Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electronic scraps - Recovering of valuable materials from parallel wire cables  

SciTech Connect

Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination.

Pinheiro Bezerra de Araujo, Mishene Christie [Department of Metallurgical and Materials Engineering, Escola Politecnica, University of Sao Paulo, Av Prof. Mello Moraes 2464, Sao Paulo 05508-900 (Brazil); Pinto Chaves, Arthur [Department of Mining and Petroleum Engineering, Escola Politecnica, University of Sao Paulo, Av Prof. Mello Moraes 2373, Sao Paulo 05508-900 (Brazil); Crocce Romano Espinosa, Denise [Department of Metallurgical and Materials Engineering, Escola Politecnica, University of Sao Paulo, Av Prof. Mello Moraes 2464, Sao Paulo 05508-900 (Brazil); Tenorio, Jorge Alberto Soares [Department of Metallurgical and Materials Engineering, Escola Politecnica, University of Sao Paulo, Av Prof. Mello Moraes 2464, Sao Paulo 05508-900 (Brazil)], E-mail: jtenorio@usp.br

2008-11-15T23:59:59.000Z

2

Evaluation of residual shale oils as feedstocks for valuable carbon materials  

SciTech Connect

Oil shale represents one of the largest fossil fuel resources in the US and in other pans of the world. Beginning in the 1970s until recently, there was considerable research and development activity directed primarily to technologies for the production of transportation fuels from oil shale. Due to the low cost of petroleum, as with other alternate fuel strategies, oil shale processing is not economically viable at present. However, future scenarios can be envisaged in which non-petroleum resources may be expected to contribute to the demand for hydrocarbon fuels and chemicals, with the expectation that process technologies can be rendered economically attractive. There is potential to improve the economics of oil shale utilization through broadening the spectrum of products that can be derived from this resource, and producing added-value materials that are either unavailable or more difficult to produce from other sources. This concept is by no means original. The history of oil shale development shows that most attempts to commercialize oil shale technology have relied upon the marketing of by-products. Results are presented on carbonization and the potential for generating a pitch that could serve as a precursur material.

Fei, You Qing; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

3

Commercially Valuable Smart Grid Data  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 4, 2010 1 February 4, 2010 1 Commercially Valuable Smart Grid Data Commercially Valuable Smart Grid Data Question: What is the Department of Energy's (DOE's) approach for ensuring confidentiality of information that contains confidential and/or proprietary information that recipients are required to submit in carrying out their Metrics and Benefits Reporting Plan obligations? Answer: DOE does not anticipate requiring delivery of any "proprietary" information, i.e., confidential information developed at private expense outside the DOE grant. For data developed under a SGIG grant, DOE has the right to obtain and publish such data. However, certain "commercially valuable data" as set forth in more detail below, may be protected from publication.

4

Switchgrass: a Valuable Biomass Crop for Energy  

Science Journals Connector (OSTI)

The editor, Andrea Monti, assembled a group of distinguished authors who have not only provided comprehensive documentation of research conducted on switchgrass, but also unique and valuable analyses of this info...

David Bransby

2012-09-01T23:59:59.000Z

5

Advisory Board Makes Valuable Contributions to EM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM July 2, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The eight local boards of the EM Site-Specific Advisory Board (EM SSAB) provided 56 recommendations collectively in 2011, according to a recent assessment of board input into the EM program. The Board has offered recommendations to the EM sites around the DOE complex championing public participation activities, emphasizing safe disposal of contaminated material and, in some cases, yielding significant taxpayer savings. "I've read through recommendations that were highlighted by site managers and I am impressed by the breadth and significance of the issues that the EM SSAB members tackle," Senior Advisor for Environmental

6

Advisory Board Makes Valuable Contributions to EM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM Advisory Board Makes Valuable Contributions to EM July 2, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The eight local boards of the EM Site-Specific Advisory Board (EM SSAB) provided 56 recommendations collectively in 2011, according to a recent assessment of board input into the EM program. The Board has offered recommendations to the EM sites around the DOE complex championing public participation activities, emphasizing safe disposal of contaminated material and, in some cases, yielding significant taxpayer savings. "I've read through recommendations that were highlighted by site managers and I am impressed by the breadth and significance of the issues that the EM SSAB members tackle," Senior Advisor for Environmental

7

A Green Technology to Mine Valuable Metals Biomining Laboratory  

E-Print Network (OSTI)

Biomining: A Green Technology to Mine Valuable Metals Biomining Laboratory Department of Chemistry valuable metals from ores and mine tailings with the assistance of microorganisms. It is a very low capital in the pyrometallurgical technologies are forcing mining companies to examine alternative metal-extractive procedures

Appanna, Vasu

8

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts October 31, 2013 - 3:09pm Addthis 1 of 13 A Boy Scout attends a class to earn a merit badge for Energy Action Month. | Photo by Matty Greene. 2 of 13 Girl Scouts ask questions about college life during their class on nuclear science. | Photo by Matty Greene. 3 of 13 An adult volunteer sets up ping pong balls on mouse traps to illustrate what atoms in a nuclear reaction look like. | Photo by Matty Greene. 4 of 13 A Girl Scout works on building an electroscope as part of the nuclear science class. | Photo by Matty Greene. 5 of 13 A Boy Scout uses static electricity from his hair to test charge with the electroscope he built. | Photo by Matty Greene.

9

SLIDESHOW: Learning Valuable Lessons About Energy with Scouts | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learning Valuable Lessons About Energy with Scouts Learning Valuable Lessons About Energy with Scouts SLIDESHOW: Learning Valuable Lessons About Energy with Scouts Addthis 1 of 13 A Boy Scout attends a class to earn a merit badge for Energy Action Month. | Photo by Matty Greene. 2 of 13 Girl Scouts ask questions about college life during their class on nuclear science. | Photo by Matty Greene. 3 of 13 An adult volunteer sets up ping pong balls on mouse traps to illustrate what atoms in a nuclear reaction look like. | Photo by Matty Greene. 4 of 13 A Girl Scout works on building an electroscope as part of the nuclear science class. | Photo by Matty Greene. 5 of 13 A Boy Scout uses static electricity from his hair to test charge with the electroscope he built. | Photo by Matty Greene. 6 of 13 An adult volunteer talks with Scouts about energy -- including saving,

10

Who Gets Diabetes? Good health is your most valuable asset  

E-Print Network (OSTI)

Who Gets Diabetes? Good health is your most valuable asset ­ make the most of it. Millions, blindness and many other health problems if it is not controlled. By managing this condition with the right care, treatment and lifestyle changes, a patient diagnosed with diabetes can continue to live a happy

11

NREL: Education Programs - Wind Applications Center Valuable Resource for  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

12

Catalytic Transformation of Waste Carbon Dioxide into Valuable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Transformation of Waste Catalytic Transformation of Waste Carbon Dioxide into Valuable Products Background Many industrial processes contribute large amounts of carbon dioxide (CO 2 ) to the earth's atmosphere. In an effort to reduce the amount of CO 2 released to the atmosphere, the U.S. Department of Energy (DOE) is funding efforts to develop CO 2 capture and storage technologies. In addition to permanent storage of CO 2 in underground reservoirs, some

13

What properties of grid energy storage are most valuable?  

Science Journals Connector (OSTI)

While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. In this innovation cycle, it is important to determine which properties of emerging energy storage technologies are most valuable. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. We use engineering-economic models of four emerging fast-ramping energy storage technologies and examine their cost-effectiveness for four realistic current applications. We determine which properties have the greatest effect on cost-of-service by performing an extended sensitivity analysis on the storage properties for combinations of application and storage type. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. Each combination is different and blanket statements are not always appropriate.

Eric Hittinger; J.F. Whitacre; Jay Apt

2012-01-01T23:59:59.000Z

14

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

15

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

16

Report on D&D of Large Components with Valuable EM Contributions is  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on D&D of Large Components with Valuable EM Contributions is Report on D&D of Large Components with Valuable EM Contributions is Available on Powerpedia Report on D&D of Large Components with Valuable EM Contributions is Available on Powerpedia November 26, 2012 - 12:00pm Addthis WASHINGTON, D.C. - EM's Office of Deactivation and Decommissioning/Facility Engineering (D&D/FE), representing DOE on the Nuclear Energy Agency's (NEA) Working Party on Decommissioning and Dismantling (WPDD) of the Radioactive Waste Management Committee, provided significant contributions to the recently published report titled, "The Management of Large Components from Decommissioning to Storage and Disposal." Read the report on Powerpedia here. The WPDD focuses on the analysis of decommissioning policy, strategy and

17

E-Shelters to Teach a Valuable Lesson on Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-Shelters to Teach a Valuable Lesson on Energy E-Shelters to Teach a Valuable Lesson on Energy E-Shelters to Teach a Valuable Lesson on Energy March 12, 2010 - 5:01pm Addthis Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? A minimum of 90 Florida schools will receive a 10-kilowatt or larger solar system Teachers will incorporate the systems into their lesson plans, educating students about solar power and energy efficiency. Students will be able to log on to energywhiz.com to learn how much energy their school's solar shelter has created and how long electronic devices can be powered. Florida Energy Center Susan Schleith, SunSmart E-Shelters program manager at Florida Solar Energy Center, stands next to a 10kW photovoltaic system similar to ones that will be installed on

18

Photo of the Week: Scouting for Valuable Lessons in Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: Scouting for Valuable Lessons in Energy Photo of the Week: Scouting for Valuable Lessons in Energy Photo of the Week: Scouting for Valuable Lessons in Energy December 11, 2013 - 3:40pm Addthis During National Energy Action Month, Girl Scouts and Boy Scouts visited the Energy Department in Washington, D.C., to learn about energy and earn merit badges and patches. In this photo, a Boy Scout watches light shine on a solar panel that’s powering a hydrogen fuel cell system, showing how photovoltaic panels work and energy systems can be integrated. Check out more photos from the scouts’ Energy Action Month workshops. | Photo by Matty Greene, Energy Department. During National Energy Action Month, Girl Scouts and Boy Scouts visited the

19

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

20

Nontraditional carbon reducing agents in smelting FMn78B ferromanganese and valuable manganese slag  

SciTech Connect

The smelting of FeMn78B ferromanganese (0.7% P) by a flux-free method, with the production of valuable slag (36-38% Mn), is considered in the case where some of the coke nuts are replaced by anthracite and sometimes by long-flame coal.

P.A. Kravchenko; O.N. Sezonenko; O.L. Bespalov; S.N. Kornienko; S.D. Belikov; M.I. Gasik [OAO Zaporozhskii Zavod Ferrosplavov, Zaporozh'e (Ukraine)

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Congo Basin possesses some of the most valuable and threatened rainforest outside the  

E-Print Network (OSTI)

BACKGROUND The Congo Basin possesses some of the most valuable and threatened rainforest outside between environmental governance and logging in forest concessions in the western Congo Basin, specifically in Cameroon and the Republic of Congo. This innovative research will show whether and how, over

Hardin, Rebecca D.

22

Reclaiming a valuable, clean resource Texas cities increasingly embracing potable reuse  

E-Print Network (OSTI)

treatment plants in Snyder, Odessa, Stanton and Midland, according to TCEQ. ?#27;e water is really going through three treatment plants before people drink the water,? Batchelor said. Big Spring?s new advanced treatment plant uses micro#24;ltration... storage tank (pictured) holds wastewater before it is treated at the plant. Photo courtesy of Texas Water Development Board. Reclaiming a valuable, clean resource Texas cities increasingly embracing potable reuse A Texas water supplier has become...

Wythe, Kathy

2013-01-01T23:59:59.000Z

23

Theoretical Studies on Thermochemistry for Conversion of 5-Chloromethylfurfural into Valuable Chemicals  

Science Journals Connector (OSTI)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Peoples Republic of China ... (1) HMF can be produced from fructose, glucose, sucrose, and even cellulose, and it can be converted to biofuel 2,5-dimethylfuran (DMF) and other valuable chemicals such as 2,5-dimethyltetrahydrofuran, monomer 2,5 furandicarboxylic acid or 2,5 hydroxymethylfuran, as well as another value-added biomass platform levulinic acid (LA), and so on. ... Production of CMF and its conversion to EMF and EL, as well as its connection to other biomass platforms HMF and LA. ...

Gang Liu; Jianming Wu; Igor Ying Zhang; Zhe-Ning Chen; Yong-Wang Li; Xin Xu

2011-10-17T23:59:59.000Z

24

Genome Sequence of Pseudomonas putida S12, a Potential Platform Strain for Industrial Production of Valuable Chemicals  

Science Journals Connector (OSTI)

...S12, a Potential Platform Strain for Industrial...Production of Valuable Chemicals Fei Tao a Yaling...is considered a platform strain for the production of many chemicals. Here, we present...S12, a potential platform strain for industrial...production of valuable chemicals. | Pseudomonas...

Fei Tao; Yaling Shen; Ziqi Fan; Hongzhi Tang; Ping Xu

2012-11-01T23:59:59.000Z

25

Artificial Neural Network As A Valuable Tool For Petroleum Engineers Mohaghegh, S., and Ameri, S., West Virginia University  

E-Print Network (OSTI)

in exploration, production and management of hydrocarbons. Although the expert system is only one member the importance of this new tool to petroleum engineers, and the advantages that this computing process has over and researchers to consider it as a valuable alternative tool in the petroleum industry. INTRODUCTION Production

Mohaghegh, Shahab

26

About the cover: The Oak Ridge Reservation is a complex, distinctive, and valuable natural and industrial resource,  

E-Print Network (OSTI)

#12;i About the cover: The Oak Ridge Reservation is a complex, distinctive, and valuable natural class for fall 1999, we accepted the opportunity to help create the Oak Ridge Reservation Annual Site programs at the Department of Energy's Oak Ridge facilities. The idea of nuclear radiation is incredibly

Pennycook, Steve

27

The HYSULF{sup SM} process: A valuable hydrogen resource from hydrogen sulfide  

SciTech Connect

The increasing demand for hydrogen to reduce the sulfur content in standard refinery fuels is a very familiar problem to everyone in the industry. This problem could be partially offset by the continuous recycling of the hydrogen portion of hydrogen sulfide. In this regard, Marathon has been developing the HYSULF process. This process uses Redox chemistry under mild operating conditions to convert hydrogen sulfide into hydrogen and sulfur. The process employs two basic steps, i.e., a sulfur production and recovery step and a hydrogen production step. All chemicals and the catalyst used in the HYSULF process are either commercially available or are slight modifications of available materials. Also, the chemistry used in the HYSULF process is similar to that used in commercial desulfurization and gas sweetening processes.

Plummer, M.A. [Marathon Oil Co., Littleton, CO (United States)

1995-09-01T23:59:59.000Z

28

Twelve Valuable Government Programs  

Science Journals Connector (OSTI)

As you can see by the size of the recent $25 billion settlement state attorneys general reached with the five biggest lenders in the country (described in the last chapter), or new laws that aim to improve len...

Chris Lauer

2013-01-01T23:59:59.000Z

29

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

30

The European Solar Radiation Atlas 1 Page J., M. Albuisson, L. Wald, 2001. The European solar radiation atlas: a valuable digital tool. Solar Energy,  

E-Print Network (OSTI)

radiation atlas: a valuable digital tool. Solar Energy, 71, 81-83, 2001.1 The European Solar Radiation Atlas Author manuscript, published in "Solar Energy 71, 1 (2001) 81-83" DOI : 10.1016/S0038-092X(00)00157-2 #12 provided address the four most widely developed solar energy applications using simplified design methods

Paris-Sud XI, Université de

31

When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014.  

E-Print Network (OSTI)

When is More Data Valuable to Human Operators? The Cognitive Engineering Laboratory (CEL) plans to conduct a microworld simulator study during the summer of 2014. The objective is to evaluate human only looked at operator performance under normal operating conditions. Will having additional sensor

32

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

33

Reference Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

34

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

35

FE Categorical Exclusions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/30/2010 Location(s): Ithaca, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 29, 2010 CX-004968: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/29/2010 Location(s): Baton Rogue, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory

36

Valuable Plants Native to Texas.  

E-Print Network (OSTI)

"in the wild" indicates that the. plant may be found growing as a native and should be procured'from such a location. Whenever possible plants should be secured from floriculturists and nurserymen. In Texas there is a large number of small... it on another tree. It is not only a curiosity but a thing of beauty. For demonstrating the recovery power of desert plants this is one of the best organisms. nunda cinnamomea L. Cinnamon Fern. Too well known to need -iption; native to the eastern part...

Parks, Harris Braley

1937-01-01T23:59:59.000Z

37

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

38

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

39

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

40

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

42

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

43

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

44

More than two-thirds of the Earth's surface is covered with water, so it is not surprising that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural  

E-Print Network (OSTI)

that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural resources and/stream ecology, wetland science, aquatic- conservation biology and Great Lakes ecosystems. Because of the breadth

Edwards, Paul N.

45

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

46

Complex Materials  

SciTech Connect

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

47

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

48

Materializing Energy  

E-Print Network (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

49

Phase transformations in engineering materials  

SciTech Connect

Phase transformations in engineering materials are inevitably related to mechanical behavior and are often precursors to residual stress and distortion. Neutron scattering in general is a valuable tool for studying their effects, and pulsed neutrons are of special value, because of the inherently comprehensive crystallographic coverage they provide in each measurement. At the Manuel Lujan neutron scattering center several different research programs have addressed the relationships between phase transformation/mechanical behavior and residual strains. Three disparate examples are presented; (1) stress induced transformation in a NiTi shape memory alloy, (2) cryogenically induced transformation in a quenched 5180 steel, and (3) time resolved evolution of strain induced martensite in 304 stainless steel. In each case a brief description of the principle result will be discussed in the context of using neutrons for the measurement.

Bourke, M.A.M.; Lawson, A.C. [Los Alamos National Lab., NM (United States); Dunand, D.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Priesmeyer, H.G. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

1996-06-01T23:59:59.000Z

50

Materials Handbook  

Science Journals Connector (OSTI)

... THE sub title of this handbook gives the clue to the mode of treatment of the subject matter, and so ... seventeen to 'alkalis'; in fact, a better title for the book would be "Handbook of Engineering Materials". British trade names are conspicuously few, but no doubt a ...

E. H. TRIPP

1942-08-15T23:59:59.000Z

51

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

52

New York | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 12, 2011 January 12, 2011 CX-004976: Categorical Exclusion Determination New York State Retail Ethanol Fueling Station Project (Summary Categorical Exclusion - Seven Sites) CX(s) Applied: B5.1 Date: 01/12/2011 Location(s): Kings Park, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/30/2010

53

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

54

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

55

Photovoltaic Materials  

SciTech Connect

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

56

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

57

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

58

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

59

Multi Material Paradigm  

Energy Savers (EERE)

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

60

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Materials: Reconsidering Wastes and Assets - 13193  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

Michalske, T.A. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

62

Method for forming materials  

DOE Patents (OSTI)

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

63

Corrosion of barrier materials in seawater environments  

SciTech Connect

A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ` Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys.

Heiser, J.H.; Soo, P.

1995-07-01T23:59:59.000Z

64

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

65

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

66

CORN GERM: A VALUABLE PROTEIN FOOD  

Science Journals Connector (OSTI)

...per cent. of the crop by dry milling and distilling,2 and a yield...value of the proteins of the corn germ has not been studied by...Scientist, 31: 142, 1943. 2 Corn germ made by the wet-milling process, due to leaching with...

H. H. MITCHELL; JESSIE R. BEADLES

1944-02-11T23:59:59.000Z

67

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

68

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

69

Material Point Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM)...

70

Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary...

71

Energy Materials & Processes | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

72

EMSL - Energy Materials & Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

73

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

74

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

75

Energetic Materials Center Energetic Materials Center  

NLE Websites -- All DOE Office Websites (Extended Search)

experimental characterization of energetic material properties and reactions; and high-speed diagnostic instruments for measuring the chemical and physical processes that occur...

76

Exploring Chinas Materialization Process with Economic Transition: Analysis of Raw Material Consumption and Its Socioeconomic Drivers  

Science Journals Connector (OSTI)

Understanding the key drivers behind Chinas mass consumption of raw materials is thus crucial for developing sustainable resource management and providing valuable insights into how other emerging economies may be aiming to accomplish a low resource-dependent future. ... Of these two influencing factors, urbanization is the predominant driving force behind increasing RMC, characterized by the rapid increase in urbanization-related investment, notably in the construction sector (e.g., infrastructure, real estate), and rises in urban household consumption. ... Environmental sustainability can only be achieved by timely technol. ...

Heming Wang; Xin Tian; Hiroki Tanikawa; Miao Chang; Seiji Hashimoto; Yuichi Moriguchi; Zhongwu Lu

2014-04-10T23:59:59.000Z

77

Coated ceramic breeder materials  

DOE Patents (OSTI)

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

78

Dental Materials BIOMATERIALS  

E-Print Network (OSTI)

focus is on the development of two standard methods: one for a material's resistance to microleakage will quantify a significant portion of a material's ability to resist secondary caries. The methodsDental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant

79

Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

80

Computational Chemical Materials Engineering  

E-Print Network (OSTI)

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Puncture detecting barrier materials  

DOE Patents (OSTI)

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

82

Joining of dissimilar materials  

DOE Patents (OSTI)

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

83

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

84

Comprehensive Nuclear Materials  

SciTech Connect

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

85

CANMET Gasifier Liner Coupon Material Test Report  

SciTech Connect

This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

2007-01-31T23:59:59.000Z

86

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

87

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

88

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

89

Earth-Abundant Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

90

Geopolymer Sealing Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

91

Applications of Ceramic Materials  

Science Journals Connector (OSTI)

The use of ceramic materials in science and industry is becoming increasingly widespread. As discussed in Chap. 4, ceramic materials have important advantages over metals and polymers in electronic devices at ...

Murat Bengisu

2001-01-01T23:59:59.000Z

92

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

93

Materials Science & Engineering  

E-Print Network (OSTI)

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

94

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

95

Instructions and Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

96

Why engineer porous materials?  

Science Journals Connector (OSTI)

...thermal conductivity materials (Maex et al. 2003...Hrubesh et al. 1993); materials remarkably similar to...reduce the oxygen at the cathode and oxidize the fuel...electrochemically active, have large surface...volume fraction of porous materials about 0.3 (Brandon...

2006-01-01T23:59:59.000Z

97

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

98

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

99

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

100

Tailored Porous Materials  

SciTech Connect

Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

1999-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-005094: Categorical Exclusion Determination Dissolution, Valence Adjustment, and Precipitation of Actinides CX(s) Applied: B3.6 Date: 01/03/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office January 3, 2011 CX-005093: Categorical Exclusion Determination Development of Cooling Towers as Non-Traditional Collectors of Particles, Biological Agents: Concentration, and Detection CX(s) Applied: B3.6 Date: 01/03/2011 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office December 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A11, B3.6 Date: 12/30/2010 Location(s): Rochester, New York Office(s): Fossil Energy, National Energy Technology Laboratory

102

Categorical Exclusion Determinations: A9 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 CX-004857: Categorical Exclusion Determination Building Operations Certification License CX(s) Applied: A9, A11, B5.1 Date: 01/04/2011 Location(s): Kansas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 4, 2011 CX-004854: Categorical Exclusion Determination Missouri-City-St. Peters CX(s) Applied: A1, A9, B2.5, B5.1 Date: 01/04/2011 Location(s): St. Peters, Missouri Office(s): Energy Efficiency and Renewable Energy January 3, 2011 CX-004853: Categorical Exclusion Determination Louisiana-County-St. Landry CX(s) Applied: A9, A11, B2.5, B5.1 Date: 01/03/2011 Location(s): St. Landry Parish, Louisiana Office(s): Energy Efficiency and Renewable Energy December 30, 2010 CX-004966: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials

103

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

104

An overview of measurement methods for special nuclear material in spent nuclear fuel  

SciTech Connect

Summary results from a survey of nondestructive assay measurement methods applicable to the measurement of the special nuclear material content of spent nuclear fuel are described. The role of nuclear materials measurements in the domestic and international safeguarding of spent nuclear fuel in the United States' federal waste management system has yet to be determined. An understanding of the characteristics and capabilities of the potentially applicable measurement systems should provide valuable information to the developers of the safeguards approaches for the monitored retrievable storage and final disposal systems. The discussion focuses on the general characteristics of the identified direct and indirect measurement methods. 3 refs., 1 tab.

Moran, B.W.; Reich, W.J.

1989-07-01T23:59:59.000Z

105

SMERDON ET AL.: AUXILIARY MATERIAL Auxiliary Material  

E-Print Network (OSTI)

run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run [González-Rouco et al., 2006; hereinafter ECHO-g]. The annual means of the modeled temperature fields are interpolated to 5° latitude;SMERDON ET AL.: AUXILIARY MATERIAL 2 ECHO-g simulations, respectively. The above conventions

Smerdon, Jason E.

106

Montani, Kohn, Smith and Schultz (2006), Supplemental Material Supplemental Material  

E-Print Network (OSTI)

Montani, Kohn, Smith and Schultz (2006), Supplemental Material 1 Supplemental Material A. Entropy, Kohn, Smith and Schultz (2006), Supplemental Material 2 occupied, it is ambiguous whether

Smith, Matthew A.

107

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

108

Nonconforming Material Process  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

109

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

110

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

111

Absolute nuclear material assay  

DOE Patents (OSTI)

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

2012-05-15T23:59:59.000Z

112

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

113

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

114

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

115

Fission, Fusion Materials Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

is shown in illustration. Materials are the immediate priority of both the fission and fusion communities. Extending the lifetime of the current fleet of light water reactors...

116

Thermoelectric materials having porosity  

DOE Patents (OSTI)

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

117

Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make...

118

UESC Workshop Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the UESC Workshop Materials and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

119

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop "soft" materials, including polymers and...

120

Radiation Safety Training Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Webinar: Materials Genome Initative  

Energy.gov (U.S. Department of Energy (DOE))

Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

122

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

123

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

124

Timelines | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. Timelines of rare earth discovery: Discovery and...

125

Radioactive Material Transportation Practices  

Directives, Delegations, and Requirements

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

126

Novel Anode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with a variety of loadings, morphologies, and thicknesses. - Develop synchrotron tomography tools to better understand how the active materials interact with their surroundings...

127

Recent Advances in Computational Materials Science and Multiscale Materials Modeling  

E-Print Network (OSTI)

Recent Advances in Computational Materials Science and Multiscale Materials Modeling Guest Editors Advances in Computational Materials Science and Multiscale Materials Modeling. These symposia provide. Professor Karel Matous Aerospace and Mechanical Engineering Department University of Notre Dame Email

Matous, Karel

128

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

129

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

130

MATERIAL TRACKING USING LANMAS  

SciTech Connect

LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

Armstrong, F.

2010-06-07T23:59:59.000Z

131

Nanocrystalline Heterojunction Materials  

DOE Patents (OSTI)

Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

2004-02-03T23:59:59.000Z

132

Cybersecurity Awareness Materials  

Energy.gov (U.S. Department of Energy (DOE))

The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or as needed to address an emerging cyber threat or hot topic. These materials are available to other DOE organizations or public and private institutions to enhance or supplement site-specific awareness programs.

133

Materials Science & Engineering  

E-Print Network (OSTI)

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

134

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (assets) to worthless (wastes). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or in the case of high level waste awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Sites (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as waste include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

135

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

136

Materials of Gasification  

SciTech Connect

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

137

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

138

Critical Materials Hub  

Energy.gov (U.S. Department of Energy (DOE))

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metalsdysprosium, neodymium, terbium, europium, and yttriumcould affect clean energy technology deployment in the coming years.1, 2

139

Fissile material detector  

DOE Patents (OSTI)

A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

2002-01-01T23:59:59.000Z

140

Electrically conductive composite material  

DOE Patents (OSTI)

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Material control evaluation  

SciTech Connect

Changes in the Department of Energy`s (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel.

Waddoups, I.G.; Anspach, D.A. [Sandia National Labs., Albuquerque, NM (US); Abbott, J.A. [EG& G Kirtland Operations, Albuquerque, NM (US)

1993-07-01T23:59:59.000Z

142

RADIOACTIVE MATERIALS SENSORS  

SciTech Connect

Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

Mayo, Robert M.; Stephens, Daniel L.

2009-09-15T23:59:59.000Z

143

Public Scoping Meeting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Scoping Meeting Materials Public Scoping Meeting Materials Public Scoping Meeting Materials Fact sheets, presentations, and other information from the Conversion EIS Public Scoping Meetings. The following materials were made available during the DUF6 Conversion EIS public scoping meetings held near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky, November - December, 2001. Notice of Intent PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details Presentation PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program 5.97 MB details DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB details PDF Icon NEPA Activities for the Depleted Uranium Hexafluoride Management Program

144

Work with Biological Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

145

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

1994-05-26T23:59:59.000Z

146

Toward Lighter, Stiffer Materials  

Science Journals Connector (OSTI)

...as additive manufacturing and three-dimensional (3D) printing offer the opportunity to tailor properties to location-specific...fabrication routes for cellular materials are exemplified by 3D printing, but considerable progress must still be made to enhance...

Tobias A. Schaedler; Alan J. Jacobsen; Wiliam B. Carter

2013-09-13T23:59:59.000Z

147

NEW MAGNETIC MATERIALS  

Science Journals Connector (OSTI)

New, sophisticated magnetic materials can be found as essential components in computers, sensors, and actuators, and in a variety of telecommunications devices ranging from telephones to satellites. Some of th...

STANOJA STOIMENOV

2006-01-01T23:59:59.000Z

148

Next Generation Materials:  

Office of Environmental Management (EM)

of 2 to 1 for additive manufacturing by 2020; Composite materials Fiber processing costs reduce by one-half by 2026; 6x improvement in tooling cycles for composite matrix...

149

Materials Science & Engineering  

E-Print Network (OSTI)

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

150

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

2009-08-17T23:59:59.000Z

151

Materials of Construction  

Science Journals Connector (OSTI)

Conversion of coal into clean energy in any process either through direct combustion or conversion to gaseous and liquid fuels involves application of materials at high or reasonably high temperature in aggres...

W. A. Ellingson; K. Natesan; T. Vojnovich

1984-01-01T23:59:59.000Z

152

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

153

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

154

Reversible hydrogen storage materials  

DOE Patents (OSTI)

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

155

Nuclear Material Packaging Manual  

Directives, Delegations, and Requirements

The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

2008-03-07T23:59:59.000Z

156

Materials of Construction  

Science Journals Connector (OSTI)

Ferrous materials are affected by residual chlorine in saline water feed of desalination plants. In stagnant C1 test solution a semilogarithmically increased corrosion rate was observed with increasing dissolv...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

157

The Materials Project:  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing | June 2014 Energy & Environmental Technologies Berkeley Lab Materials d ata f rom: E agar T., King M. Technology R eview 1 995 What are the properties of known...

158

Hydrogen Compatible Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

159

Bespoke Materials Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

160

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

162

Midwestern Radioactive Materials Transportation Committee Agenda...  

Office of Environmental Management (EM)

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

163

ATS materials support  

SciTech Connect

The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S. [Oak Ridge National Lab., TN (United States); Rawlins, M.H. [Dept. of Energy, Oak Ridge, TN (United States)

1996-12-31T23:59:59.000Z

164

Geothermal materials development  

SciTech Connect

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

165

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

166

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

167

Materials for geothermal production  

SciTech Connect

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

168

Optical limiting materials  

DOE Patents (OSTI)

Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

1998-01-01T23:59:59.000Z

169

8 - Ceramic materials  

Science Journals Connector (OSTI)

Ceramic materials, manufactured from fired clay, have been used in construction since at least 4000 BC in Egypt, and represent the earliest manufactured building materials. Whilst the strict definition of ceramics includes glass, stone and cement, this chapter deals only with the traditional ceramics based on clays. The variety of traditional ceramic products used within the building industry arises from the wide range of natural and blended clays used for their production. The roof of the spectacular Sydney Opera House (Fig. 8.1) is surfaced with white ceramic tiles which reflect the changing light associated with the time of day.

Arthur Lyons

2006-01-01T23:59:59.000Z

170

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

171

Improved Materials for High-Temperature Black Liquor Gasification  

SciTech Connect

The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

2006-06-29T23:59:59.000Z

172

Short courses in Composite Materials  

E-Print Network (OSTI)

Short courses in Composite Materials Overview The ability to tailor the material properties used. Combining the adaptability of composites with clear weight savings, whilst tailoring materials properties Airbus and Glyndr University, the Advanced Composites Training and Development Centre educates current

Davies, John N.

173

Thermal expansion of SOFC materials  

Science Journals Connector (OSTI)

A short overview is given for the thermal expansion of solid oxide fuel cell materials. The thermomechanical compatibility of state-of-the-art materials is compared with alternative, new materials. With these ...

F. Tietz

1999-01-01T23:59:59.000Z

174

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

175

NMR imaging of materials  

SciTech Connect

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

176

Supplemental Material Supplemental methods  

E-Print Network (OSTI)

Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2009 #12;Computing counter and % ID/g calculated as (counts/weight tissue)/ total counts injected. Mass Spectrometry. To extract ACPPs to obtain electrospray (ESI) mass spectra, a solution of 9M guanidinium chloride (Gu

Tsien, Roger Y.

177

Materials Safety Data Sheets  

E-Print Network (OSTI)

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

178

Sustainable Materials Course Outline  

E-Print Network (OSTI)

, embodied energy; environmental footprint, waste recycling and pollution minimization, life cycle assessment Science and Engineering (Building E8) Phone: 9385 5025 j.q.zhang@unsw.edu.au Consultation hours: by appointment To be advised School of Materials Science and Engineering (Building E8) Consultation hours

New South Wales, University of

179

Why engineer porous materials?  

Science Journals Connector (OSTI)

...Porous carbon of high thermal conductivity is used...absorption, fuel cells and battery materials is a number...photoluminescence, thermal conductivity, low k...self-lubricating bearings and battery electrodes. The range...vibration suppression and thermal management. The porous...

2006-01-01T23:59:59.000Z

180

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

182

Electric Motors and Critical Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV, materials, and motor designers is missing * Achieving high volume July 24, 2012 Electric Motors and Critical Materials Breakout Session 2 - Discussion of Breakthroughs and...

183

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

184

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

185

News Releases | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases CMI hosts EU, Japan to discuss global critical materials strategy, September 10, 2014 Five Critical Materials Institute researchers named Most Influential Scientific Minds...

186

From Smart Materials to Cognitive Materials Requirements and Challenges  

E-Print Network (OSTI)

From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz construction, production engineer- ing, or wearable computing. Smart and sensorial materials provide a variety this application than the material itself that can be considered being "smart". In this contribution, we proceed

Bremen, Universität

187

Laser Detection Of Material Thickness  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection Of Material Thickness Detection Of Material Thickness Laser Detection Of Material Thickness There is provided a method for measuring material thickness. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Detection Of Material Thickness There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of

188

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

189

NEWTON: Determining Material Degradation  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Material Degradation Determining Material Degradation Name: Hamish Status: student Grade: 6-8 Location: CA Country: USA Date: Summer 2013 Question: I am working on a science project about photo-degradation of plastic film. My question is how much degraded a plastic film should be to say that it was 100% photo-degraded? The plastic film I am photo-degrading is turning into dust when I touch it, what level of degradation is that? Replies: Hi Hamish, Thanks for the question. You will need to define what you mean by photo-degraded. 100% photo-degraded could be that the film becomes translucent and lets through only blurry images. Or it could mean that the film turns to dust when you touch it. As long as you clearly state in your science project what you mean by 100% photo-degraded, you will be doing a good job.

190

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

191

Webinar: Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

192

George Smith, Department of Materials,  

E-Print Network (OSTI)

George Smith, Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH UK Email: george.smith@materials.ox.ac.uk URL: www.materials.ox.ac.uk The aims of the Department of Materials experienced one of the most successful years in its 46-year history, says head of department George Smith. Top

Paxton, Anthony T.

193

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

194

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

195

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

196

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials...

197

Synthesis of refractory materials  

DOE Patents (OSTI)

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, Joseph B. (San Jose, CA)

1984-01-01T23:59:59.000Z

198

Synthesis of refractory materials  

DOE Patents (OSTI)

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, J.B.

1983-08-16T23:59:59.000Z

199

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

2001-01-01T23:59:59.000Z

200

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

1999-12-21T23:59:59.000Z

202

Combinatorial sythesis of organometallic materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-07-16T23:59:59.000Z

203

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

204

Material efficiency in a multi-material world  

Science Journals Connector (OSTI)

...complex policies and political forces. The overall goal here is...share many of the same driving forces-the materials we use and...materials. Recalling that the fundamental goal of material efficiency...cycle data system (ILCD) handbook-general guide for life cycle...

2013-01-01T23:59:59.000Z

205

DPC materials and corrosion environments  

SciTech Connect

This review focuses on the performance of basket materials that could be exposed to ground water over thousands of years, and prospective disposal overpack materials that could possibly be used to protect dual-purpose canisters (DPCs) in disposal environments.

Ilgen, Anastasia G.; Bryan, Charles R.; Stephanie Teich-McGoldrick; Ernest Hardin

2014-10-01T23:59:59.000Z

206

Scientists seek nonlinear optical materials  

Science Journals Connector (OSTI)

Nonlinear optical materials seem about to do for light what semiconductors already have done for electricity. ... Successful development of these materials could mean big payoffs in telecommunications, data processing, nuclear fusion, and applications of lasers in commerce and industry generally. ...

1982-10-04T23:59:59.000Z

207

Carbon nanotubes in new materials  

Science Journals Connector (OSTI)

Studies of materials consisting of carbon nanotubes or containing them have been analyzed and generalized. Classification of these materials is proposed, their general features and main types are considered, and individual examples are presented. The bibliography includes 372 references.

Eduard G Rakov

2013-01-01T23:59:59.000Z

208

MATERIAL BALANCE REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 (08-98) Previous editions are obsolete. MANDATORY DATA COLLECTION AUTHORIZED BY 10 CFR 30, 40, 50, 70, 75, 150. Public Laws 83-703, 93-438, 95-91. U.S. DEPARTMENT OF ENERGY AND U.S. NUCLEAR REGULATORY COMMISSION MATERIAL BALANCE REPORT 18 U.S.C. SECTION 1001; ACT OF JUNE 25, 1948; 62 STAT. 749; MAKES IT A CRIMINAL OFFENSE TO MAKE A WILLFULLY FALSE STATEMENT OR REPRESENTATION TO ANY DEPARTMENT OR AGENCY OF THE UNITED STATES AS TO ANY MATTER WITHIN ITS JURISDICTION. Printed with soy ink on recycled paper OMB Control No. 1910-1800 OMB Burden Disclosure Statement on Reverse SECTION A 7. DOE/NRC 740M ATTACHED 8. BEGINNING INVENTORY - DOE OWNED 9. BEGINNING INVENTORY - NOT DOE OWNED RECEIPTS 11. PROCUREMENT FROM DOE FROM: 13. PROCUREMENT - FOR THE ACCOUNT OF DOE 14. DOD RETURNS - USE A 15. DOD RETURNS - USE B

209

Materials - Coatings & Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

210

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

211

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

212

Geochemical and Cosmochemical Materials  

Science Journals Connector (OSTI)

Asphaug (C2) provided a perspective for seven accompanying papers describing results from the Hayabusa (Falcon) spacecraft that flew by, and may have briefly landed on the 500-m S-type asteroid, 25143 Itokawa, to sample and, hopefully return surface materials to Earth. ... As part of a six-paper series describing the Spirit and Opportunity exploration rovers' results from the Gusev crater and Meridiani Planum landing places, respectively, Yen et al. (C6) described and compared the soil chemistry at mineralogy on opposite sites of Mars. ... As one of a six-paper report on the Deep Impact collision with Comet 9P/Tempel 1, Mumma et al. (C7) used high-dispersion IR (2.8?5.0 ?m) spectroscopy to quantify H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4 in the comet before and after impact. ...

Michael E. Lipschutz; Stephen F. Wolf; F. Bartow Culp; Adam J. R. Kent

2007-05-04T23:59:59.000Z

213

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

214

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

215

materials | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Manuscript Presentation Desulfurization of Coal Timothy R. Armstrong, Oak Ridge National Laboratory Presentation Materials for Advanced Heat Exchange...

216

Webinar: Hydrogen Storage Materials Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

217

Reactor Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

218

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

219

Management of Transuranic Contaminated Material  

Directives, Delegations, and Requirements

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

220

Materials-Based Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

There are presently three generic mechanisms known for storing hydrogen in materials: absorption, adsorption, and chemical reaction.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

222

MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER  

E-Print Network (OSTI)

M2SEC MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER #12;#12;M2SEC | The University 66045 MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER The Measurement, Materials Sustainable initiative themes of KU's strategic plan, Bold Aspirations: · Sustaining The Planet, Powering The World

223

Department of Advanced Materials Science  

E-Print Network (OSTI)

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

224

Mercury-Related Materials Studies  

E-Print Network (OSTI)

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for MercuryMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 ­ updated Feb 3, 2010 #12;ORNL Material Reports Reviewed · IDS-NF requested ORNL research any past SNS

McDonald, Kirk

225

Superconductivity and Magnetism: Materials Properties  

E-Print Network (OSTI)

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

226

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

227

The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary  

SciTech Connect

Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it provides an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.

Lamont, Stephen Philip [Los Alamos National Laboratory; Brisson, Marcia [DOE-IN; Curry, Michael [DEPT. OF STATE

2011-02-17T23:59:59.000Z

228

Argonne CNM: Materials Synthesis Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis Facilities Materials Synthesis Facilities Capabilities biosynthesis View larger image. Biosynthesis Methods Peptide and DNA synthesis (E. Rozhkova, Nanobio Interfaces Group) Nanobio hybrid synthesis (T. Rajh, Nanobio Interfaces Group) Hierarchal assembly View larger image. Hierarchical Assembly Bottom-up polymeric and bio-templating as well as lithographically directed self-assembly (S. Darling, Electronic & Magnetic Materials & Devices Group; E. Rozhkova, Nanobio Interfaces Group) Molecular beam epitaxy View high-resolution image. Molecular Beam Epitaxy Complex oxide nanoferroelectric and nanoferromagnetic materials and devices created using a DCA R450D Custom MBE instrument (A. Bhattacharya, Electronic & Magnetic Materials & Devices Group) Nanoparticle synthesis

229

Mathematical modelings of smart materials and structures  

E-Print Network (OSTI)

Mathematical modelings of smart materials and structures Christian Licht , Thibaut Weller mathematical models of smart materials and smart structures. Smart materials are materials which present perturbations methods, asymptotic analysis, plates and rods models. 1 Introduction Smart materials present

Paris-Sud XI, Université de

230

Materials - Recycling - ABS and HIPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Separation and Recovery of ABS and HIPS from Mixed Plastics via Froth Flotation Every day, obsolete appliances, consumer electronics, and cars make their way into landfills. These no-longer-wanted items contain something valuable--plastics that have the potential to be recycled. Although current technologies enable the separation of some plastics, they do not yet offer cost-effective purity and yields. Additionally, these methods do not effectively separate plastics that have the same density. Argonne and Appliance Recycling Centers of America (ARCA) undertook a project to develop a process to effectively separate and recover high-quality acrylonitrile butadiene styrene (ABS)--a plastic used to produce lightweight, tough, rigid products--from the mixed-plastics wastes generated in ARCA's appliance-recycling operation.

231

Argonne TDC: Material Transfer Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

232

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

233

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

234

Material Standards for EHS for Engineered Nanoscale Materials Material Standards for  

E-Print Network (OSTI)

#12;#12;Material Standards for EHS for Engineered Nanoscale Materials Material Standards of Standards and Technology, Gaithersburg, MD Workshop Co-Chairs and Principle Report Editors Dianne L. Poster, John A. Small, Michael T. Postek National Institute of Standards and Technology Sponsored by U

Magee, Joseph W.

235

Nuclear materials management storage study  

SciTech Connect

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

236

Argonne TTRDC - Experts - Materials Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Technologies Battery Technologies Combustion Analysis Engines & Emissions Fuel Cell Technologies Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Materials Experts Click on a name to see a full résumé. Deformation Joining Cinta Lorenzo-Martin, Postdoctoral Appointee phone: 630/252-8577, fax: 630/525-5568, e-mail: lorenzo-martin@anl.gov PhD, Material Science, University of Seville, Spain Joining of different materials at high temperature Research on reduction of friction and wear to minimize energy losses Scuffing, wear and friction studies of ceramics 21+ publications and presentations Dileep Singh, Materials Scientist phone: 630/252-5009, fax: 630/252-2785, e-mail: dsingh@anl.gov PhD, Material Science, University of Utah Structure-mechanical property relationships in advanced energy materials

237

Sandia National Laboratories: materials science  

NLE Websites -- All DOE Office Websites (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

238

Vibrational Damping of Composite Materials  

E-Print Network (OSTI)

on the Damping of Composite Laminates, SPIE Proceedings onpublication to Journal of Composite Materials Biggerstaff,submitted for publication to Composites, Part A Biggerstaff,

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

239

materials | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Director, U.S. DOE-NETL Session I - Functional Materials Moderators: Timothy R. Armstrong, Oak Ridge National Laboratory Bulk Carbon Dioxide Removal By Adsorption: Current...

240

Advanced Materials Research Highlights | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 93 Results Prev 12345 Next Single Supported Atoms Participate in Catalytic Processes December 04, 2014 -...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydraulic Fracturing in Particulate Materials.  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has (more)

Chang, Hong

2004-01-01T23:59:59.000Z

242

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

243

Center for Nanophase Materials Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

244

Nanostructured Electrode Materials for Supercapacitors  

E-Print Network (OSTI)

and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

Wu, Shin-Tson

245

Materials Compatibility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Mechanical Properties of Structural Steels in Hydrogen Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Report on Assessment of...

246

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

247

Center for Energy Efficient Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an...

248

Glass as a structural material.  

E-Print Network (OSTI)

??Glass can be beautiful and strong, so why is it not used more often as a structural material? Most often the reasoning is because people (more)

White, Rachel Lynn

2007-01-01T23:59:59.000Z

249

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS  

E-Print Network (OSTI)

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT Graphene Colloquium

Farritor, Shane

250

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

251

Advanced Materials by Design: Programable Transient Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials by Design: Programable Transient Electronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically...

252

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

253

Method of Synthesis of Proton Conducting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Method of Synthesis of Proton Conducting Materials Method of Synthesis of Proton Conducting Materials A method of producing a proton conducting material. Available for thumbnail of...

254

Cybersecurity Awareness Materials | Department of Energy  

Energy Savers (EERE)

Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

255

The Materials Science of Titanium Dioxide Memristors  

E-Print Network (OSTI)

unipolar resistance switching, Advanced Materials, vol. 20,A variety of resistance switching materials could be used3 for resistance-change memory, Advanced Materials, vol.

Pickett, Matthew

2010-01-01T23:59:59.000Z

256

On the fracture toughness of advanced materials  

E-Print Network (OSTI)

occurs when the materials resistance to fracture ceases toall classes of materials, the fracture resistance does notthese biological materials derive their fracture resistance

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

257

Material Safety Data Sheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

258

Cybersecurity Awareness Marketing/Promotional Material | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MarketingPromotional Material Cybersecurity Awareness MarketingPromotional Material The OCIO has developed a variety of marketing and promotional material to be used during cyber...

259

Hydrogen Compatible Materials Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compatible Materials Workshop Hydrogen Compatible Materials Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories hosted the Hydrogen Compatible Materials...

260

Scientists produce transparent, light-harvesting material  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Computational materials: Embedding Computation into the Everyday  

E-Print Network (OSTI)

building forces, smart materials are dynamic in that theymaterial With a smart material, we should be clearly1] Addington, M. 2001 Smart Materials and Technologies. In A

Thomsen, Mette Ramsgard; Karmon, Ayelet

2009-01-01T23:59:59.000Z

262

Materials Sciences and Engineering Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

263

Serving NOAA's Most Valuable Asset People Eduardo J. Ribas, Director  

E-Print Network (OSTI)

Management and Compensation Workforce Planning Leadership & Management Development Future Retirement Services Division Human Capital Planning Division Learning Resources Division B&R Team 9NOAA Workforce Director January 08, 2010 - jta #12;Summary of Content (in order of appearance) NOAA Workforce Demographics

264

Automotive shredder residue (ASR) characterization for a valuable management  

Science Journals Connector (OSTI)

Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemicalphysical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.

Luciano Morselli; Alessandro Santini; Fabrizio Passarini; Ivano Vassura

2010-01-01T23:59:59.000Z

265

Production of valuable hydrocarbons by flash pyrolysis of oil shale  

DOE Patents (OSTI)

A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

Steinberg, M.; Fallon, P.T.

1985-04-01T23:59:59.000Z

266

The Social Model of Disability: Valuable or Irrelevant? Colin Barnes  

E-Print Network (OSTI)

of a chapter in Watson, N. Roulstone, A. and Thomas, C. 2012: The Routledge Handbook of Disability Studies, 1989; Shapiro, 1993) and Japan (Tateiwa, 2010). . Until the late 1960s, suppo

Barthelat, Francois

267

The electrical engineer - our most valuable piece of equipment  

E-Print Network (OSTI)

ca@iaxxce) XxL sriting ccetrncbeIL sxIecificsbionsL sxLLk she ~i @48 yoixxxa b~ exeeer ayolicLLbioxx 48, bhe baste, ~M, axBB1 subgeetIQ slxch se ~r' BALLL hisbcrXIB XSXL~SP SCOSQXLiesL XSSX 3xtblie ~X@. stsxdsxL4 hes beexx xL~ ie Xcldx ~oxx Ixhese... ca@iaxxce) XxL sriting ccetrncbeIL sxIecificsbionsL sxLLk she ~i @48 yoixxxa b~ exeeer ayolicLLbioxx 48, bhe baste, ~M, axBB1 subgeetIQ slxch se ~r' BALLL hisbcrXIB XSXL~SP SCOSQXLiesL XSSX 3xtblie ~X@. stsxdsxL4 hes beexx xL~ ie Xcldx ~oxx Ixhese...

Brooks, Morton Palmer

2012-06-07T23:59:59.000Z

268

a service converting food safety data into valuable sellable information.  

E-Print Network (OSTI)

the financial benefits of electrical energy storage to office buildings. William Gathright 'G Mat Eng 6:25 PM:45 PM SANA solar based lighting & mobile phone charging solution for emerging markets with an innovative business model based on mobile money. Asiri Jayawardina 'G Arch Sci 5:10 PM Low Cost Water & Power

Salama, Khaled

269

3D printing: a valuable resource in human anatomy education  

Science Journals Connector (OSTI)

In addition to known methods such as plastination and Thiel method embalming, a new three-dimensional printing system (3D printing) has been developed recentlyan innovative approach...

Mauro Vaccarezza; Veronica Papa

2014-10-01T23:59:59.000Z

270

Can Intranet Development be a Valuable Means of Organisational Learning?  

Science Journals Connector (OSTI)

The following paper sets out an exploration of the contribution that intranet development and use can bring, not only ... facilitate organisational learning. Changes due to new technology and education needs are ...

Christine Schweighart; Marie Reynard

1999-01-01T23:59:59.000Z

271

Jimmy Bell's Experience Brings Valuable Input to Federal Advisory...  

Office of Environmental Management (EM)

Jimmy graduated from Berry College in Rome, Ga, in 1960 with a bachelor's degree in chemistry and mathematics. He went directly to graduate school at the University of...

272

Continuous Commissioning: A Valuable Partner to Retrofit Projects  

E-Print Network (OSTI)

-hand corner. Prior to commissioning, any changes in the duct static pressure or discharge air temperature setpoints did not affect the VFD speed. The operation of five AHUs was analyzed using the data collected through the EMCS. Table 2 presents summarized... to the facility personnel, there were a high number of hot call complaints during the summer period. The supply air fan was running at 100% speed and was not modulating with the load. The actual static pressure was less than 0.3?H2O even though the setpoint...

Turner, W. D.; Banks, K.; Athar, A.; Yazdani, B.; Zhu, Y.; Culp, C.

2001-01-01T23:59:59.000Z

273

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Demonstrate geothermal mineral extraction; Demonstrate technical and economic feasibility; Produce products for market development; Generate operational data and scale up data so a commercial scale plant can be designed and built.

274

Construction of transmission lines above valuable standing timber  

Science Journals Connector (OSTI)

Problems with the construction of transmission lines above a forest are examined. Construction of lines above standing timber makes it possible to shorten the length of the route, eliminate the clearing of a cont...

L. O. Aizenberg; E. A. Khvoles

2007-11-01T23:59:59.000Z

275

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-000737: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Products CX(s) Applied: A9, B3.6 Date: 01/22/2010 Location(s): Ithaca, New York Office(s): Fossil Energy, National Energy Technology Laboratory January 22, 2010 CX-000739: Categorical Exclusion Determination Site Characterization of the Highest-Priority Geologic Formations for Carbon Dioxide storage in Wyoming CX(s) Applied: A1, A9, B3.6 Date: 01/22/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory January 21, 2010 CX-002154: Categorical Exclusion Determination Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures

276

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 17060 of 26,764 results. 51 - 17060 of 26,764 results. Download CX-004968: Categorical Exclusion Determination Catalytic Transformation of Waste Carbon Dioxide into Valuable Materials CX(s) Applied: A9, A11, B3.6 Date: 12/29/2010 Location(s): Baton Rogue, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004968-categorical-exclusion-determination Download CX-002506: Categorical Exclusion Determination Rhode Island Commercial and Industrial Energy Efficiency Initiative CX(s) Applied: A9, A11, B5.1 Date: 06/01/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-002506-categorical-exclusion-determination Download CX-002510: Categorical Exclusion Determination

277

Mercury-Related Materials Studies  

E-Print Network (OSTI)

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

278

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

279

The material footprint of nations  

Science Journals Connector (OSTI)

...other solid energy materials/carriers A.4.1.1: Brown coal (lignite) A.4.1.2: Hard coal A.4.1.3: Oil shale and tar sands* A.4.1.4: Peat A.4.2: Liquid and gaseous energy materials/carriers A.4.2.1: Crude...

Thomas O. Wiedmann; Heinz Schandl; Manfred Lenzen; Daniel Moran; Sangwon Suh; James West; Keiichiro Kanemoto

2013-01-01T23:59:59.000Z

280

Materials science Nanotubes get hard  

E-Print Network (OSTI)

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Material selection for electrooptic deflectors  

SciTech Connect

The selection of a material for a practical device is generally guided by a number of criteria, including cost, size, difficulty of fabrication, durability, driver requirements, and system constraints. A quantitative analysis can usually be made for comparison, or a figure of merit can be computed. In the case of materials for electrooptical (EO) devices the choice is often made based on the availability of materials meeting some minimum system requirement. For fast EO deflectors, where a large number of resolvable spots is required, the choice of materials is quite limited. A model of just such a device is proposed; it is based on the resolution of 400 spots and reasonable boundary conditions. The model predicts that to be successful, an EO material must be chosen that has a linear EO coefficient (r/sub 33/) of at least 336 pm/V. A survey was conducted of the EO materials which are generally available. Based on the model and the survey, Czochralski crystal growth of strontium barium niobate (SBN:60) is recommended. Although SBN:60 does not have the largest EO coefficient, it may be the easiest to grow in the required size and optical quality, thus satisfying the availability criterion. It should be borne in mind that many materials may be grown by this technique and there are many new and potential applications for EO materials. 92 refs., 18 figs., 14 tabs.

Not Available

1988-09-01T23:59:59.000Z

282

Field of Expertise Materials Science  

E-Print Network (OSTI)

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

283

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

2011-06-27T23:59:59.000Z

284

Radioactive Material Transportation Practices Manual  

Directives, Delegations, and Requirements

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

285

Materials Science Graduate Student Handbook  

E-Print Network (OSTI)

Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

Evans, Paul G.

286

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

287

Success Stories: Materials Discovery - Symyx  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Discovery Materials Discovery Until Lawrence Berkeley National Laboratory scientist Peter Schultz thought of a better way, materials discovery was a costly, slow, and laborious process. In the early 1990s Dr. Schultz and colleagues invented a super efficient materials research process that combined minaturizing with parallel processing. In 1994 the start-up company Symyx Technologies, Inc. licensed the invention and began developing research tools that can create and screen new materials hundreds to thousands of times faster than traditional methods at a fraction of the cost. Combinatorial techniques had been successfully applied in the pharmaceutical industry to discover new drugs when Schultz and co-workers in the Molecular Design Institute of Berkeley Lab proposed that the same

288

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

289

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

290

Solar Thermal Reactor Materials Characterization  

SciTech Connect

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

291

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

292

Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting  

Science Journals Connector (OSTI)

Conventional photovoltaic technology will certainly contribute this century but to generate a significant fraction of our global power from solar energy a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon?based solution processible organic semiconductors with power conversion efficiency as high as ?8.2% which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics PLED and research path towards realization electrically injectable organic laser diodes.

Dinesh Kabra; Li Ping Lu; Yana Vaynzof; Myounghoon Song; Henry J. Snaith; Richard H. Friend

2011-01-01T23:59:59.000Z

293

Scalable Routes to Efficient Thermoelectric Materials  

E-Print Network (OSTI)

of GeSbSe phase-change materials," Nature Materials, vol. 6,processing of the phase-change material KSb5S8," Chemistryhas demonstrated the phase change material KSbS by a similar

Feser, Joseph Patrick

2010-01-01T23:59:59.000Z

294

Downloads & Patient Materials - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Health Education & Wellness Downloads & Patient Materials Ergonomics Fitness & Exercise Men's Health Nutrition Women's Health Health & Productivity Health Calculators &...

295

CHARACTERIZATION OF SIALON-TYPE MATERIALS  

E-Print Network (OSTI)

testing of ceramic materials. crucihle Thermal Shock Tests.and thermal shock. Among the various ceramic materials being

Spencer, P.N.

2010-01-01T23:59:59.000Z

296

Materials Synthesis from Atoms to Systems | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Porous Materials Thin Film Deposition Single Crystal Growth Texture Control Additive Manufacturing Nanomaterials Synthesis Designer Organic Molecules Related Research Materials...

297

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

298

Materials Characterization Capabilities at the High Temperature...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High...

299

ITP Industrial Materials: Development and Commercialization of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

300

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

302

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

303

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

304

Integrated Computational Materials Engineering (ICME) for Mg...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Magnesium Projects...

305

Screen Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode...

306

Chemistry and Materials Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

307

NREL: Photovoltaics Research - Materials Applications and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Research Printable Version Materials Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy...

308

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

309

Transformed materials : a material research center in Milan, Italy  

E-Print Network (OSTI)

[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical ...

Skerry, Nathaniel S. (Nathaniel Standish), 1971-

2002-01-01T23:59:59.000Z

310

Critical Materials Institute List of Projects | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Lithium Extraction 1.1.3 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1.2.1 Mishra, Brajendra CSM Conversion to Metal, Alloys, and Materials 1.2.2...

311

Storage depot for radioactive material  

DOE Patents (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

312

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

313

RADIATION EFFECTS IN MATERIAL MICROSTRUCTURE.  

SciTech Connect

Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties.

SIMOS,N.

2007-05-30T23:59:59.000Z

314

LANL: Ion Beam Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

315

Digital materials for digital fabrication  

E-Print Network (OSTI)

This thesis introduces digital materials by analogy with digital computation and digital communications. Traditional fabrication techniques include pick-and-place, roll-to-roll, molding, patterning and more. Current research ...

Popescu, George A

2007-01-01T23:59:59.000Z

316

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

2005-08-26T23:59:59.000Z

317

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

2005-08-26T23:59:59.000Z

318

Advances in Solar Optical Materials  

Science Journals Connector (OSTI)

This review contains several categories of optical materials that are used in the conversion or modification of solar energy for heating, cooling and lighting purposes in buildings and other structures. The ty...

Carl M. Lampert

1989-01-01T23:59:59.000Z

319

Naturally Occurring Radioactive Materials (NORM)  

SciTech Connect

This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

Gray, P. [ed.

1997-02-01T23:59:59.000Z

320

Thermoelectric Materials for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Herty Advanced Materials Development Center  

Energy.gov (U.S. Department of Energy (DOE))

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

322

Strategic raw material inventory optimization  

E-Print Network (OSTI)

The production of aerospace grade titanium alloys is concentrated in a relatively small number of producers. The market for these materials has always been cyclical in nature. During periods of high demand, metal producers ...

Vacha, Robin L. (Robin Lee)

2007-01-01T23:59:59.000Z

323

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

324

Polymers, Fractals, and Ceramic Materials  

Science Journals Connector (OSTI)

...application primarily as optical coatings and aerogels. Aerogels (1...4) Gelation //Polymer x Coating_rn Film Monomer Aggregation...Sintering.......... Aerogel Monolith Fig. 1. Ceramic...desired for index-matched coatings, then base-catalyzed materials...

DALE W. SCHAEFER

1989-02-24T23:59:59.000Z

325

Commercializationof Dredged-Material Decontamination  

E-Print Network (OSTI)

~ationalm~at~t~,upton,N ~ W bench-scale validationprocess of innovative/emerging technologies will York and disposal m@eeruftbpast experienceon of contaminatedsedimentsin dredged material, aswell as the remediation

Brookhaven National Laboratory

326

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

327

Structural materials for fusion reactors  

Science Journals Connector (OSTI)

Fusion Reactors will require specially engineered structural materials, which ... on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics ...

P. M. Raole; S. P. Deshpande

2009-04-01T23:59:59.000Z

328

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

329

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

2011-06-27T23:59:59.000Z

330

Momentive Performance Materials Distillation Intercharger  

E-Print Network (OSTI)

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

331

Material Corrion/Degradation Database  

SciTech Connect

The corrosion of a variety of structural metals and materials is presented. Data on specific material--and for well-studied agents--has been abstracted from the corrosion literature. In addition, limited data on one superacid (so-called ''Magic Acid,'' a mixture of 100% fluorosulfonic acid, HSO{sub 3}F, with 25% (w/w) of antimony pentafluoride (SbF{sub 5}) added) is tabulated.

Kinkead, S.A.

1999-07-08T23:59:59.000Z

332

Nondestructive ultrasonic testing of materials  

DOE Patents (OSTI)

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

Hildebrand, Bernard P. (Richland, WA)

1994-01-01T23:59:59.000Z

333

Material control and accountability alternatives  

SciTech Connect

Department of Energy and Nuclear Regulatory Commission regulations governing material control and accountability in nuclear facilities have become more restrictive in the past decade, especially in areas that address the insider threat. As the insider threat receives greater credibility, regulations have been strengthened to increase the probability of detecting insider activity and to prevent removal of a significant quantity of Special Nuclear Material (SNM) from areas under control of the protective force.

NONE

1991-08-12T23:59:59.000Z

334

Nondestructive ultrasonic testing of materials  

DOE Patents (OSTI)

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

Hildebrand, B.P.

1994-08-02T23:59:59.000Z

335

2014 Annual Merit Review Results Report - Materials Technologies...  

Energy Savers (EERE)

Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies...

336

High Performance Abrasion-Resistant Materials: Lessons from Nature  

E-Print Network (OSTI)

Basics of abrasion resistance materials The progressive lossachieve abrasion resistance, materials need to posses highresistance materials

Wang, Qianqian

2012-01-01T23:59:59.000Z

337

Closed source experimental system for soft x-ray spectroscopy of radioactive materials  

Science Journals Connector (OSTI)

An instrumental and experimental setup for soft x-rayspectroscopy meeting the requirements of a closed source for radioactivity is described. The system consists of a vacuum sealed cell containing the sample mounted on a tubing system to ensure compatibility with most standard manipulators. The soft x rays penetrate a thin x-ray window separating the interior of the cell from the vacuum in the experimental chamber. Our first results for single crystal PuO 2 confirm the feasibility of experiments using the setup. The results are consistent with results of first principles calculations and previously recorded spectra obtained using a standard open source setup. The results show that the closed source experimental system can be used to collect valuable experimental data from radioactive materials.

A. Modin; S. M. Butorin; J. Vegelius; A. Olsson; C.-J. Englund; J. Andersson; L. Werme; J. Nordgren; T. Kmbre; G. Skarnemark; B. E. Burakov

2008-01-01T23:59:59.000Z

338

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

an object vibrates, it creates sound, vibrations can 0:19 be detected. Besides just listening to it, we can detect it with various sensors. We 0:25 can tell what's inside a...

339

Radioactive material package seal tests  

SciTech Connect

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

340

Nuclear Material Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1194-2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.2 DECEMBER 2012 ──────────────── CHANGE NOTICE NO.3 OCTOBER 2013 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 3 DOE -STD-1194-2011 October 2013 Nuclear Materials Control and Accountability Table of Changes Page/Section Change Page 57/Section 6.4.4.1. Change from, - Accounting records and source documents shall include item identification, material type, form, quantity, location, gross

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

342

Applied Materials | Open Energy Information  

Open Energy Info (EERE)

Materials Materials Jump to: navigation, search Name Applied Materials Address 3050 Bowers Avenue Place Santa Clara, California Zip 95054 Sector Solar Stock Symbol AMAT Website http://www.appliedmaterials.co Coordinates 37.3775749°, -121.9794416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3775749,"lon":-121.9794416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

The Critical Materials Research Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

344

CHSP: Material Safety Data Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP WHO TO CALL MATERIAL SAFETY DATA SHEETS ROLES AND RESPONSIBILITIES arrow image CHEMICAL PROCUREMENT, TRANSPORTATION AND INVENTORY arrow image CHEMICAL HAZARD: DEFINITION arrow image CHEMICAL HAZARD ASSESSMENTS arrow image HAZARD CONTROLS arrow image TRAINING AND HAZARD INFORMATION arrow image EXPOSURE MONITORING & MEDICAL CONSULTATION arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image Material Safety Data Sheets and Chemical Information Resources A Material Safety Data Sheet (MSDS) is a manufacturer/importer's informational document of a hazardous chemical that describes its physical and chemical properties, hazards, and recommended precautions for handling, storage and disposal. How to Read an MSDS

345

Studying Materials Under Extreme Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying Materials Under Extreme Pressure Studying Materials Under Extreme Pressure Coupling undulator radiation from Advanced Photon Source (APS) beamlines 3-ID and 13-ID to nuclear resonant inelastic scattering techniques, researchers have determined the phonon density of states for iron under pressures up to 153 gigapascals, equivalent to those found at the Earth's core. Image of the Earth's core. Although indirect measurements and theory have, since the early 1950s, produced an informed picture of the structure and composition of the materials that make up the core of the Earth, direct proof and the answers to some intriguing questions remain unanswered. Previously, ultrahigh-pressure experiments using nuclear resonant inelastic scattering have been difficult to carry out due the tiny samples required.

346

MaterialsChemistryA Materials for energy and sustainability  

E-Print Network (OSTI)

Pages 5939�6248 #12;High efficiency perovskite solar cells: from complex nanostructure to planar, the power conversion efficiency (PCE) of perovskite-based dye-sensitized solar cells (DSSCs) has rapidly the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1

Lin, Zhiqun

347

Non-Archival Material The following materials are not required  

E-Print Network (OSTI)

and business or relating to facets of a career in photon science, particle and astroparticle science, and high materials Brochures, pamphlets, maps, directories, and posters Architectural drawings and plans and accomplishments of the Laboratory; Supports education, research, scholarship, and administration by making

Wechsler, Risa H.

348

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

349

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

Iverson, Daniel C. (Aiken, SC)

1990-01-01T23:59:59.000Z

350

Growth at Chemistry of Materials  

Science Journals Connector (OSTI)

Publication Date (Web): October 14, 2014 ... Thomson-Reuters, the corporation that runs Web of Science, has published a series of reports under the heading of Science Watch; one area covered is materials science. ... (1) They also note that the world share of papers indexed by Web of Science in materials has grown from just under 3% to 5% from 1981 to 2011, and yet the total number of papers handled during this time has more than doubled to 1.1 million per annum. ...

Jillian M. Buriak

2014-10-14T23:59:59.000Z

351

Positron annihilation rates in materials  

Science Journals Connector (OSTI)

The study of positron annihilation rate is one subject of a relatively new method of material structure analysis ?? positron annihilation spectroscopy. Polyethylene Terephthalate (PET) films have been studied by positron annihilation rate measurement. The correlation between annihilation rates and the PET film thickness was established. Similar studies were carried out for aluminium foils and water. The results give information on the probability of positron annihilation per unit of time and per unit of material thickness that is described by an explicit function of the energy transfer model.

Tran Dai Nghiep; Khuong Thanh Tuan; Ngo Danh Du

2007-01-01T23:59:59.000Z

352

Scintillator materials containing lanthanum fluorides  

DOE Patents (OSTI)

An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

353

Scintillator materials containing lanthanum fluorides  

DOE Patents (OSTI)

An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

Moses, W.W.

1991-05-14T23:59:59.000Z

354

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

355

Visual Representations of Puerto Rico in Destination Marketing Materials  

E-Print Network (OSTI)

the perceptions that local residents have of their own countries as tourist destinations. Local residents can provide valuable information about their countries as tourism destinations and can help tourism marketers determine how to represent local culture in more...

Davila Rodriguez, Mary Ann

2012-10-19T23:59:59.000Z

356

The erosion resistance of infrared transparent materials  

Science Journals Connector (OSTI)

...research-article The erosion resistance of infrared transparent materials E.J. Coad C.S...discussed. erosion resistance|infrared materials|liquid impact...Keywords: erosion resistance; infrared materials; liquid impact...

1998-01-01T23:59:59.000Z

357

Systems and methods for treating material  

DOE Patents (OSTI)

Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

Scheele, Randall D; McNamara, Bruce K

2014-10-21T23:59:59.000Z

358

Materials for Advanced Energy Technologies  

Science Journals Connector (OSTI)

...sources such as sunlight or wind become more at-tractive with...are: magnetic confinement, laser fusion, and electron beam fusion...working tem-perature of the turbine blade 10 C per year, but for...High-Tem-perature Materials in Gas Turbines (Elsevier, Am-sterdam...

Richard S. Claassen

1976-02-20T23:59:59.000Z

359

Department of Advanced Materials Science  

E-Print Network (OSTI)

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

360

Soft Magnetic Materials in Telecommunications  

Science Journals Connector (OSTI)

... , the subject being "Soft Magnetic Materials whose Properties are of Use or Significance in Telecommunications". The meetings were attended by about seventy people from Great Britain and the Continent ... for a few papers which dealt with aspects of the matter not generally considered by telecommunications engineers, the authors concentrated on the following main lines : theoretical consequences of domain ...

1952-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Life cycles of granular materials  

Science Journals Connector (OSTI)

...resisted by the slow rate at which pore water can...foundations which sit on or pass through the fill onto...from the mechanics and physics of particle interactions...behaviour can be linked to rates of pore fluid diffusion...and descriptions of the physics of the granular material...

1998-01-01T23:59:59.000Z

362

Neutron scattering of transuranium materials  

SciTech Connect

A number of neutron experiments on transuranium materials are reviewed. Purpose of these experiments, which range from studies of crystal fields in the oxides to excitations in PuSb, is to increase our understanding of the 5f electron behavior across the first half of the actinide series. Comparisons are made with the more familiar uranium analogues.

Lander, G.H.

1986-01-01T23:59:59.000Z

363

Materials Department Annual Report 1991  

E-Print Network (OSTI)

Composites 35 4.2 Solid Oxide Fuel Cells (SOFC) in Denmark 38 4.3 Ceramic Processing 40 4.4 Powder Metallurgy of Polymer Matrix Composites 18 2.6 Irradiation Defects - Fusion Materials 20 2.7 Solid Electrolytes - New

364

Plasma Processing of Advanced Materials  

SciTech Connect

Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

2005-02-28T23:59:59.000Z

365

Materialization of Universal Turing Machines  

E-Print Network (OSTI)

Materialization of Universal Turing Machines Rainer Glaschick supporting Heinz-Nixdorf MuseumsForum Paderborn, Germany #12;Contents Alan Turing's relation to Germany Turing Machines Hasenjaeger on secret communications 1947: Göttingen -- inquiry on state of computing machines #12;Turing and Münster

366

Polyanionic Cathode-Active Materials  

Science Journals Connector (OSTI)

In the 1980s, the layered rock salt types LiCoO2 1 and LiNiO2 2 and spinel-type LiMn2O4 3 were successively proposed as 4-V class cathode-active materials by Goodenough's group...

Shigeto Okada; Jun-ichi Yamaki

2009-01-01T23:59:59.000Z

367

Stability of Molten Core Materials  

SciTech Connect

The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INLs LOFT (Loss of Fluid Test) reactor project and other sources.

Layne Pincock; Wendell Hintze

2013-01-01T23:59:59.000Z

368

Hot Leg Piping Materials Issues  

SciTech Connect

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

369

Metal recovery from porous materials  

DOE Patents (OSTI)

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

370

New developments in loudspeaker materials  

Science Journals Connector (OSTI)

Perhaps the drive behind a number of important new materials developments for speakers was the compact disc. The CD brought wide dynamic range with extended bass response into the home and car and digital?ready speakers have become more than just a marketing pitch. How are speaker engineers increasing excursion thermal power handling and maintaining performance characteristics at higher sound levels while improving reliability? Specific solutions such as carbon fiber and Kevlar woven and nonwoven composite cones new cone forming technologies injection molded adhesiveless suspension surrounds thermally conductiveadhesives thermally (but nonelectrically) conductive voice coil formers high?temperature voice coil wire insulation and adhesives a new magnetic geometry for high?excursion linear travel ferrofluids for woofers high?heat emmisivity plating techniques and other fabriction and materials solutions will be briefly discussed. Advances in materials extend to enclosure materials and a brief survey of developments in this related field will be mentioned. Additionally test and measurement procedures to objectively quantify these enhancements will be touched upon.

Michael A. Klasco

1995-01-01T23:59:59.000Z

371

REPORT NO. 5 background material  

E-Print Network (OSTI)

of atmospheric testing of nuclear weapons in 1961 and 1962 the question arose as to the possible need for protec from such events as: (1) an industrial accident, possibly involving a nuclear reactor or a nuclear fuel processing plant, and (2) release of radioactive materials from the detonation of nuclear weapons or other

372

Responsible stewardship of nuclear materials  

SciTech Connect

The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

Hannum, W.H.

1994-10-01T23:59:59.000Z

373

Sandia National Laboratories: Advanced Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

374

Sandia National Laboratories: energy storage materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

375

Materials Selection Considerations for Thermal Process Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

376

Instructional Materials | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured...

377

Laser Crystallization of Phase Change Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoffrey Campbell is the Principal Investigator for Laser Crystallization of Phase Change Material LLNL BES Programs Highlight Laser Crystallization of Phase Change Material False...

378

Sandia National Laboratories: Materials Science and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

379

Composite materials with integrated embedded sensing networks  

E-Print Network (OSTI)

Interlaminar Response of Composite Materials , ed. N. J.in fibre-reinforced composite structures with embedded fibreDutton, and D. Kelly. 2004. Composite Materials for Aircraft

Schaaf, Kristin Leigh

2008-01-01T23:59:59.000Z

380

Materials Discovery Design, Synthesis & Processing | The Ames...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Discovery Design, Synthesis & Processing Vision: AMES will be the premier U.S. laboratory lusing an "atoms to applications" approach to discover and design new materials....

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Laboratory (HTML) User Program Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Materials for Li-ion...

382

Recommendation 215: Recommendation on Remaining Legacy Materials...  

Office of Environmental Management (EM)

5: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation The board...

383

Sandia National Laboratories: Combining 'Tinkertoy' Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

384

Bayer MaterialScience | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bayer MaterialScience Place: Leverkusen, Germany Website: http:www.bayermaterialscienc References: Bayer Material Science1...

385

FY 2008 Progress Report for Lightweighting Materials-  

Energy.gov (U.S. Department of Energy (DOE))

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

386

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability...  

Energy Savers (EERE)

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status September 30, 2014 - 12:00pm...

387

Transportation of Nuclear Materials | Department of Energy  

Energy Savers (EERE)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

388

Materials and Transportation Services | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials and Transportation Services General Information: Materials and Transportation Services provides Ames Laboratory employees with a wide array of services and support...

389

Sandia National Laboratories: materials science and engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

390

FY 2009 Progress Report for Lightweighting Materials  

Energy.gov (U.S. Department of Energy (DOE))

The FY 2009 Progress Report for Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies, to significantly reduce automotive vehicle...

391

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites...

392

Nanotube Composite Anode Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube Composite Anode Materials Technology available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs....

393

Free Material Optimization with Fundamental Eigenfrequency ...  

E-Print Network (OSTI)

The goal of this paper is to formulate and solve free material optimization ... Free material optimization (FMO) is a branch of structural optimization that gains in-.

2008-10-28T23:59:59.000Z

394

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

phenomena in strongly correlated electronic materials, including Mott insulators and high-temperature superconductors. The fundamental understanding of these materials can...

395

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of...

396

Hydrogen Storage Materials Workshop Proceedings Workshop, October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Workshop Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied...

397

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

398

Life Cycle Modeling of Propulsion Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

propulsion materials manufacturing technologies with an emphasis on aluminum, magnesium, titanium, and ceramics * Advanced propulsion materials' potential in heavy-duty...

399

Advances in understanding solar energy collection materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

400

Adaptive Materials Inc | Open Energy Information  

Open Energy Info (EERE)

Michigan Zip: MI 48108 Product: Adaptive Materials Inc (AMI) is a developer of portable fuel cell technology. References: Adaptive Materials Inc1 This article is a stub. You...

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

402

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

403

Materials Technologies: Goals, Strategies, and Top Accomplishments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (VTP) materialstechgoals.pdf More Documents & Publications Overview of Aluminum Overview of LightweightingMaterials: Past, Present and FutureMaterials Vehicle...

404

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of...

405

ACHP - Section 106 Regulations Flowchart Explanatory Material...  

Open Energy Info (EERE)

Explanatory Material Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: ACHP - Section 106 Regulations Flowchart Explanatory Material Abstract This...

406

WINDExchange: Wind Energy Curricula and Teaching Materials  

Wind Powering America (EERE)

Wind Energy Curricula and Teaching Materials This is a list of wind energy curricula and teaching materials for elementary, middle school, and high school students, in alphabetical...

407

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

408

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

409

material consolidation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives.Material Protection, Control, and Accounting (MPC&A) Upgrades:...

410

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

411

Advanced Materials and Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

412

NREL: Photovoltaics Research - Materials Applications and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

413

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

414

Clean Cities: Clean Cities Reference Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials to Reference Materials to someone by E-mail Share Clean Cities: Clean Cities Reference Materials on Facebook Tweet about Clean Cities: Clean Cities Reference Materials on Twitter Bookmark Clean Cities: Clean Cities Reference Materials on Google Bookmark Clean Cities: Clean Cities Reference Materials on Delicious Rank Clean Cities: Clean Cities Reference Materials on Digg Find More places to share Clean Cities: Clean Cities Reference Materials on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Reference Materials Use these reference materials-including quick-reference documents, publications, websites, and the Clean Cities Coalition Wiki-to develop

415

Armor systems including coated core materials  

DOE Patents (OSTI)

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

2013-10-08T23:59:59.000Z

416

Armor systems including coated core materials  

DOE Patents (OSTI)

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

Chu, Henry S. (Idaho Falls, ID); Lillo, Thomas M. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

2012-07-31T23:59:59.000Z

417

Nuclear Materials Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JUNE 2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.1 AUGUST 2011 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 1 DOE -STD-1194-2011 August 2011 Nuclear Materials Control and Accountability Table of Changes Page/Section Change Title Page Formatting and font size adjusted. Page 2/Section 4.h. Reference to document was updated from DOE M 470.4-1 Chg 2, Safeguards and Security Program Planning and Management, dated 10-2-10 to DOE O 470.4B, Safeguards and Security Program, dated 7-21-11. Page 2/Section 4.i. Reference to document was updated from DOE M

418

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The material’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of Energy’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

419

Serious Materials | Open Energy Information  

Open Energy Info (EERE)

Serious Materials Serious Materials Address 1250 Elko Drive Place Sunnyvale, California Zip 94089 Sector Carbon Product Reduce carbon emissions from drywall production Website http://www.seriousmaterials.co Coordinates 37.405803°, -121.987802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.405803,"lon":-121.987802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

News Releases | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Awards News & Awards News Releases Honors & Awards News Features Advanced Materials Home | Science & Discovery | Advanced Materials | News & Awards | News Releases News Releases 1-7 of 7 Results ORNL devises recipe to fine-tune diameter of silica rods December 16, 2013 - OAK RIDGE, Tenn., Dec. 16, 2013 - By controlling the temperature of silica rods as they grow, researchers at the Department of Energy's Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more. ORNL's Bruce Pint elected 2014 NACE fellow December 13, 2013 - OAK RIDGE, Tenn., Dec. 13, 2013 - Bruce Pint, a research staff member at the Department of Energy's Oak Ridge National Laboratory, has been elected a 2014 National Association of Corrosion

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Special nuclear material simulation device  

DOE Patents (OSTI)

An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

2014-08-12T23:59:59.000Z

422

Hydrocarbon sensors and materials therefor  

DOE Patents (OSTI)

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

423

CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS  

SciTech Connect

The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

2009-11-10T23:59:59.000Z

424

Nuclear Materials Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2011 June 2011 DOE STANDARD Nuclear Materials Control and Accountability U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1194-2011 i This page is intentionally left blank. DOE-STD-1194-2011 ii TABLE OF CONTENTS FOREWORD ..................................................................................................................................................................................... iii 1 . S C O P E ........................................................................................................................................................................................... 1 2

425

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2014-04-01T23:59:59.000Z

426

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2013-04-23T23:59:59.000Z

427

Evaluating dredged material placement alternatives  

E-Print Network (OSTI)

storage areas over Live Oak Ridge provides the best solution for Region 2. 24 Table 4. 4. Summary of Redfish Bay assessment. Region I Engineering ~Ratio Societal ~Ratio Environmental ~Ratin Economic Feasibility ~Ra tin ~Ra tin Create habitat... components: (I) a dredged material placement assessment that considers various engineering, societal, environmental, and economic aspects of dredging; (2) a feasibility rating assessment that quantitatively transforms the qualitative analysis; and (3...

Wooters, Kelly Lynne

2012-06-07T23:59:59.000Z

428

Dense, finely, grained composite materials  

DOE Patents (OSTI)

Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

1990-01-01T23:59:59.000Z

429

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

430

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

431

MATERIALS EDUCATION FOR THE CENTURY WORKFORCE  

E-Print Network (OSTI)

MATERIALS EDUCATION FOR THE 21ST CENTURY WORKFORCE The 18th Biennial Conference on National of Maryland Vice President, Federation of Materials Societies 8:30AM Introduction to Materials Mini-Camp for High School Students and Teachers (camp will continue throughout the day) Chuck Hayes, ASM Materials

Rubloff, Gary W.

432

Introduction Materials science and engineering is on  

E-Print Network (OSTI)

is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tionIntroduction Materials science and engineering is on a plateau. As a field, it has been one

Prentiss, Mara

433

Nanocomposite of graphene and metal oxide materials  

SciTech Connect

Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

2012-09-04T23:59:59.000Z

434

Materials Science Program Graduate Studies Handbook  

E-Print Network (OSTI)

Training For Chemical/Physical Labs 26 #12;University of Rochester Graduate Handbook Materials ScienceMaterials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2

Mahon, Bradford Z.

435

Recycled Materials Resource Jeffrey S. Melton  

E-Print Network (OSTI)

Recycled Materials Resource Center Jeffrey S. Melton Outreach Director Recycled Materials Resource Center NCC Meeting, April 9th, 2008 #12;Recycled Materials Resource Center Partner laboratory of FHWA Founded in 1998, renewed in 2007 Dedicated to the appropriate use of recycled materials in the highway

436

CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS  

E-Print Network (OSTI)

Solar Energy CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS Michael Rub August 1981 TWO-WEEK LOAN

Rubin, Michael

2013-01-01T23:59:59.000Z

437

Interim Management of Nuclear Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] 1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] FOREWORD The Savannah River Site (SRS) is a major Department of Energy (DOE) installation. The past mission of the SRS was to produce nuclear materials that supported the defense, research, and medical programs of the United States. In 1992 the Secretary of Energy directed the SRS to phase out defense-related chemical separations activities. As a result of shutdowns and reduced demand for nuclear materials, the SRS presently has a large inventory of in-process solutions, reactor fuel assemblies, and reactor targets. These materials, due to their form or to the condition in which they are maintained, could represent a concern for the public, worker health and safety, and the environment. DOE published a Notice of Intent (NOI) to prepare this environmental impact statement (EIS) on March 17, 1994 (59

438

Interim Management of Nuclear Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] 1995/01_eis0220_for.html[6/27/2011 12:53:53 PM] FOREWORD The Savannah River Site (SRS) is a major Department of Energy (DOE) installation. The past mission of the SRS was to produce nuclear materials that supported the defense, research, and medical programs of the United States. In 1992 the Secretary of Energy directed the SRS to phase out defense-related chemical separations activities. As a result of shutdowns and reduced demand for nuclear materials, the SRS presently has a large inventory of in-process solutions, reactor fuel assemblies, and reactor targets. These materials, due to their form or to the condition in which they are maintained, could represent a concern for the public, worker health and safety, and the environment. DOE published a Notice of Intent (NOI) to prepare this environmental impact statement (EIS) on March 17, 1994 (59

439

Phase change material storage heater  

DOE Patents (OSTI)

A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

Goswami, D. Yogi (Gainesville, FL); Hsieh, Chung K. (Gainesville, FL); Jotshi, Chand K. (Gainesville, FL); Klausner, James F. (Gainesville, FL)

1997-01-01T23:59:59.000Z

440

NREL: Energy Sciences - Theoretical Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

442

Material Analysis for a Fire Assessment.  

SciTech Connect

This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

Brown, Alexander; Nemer, Martin

2014-08-01T23:59:59.000Z

443

Combinatorial synthesis of inorganic or composite materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2010-08-03T23:59:59.000Z

444

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

445

Explosive scabbling of structural materials  

DOE Patents (OSTI)

A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

Bickes, Jr., Robert W. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

446

Suppressors made from intermetallic materials  

DOE Patents (OSTI)

Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

Klett, James W; Muth, Thomas R; Cler, Dan L

2014-11-04T23:59:59.000Z

447

Rheology of Soft Glassy Materials  

E-Print Network (OSTI)

We attribute similarities in the rheology of many soft materials (foams, emulsions, slurries, etc.) to the shared features of structural disorder and metastability. A generic model for the mesoscopic dynamics of ``soft glassy matter'' is introduced, with interactions represented by a mean-field noise temperature x. We find power law fluid behavior either with (x<1) or without (1

Peter Sollich; Francois Lequeux; Pascal Hebraud; Michael E Cates

1996-11-27T23:59:59.000Z

448

Development of Spintronic Bandgap Materials  

SciTech Connect

The development of Ge/Si quantum dots with high spatial precision has been pursued, with the goal of developing a platform for spintronics bandgap materials. Quantum dots assemblies were grown by molecular beam epitaxy on carbon-templated silicon substrates. These structures were characterized by atomic force microscopy. Vertically gated structures were created on systems with up to six well-defined quantum dots with a controlled geometric arrangement, and low-temperature (mK) transport experiments were performed. These experiments showed evidence for a crossover from diamagnetic to Zeeman energy shifts in resonant tunneling of electrons through electronic states in the quantum dots.

Levy, Jeremy; Awschalom, David; Floro, Jerrold

2014-02-16T23:59:59.000Z

449

Shipping container for fissile material  

DOE Patents (OSTI)

The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

Crowder, H.E.

1984-12-17T23:59:59.000Z

450

BNL | CFN: Transport of Hazardous Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Hazardous Materials and Nanomaterials Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users must adhere to Laboratory guidelines when making plans to move materials either by commercial carrier or in rented or personal vehicles. BNL hazardous material transport guidelines apply for products that meet the definition of hazardous materials according to 49 CFR 171.8 and any nanomaterial that has known hazardous properties (toxic, flammable, reactive). BNL guidelines are also provided for all other nanomaterials even if they have not been identified as hazardous materials. Some materials may be transported in personal vehicles as per "Materials of Trade" (MOT) guidance. The regulations for transporting MOT are much

451

Preparation and screening of crystalline inorganic materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2008-10-28T23:59:59.000Z

452

Combinatorial screening of inorganic and organometallic materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-01-01T23:59:59.000Z

453

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

454

Directionally solidified materials | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Clean Energy National Security Neutron Science Nuclear Science Supercomputing and Computation More Science Hubs, Centers and Institutes US ITER Home | Science & Discovery | Advanced Materials SHARE Directionally solidified materials May 15, 2013 A false-color image of molybdenum pillars, formed as a grid of nearly defect-free single crystal rods, sticking out of a silicon carbide matrix. Through a process known as directional solidification, ORNL researchers have grown materials with micrometer-sized nearly-perfect "pillars." When they tested these materials, they found that the pillars had strength

455

Anchored nanostructure materials and method of fabrication  

DOE Patents (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

456

Energy harvesting using a thermoelectric material  

DOE Patents (OSTI)

A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

2008-07-08T23:59:59.000Z

457

Silica Polyamine Composites: New Supramolecular Materials for Cation and Anion Recovery and Remediation  

SciTech Connect

The surface coverage of amorphous silica gels used in the synthesis of silica polyamine composites has been investigated by 29Si NMR. By diluting the polyamine anchor silane, chloropropyl trichlorosilane, with methyl trichlorosilane it was found that surface coverage could be markedly improved for a range of amine polymers after grafting to the silica surface. The commensurate decrease in the number of anchor points and increase in the number of free amines results in an increase in metal capacity and/or an improvement in capture kinetics. Solid state CPMAS-13C NMR has been employed to investigate the structure and metal ion binding of a series of these composite materials. It is reported that the highly branched polymer, poly(ethyleneimine) (PEI) exhibits much broader 13C NMR resonances than the linear polymers poly(allylamine) (PAA) and poly(vinylamine) (PVA). These results are understood in terms of the low energy conformations calculated from molecular modeling studies. Three new applications of the technology are also presented: (1) separation of lanthanides as a group from ferric ion and all other divalent ions; (2) a multi step process for recovering and concentrating the valuable metals in acid mine drainage; (3) a process for removing low level arsenic and selenium in the presence of sulfate using immobilized cations on the composite materials.

Hughes, Mark; Miranda, Paul; Nielsen, Daniel J.; Rosenberg, Edward; Gobetto, Roberto; Viale, Alessandra; Burton, Sarah D.

2006-03-01T23:59:59.000Z

458

Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering  

E-Print Network (OSTI)

Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San José State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work

Gleixner, Stacy

459

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network (OSTI)

quarterly · Radioactive waste retrieval, storage, disposal · Dosimetry exchange · Leak tests of sealedRadiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material, Chemistry, Physics, Applied Physiology · Radioactive Material ­ Sealed Sources, Unsealed Sources (liquid

Sherrill, David

460

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis  

E-Print Network (OSTI)

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis-throughput a b s t r a c t We present the Python Materials Genomics (pymatgen) library, a robust, open

Ceder, Gerbrand

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

462

Paving materials for heat island mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

463

Photovoltaic Cell Material Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Basics Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics that influence its suitability for specific applications. For example, PV cell materials may differ based on their crystallinity, bandgap, absorbtion, and manufacturing complexity. Learn more about each of these characteristics below or learn about these solar cell materials: Silicon (Si)-including single-crystalline Si, multicrystalline Si, and amorphous Si Polycrystalline Thin Films-including copper indium diselenide (CIS), cadmium telluride (CdTe), and thin-film silicon Single-Crystalline Thin Films-including high-efficiency material

464

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

465

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

466

Material and processes selection in conceptual design  

E-Print Network (OSTI)

Materials and manufacturing processes are an integral part of the design of a product. The need to combine materials and manufacturing processes selection during the early stages of the design has previously been realized. The work that generally...

Krishnakumar, Karthikeyan

2005-02-17T23:59:59.000Z

467

Porous low dielectric constant materials for microelectronics  

Science Journals Connector (OSTI)

...porous low-k films. The most important ones at the present time are inorganic silica-based materials (silica xerogel, aerogels), silsesquioxanes (SSQ) and organic polymers. The advantage of silica- and SSQ-based materials is that their chemical...

2006-01-01T23:59:59.000Z

468

Radiation Shielding Materials and Containers Incorporating Same  

DOE Patents (OSTI)

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

2005-11-01T23:59:59.000Z

469

Additive Micro-Manufacturing of Designer Materials  

Science Journals Connector (OSTI)

Material properties are governed by the chemical composition and spatial arrangement of constituent elements at multiple length scales. This fundamentally limits material properties with respect to each other cre...

Eric Duoss; Cheng Zhu; Kyle Sullivan

2014-01-01T23:59:59.000Z

470

Departmental Materials Transportation and Packaging Management  

Directives, Delegations, and Requirements

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

2010-11-18T23:59:59.000Z

471

Memorial and meditation, material and metaphor  

E-Print Network (OSTI)

This thesis is an exploration in the relationships between material and site, history, nature, & culture. I seek to explore the nature of material selection for architectural projects. The project is a place of healing for ...

May, Susanne M. (Susanne Marie)

1995-01-01T23:59:59.000Z

472

Understanding and Enhancing Polarization in Complex Materials  

Science Journals Connector (OSTI)

Recent advances in theoretical methods and high-performance computing allow for reliable first-principles investigations of complex materials. This article focuses on calculating and predicting the properties of piezoelectrics and "designing" new materials ...

Jerry Bernholc; Serge M. Nakhmanson; Marco Buongiorno Nardelli; Vincent Meunier

2004-11-01T23:59:59.000Z

473

Photoacoustic measurement of bandgaps of thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

Ni, George (George Wei)

2014-01-01T23:59:59.000Z

474

Mechanics of abrasive wear of elastomeric materials  

E-Print Network (OSTI)

Elastomeric materials are widely used as tire and sealing materials due to their ability to undergo large deformations and conform to the mating surface. However, their applications often result in repeated contact with ...

Qi, Hang, 1971-

2003-01-01T23:59:59.000Z

475

Static High Magnetic Fields and Materials Science  

Science Journals Connector (OSTI)

Like temperature or pressure, the magnetic field is one of the important thermodynamic parameters that are used to change the inner energies of materials. Materials are essentially composed of atomic nuclei an...

M. Motokawa; K. Watanabe; F. Herlach

2002-01-01T23:59:59.000Z

476

Materials Science and Engineering at TCCC  

E-Print Network (OSTI)

BILLION A DAY... RESPONSIBLY Technical Community ­ R&D #12;5 · Cold Drink Equipment · Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

Li, Mo

477

Composite materials in dynamic shipboard structural mounts  

E-Print Network (OSTI)

The purpose of this thesis is to investigate the viability of replacing traditional metal structural and machinery mounts with padding made of composite material. The two types of padding or isolation materials are represented ...

Faulk, Joanna (Joanna E.)

2011-01-01T23:59:59.000Z

478

New Advances in SuperConducting Materials  

ScienceCinema (OSTI)

Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

None

2014-08-12T23:59:59.000Z

479

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

2 O 5 ) nanowires, a high-energy material with a capacity ofhigh power density and low energy density of traditional dielectric capacitor materialsenergy density in capacitor materials while retaining high

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

480

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

Note: This page contains sample records for the topic "valuable materials cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Materials by Design  

Energy.gov (U.S. Department of Energy (DOE))

According to the Materials Genome Initiative, it generally requires more than 20 years to develop and implement a new or improved material for automotive applications. To accelerate this process,...

482

SUMMARY OF MATERIAL MODIFICATIONS FOR BOARD APPROVAL  

E-Print Network (OSTI)

SUMMARY OF MATERIAL MODIFICATIONS FOR BOARD APPROVAL FACULTY HANDBOOK Subject Description Relevant Handbook Sections Material Changes Change of Locus. Vacation benefit does not roll from year to year becoming a "use it or lose

483

Natural materials for carbon capture.  

SciTech Connect

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

484

Diverter assembly for radioactive material  

DOE Patents (OSTI)

A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

Andrews, K.M.; Starenchak, R.W.

1988-04-11T23:59:59.000Z

485

Combinatorial Approaches for Hydrogen Storage Materials (presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

approaches for approaches for hydrogen storage materials Leonid Bendersky Materials Science and Engineering Laboratory NIST, Gaithersburg MD Contributors: G. Downing, E. Mackey, R. Paul, R. Greenberg (NIST:CSTL); L. Cook, M. Green (NIST:MSEL) R. Cavicchi (NIST:CSTL); I. Takeuchi, H. Oguchi (UMd) Two Main Challenges to Combinatorial Analysis of Hydrogen Storage Materials Design and fabrication of appropriate materials libraries Rapid, quantitative measurements of hydrogenation

486

On measuring the elastic properties of materials  

Science Journals Connector (OSTI)

To day there is still great interest in the subject of measuring the elastic properties of materials, especially with regard to the new and complex materials for which the classic methods of characterization appear time-consuming, expensive and, in some ... Keywords: dynamic tests, elastic constants, finite element method (FEM), interferometric techniques, isotropic materials, mixed numerical-experimental techniques (MNET), non-destructive testing (NDT), orthotropic materials, static tests, vibrational methods

Leonardo Pagnotta

2009-05-01T23:59:59.000Z

487

Specialized Materials and Fluids and Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

488

Critical Materials Workshop Final Participant List  

Energy.gov (U.S. Department of Energy (DOE))

List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

489

Ion beam processing of advanced electronic materials  

SciTech Connect

This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

490

Evaluation and Characterization of Lightweight Materials: Success...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Materials Characterization Capabilities...

491

Advanced Materials Manufacturing and Innovative Technologies...  

Energy Savers (EERE)

Inform Integrity Management Plans. - Opportunities: * Leverage advances in high-performance computing and improved understanding of materials performance at condition. *...

492

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

493

Network Requirements Workshop - Documents and Background Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Requirements Reviews Network Requirements Reviews Documents and Background Materials Science Engagement Move your data Programs & Workshops Science...

494

weapons material protection | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

weapons material protection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

495

Materials Applications of Photoelectron Emission Microscopy....  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of Photoelectron Emission Microscopy. Materials Applications of Photoelectron Emission Microscopy. Abstract: Photoelectron emission microscopy (PEEM) is a versatile...

496

Materials Solutions for Hydrogen Delivery in Pipelines  

Energy.gov (U.S. Department of Energy (DOE))

Objective: Develop materials technologies to minimize embrittlement of steels used for high-pressure transport of hydrogen

497

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

498

UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...  

National Nuclear Security Administration (NNSA)

UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email:...

499

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material nemir.pdf More Documents & Publications Enhancing the...

500

Ris National Laboratory Materials Research Department  

E-Print Network (OSTI)

the exchange interaction between NiO nanoparticles 2 cells [14] and as an electrochromic material, where