Sample records for valleys public power

  1. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  2. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  3. Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

  4. Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  5. Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  6. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

  7. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

  8. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  9. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  10. Water Power Program: Publications

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart, andThomasWaste HeatWater PowerInformation

  11. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  12. Spring Valley Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  13. Elkhorn Valley Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic ProfilingElgen Wave7) WindPublic

  14. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph Home Wzeng'sVortex EnergyWDPWPAWSWabashValley

  15. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009) More Documents & Publications Industrial Customer Perspectives on Utility Energy Efficiency Programs Pumping System Assessment Tool Fact Sheet Microsoft Word - Document1...

  16. Third-Party Financing and Power Purchase Agreements for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Provides an...

  17. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  18. Twin Valleys Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to:Page EditTwinTwin

  19. Power, Media & Montesquieu. New forms of public power and the balance of power

    E-Print Network [OSTI]

    van den Brink, Jeroen

    SUMMARY Power, Media & Montesquieu. New forms of public power and the balance of power are organized it is crucial to restrain the power that the state exerts on its citizens. The state has three functions, commonly known as powers: the legislative, executive and judicial powers. This three

  20. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  1. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01T23:59:59.000Z

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  2. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy

    E-Print Network [OSTI]

    Curci, Gabriele

    Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy in revised form 31 July 2012 Accepted 1 August 2012 Keywords: Biomass energy Air quality CALPUFF NO2 SO2 fuel power plants with those fuelled with modern biomass (IPCC, 2011). However, from an air quality

  3. Cost of electric-power interruptions to residences in the Tennessee Valley

    SciTech Connect (OSTI)

    Gilmer, R W; Mack, R S

    1982-03-01T23:59:59.000Z

    This report assesses the cost of electric power outages to residential customers of the Tennessee Valley Authority (TVA). The assessment focuses primarily on costs associated with rationing electric power by means of rotating blackouts of 1 to 3 h, exercised several times per year and perhaps as often as once each month. The cost of these blackouts is assessed in terms of several measures of lost consumer's surplus and lost production within the home. Estimates are developed by season for the typical home, for homes in different parts of the Tennessee Valley, and for homes with different mixes of appliances. Estimates for a typical home in the TVA region vary from 20 cents to 50 cents per kilowatthour depending upon the season and the method of measurement used. These valuations for the TVA region are compared to cost estimates for the US as a whole. The implications of outages lasting longer than 3 h are considered, and costs sustained in such outages are outlined.

  4. QER- Comment of American Public Power Association 6

    Broader source: Energy.gov [DOE]

    To whom it may concern: Please find attached comments jointly filed by the American Public Power Association, Large Public Power Council, and Transmission Access Policy Study Group, in relation to the issues discussed at the October 6, 2014, QER Public Stakeholder Meeting on Finance (Transmission, Storage and Distribution).

  5. QER- Comment of Large Public Power Council 2

    Broader source: Energy.gov [DOE]

    Attached please find comments by the Large Public Power Council for the record regarding the April 11th QER meeting.

  6. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  7. Nebraska Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Nebraska Public Power District offers multiple rebates for commercial and industrial customers to save energy in eligible facilities. Rebates are available for energy efficient lighting, HVAC...

  8. Appendix S-50 - Power Purchase Agreement (PPA) - Public Utilities...

    Open Energy Info (EERE)

    0 - Power Purchase Agreement (PPA) - Public Utilities Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions:...

  9. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  10. Third-Party Financing and Power Purchase Agreements for Public...

    Broader source: Energy.gov (indexed) [DOE]

    of power purchase agreements, specifically as they relate to public sector solar photovoltaic projects. Author: National Renewable Energy Laboratory tapwebinar20090527coughli...

  11. Omaha Public Power District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

  12. Third Party Financing and Power Purchasing Agreements for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information. Third Party Financing...

  13. QER- Comment of Large Public Power Council 1

    Broader source: Energy.gov [DOE]

    Attached are the Comments of the Large Public Power Council on the QER. Please feel to contact me if you have any questions.

  14. Wind Power Siting: Public Acceptance and Land Use

    Wind Powering America (EERE)

    by the Alliance for Sustainable Energy, LLC. Wind Power Siting: Public Acceptance and Land Use Suzanne Tegen WINDExchange Webinar June 17, 2015 2 Overview * Current NREL Research *...

  15. Sandia National Laboratories: Water Power Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  16. Nebraska Public Power District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have their cooling system tuned-up. The High Efficiency...

  17. New York Power Authority- Energy Services Programs for Public Entities

    Broader source: Energy.gov [DOE]

    New York Power Authority (NYPA) provides energy efficiency improvements to eligible public sector organizations at no up-front cost. A range of energy efficient upgrades are available through...

  18. Public Power Infrastructure Protection Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute affirms the state's commitment to protecting electric generating facilities and describes prohibited acts and penalties. A special section applies to nuclear power generating facilities.

  19. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9,AwardGrads &AlternativeDepartmentServicesScienceSign Up

  20. Insulator damage endangers public, power reliability; ratepayers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for tips about multiple incidents of insulators damaged by firearms on its high-voltage power line near Joint Base Lewis-McChord in Tacoma, Wash. Damaged insulators can put...

  1. Unconventional energy - for a public-power utility

    SciTech Connect (OSTI)

    Leber, R.E.

    1982-01-01T23:59:59.000Z

    The paper describes a few of the hundreds of projects annually featured in the Public Power Innovation list published in the American Public Power Association's (APPA) Public Power magazine. These innovative approaches include feasibility studies, developments or demonstrations in the use of alternative fuels such as low-Btu corncob gas in a diesel generating set, the burning of corn waste in suitably modified steam boilers, anaerobic digestion of solid waste to produce methane, increasing the energy content of gas so produced from 350 Btu/cu ft to approximately 1000 Btu/cu ft by the Binax system, gasified peat for diesel power plants, the use of waste heat from diesel plants in a Rankine-cycle bottoming system, and the use of coal-derived liquid fuel in diesel engines. Other approaches include the phosphoric acid fuel cell, solar heating and cooling systems, photoelectric cell arrays, wind power, small low-head hydroelectric plants, and cogeneration systems. Other public electric utilities are providing free energy audits to their customers, and offering water-to-air heat pumps.

  2. Spring Valley Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  3. housingreportAn e-publication of UMass Lowell and the Middlesex North Registry of Deeds Merrimack Valley

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    Valley Volume 7, Issue 1 January 2013 A Year in Review at the Registry of Deeds on page 4 The Year in Review at the Registry of Deeds By Richard P. Howe Jr. Deeds, Mortgages

  4. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    SciTech Connect (OSTI)

    None

    1998-04-01T23:59:59.000Z

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  5. American Municipal Power (Public Electric Utilities)- Commercial Efficiency Smart Program (Ohio)

    Broader source: Energy.gov [DOE]

    Efficiency Smart™ provides energy efficiency incentives and technical assistance to the American Municipal Power, Inc (AMP) network of public power communities. The Efficiency Smart service...

  6. American Municipal Power (Public Electric Utilities)- Residential Efficiency Smart Program (Ohio)

    Broader source: Energy.gov [DOE]

    Efficiency Smart ™ provides energy efficiency incentives to the American Municipal Power, Inc (AMP) network of public power communities. Efficiency Smart assists residential, commercial , and...

  7. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1998-09-30T23:59:59.000Z

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  8. QER- Comment of American Public Power Association 1

    Broader source: Energy.gov [DOE]

    Attached are the American Public Power Association 's (APPA) statement for the April 11 QER public meeting, Duane Highley's statement for the same meeting since we reference it, and Sue Kelly's (APPA President & CEO) testimony from last Thursday's (April 10) Senate Energy and Natural Resources Committee hearing entitled "Keeping the Lights On – Are We Doing Enough to Ensure the Reliability and Security of the US Electric Grid?" since her testimony covers everything in regards to this meeting. Thank you in advance for your consideration of our attached documents for the QER. Please let me know if you have any questions. Best, Seth Seth Voyles Director, Government Relations 1875 Connecticut Ave., NW, Suite 1200, Washington, D.C. 20009-5715 www.publicpower.org

  9. McCook Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMavi InnovationsEnergyMcCook Public Power

  10. Public Power & Utility, Inc. (New York) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power & Utility, Inc. (New York)

  11. Public Power & Utility, Inc. (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power & Utility, Inc. (New

  12. EIS-0232: Sierra Nevada 2004 Power Marketing Program EIS (Central Valley Project)

    Broader source: Energy.gov [DOE]

    The Sierra Nevada Region needs to determine the level and character of capacity, energy, and other services that will be marketed beyond 2004. These services would be developed by combining potential hydropower operating approaches with power purchases. The Sierra Nevada Region also needs to establish eligibility and allocation criteria for the allocations of electric power resources to be marketed under contracts that will replace those expiring in 2004

  13. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect (OSTI)

    Goodman, Jr, F R

    1980-03-01T23:59:59.000Z

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  14. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    of the West Valley Citizen Task Force More Documents & Publications EIS-0337: Draft Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley...

  15. Public Opinions of Building Additional High-Voltage Electric Power Lines

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Public Opinions of Building Additional High-Voltage Electric Power Lines A Report to the National-Voltage Electric Power Lines: A Report to the National Science Foundation and the Electric Power Research Center to build new power lines. Residents living in counties with planned routes for new transmission lines

  16. VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH

    E-Print Network [OSTI]

    Firestone, Jeremy

    VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT APPROACH by Andrew D. Krueger All Rights Reserved #12;ii VALUING PUBLIC PREFERENCES FOR OFFSHORE WIND POWER: A CHOICE EXPERIMENT thank you for your perspective on offshore renewable energy regulation. As committee members, your

  17. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect (OSTI)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01T23:59:59.000Z

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  18. Microsoft PowerPoint - Final CLWR SEIS PUBLIC SCOPING PRESENTATION...

    National Nuclear Security Administration (NNSA)

    Statement for the Impact Statement for the Production of Tritium in a Commercial Light Water Commercial Light Water Reactor Public Scoping Meeting October 20 2011 October 20, 2011...

  19. QER- Comment of American Public Power Association 3

    Broader source: Energy.gov [DOE]

    Attached are APPA’s comments for the Second public QER meeting. I have tried to submit these before too, so please send me a confirmation e-mail. Thanks in advance for your consideration of my request.

  20. Third Party Financing and Power Purchasing Agreements for Public Sector PV Projects

    Broader source: Energy.gov [DOE]

    Provides information on third-party financing and Power Purchase Agreements for public sector PV projects presented at the TAP Web Seminar on May 27, 2009, includes economic and legal information.

  1. american public power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner Pjm Interconnection Llc;...

  2. NEBRASKA PUBLIC POWER DISTRICT CUSTOMER MEETING ON ENERGY ALTERNATIVES

    E-Print Network [OSTI]

    .........................................................................................9 Do you think NPPD should go forward with a 200 megawatt wind farm? ...........10 Do you think the wind farm program is the right size? .........................................10 How many total customers value solar power? ..................................................................20 Cumulative

  3. Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public Utility District

    E-Print Network [OSTI]

    Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public paper: Carbon Dioxide Footprint of the Northwest Power System, dated September 13, 2007. The Grant done a very thorough job of assessing the current and future carbon dioxide footprints of the Northwest

  4. Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying factors

    E-Print Network [OSTI]

    Firestone, Jeremy

    2007-01-01T23:59:59.000Z

    Energy Policy 35 (2007) 1584­1598 Public opinion about large offshore wind power: Underlying opinion regarding offshore wind power based on a survey of residents near a proposed development off Cape, the first offshore wind proposal in North America, in Nantucket Sound (MA, USA) has generated a strong

  5. Sandia National Laboratories: Z Pulsed Power Facility: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics: VisualTraining andPublications *only first

  6. M S R Public Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind Power Investment

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-04-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technology Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  8. Burt County Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County,Information BurntBurt County Public

  9. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2005-04-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  10. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  11. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2003-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley Region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley Region.

  12. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2006-04-02T23:59:59.000Z

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  13. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2005-10-02T23:59:59.000Z

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  14. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31T23:59:59.000Z

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  15. Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware, College of Marine and Earth Studies

    E-Print Network [OSTI]

    Firestone, Jeremy

    Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware in Massachusetts, New York, Delaware, and Texas. For Delaware, offshore wind power is currently the only cost public opposition, regulatory obstacles, and lack of incentives. Table 1: Delaware Offshore Wind Power

  16. Public Power & Utility, Inc. (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwind GmbHPublic Power &

  17. Howard Baker Center for Public Policy Nuclear Power Conference | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercialEnergy Star|documentHow toHow toOwn

  18. Remarks Concerning the Public Utility Commission of Texas Study on Bulk Power Transmission

    E-Print Network [OSTI]

    Sweatman, R. T.

    REMARKS CONCERNING THE PUBLIC UTILITY COMMISSION OF TEXAS STUDY ON BULK POWER TRANSMISSION R. T. SWEATMAN Executive Director Electric Reliability Council of Texas The citizens of Texas need reliable electric service. Our economy, our way... amounts of transmission capacity must alwavs be available in the event generation is lost in one area, so that the other utility's power can be transmitted to the utility in need. A pipeline system can suffer equipment outages easily, without loss...

  19. Strategy for advancement of IRP in public power, Volume 1: IRP advancement strategy

    SciTech Connect (OSTI)

    Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

    1995-10-01T23:59:59.000Z

    The nation`s 3,000 publicly and cooperatively owned utilities have a documented need for assistance in integrated resource planning (IRP) and related strategic business planning practices. The availability of appropriate and sufficient assistance will be an important factor influencing the ability of these utilities to face the challenges and opportunities of today`s competitive electric utility environment. The U.S. Department of Energy (DOE) actively supports IRP advancement in the investor-owned utility (IOU) sector. This is accomplished through multiple vehicles, including grant funding to the state energy offices, to the National Conference of State Legislatures (NCSL), and to the National Association of Regulatory Utility Commissioners (NARUC). However, public utilities typically are not impacted by these DOE efforts. As consumer-controlled organizations, many publicly and cooperatively owned utilities are not regulated by state public utility commissions (PUCs). To advance IRP as an essential approach for publicly and cooperatively owned utility operation in a drastically changing industry, DOE must develop additional vehicles of assistance, including the federal power agencies and key industry organizations such as the American Public Power Association (APPA) and the National Rural Electric Cooperatives Association (NRECA).

  20. Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalacticGanges Valley

  1. Community Leadership: Best Practices for Brazos Valley

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01T23:59:59.000Z

    Community Leadership: Best Practices for Brazos Valley Report for the Brazos Community Foundation Executive Summary May 7, 2008 This report was prepared as part of a graduate student capstone project at the George Bush School of Government... and Public Service for our client, the Brazos Community Foundation (BCF). We believe the report has implications for the BCF and the broader nonprofit community in the Brazos Valley. The project team identified ten potential community leadership roles...

  2. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  3. Public goods and private interests: Understanding non-residential demand for green power

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01T23:59:59.000Z

    This article presents the results of the first large-scale mail survey of non-residential green power customers in the United States. The survey explored the motivations, attitudes, and experiences of 464 business, non-profit, and public-sector customers that have voluntarily opted to purchase - and frequently pay a premium for - renewable electricity. Results of this study should be of value to marketers interested in targeting these customer segments, to policy makers interested in fostering and understanding non-residential demand for green power, and to academics pondering the motivations for firms to engage in such voluntary environmental initiatives.

  4. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Harlingen Irrigation District Cameron County No. 1

    E-Print Network [OSTI]

    Wolfe, Clint D.; Stubbs, Megan J.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.; Pennington, Ellen L.; Rogers, Callie S.

    Population expansion and water shortfalls have placed the Texas Lower Rio Grande Valley (Valley) center stage in water publicity. The unique characteristics and lack of public knowledge on how irrigation districts divert and convey water from...

  5. TVA- Green Power Providers

    Broader source: Energy.gov [DOE]

    Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

  6. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earthquake Engineering and Structural Dynamics Engineering Institute Publications-Earthquake Engineering and Structural Dynamics Contact Institute Director Charles Farrar (505)...

  7. Role of pilot projects and public acceptance in developing wireless power transmission as an enabling technology for space solar power systems

    SciTech Connect (OSTI)

    Woodell, M.I. [Bivings Woodell, Inc., Washington, DC (United States)] [Bivings Woodell, Inc., Washington, DC (United States); Schupp, B.W. [Raytheon Electronic Systems, Marlborough, MA (United States)] [Raytheon Electronic Systems, Marlborough, MA (United States)

    1996-12-31T23:59:59.000Z

    In all system concepts for delivering space solar power to terrestrial power systems, wireless power transmission (WPT) is identified as a critical link in the technology chain. To realize the full potential of WPT as an enabling technology for the development of space power systems, the technology needs to (1) be demonstrated as a commercially viable, low risk technology, and (2) be shown to be acceptable to the public. If WPT`s full potential is to be realized, its initial applications must be carefully chosen and demonstrated through a series of pilot projects which will develop both the technology and its public acceptance. This paper examines the role of pilot projects and how they will play an increasingly important role in the development and acceptance of WPT as an enabling technology for space solar power systems. Recognizing that public acceptance is the ultimate determinant of the commercial success or failure of a technology, the paper then explores the role of public opinion in the commercialization process of space solar power systems utilizing WPT. A framework that begins to define the process required to realize the full commercial potential of wireless power transmission is established. 21 refs., 1 fig., 2 tabs.

  8. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications-Sensors and Sensing Technologies Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  9. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Institute Publications-Damage Prognosis Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  10. The role of public policy in emerging green power markets: An analysis of marketer preferences

    SciTech Connect (OSTI)

    Wiser, R.

    1999-08-01T23:59:59.000Z

    Green power marketing has been heralded by some as a means to create a private market for renewable energy that is driven by customer demand for green products. This report challenges the premise--sometimes proffered in debates over green markets--that profitable, sizable, credible markets for green products will evolve naturally without supportive public policies. Relying primarily on surveys and interviews of US green power marketers, the article examines the role of specific regulatory and legislative policies in enabling the green market, and searches for those policies that are believed by marketers to be the most conducive or detrimental to the expansion of the green market. The authors find that marketers: (1) believe that profitable green power markets will only develop if a solid foundation of supportive policies exists; (2) believe that establishing overall price competition and encouraging customer switching are the top priorities; (3) are somewhat leery of government-sponsored or mandated public information programs; and (4) oppose three specific renewable energy policies that are frequently advocated by renewable energy enthusiasts, but that may have negative impacts on the green marketers' profitability. The stated preferences of green marketers shed light on ways to foster renewables by means of the green market. Because the interests of marketers do not coincide perfectly with those of society, however, the study also recognizes other normative perspectives and highlights policy tensions at the heart of current debates related to green markets. By examining these conflicts, they identify three key policy questions that should direct future research: (1) to what extent should price competition and customer switching be encouraged at the expense of cost shifting; (2) what requirements should be imposed to ensure credibility in green products and marketing; and (3) how should the green power market and broader renewable energy policies interact?

  11. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2013-05-15T23:59:59.000Z

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  13. Strategy for advancement of IRP in public power, Volume 2: Technical appendices

    SciTech Connect (OSTI)

    Garrick, C.J. [Garrick & Associates, Morrison, CO (United States)

    1995-10-01T23:59:59.000Z

    NREL and subcontractor Garrick & Associates are conducting the Advancement of integrated resource planning (IRP) in Public Power Program, sponsored by DOE. The program is intended to develop a consistent strategy for DOE to advance IRP practices in the publicly and cooperatively owned utility sector. The IRP advancement program includes two major tasks: key participant involvement and strategy development. The Program`s initial task is to involve key public and cooperative utility organizations and their constituents in the development of the IRP advancement strategy. Key Participant Involvement is accomplished through two distinct subtasks: Needs Assessment and Steering Committee Involvement. The Needs Assessment identifies key participant needs, expectations, common interests, issues, and divergences that must be addressed by the IRP program. The results of this effort, which are presented in this {open_quotes}Needs Assessment Summary Report,{close_quotes} provide a foundation for the specific strategy development efforts conducted later in the IRP project. The remaining sections of this report present the approach to the Needs Assessment subtask and summarize the findings of this effort.

  14. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01T23:59:59.000Z

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  15. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    SciTech Connect (OSTI)

    LaCommare, Kristina H.; Eto, Joseph H.

    2008-10-10T23:59:59.000Z

    Large blackouts, such as the August 14-15, 2003 blackout in the northeasternUnited States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. This study examines current state and utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based primarily on reliability information for 2006 reported by 123 utilities to 37 state public utility commissions.

  16. Surprise Valley Electric Co-Op Trinity Shasta Lake

    E-Print Network [OSTI]

    Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

  17. Bethel Valley Watershed

    Broader source: Energy.gov (indexed) [DOE]

    study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

  18. Public goods and private interests: Understanding non-residential demand for green power

    E-Print Network [OSTI]

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01T23:59:59.000Z

    Residential Demand for Green Power Buying Green Power: Survey Results Profiling the Respondents The profile

  19. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServicesPublication PolicyPublications

  20. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServicesPublication PolicyPublications

  1. Puget Sound Reinforcement Project : Planning for Peak Power Needs : Scoping Report, Part A, Summary of Public Comments.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-07-01T23:59:59.000Z

    This report summarizes public participation in the environmental scoping process for the Puget Sound Reinforcement Project, a Bonneville Power Administration (BPA) and Puget Sound area utilities study of voltage stability in northwestern Washington state. The environmental scoping phase of the Puget Sound project consisted of a series of public meetings and a public comment period. The content of these meetings is summarized in 2.0, Public Involvement. In 3.0, Comment Summary, the report summarizes comments received via meetings, mail and phone. The report ends with a description of the next steps in the project. Chapter 4.0, describes the decision process to be used by BPA and area utilities. Chapter 5.0 describes opportunities for public participation in decisions to be made about the future reliability of Puget Sound's electricity supply.

  2. Ganges valley aerosol experiment.

    SciTech Connect (OSTI)

    Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

    2011-08-01T23:59:59.000Z

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  3. Under consideration for publication in J. Fluid Mech. 1 Wave-power extraction by a compact array

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Under consideration for publication in J. Fluid Mech. 1 Wave-power extraction by a compact array of buoys X A V I E R G A R N A U D1 AND C H I A N G C. M E I2 1 Department of Aeronautics and Astronautics) The majority of existing single-unit devices for extracting power from sea-waves relies on resonance

  4. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    Renewable Energy Power Purchase Agreements. ” Journal ofit is the dynamic of power purchase agreement negotiationsbuy and sell sides of power purchase agreements (PPA), and

  5. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Valley North Lake Mohave Lake Mead Mohave County Inyo County San Bernardino County Clark County Esmeralda

  6. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications Resources Policies, Manuals

  7. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications Resources Policies,

  8. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications Resources

  9. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications ResourcesSensing

  10. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications ResourcesSensingLee »

  11. Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications ResourcesSensingLee

  12. Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

    SciTech Connect (OSTI)

    Wheeler, Timothy A.; Whitehead, Donnie W.; Lois, Erasmia

    1999-07-01T23:59:59.000Z

    This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

  13. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01T23:59:59.000Z

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  14. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    a boom-bust cycle in wind power plant investment in the U.S.tax credit for wind turbine power plants is an ineffectivewind power and became comfortable with turbine technology and plant

  15. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Broader source: Energy.gov [DOE]

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  16. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18T23:59:59.000Z

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  17. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performanceon U.S. Wind Power Installation, Cost, and Performancenot returned). Higher wind supply costs; Greater reliance on

  18. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION 1 An Auction Approach to Distributed Power

    E-Print Network [OSTI]

    Tao, Meixia "Melissa"

    much power to reserve for its own transmission, how much power to purchase from other users, and how to Distributed Power Allocation for Multiuser Cooperative Networks Yuan Liu, Student Member, IEEE, Meixia Tao goal is to design an optimal distributed power allocation algorithm that enables user cooperation

  19. Accepted for publication at IEEE Trans. Power Systems, July 2000, paper No. PE-006PRS (08-2000). Time Dependence of Controls to Avoid Voltage Collapse

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    system model. Keywords: Power system control, voltage stability, voltage collapse, reactive power1 Accepted for publication at IEEE Trans. Power Systems, July 2000, paper No. PE-006PRS (08 is first presented with the help of a simple test system. The time dependence of the control actions

  20. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    Costs of Regulatory Uncertainty for Coal-Fired Power Plants. ”cost options for retrofitting later. Significantly, enthusiasm for coal plant

  1. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  2. Two Texas Wind Energy Leaders Win 2011 Public Power Award | Department...

    Broader source: Energy.gov (indexed) [DOE]

    fiscal year to power about 49,450 homes. In just one year, Denton's purchase has reduced air pollution by preventing the release of 424,128 tons of carbon dioxide, 206 tons of...

  3. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    L.T. and P. Kraske (2003). “Renewable Energy Power PurchaseInvestments in Renewable Energy: The Role of Policy Design47. Wiser, R. (1997). “Renewable energy finance and project

  4. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    of these policies would give wind energy a boost relative toon the cost of wind power. ” Energy Policy 25(1): 15-27.of Policy Uncertainty on Renewable Energy Investment: Wind

  5. Practitioner Perspectives Matter: Public Policy and Private Investment in the U.S. Electric Power Sector

    E-Print Network [OSTI]

    Barradale, Merrill Jones

    2010-01-01T23:59:59.000Z

    risk associated with CO2 emissions under potential climateimpact in terms of CO2 emissions of these power plants,gas, or wind, annual CO2 emissions from these 5,000 plants

  6. Indefinite Deferral: Imagining Salinas Valley’s Subterranean Stream

    E-Print Network [OSTI]

    Sarna-Wojcicki, Daniel

    2009-01-01T23:59:59.000Z

    ground waters of the Salinas Basin. It therefore provides aPublished “Bulletin 52”, Salinas Basin Investigation Seaintervention, the Salinas Valley groundwater basin has not

  7. Songs From Happy Valley and Other Stories

    E-Print Network [OSTI]

    Nagel, Lisa W.

    2013-01-01T23:59:59.000Z

    RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

  8. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. Case Study - Sioux Valley Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

  10. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30T23:59:59.000Z

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  11. Review of Historical and Modern Utilization of Wind Power Publications Department

    E-Print Network [OSTI]

    UTILIZATION TODAY WIND POWER TECHNOLOGY q Modern wind turbine technology q Concepts COST OF WIND ENERGY TYPES costs BEGINNERS GUIDE TO WIND ENERGY STUDIES q Selected text books on wind energy and wind turbines WECS - Wind Energy Conversion Systems. To co-ordinate the many terms derived from ancient Teutonic

  12. Microsoft PowerPoint - xxDraft SEIS PUBLIC MEETING PRESENTATION 9 sep 2014 [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis and FeedbackProgrammatic UpdatePublic

  13. Microsoft PowerPoint - NA-RP_Public_Workshop_April-2013.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.pptStates A ComparisonMorgantown Site

  14. Microsoft PowerPoint - Revised Public Information Opportunities 5-10-07.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.pptStatesEnergyAn innovativeTank Closure

  15. Environmental Assessment : Happy Valley [Substation Project].

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1982-05-01T23:59:59.000Z

    The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

  16. Sheep Valley Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners Wind FarmSheep Valley Ranch

  17. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy CoopValley Geothermal

  18. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22T23:59:59.000Z

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  19. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    E-Print Network [OSTI]

    LaCommare, Kristina H.

    2008-01-01T23:59:59.000Z

    and Electronics Engineers (IEEE) Distribution Reliabilityand Electronics Engineers (IEEE) Standard 1366-2003, IEEE Guide for Electric Power Distribution Reliabilityand Electronics Engineers (IEEE) Standard 1366-2003, IEEE Guide for Electric Power Distribution Reliability

  20. California Energy Commission's Public Interest Energy Research Program Case Study PIER Buildings Program Research Powers the Future www.energy.ca.gov/research

    E-Print Network [OSTI]

    California at Davis, University of

    valves. While a system may still be able to provide adequate cooling capacity, low and Automated FaultCalifornia Energy Commission's Public Interest Energy Research Program Case Study PIER Buildings Program Research Powers the Future www.energy.ca.gov/research The Problem Maintenance for rooftop packaged

  1. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  2. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  3. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01T23:59:59.000Z

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  4. Bear Creek Valley Watershed

    Broader source: Energy.gov (indexed) [DOE]

    Highway 95 and the haul road are available to the public during the fall for deer and turkey hunts. All kills made during these hunts are checked for radiation levels prior to...

  5. South Valley Compliance Agreement Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware HelpsSouth Valley Agreement Name South Valley

  6. Sandia National Laboratories: Biofuels Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SystemsRenewable EnergyBiomassBiofuelsBiofuels Publications Biofuels Publications Undergirded by the powerful capabilities, state-of-the-art facilities, and brilliant minds that...

  7. Idaho_DuckValley

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind PowerColdwater

  8. Accepted for publication in Wireless Networks, Special Issue on Multiuser Detection in Wireless Communications Adaptive Power Control and MMSE Interference

    E-Print Network [OSTI]

    Yates, Roy

    that the receiver structure is fixed and iteratively update the transmit powers of the users to provide them hand optimizes the receiver structure with the assumption that the users have fixed transmitter powers communication systems, iterative power control is used to provide each user with an acceptable level

  9. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

  10. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  11. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14T23:59:59.000Z

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2014-01-02T23:59:59.000Z

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  13. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  14. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  16. Environmental Assessment for Authorizing the Puerto Rico Electric Power Authority (PREPA) to allow Public Access to the Boiling Nuclear Superheat (BONUS) Reactor Building, Rincon, Puerto Rico

    SciTech Connect (OSTI)

    N /A

    2003-02-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUS facility as a museum.

  17. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public fears regarding nuclear energy remain and are probably enhances by the effect of the tsunami on the Fukushima reactor, development of nuclear power is likely to continue...

  18. Quail Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuail Valley, California: Energy

  19. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuailValley, Arizona: Energy

  20. Risk-informed public safety policy for seismic events in the vicinity of a nuclear power plant

    E-Print Network [OSTI]

    Afolayan Jejeloye, Olubukola

    2002-01-01T23:59:59.000Z

    Nuclear Power Plants (NPPs) are potentially vulnerable to accidents, which can either be internally or externally initiated. External events include natural events like tornadoes, hurricanes, and earthquakes. The purpose ...

  1. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

  2. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy Savers [EERE]

    conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review...

  3. Roaring Fork Valley- Energy Efficient Appliance Program

    Broader source: Energy.gov [DOE]

    The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

  4. Sandia National Laboratories: Livermore Valley Open Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Valley Open Campus Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure...

  5. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  6. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    MT line. Our MT data set reveals numerous resistivity structures which illuminate the evolution and present state of the Long Valley system. Many of these have been quantified...

  7. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  8. Independent Activity Report, West Valley Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

  9. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  10. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  11. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  12. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

  13. azapa valley northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

  14. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

  15. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  16. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  17. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date...

  18. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  19. 2 0 1 4 S i e r r a N e v a d a F i e l d C o u r s e Geothermal Power in the Long Valley

    E-Print Network [OSTI]

    Polly, David

    of steam turning a turbine. A variety of environmental factors can determine viability of a plant. Harvesting heat can be done by Dry Steam, Flash Steam, or Binary Cycle power plants, which all rely on a type

  20. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp JumpsourceSouthlake,AeHJump to:SpringValley

  1. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  2. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  3. Town of Portola Valley 765 Portola Roac

    E-Print Network [OSTI]

    , Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

  4. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16T23:59:59.000Z

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D. [CH2M HILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& W West Valley, LLC (CHBWV)

    2013-09-19T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    CH2M HILL • B& W West Valley, LLC

    2012-09-27T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    CH2MHILL • B& W West Valley, LLC

    2011-09-28T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. NREL: Publications - Obtain Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sheets, technical reports, and more-from the following sources: NREL Publications Database Search for publications and bibliographic citations using our database. Many...

  10. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01T23:59:59.000Z

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  11. EIA publications directory, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-24T23:59:59.000Z

    This directory contains abstracts and ordering information for EIA publications. The abstracts are arranged by broad subject category such as coal, petroleum, natural gas, and electric power. A comprehensive subject index, a title index, and a report number index are included. Each entry gives the title, report number, publication frequency, date, number of pages, and ordering information. Publication began with the 1979 edition.

  12. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  13. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  14. Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    ForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms infrastructure cost. On the other hand, we can adopt a "smart grid" solution, which allows EVs to communicate and unacceptable voltage variation that overload the power grid [1]. To tackle this problem, we may increase

  15. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill JumpCalifornia:Valley

  16. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytechLong Island PowerLong Valley

  17. Castro Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump to:Valley, California:

  18. Cherry Valley Elementary School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,Volcanic NationalValley Elementary

  19. Crustal Structure and tectonics of the Imperial Valley Region California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpen Energy Information Imperial Valley

  20. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeye Power, IncBuffalo Valley

  1. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  2. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    SciTech Connect (OSTI)

    Layton, D. (ed.)

    1980-07-01T23:59:59.000Z

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  3. The Lower Rio Grande Valley Regional Public Transportation Coordination Plan

    E-Print Network [OSTI]

    Lower Rio Grande Valley Development Council

    2006-11-30T23:59:59.000Z

    Cameron Park Zapata Ranch Santa Monica Lyford South Raymondville Midway North Villa del Sol Tierra Bonita Laguna Heights Reid Hope King La Feria North Port Mansfield Progreso Lakes Del Mar Heights San Manuel-Linn El Camino Angosto Bausell and Ellis South... Monica Lyford South Raymondville Midway North Villa del Sol Tierra Bonita Laguna Heights Reid Hope King Port Mansfield Progreso Lakes Del Mar Heights San Manuel-Linn El Camino Angosto Bausell and Ellis South Padre Island Los Angeles Subdivision Arroyo...

  4. West Valley Melter Draft Waste Evaluation Released for Public Comment |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe&

  5. West Valley Melter Draft Waste Evaluation Released for Public Comment |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart,Department ofWelcome to

  6. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  7. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect (OSTI)

    Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

    1999-03-01T23:59:59.000Z

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  8. Southeastern Power Administration (WFP) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications A History of the Southeastern Power Administration (1990 - 2010) Western Area Power Administration (WFP) Electricity & Energy Reliability...

  9. Post project appraisal of Green Valley Creek, Solano County, California : design and management review

    E-Print Network [OSTI]

    Martin, Maureen; Fortin, Alex

    2003-01-01T23:59:59.000Z

    Associates, 1991. Green Valley Creek Restoration Plan. Beck,1996. Green Valley Creek Post-Construction Monitoring 3 Year1998. Green Valley Creek Post-Construction Monitoring 5

  10. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

  11. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

  12. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Broader source: Energy.gov (indexed) [DOE]

    applies spray foam to a waste box to stabilize the contents and fill void space before the container is shipped off site for disposal. West Valley Accomplishments: Year in Review...

  13. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Exploration Basis The goal of this project was to better define the fault system running through the thermally active part of Dixie Valley and infer the sources for the heat...

  14. 25055 W. Valley Parkway Olathe, Kansas 66061

    E-Print Network [OSTI]

    Dyer, Bill

    25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

  15. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III THE OHIO RIVER VALLEY CO2 STORAGE PROJECT

    SciTech Connect (OSTI)

    Neeraj Gupta

    2005-05-26T23:59:59.000Z

    As part of the Department of Energy's (DOE) initiation on developing new technologies for storage of carbon dioxide in geologic reservoir, Battelle has been awarded a project to investigate the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. This project is the Phase III of Battelle's work under the Novel Concepts in Greenhouse Gas Management grant. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations and potentially in nearby deep coal seams. The current technical progress report summarizes activities completed for the January through March 2005 period of the project. As discussed in the report, the technical activities focused on development of injection well design, preparing a Class V Underground Injection Control permit, assessment of monitoring technologies, analysis of coal samples for testing the capture system by Mitsubishi Heavy Industry, and presentation of project progress at several venues. In addition, related work has progressed on a collaborative risk assessment project with Japan research institute CREIPI and technical application for the Midwest Regional Carbon Sequestration Partnership.

  16. Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York

    SciTech Connect (OSTI)

    N /A

    2004-01-16T23:59:59.000Z

    The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

  17. 1 Public Policy and Public Administration PUBLIC POLICY AND PUBLIC

    E-Print Network [OSTI]

    Vertes, Akos

    1 Public Policy and Public Administration PUBLIC POLICY AND PUBLIC ADMINISTRATION Through its Trachtenberg School of Public Policy and Public Administration, Columbian College of Arts and Sciences offers the Master of Public Policy, Master of Public Administration, and the Doctor of Philosophy in the field

  18. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  19. EIA Publications Directory 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-18T23:59:59.000Z

    This directory contains abstracts and ordering information for EIA publications released in the above time period. The abstracts are arranged by broad subject category such as coal, petroleum, natural gas, and electric power. A comprehensive subject index, a title index, and a report number index are included. Each entry gives the title, report number, publication frequency, date, number of pages, and ordering information.

  20. Valley wins High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

  1. Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450

    E-Print Network [OSTI]

    Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

  2. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  4. Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

  5. LA Rooftop Solar Project Goes Online in San Fernando Valley ...

    Broader source: Energy.gov (indexed) [DOE]

    LA Rooftop Solar Project Goes Online in San Fernando Valley LA Rooftop Solar Project Goes Online in San Fernando Valley June 26, 2013 - 4:52pm Addthis Installing a rooftop solar...

  6. Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

  7. Public Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Meetings Individual Permit: Public Meetings Subscribe to receive notifications for semiannual Individual Permit for Storm Water public meetings. Contact Environmental...

  8. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  9. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  10. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  11. NREL: Water Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo of

  12. San Joaquin Valley Unified Air Pollution Control District

    E-Print Network [OSTI]

    #12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

  13. The Valley Fever Corridor Year 2 Fundraising Status

    E-Print Network [OSTI]

    Arizona, University of

    Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

  14. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  15. Quantum pumping of valley current in strain engineered graphene

    SciTech Connect (OSTI)

    Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

    2014-01-06T23:59:59.000Z

    We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

  16. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  17. Potential hydrologic characterization wells in Amargosa Valley

    SciTech Connect (OSTI)

    Lyles, B.; Mihevc, T.

    1994-09-01T23:59:59.000Z

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

  18. Boulder Valley School District (Colorado) Power Purchase Agreement Case

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoostingand Capacity Concerns inStudy

  19. Yazoo Valley Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers HomeXuanen Shiziguan Hydropower CoYasunaga Wire Saw Systems

  20. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinodKiribati:

  1. Minnkota Power Cooperative Wind Turbine (Valley City) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanetMinnesota/WindInformation Turbine

  2. USBIA-Mission Valley Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor AfricaToolkit forUSBIA-Mission

  3. Silicon Valley Power - Solar Electric Buy Down Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force Retention WorkStephen GraffSilent

  4. Accepted for publication in Energy Policy Greenhouse-gas Emissions from Solar Electric-and Nuclear Power: A Life-cycle

    E-Print Network [OSTI]

    for solar-electric- and nuclear-power-generation, based on data from 12 photovoltaic (PV) companies widely, from 40 to 180 CO2-eq./kWh for PV, and 3.5 to 100 CO2-eq./kWh for nuclear power. Country, it is envisioned that expanding generation technologies based on nuclear power and renewable energy sources would

  5. These works have been submitted to the IEEE for possible publication in the IEEE Transactions on Power Systems. Copyright may be transferred without notice,

    E-Print Network [OSTI]

    of transmission system constraints on market power potential. Locational marginal prices (LMPs) which satisfy are organized into groups that have the potential to exhibit market power, and corresponding price perturbation vectors are found such that the generators in a group with market power potential can adjust prices

  6. inverter. He is the author or co-author of more than 300 publica-tions in his research fields including the book `Control in Power

    E-Print Network [OSTI]

    Simőes, Marcelo Godoy

    is connected to the grid or to other sources or storage, it can easily approach 100 kW [1]. Very specialized and custom-made wound- rotor schemes enable even higher power. More recently, power electronics and micro supple- ments, and asynchronous injection of power into the grid. Generator Selection for Wind Energy

  7. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  8. Idaho_DuckValleyAntelope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind

  9. Idaho_DuckValleyMiller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWindMiller Creek Site

  10. Wild Ennerdale The natural evolution of a wild valley

    E-Print Network [OSTI]

    greater freedom to develop our future landscapes, and to create more opportunities for people by people. · To develop greater public enjoyment, engagement and social benefit. · To establish sustainable, including replacing a diesel generator with a water turbine which can produce over 6kw of power. · New

  11. Accepted for publication in Proceedings of IEEE International Conference on Communications, June 2001 A Novel Co-existence Algorithm for Unlicensed Variable Power Devices

    E-Print Network [OSTI]

    Peha, Jon M.

    ], the Federal Communications Commission (FCC) has created several unlicensed bands, such as the IndustryAccepted for publication in Proceedings of IEEE International Conference on Communications, June, Science and Medicine (ISM) bands, the Unlicensed Personal Communication Services (UPCS) band [2

  12. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30T23:59:59.000Z

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  13. ORNL Publications External Publication

    E-Print Network [OSTI]

    Pennycook, Steve

    /Responsibilities - Conducts catalytic testing using a high-pressure gas-phase reactor and a plug-flow reactor which operates Office (which includes Word, PowerPoint, and Excel,) required. Proven ability to function well in a fast

  14. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  15. Elk Valley coal implements smartcell flotation technology

    SciTech Connect (OSTI)

    Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

    2008-06-15T23:59:59.000Z

    In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

  16. Citrus Production in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01T23:59:59.000Z

    LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

  17. These works have been submitted to the IEEE for possible publication in the IEEE Transactions on Power Delivery. Copyright may be transferred without notice,

    E-Print Network [OSTI]

    .e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid in 1998 as a cluster of micro-generators and storage with the ability to separate and isolate itself from on Power Delivery. Copyright may be transferred without notice, after which this version may no longer

  18. VWZ-0011- In the Matter of West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a “Motion to Dismiss” filed by West Valley Nuclear Services, Inc. (West Valley) on May 18, 1999. In its Motion, West Valley seeks the partial dismissal of a Complaint filed...

  19. Multispectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et...

  20. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova &...

  1. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  2. Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

  3. Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

  4. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  5. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  6. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  7. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

  8. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

  9. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  10. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1995 - 2000 Usefulness not indicated DOE-funding Unknown...

  11. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  12. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  13. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

  14. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

  15. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

  16. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration program and multiple studies are being conducted to...

  17. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration program and multiple studies are being conducted to...

  18. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    Eric Sonnenthal, Jon Sainsbury, Joe Iovenitti, B. Mack Kennedy (2013) Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive...

  19. aburra valley caused: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Albian, Karrantza Valley, Northwest Spain): Implications Recherche Dveloppement, Carbonate Sedimentology Group, avenue Larribau sn, 64018 Pau Cedex - France e'Espagne) sont...

  20. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Exploration Activity...

  1. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

  2. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    Open Energy Info (EERE)

    Okaya & Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985)...

  4. Valley, Ames teams headed for National Science Bowl | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    school event will have 50 teams. Valley will be represented by Gabriel Mintzer, Ryan Thompson, Charles Napier, Sunita Kolareth and Arun Velamuri and coached by Nate Speichinger....

  5. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  6. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  7. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  8. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  9. antarctic dry valley: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  10. antarctic dry valleys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  11. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley...

  12. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada,...

  13. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and...

  14. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley,...

  15. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    Open Energy Info (EERE)

    Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada,...

  16. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  17. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  18. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

  19. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Research Program Update - Fiscal Year 2004 B. M. Kennedy, M. C. van Soest (2006) a Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Additional...

  20. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Helium Isotope...

  1. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  2. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Environmental Management (EM)

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic analysis...

  3. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

  4. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

  6. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

  8. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  10. Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)

    Broader source: Energy.gov [DOE]

    Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

  11. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,...

  12. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Taylor & Gerlach,...

  13. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  14. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada- relations between surface phenomena and the geothermal reservoir Jump to: navigation, search OpenEI...

  15. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  16. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  17. Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

  18. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  19. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  20. Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program

    Broader source: Energy.gov [DOE]

    Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

  1. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

  2. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  3. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

  4. EIS-0478: Antelope Valley Station to Neset Transmission Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings,...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1991 - 1991 Usefulness not useful DOE-funding Unknown...

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

  7. Resources on Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Resources on Purchasing Renewable Power Resources on Purchasing Renewable Power Many helpful resources about purchasing renewable power are available. Publications Renewable...

  8. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  9. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

  10. Landtype-Association (LTA) Descriptions for the Flathead Valley2 Section M333B Flathead Valley

    E-Print Network [OSTI]

    Appendix 6 Landtype-Association (LTA) Descriptions for the Flathead Valley2 Section M333B Flathead illustrations: · Figure 50: Map showing location of M333B within the Northern Region · Figure 51: M333B distribution of LTAS within M333B · Figure 53: Bar chart showing abundance of landform groups within M333B

  11. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  12. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07T23:59:59.000Z

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  13. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,Little Valley Geothermal Area (Redirected

  14. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing atGreenhouse GasesRespond1CALIFORNIA VALLEY

  15. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,WetzelTechnologiesWhetstone, Arizona:Valley

  16. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA LiquidAL2010-03.pdfAMO PEERANTELOPE VALLEY

  17. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapitalInformationChemicalsAire Valley

  18. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder RiverPowell Valley

  19. Clean Cities: Rogue Valley Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern ColoradoRogue Valley Clean

  20. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataforma Itaipu deValley Fuel Ethanol

  1. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(RedirectedLightManufacturingDiablo Valley

  2. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | Open EnergyChippewa Valley Electric Coop Jump

  3. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: Energy ResourcesSouth,GrapeGrass Valley

  4. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)PearlPennsylvania StatePenoyer Valley

  5. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVIServicesValley Energy Jump

  6. CASL Core Partner - Tennessee Valley Authority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About UsTennessee Valley

  7. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd DiDixie HotDixie Valley

  8. Minnesota Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesota Valley

  9. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation Tengchong County ZhongdianTennessee Valley

  10. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SAValley ElectricValley

  11. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's picture Submitted byWhitewater Valley Rural EMC

  12. Gabbs Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStormGLOBALGabbs Valley Geothermal

  13. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley Elec Coop Jump to:

  14. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGoldenarticle is a stub. YouGrass Valley

  15. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl JumpSolar, Logo: All Valley

  16. TFC-0004- In the Matter of Tri-Valley CARES

    Broader source: Energy.gov [DOE]

    Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. § 552.

  17. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01T23:59:59.000Z

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  18. Public Service Companies, General Provisions (Virginia)

    Broader source: Energy.gov [DOE]

    Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and all persons authorized to transport passengers or...

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  20. Bill Post is a Valley leader, involved with the ASU Foundation, Blue Cross/Blue Shield of Arizona, The Greater Phoenix Leadership, The Institute of Nuclear

    E-Print Network [OSTI]

    Zhang, Junshan

    , The Thunderbird School of Global Management, and Translational Genomics Research Institute. In 2007, he was Valley such as efforts to improve power plant emissions-to-algae-to-biofuel, high efficiency solar cells, and projects for the fifth consecutive year in the 2009 Dow Jones World Sustainability Index and the 2009 Dow Jones North

  1. Electric Power Board of Chattanooga- Energy Efficient New Homes Program for Builders and Developers

    Broader source: Energy.gov [DOE]

    The Electric Power Board of Chattanooga, in collaboration with the [http://www.tva.gov Tennessee Valley Authority], offers an incentive to builders and developers of single-family and multi-family...

  2. West Valley Demonstration Project Administrative Consent Order, August 27, 1996 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUEWater Power ProgramDecemberWendy CainWest Valley

  3. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  4. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01T23:59:59.000Z

    Oregon: Bonneville Power Administration. Annual ReportProposal to Bonneville Power Administration. NMFS. Bottom,migration. Bonneville Power Administration. Annual Report

  5. Airborne particles in the San Joaquin Valley may affect human health

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

  6. Real-Time Pricing- A Flexible Alternative for Electrical Power Supply

    E-Print Network [OSTI]

    Reynolds, S. D.; Frye, A. O. Jr.

    REAL-TIME PRICING - A FLEXIBLE ALTERNATIVE ..OR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT In an increasingly competitive operating... conditions to more tl,an 240 mills per kilo,~atthollr 78 REAL-TIME PRICING A FLEXIBLE ALTERNATIVE rOR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT...

  7. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  8. DSW Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada...

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  11. Passive solar homes in Delaware Valley

    SciTech Connect (OSTI)

    Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

    1997-12-31T23:59:59.000Z

    This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

  12. Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

  13. Sulphur Springs Valley EC- SunWatts Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

  14. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10T23:59:59.000Z

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...

  15. J. J. Crosetti: Pajaro Valley Agriculture, 1927 to 1977

    E-Print Network [OSTI]

    Regional HIstory Project, UCSC Library; Crosetti, J. J.; Jarrell, Randall

    1993-01-01T23:59:59.000Z

    Salinas Valley. You take the Tenneco Company, which is onethat conglomerates like Tenneco can claim? Crosetti: WellUnion 43, 45, 77 and UFW 48 Tenneco Company 60 The Grapes of

  16. Present State of the Hydrothermal System in Long Valley Caldera...

    Open Energy Info (EERE)

    Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

  17. Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...

    Energy Savers [EERE]

    waste (HLW) which had been generated by the prior commercial reprocessing of spent nuclear fuel at the Western New York Nuclear Service Center in West Valley New York. The...

  18. Ohio River Valley Water Sanitation Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

  19. Red River Valley REA- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  20. Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina 

    E-Print Network [OSTI]

    Hein, Andrew S.

    This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

  1. Isotopic Analysis At Valley Of Ten Thousand Smokes Region Area...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten...

  2. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    Nevada- Summary of Doe Studies Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development at Dixie Valley, Nevada- Summary of...

  3. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated Dense Array and Transect MT Surveying at Dixie Valley...

  4. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

  5. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  6. Microsoft Word - Finely_NorthValley_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Manager - KEWM-4 Proposed Action: Finely Creek and North Valley Creek property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-58888 Categorical Exclusion...

  7. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

  8. Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

  9. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    by deep test wells below 10,000' in four deep tests. Impacts Proof of a new tectonic theory for the Imperial Valley. Funding Source American Recovery and Reinvestment Act of 2009...

  10. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    in the central caldera and later a portion of the caldera west of the Resurgent Dome. Well data established that the principal geothermal reservoir in Long Valley was not...

  11. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada

    SciTech Connect (OSTI)

    Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01T23:59:59.000Z

    Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

  13. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08T23:59:59.000Z

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  14. Influence of a river valley constriction on upstream sedimentation

    E-Print Network [OSTI]

    Kinnebrew, Quin

    1988-01-01T23:59:59.000Z

    to the downstream constriction. The Buckhorn Plantation, shown by the pattern, lies immediately upstream from the river valley constriction. roughness, the degree of the channel contraction, and the constriction entrance geometry. Conditions Inducing Flood...) for various constriction geometries and found that squared constriction entrances will produce a backwater effect more readily than a rounded entrance for all degrees of channel contraction (Chow, 1959). The geometry of the valley above the constriction...

  15. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  16. Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors for Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    chart show the trends in the power and energy flow behavior with remarkable peaks and valleys that can1 Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors a systematic investigation of power and energy transduction in piezoelectric wafer active sensors (PWAS

  17. Urban air quality of Kathmandu valley

    SciTech Connect (OSTI)

    Sharma, C.K. [Royal Nepal Academy of Science and Technology, Kathmandu (Nepal)

    1996-12-31T23:59:59.000Z

    The oval shaped tectonic basin of Kathmandu valley occupying about 600 sq. km. of area is situated in the middle sector of Himalayan range. There are three districts in the alley, i.e. Kathmandu, Litilpur, and Bhaktapur. Out of the three the most populated is the Kathmandu city (the capital of Kingdom of Nepal) which has 668,000 population in an area of approximately 50 sq. km. The city population consumes energy about 1/3 of total imports of Nepal in the form of gasoline, diesel, kerosene, furnace oil and cooking gas. This has resulted heavy pollution of air in the city leading bronchitis, and throat and chest diseases. Vehicle has increased several fold leading in recent months to 100,000 in number in a road of about 900 kms., out of which 25% is only metalled. Most of two and three wheelers are polluting the air by emission gases as well as dust particulate. SO{sub 2} has been found to go as high as 202 micro grams per cubic meter and NO{sub 2} to 126 micro gram particularly in winter months when a thick layer of fog covers the valley up to 10:00 AM in the morning. All the gases are mixed within the limited air below the fog and the ground. This creates the problem. Furthermore, municipal waste of 500 m{sup 3} a day and also liquid waste directly dumping in Bagmati river to the tune of 500,000 liters per day makes city ugly and filthy. Unless pollution of air, water, and land are controlled in time, Nepal will lose much of its foreign exchange earnings from tourist industry. It is found that tourist arrivals are considerably reduced in recent years and most of hotels occupancy is 50 to 60% in peak time. Nepal is trying to introduce legal frame work for pollution control but it will take time to be effective like in other developing countries unless government is strong.

  18. Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: EnergyPulte

  19. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  20. Financing Solar PV at Government Sites with PPAs and Public Debt...

    Broader source: Energy.gov (indexed) [DOE]

    Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government sties with power purchase agreements and public debt. Author:...

  1. Geochemical evolution of Mexicali Valley groundwaters

    SciTech Connect (OSTI)

    Makdisi, R.S.; Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Sanchez R., J.

    1982-08-10T23:59:59.000Z

    Isotopic and chemical compositions of Mexicali Valley groundwaters vary widely. Observed variations reflect different water origins, mineral-water reactions, lateral variations of delta facies as well as evaporation. Regional treatment of the groundwater data shows that northern and central regions are a mixture of old and new Colorado River water. Variations in water chemistry result from different groundwaters origins and the effects of lateral delta facies changes. Dissolution of gypsum and precipitation of carbonates, silicates, and phosphates are suggested. The eastern Mesa de San Luis and southern region water originates primarily from the Gila River catchment area. This water is undersaturated with respect to gypsum and carbonates and is oversaturated with respect to silicates. Most of the western groundwaters are a mixture of Colorado River and geothermal waters in the proximity of the Cerro Prieto geothermal field. Recharge to the geothermal aquifer is from the west as well as the north and east. Calcite is being precipitated out as the groundwater temperatures rise in response to the geothermal anomaly. Other western groundwaters reflect a dominant mixture of Colorado River water and evaporated lake water. Some Western groundwater samples suggest dilution by local rainwater and/or irrigation water.

  2. NREL: Publications Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Photo of the cover of several NREL publications. The NREL Publications Database contains bibliographic information about publications developed or written by NREL...

  3. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  4. Community Power Works: Good Jobs, Green Jobs Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    given by Community Power Works at the Good Jobs, Green Jobs Conference cpwgoodjobsgreenjobs-1.pdf More Documents & Publications Community Power Works Better Buildings...

  5. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Water Power...

  6. Request for Information: Federal Government Power Purchase Agreements...

    Broader source: Energy.gov (indexed) [DOE]

    request for information for federal government power purchase agreement (PPA) issues. pparfi.pdf More Documents & Publications Response Summary: Department of Energy Power...

  7. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Broader source: Energy.gov (indexed) [DOE]

    rogers.pdf More Documents & Publications Advanced Power Electronics and Electric Motors R&D Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Electric...

  8. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration...

  9. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste...

  10. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  11. Mark Walker Director of Public Affairs

    E-Print Network [OSTI]

    the Bonneville Power Administration, which has not raised its conservation budget. If others can increaseMark Walker Director of Public Affairs Northwest Power and Conservation Council Dear Mr. Walker, According to your recent study, "A Retrospective Look at the Northwest Power and Conservation Council

  12. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06T23:59:59.000Z

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  13. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    SciTech Connect (OSTI)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01T23:59:59.000Z

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  14. A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910

    E-Print Network [OSTI]

    Sorensen, Conner

    1968-01-01T23:59:59.000Z

    of western Kansas, in particular the community around Garden City, Kansas. This history attempts to relate the development of irrigation in the Arkansas Valley through its formative years, 1880-1910. The term "Arkansas River Valley" as used here refers...

  15. The diurnal cycle of air pollution in the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    Panday, Arnico Kumar

    2006-01-01T23:59:59.000Z

    This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

  16. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    E-Print Network [OSTI]

    Panday, Arnico K.

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

  17. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Office of Environmental Management (EM)

    Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern...

  18. Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley 

    E-Print Network [OSTI]

    Leidner, Andrew

    2012-07-16T23:59:59.000Z

    The study area for this dissertation is the Texas Lower Rio Grande Valley (Valley). The overarching theme is water and includes regional water management, water management institutions, and water supply decision-making as it relates to community...

  19. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. EM Employees at West Valley Help Beat Goal for Food Banks

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  2. DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

  3. Sixth Power Plan northwest Power and Conservation Council

    E-Print Network [OSTI]

    's loads · Bonneville sells wholesale power to over 120 publicly-owned utilities · Variability in hydro generation led to development of the nation's first major spot market for wholesale power · Bonneville built and wholesale power are low · Retirement of coal-fired plants have been announced; will require development

  4. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  5. Publication Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServicesPublication Policy Publication

  6. The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

  7. February 17, 2005 Traffic: See current conditions on all Valley freeways

    E-Print Network [OSTI]

    McGraw, Kevin J.

    ° Flagstaff 34° |Traffic Weather Site search| | | | | |Front Page Valley & State Sports Business Arizona Wheels Yes Ahwatukee Chandler Gilbert Glendale/Peoria Mesa Phoenix Scottsdale Southwest Valley Sun CitiesFebruary 17, 2005 Traffic: See current conditions on all Valley freeways PHOENIX 56° Tucson 53

  8. STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY

    E-Print Network [OSTI]

    STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY BY RICHARD THOMPSON AND ANDREW PEACE: Thompson, R (2005), Stand dynamics in Tilio-Acerion woodlands of the Clyde Valley. Highland Birchwoods, Munlochy #12;STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY by Richard Thompson* and Andrew

  9. Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene Zhenhua Wu,1

    E-Print Network [OSTI]

    Valley-Dependent Brewster Angles and Goos-Ha¨nchen Effect in Strained Graphene Zhenhua Wu,1 F. Zhai local strains in graphene can be tailored to generate a valley- polarized current. By suitable be used to construct a valley filter in graphene without the need for any external fields. DOI: 10

  10. [Having a] Life in the Happy Valley 1.2 Cris Pedregal Martin

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    [Having a] Life in the Happy Valley ­ 1.2 Cris Pedregal Martin Department of Computer Science known as ``The Happy Valley,'' henceforth simply ``the Valley.'' Specifically, we discuss food, cultural will strongly influence your well­being, your happiness, and ultimately your ability to function aca­ demically

  11. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  12. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01T23:59:59.000Z

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  13. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  14. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  15. Plantation settlement in the Brazos River Valley, 1820-1860

    E-Print Network [OSTI]

    Bornhorst, Jacquelyn Wooley

    1971-01-01T23:59:59.000Z

    +ary cultivation vras neces- sary ard +he mi'd climate insurepl good crops. Yet, not to. p many of the settlers ven! west of the Brazos Valley at first because -' t va the general impre sion in the early days that only the timber d. portion of the ta!e vas... STER GE ART S Eay I'9il i~'ajor 8 bjeci. : History FLANTATZON SETTLEYiZBT IN THE BRAVOS RIVER VALLEYS 1820-1860 A Thesis by Jac ~uelyn 'Jooley Eornhorst ARRrov H as to style ann content by: 8 a~ (Chg. raan oc Co~=. u. ttee) Plw~ &~ (I ies...

  16. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  17. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  18. KRS Chapter 278: Nuclear Power Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

  19. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  20. EIS-0048-S: Bonneville Power Administration Proposed FY 1976 Program Facility Location, Okanogan Area Service, Douglas and Okanogan Counties, WA, Supplemental

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this facility location supplemental statement to address a proposal for transmission facilities to serve the Okanogan Valley, Washington. This statement is a supplement to Department of the Interior FES 75-79.

  1. Pelamis Wave Power Ocean Power Delivery Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley ElPelamis Wave Power

  2. Coldwater Board of Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Coldwater Board of Public Utilities (CBPU), in conjunction with American Municipal Power's "Efficiency Smart" program, offers incentives that encourage residential customers to install energy...

  3. Public Utility Regulatory Act, Alternative Energy Providers (Texas)

    Broader source: Energy.gov [DOE]

    Chapter 35 of the Public Utility Regulatory Act specifically addresses alternative energy providers, and contains provisions designed to aid such providers in selling power in Texas's competitive...

  4. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  5. Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology

    SciTech Connect (OSTI)

    Morris, W.; Hill, J. (eds.)

    1980-07-01T23:59:59.000Z

    Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

  6. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: Energy Resources Jump

  7. Omaha Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas CompanyOklahoma/WindOkpilakII

  8. Custer Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage EditCrystalsol

  9. NREL: Concentrating Solar Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhat IsThermal

  10. Norris Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniXInformationNongqishiNorfolkNorrisNorris

  11. Perennial Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup

  12. Omaha Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice ofInformation OlkariaHeights,Om

  13. Michigan Public Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| Open EnergyEnergy Information

  14. Cornhusker Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers| Open5.4868032°,Fuel

  15. Lafayette Public Power Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNL EnergyLafarge Roofing

  16. MSR Public Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to: navigation,LushuiLyme,MDLMP WindfarmsMSKMSR

  17. Southern Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to:Southern Maryland

  18. Southwest Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc JumpSouthwest Iowa Rural ElecSouthwest

  19. Nebraska Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNaturaSystems | Open

  20. Vinton Public Power Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformationVineyard Energy Project

  1. Roosevelt Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRollingRooseveltPark,

  2. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information Burkina FasoBuschelBusinessButler

  3. Georgia Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValley near| OpenMountain JumpPower

  4. Skagit Valley Research Collection / Ian E. Efford (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    Skagit Valley Research Collection / Ian E. Efford (collector) Compiled by Christopher Hives (1997 of Creation / Physical Description o Collector's Biographical Sketch o Scope and Content o Notes File List-1982. 13 cm of textual records. 35 photographs. Collector's Biographical Sketch Ian Efford was an ecologist

  5. Citrus Variety Trends in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Alderman, D. C. (DeForest Charles)

    1951-01-01T23:59:59.000Z

    Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

  6. West Valley transfer cart control system design description

    SciTech Connect (OSTI)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01T23:59:59.000Z

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  7. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  8. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  9. Sustainability of irrigated agriculture in the San Joaquin Valley, California

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

  10. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  11. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  12. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07T23:59:59.000Z

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  13. Pumpernickel Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublic ArtTexas JumpPulteGroup

  14. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  15. Public Lecture

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    An outreach activity is being organized by the Turkish community at CERN, on 5 June 2010 at CERN Main Auditorium. The activity consists of several talks that will take 1.5h in total. The main goal of the activity will be describing the CERN based activities and experiments as well as stimulating the public's attention to the science related topics. We believe the wide communication of the event has certain advantages especially for the proceeding membership process of Turkey.

  16. Requirements for Power Plant and Power Line Development (Wisconsin)

    Broader source: Energy.gov [DOE]

    This page describes requirements for obtaining a Certificate of Public Convenience and Necessity (CPCN) or a Certificate of Authority (CA), one of which is required for any new power plant...

  17. CNG a Natural for Tulsa Public Schools

    SciTech Connect (OSTI)

    Not Available

    2004-04-01T23:59:59.000Z

    This 2-page Clean Cities fact sheet describes the use of natural gas power for Tulsa Public Schools' fleet of buses and cars. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Tulsa Public Schools.

  18. AMERICAN ANTHROPOLOGIST Public Anthropology

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    AMERICAN ANTHROPOLOGIST Public Anthropology 2012 Public Anthropology Year in Review: Actually, Rick a torrent of criticism from anthropologists, including an online response by #12;Year in Review: Public

  19. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01T23:59:59.000Z

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  20. Chuckawalla Valley State Prison | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International

  1. Publication Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServicesPublication Policy

  2. Publications - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServicesPublicationPublicationsnuclear

  3. Publications | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013 2012 2011 2010Publications The NREL

  4. Publications Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications

  5. NET SYSTEM POWER: A SMALL SHARE OF

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NET SYSTEM POWER: A SMALL SHARE OF CALIFORNIA'S POWER MIX IN 2005 the California Energy Commission's annual calculation of net system power as required by state law (Public Utilities Code, § 398.1 - 398.5). The report also defines net system power and explains how

  6. ESnet Powers NRL's 100 Gbps Remote I/O Demo at SC14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powers NRL's 100 Gbps Remote IO Demo at SC14 News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon...

  7. Sandia Energy - Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates Techno-EconomicLaunch ofHandling

  8. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SA Jump to:Biodiesel Inc Jump to:

  9. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs andCrops Ltd Jump1-EA Jump to:Crosse, WisconsinDakota

  10. Clean Air Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy CoopValleyPower Jump

  11. Nuclear power attitude trends

    SciTech Connect (OSTI)

    Nealey, S.M.

    1981-11-01T23:59:59.000Z

    The increasing vulnerability of nuclear power to political pressures fueled by public concerns, particularly about nuclear plant safety and radioactive waste disposal, has become obvious. Since Eisenhower's Atoms-for-Peace program, utility and government plans have centered on expansion of nuclear power generating capability. While supporters have outnumbered opponents of nuclear power expansion for many years, in the wake of the Three Mile Island (TMI) accident the margin of support has narrowed. The purpose of this paper is to report and put in perspective these long-term attitude trends.

  12. PDC bits find application in San Joaquin Valley

    SciTech Connect (OSTI)

    Fox, J.P.; Wood, J.E.

    1984-04-01T23:59:59.000Z

    Polycrystalline diamond compact (PDC) bits have been successfully and economically used to drill sand and shale sections in the oilfields of the Southern San Joaquin Valley of California. ''Successful'' refers to reducing the number of days to drill a well by four to six days, and ''Economical'' refers to reducing the cost per foot for the sand and shale intervals drilled with PDC bits. Enhancements of design variables including variations in back rake and side rake angles, and improved selection (numbers and sizes) of nozzles have helped PDC bits be economical in the Southern San Joaquin Valley. In addition to conventional vertical wells, PDC bits used in conjunction with mud motors and steering tools have also been successfully used to directionally drill wells in this area.

  13. Laboratory work in support of West Valley glass development

    SciTech Connect (OSTI)

    Bunnell, L.R.

    1988-05-01T23:59:59.000Z

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report.

  14. A simulation of the Neolithic transition in the Indus valley

    E-Print Network [OSTI]

    Lemmen, Carsten

    2011-01-01T23:59:59.000Z

    The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

  15. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect (OSTI)

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05T23:59:59.000Z

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  16. Radiation safety at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Hoffman, R.L.

    1997-05-06T23:59:59.000Z

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

  17. Citrus Varieties for the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01T23:59:59.000Z

    Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

  18. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energy’s proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  19. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  20. The San Joaquin Valley Westside Perspective

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.; Linneman, J. Christopher; Tanji, Kenneth K.

    2006-03-27T23:59:59.000Z

    Salt management has been a challenge to westside farmerssince the rapid expansion of irrigated agriculture in the 1900 s. Thesoils in this area are naturally salt-affected having formed from marinesedimentary rocks rich in sea salts rendering the shallow groundwater,and drainage return flows discharging into the lower reaches of the SanJoaquin River, saline. Salinity problems are affected by the importedwater supply from Delta where the Sacramento and San Joaquin Riverscombine. Water quality objectives on salinity and boron have been inplace for decades to protect beneficial uses of the river. However it wasthe selenium-induced avian toxicity that occurred in the evaporationponds of Kesterson Reservoir (the terminal reservoir of a planned but notcompleted San Joaquin Basin Master Drain) that changed public attitudesabout agricultural drainage and initiated a steady stream ofenvironmental legislation directed at reducing non-point source pollutionof the River. Annual and monthly selenium load restrictions and salinityand boron Total Maximum Daily Loads (TMDLs) are the most recent of thesepolicy initiatives. Failure by both State and Federal water agencies toconstruct a Master Drain facility serving mostly west-side irrigatedagriculture has constrained these agencies to consider only In-Valleysolutions to ongoing drainage problems. For the Westlands subarea, whichhas no surface irrigation drainage outlet to the San Joaquin River,innovative drainage reuse systems such as the Integrated Farm DrainageManagement (IFDM) offer short- to medium-term solutions while morepermanent remedies to salt disposal are being investigated. Real-timesalinity management, which requires improved coordination of east-sidereservoir releases and west-side drainage, offers some relief toGrasslands Basin farmers and wetland managers - allowing greater salinityloading to the River than under a strict TMDL. However, currentregulation drives a policy that results in a moratorium on all drainagereturn flows.