

DOE Green Energy (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

495

Materials Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Materials Characterization Laboratory at the Energy Systems Integration Facility. The Materials Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) research focus is the physical and photoelectrochemical characterization of novel materials. In this laboratory unknown samples are characterized by identifying and quantifying molecular species present through the implementation of a suite of analytical instrumentation and techniques. This leads to the ability to deconvolute decomposition routes and elucidate reaction mechanisms of materials through thermal and evolved gas analysis. This aids in the synthesis of next generation materials that are tailored to optimize stability and performance. These techniques and next generation materials will have many applications. One particular focus is the stable and conductive tetherable cations for use as membrane materials in anion exchange membrane fuel cells. Another is to understand the leachant contaminants derived from balance of plant materials used in proton exchange membrane fuel cell vehicles. Once identified and quantified, these organic and ionic species are dosed as contaminants into ex/in-situ fuel cell tests, to determine the effect on durability and performance. This laboratory also acts in support of fuel cell catalysis, manufacturing, and other related projects. The Materials Characterization Laboratory will cover multiple analytical operations, with the overall goal of troubleshooting synthetic materials or process streams to improve performance. Having novel evolved gas analysis and other analytical capabilities; this laboratory provides a viable location to analyze small batch samples, whereas setting up these types of capabilities and expertise would be cost and time prohibitive for most institutions. Experiments that can be performed include: (1) Evolved gas analysis; (2) Heterogeneous catalysis; (3) Trace level contaminants analysis; (4) Catalyst characterization; (5) Kinetics and stability; (6) Hyphenated techniques; and (7) Isotopic analysis for elucidating reaction mechanisms and decoupling chemical reactions.

Not Available

2011-10-01T23:59:59.000Z

496

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

497

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper...

498

Storage depot for radioactive material  

Science Conference Proceedings (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

499

Storage depot for radioactive material  

SciTech Connect

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, M.J.

1983-10-18T23:59:59.000Z

500

Ion Beam Modification of Materials  

SciTech Connect

This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

2005-10-10T23:59:59.000Z