Sample records for valley rea powder

  1. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  2. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

  3. Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  4. Red River Valley REA- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  5. Extending the REA-DSL by the Planning Layer of the REA Ontology

    E-Print Network [OSTI]

    future events "are scheduled" or "are planned" by commitments. Now, our REA-DSL covers all basic concepts to predict the financial future of a company and, thereby, helps managers in their decision making. In orderExtending the REA-DSL by the Planning Layer of the REA Ontology Dieter Mayrhofer and Christian

  6. Women @ Energy: Rea Simpson | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThePatricia Hoffman is the AssistantRea Simpson Rea

  7. Morgan County REA- Efficiency Credit/Rebate Programs

    Broader source: Energy.gov [DOE]

    Morgan County REA (MCREA), in conjunction with Tri-State Generation and Transmission Association, provides financial incentives for all ratepayers to improve the energy efficiency of homes and...

  8. Women @ Energy: Rea Simpson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavita Ravi WomenPersis Drell Women @Rea

  9. REA-DSL: Business Model Driven Data-Engineering

    E-Print Network [OSTI]

    information about a company's financial and economic status. Furthermore, it al- lows them to predict future concepts to model commitments on events that are planned for the future. Nowadays, REA is considered}@big.tuwien.ac.at Abstract--An accounting information system (AIS) manages data about a company's financial and economic

  10. Powder dispersion system

    DOE Patents [OSTI]

    Gorenz, Heather M. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM)

    2011-09-20T23:59:59.000Z

    A powder dispersion method and apparatus comprising an air eductor and a powder dispensing syringe inserted into a suction connection of the air eductor.

  11. From Economic Drivers to B2B Process Models: a Mapping from REA to UMM

    E-Print Network [OSTI]

    of the business network. We propose to use business modeling techniques - such as REA (Resource of the most prominent ontologies for business modeling, to UMM (UN/CEFACT's Modeling Methodology), a standardized methodology for modeling the global choreography of inter- organizational business processes. We

  12. The Role of NGOs in Preventing and Managing Water Conflicts in Ethiopia Rea Seraina Bonzi

    E-Print Network [OSTI]

    Richner, Heinz

    The Role of NGOs in Preventing and Managing Water Conflicts in Ethiopia Rea Seraina Bonzi M and managing conflicts arising from water development projects in Ethiopia. It seeks to find out development in water resources development. The institutional settings and the legal framework in Ethiopia complicate

  13. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  14. Preparation of titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  15. Programa de Ps-Graduao em Metrologia Mestrado rea de Concentrao: Metrologia para Qualidade e Inovao

    E-Print Network [OSTI]

    1 Programa de Pós-Graduação em Metrologia ­ Mestrado 2014.1 Área de Concentração: Metrologia para Qualidade e Inovação A Coordenação do Programa de Pós-Graduação em Metrologia da PUC-Rio, nos termos do Metrologia, para o primeiro semestre de 2014. 1. Objetivo Formar e capacitar profissionais de elevado nível

  16. The ReA electron-beam ion trap charge breeder for reacceleration of rare isotopes

    SciTech Connect (OSTI)

    Lapierre, A.; Schwarz, S.; Kittimanapun, K.; Fogleman, J.; Krause, S.; Nash, S.; Rencsok, R.; Tobos, L.; Perdikakis, G.; Portillo, M.; Rodriguez, J. A.; Wittmer, W.; Wu, X.; Bollen, G.; Leitner, D.; Syphers, M. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 South Shaw Lane, East Lansing, MI 48824 (United States); Collaboration: ReA Team

    2013-04-19T23:59:59.000Z

    ReA is a post-accelerator at the National Superconducting Cyclotron Laboratory at Michigan State University. ReA is designed to reaccelerate rare isotopes to energies of a few MeV/u following production by projectile fragmentation and thermalization in a gas cell. The facility consists of four main components: an electron-beam ion trap (EBIT) charge breeder, an achromatic charge-over-mass (Q/A) separator, a radio-frequency quadrupole accelerator, and a superconducting radio-frequency linear accelerator. The EBIT charge breeder was specifically designed to efficiently capture continuous beams of singly charged ions injected at low energy (<60 keV), charge breed in less than 50 ms, and extract highly charged ions to the Q/A separator for charge-state selection and reacceleration through the accelerator structures. The use of highly charged ions to reach high beam energies is a key aspect that makes ReA a compact and cost-efficient post-accelerator. The EBIT is characterized by a high-current electron gun, a long multi-electrode trap structure and a dual magnet to provide both the high electron-beam current density necessary for fast charge breeding of short-lived isotopes as well as the high capture probability of injected beams. This paper presents an overview and the status of the ReA EBIT, which has extracted for reacceleration tests stable {sup 20}Ne{sup 8+} ion beams produced from injected gas and more recently {sup 39}K{sup 16+} beams by injecting stable {sup 39,41}K{sup +} ions from an external ion source.

  17. PROBLEMAS DE ESCALA E A RELAO REA-INDIVDUO EM ANALISE ESPACIAL DE DADOS

    E-Print Network [OSTI]

    Camara, Gilberto

    , basta dispor de um banco de dados e de uma base geográfica (como um mapa de municípios), e grande partePROBLEMAS DE ESCALA E A RELA??O ÁREA- INDIVÍDUO EM ANALISE ESPACIAL DE DADOS CENSITÁRIOS Taciana de, Ontologias, Modelos conceituais e temporalidade em Banco de dados, Gestão e Recuperação da Informação e

  18. Precision powder feeder

    DOE Patents [OSTI]

    Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

    2001-07-10T23:59:59.000Z

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  19. Aluminum powder metallurgy processing

    SciTech Connect (OSTI)

    Flumerfelt, J.F.

    1999-02-12T23:59:59.000Z

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  20. Powder River Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E A,Poway,Powder River

  1. Identificao de reas vulnerveis ocorrncia de incndios florestais, provocados por atividades antrpicas, utilizando diferentes mtodos de

    E-Print Network [OSTI]

    Camara, Gilberto

    ; RisQue98, 1998). Os dados gerados nesta pesquisa permitirão a identificação de áreas onde à ocorrência malha viária. b. Geração dos Mapas Temáticos. Com base nos planos de informação gerados na fase 1 resultado modelos numéricos ponderados na escala de 0-1 (normalizados) que permitirão a integração dos dados

  2. R e s u m e 1 o f 1 8 PATRICK S. SULLIVAN, REA, CPP

    E-Print Network [OSTI]

    R e s u m e 1 o f 1 8 PATRICK S. SULLIVAN, REA, CPP E d u c a t i o n BA Harvard University, Biology/Ecology; 1989 P r o f e s s i o n a l L i c e n s e / C e r t i f i c a t i o n s State Action Reserve (CAR) California Air Resources Board (CARB), Accredited Lead Verifier (E.O. H-09-60) P r o

  3. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  4. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  5. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  6. Bethel Valley Watershed

    Broader source: Energy.gov (indexed) [DOE]

    study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

  7. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder RiverPowell Valley

  8. Ganges valley aerosol experiment.

    SciTech Connect (OSTI)

    Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

    2011-08-01T23:59:59.000Z

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  9. OREJAS VALDES, FERNANDO Vicerector de Poltica de Recerca PARCERISA BUNDO, JOSEP Vicerector de l'rea d'Arquitectura

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    '?rea d'Arquitectura PUIGDOM?NECH FRANQUESA, JOAN Vicerector de Comunitat, Acció Social i Sostenibilitat'Agricultura de Barcelona SAGARRA TRIAS, FERRAN 210 ETSAB Escola Tècnica Superior d'Arquitectura de Barcelona SEGUI SANTANA, VICTOR 290 ETSAV Escola Tècnica Superior d'Arquitectura del Vallès VILA MARTI, FREDERIC

  10. OREJAS VALDES, FERNANDO Vicerector de Poltica de Recerca PARCERISA BUNDO, JOSEP Vicerector de l'rea d'Arquitectura

    E-Print Network [OSTI]

    Yannuzzi Sanchez, Marcelo

    '?rea d'Arquitectura PUIGDOM?NECH FRANQUESA, JOAN Vicerector de Comunitat, Acció Social i Sostenibilitat Superior d'Agricultura de Barcelona ROS BALLESTEROS, JORDI 210 ETSAB Escola Tècnica Superior d'Arquitectura de Barcelona SEGUI SANTANA, VICTOR 290 ETSAV Escola Tècnica Superior d'Arquitectura del Vallès VILA

  11. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  12. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Valley North Lake Mohave Lake Mead Mohave County Inyo County San Bernardino County Clark County Esmeralda

  13. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  14. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  15. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14T23:59:59.000Z

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01T23:59:59.000Z

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  2. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. 3OURNALOF GEOPHYSICALRESEARCH VOL. 73, NO. 18, SEPTEMBER15, 1968 Commentsonthe Paper by D. G. Rea and B. T. O'Leary,

    E-Print Network [OSTI]

    Fridlind, Ann

    and B. T. O'Leary, On the Compositionof the Venus Clouds' JAES E. HAsE AD HOWARD CHEYNEY GoddardSpaceFlight Center,Institute [or SpaceStudies,NASA New York, New Yorl 10025 In a recent paper Rea and O'Leary [1968 causeabsorptionfeaturesat 1.5 and 2.0 as strong as assumedby Rea and O'Leary. Their conclusionwas basedin part on labora

  4. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  5. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  6. Method for synthesizing powder materials

    SciTech Connect (OSTI)

    Buss, R.J.; Ho, P.

    1988-01-21T23:59:59.000Z

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  7. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  8. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath (Littleton, CO)

    1998-01-01T23:59:59.000Z

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  9. Powder River, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E A,Poway,Powder

  10. Indefinite Deferral: Imagining Salinas Valleys Subterranean Stream

    E-Print Network [OSTI]

    Sarna-Wojcicki, Daniel

    2009-01-01T23:59:59.000Z

    ground waters of the Salinas Basin. It therefore provides aPublished Bulletin 52, Salinas Basin Investigation Seaintervention, the Salinas Valley groundwater basin has not

  11. Songs From Happy Valley and Other Stories

    E-Print Network [OSTI]

    Nagel, Lisa W.

    2013-01-01T23:59:59.000Z

    RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

  12. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Case Study - Sioux Valley Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

  14. Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF G FGalacticGanges Valley

  15. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, R.

    1998-08-04T23:59:59.000Z

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  16. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  17. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  18. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  19. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  20. Silica powders for powder evacuated thermal insulating panel and method

    DOE Patents [OSTI]

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  1. Method for molding ceramic powders

    DOE Patents [OSTI]

    Janney, M.A.

    1990-01-16T23:59:59.000Z

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  2. Method for molding ceramic powders

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  3. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21T23:59:59.000Z

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  4. Powder collection apparatus/method

    DOE Patents [OSTI]

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11T23:59:59.000Z

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  5. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  6. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01T23:59:59.000Z

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  7. South Valley Compliance Agreement Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware HelpsSouth Valley Agreement Name South Valley

  8. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01T23:59:59.000Z

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  9. Intradermal needle-free powdered drug injection

    E-Print Network [OSTI]

    Liu, John (John Hsiao-Yung)

    2012-01-01T23:59:59.000Z

    This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

  10. Method for synthesizing ultrafine powder materials

    DOE Patents [OSTI]

    Buss, Richard J. (Albuquerque, NM); Ho, Pauline (Albuquerque, NM)

    1988-01-01T23:59:59.000Z

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  11. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

    2009-12-28T23:59:59.000Z

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  12. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

  13. Enterprise Assessments Review, West Valley Demonstration Project...

    Energy Savers [EERE]

    conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review...

  14. Roaring Fork Valley- Energy Efficient Appliance Program

    Broader source: Energy.gov [DOE]

    The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

  15. Sandia National Laboratories: Livermore Valley Open Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Valley Open Campus Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure...

  16. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    MT line. Our MT data set reveals numerous resistivity structures which illuminate the evolution and present state of the Long Valley system. Many of these have been quantified...

  17. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  18. Independent Activity Report, West Valley Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

  19. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Not Available

    1982-03-06T23:59:59.000Z

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  20. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, W.W.

    1983-11-08T23:59:59.000Z

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  1. Method for synthesizing ultrafine powder materials

    SciTech Connect (OSTI)

    Buss, R.J.; Ho, P.

    1988-09-06T23:59:59.000Z

    This patent describes a method for synthesizing ultrafine powder material from gaseous reactants, comprising (a) admitting gaseous reactants from which the powder material is formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/sup 0/K, and directing the gaseous reactants through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  2. Low-Cost Titanium Powder for Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Titanium Powder for Feedstock Principal Investigator: Curt Lavender Presenter: Mark T. Smith Pacific Northwest National Laboratory OVT 2008 DOE Peer Review February 28, 2008 This...

  3. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  4. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  5. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  6. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

  7. azapa valley northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

  8. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

  9. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  10. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

  11. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date...

  12. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

  13. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  14. Middle Jurassic incised valley fill (eolian/estuarine) and nearshore marine petroleum reservoirs, Powder River basin

    SciTech Connect (OSTI)

    Ahlbrandt, T.S. [Geological Survey, Denver, CO (United States); Fox, J.E. [South Dakota School of Mines, Rapid City, SD (United States)

    1997-07-01T23:59:59.000Z

    Paleovalleys incised into the Triassic Spearfish Formation (Chugwater equivalent) are filled with a vertical sequence of eolian, estuarine, and marine sandstones of the Middle Jurassic (Bathonian age) Canyon Springs Sandstone Member of the Sundance Formation. An outcrop exemplifying this is located at Red Canyon in the southern Black Hills, Fall River County, South Dakota. These paleovalleys locally have more than 300 ft of relief and are as much as several miles wide. Because they slope in a westerly direction, and Jurassic seas transgressed into the area from the west there was greater marine-influence and more stratigraphic complexity in the subsurface, to the west, as compared to the Black Hills outcrops. In the subsurface two distinctive reservoir sandstone beds within the Canyon Springs Sandstone Member fill the paleovalleys. These are the eolian lower Canyon Springs unit (LCS) and the estuarine upper Canyon Springs unit (UCS), separated by the marine {open_quotes}Limestone Marker{close_quotes} and estuarine {open_quotes}Brown Shale{close_quotes}. The LCS and UCS contain significant proven hydrocarbon reservoirs in Wyoming (about 500 MMBO in-place in 9 fields, 188 MMBO produced through 1993) and are prospective in western South Dakota, western Nebraska and northern Colorado. Also prospective is the Callovian-age Hulett Sandstone Member which consists of multiple prograding shoreface to foreshore parasequences, as interpreted from the Red Canyon locality. Petrographic, outcrop and subsurface studies demonstrate the viability of both the Canyon Springs Sandstone and Hulett Sandstone members as superior hydrocarbon reservoirs in both stratigraphic and structural traps. Examples of fields with hydrocarbon production from the Canyon Springs in paleovalleys include Lance Creek field (56 MMBO produced) and the more recently discovered Red Bird field (300 MBO produced), both in Niobrara County, Wyoming.

  15. DOE - Office of Legacy Management -- Tyson Valley Powder Farm - MO 11

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown SiteTracerlab

  16. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp JumpsourceSouthlake,AeHJump to:SpringValley

  17. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  18. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  19. Town of Portola Valley 765 Portola Roac

    E-Print Network [OSTI]

    , Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

  20. Thermal plasma chemical synthesis of powders

    SciTech Connect (OSTI)

    Vogt, G.J.; Newkirk, L.R.

    1985-01-01T23:59:59.000Z

    Thermal plasma processing has been increasingly used to synthesize submicron powders of high-purity ceramics and metals. The high temperatures generated with the plasma provide a vapor phase reaction zone for elements with high boiling points and refractory materials. An overview is presented on the general plasma technology used in synthesis and on the properties of plasma powders.

  1. Wet powder seal for gas containment

    DOE Patents [OSTI]

    Stang, Louis G. (Sayville, NY)

    1982-01-01T23:59:59.000Z

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  2. LIQUID PHASE SINTERING OF IRON WITH COPPER BASE ALLOY POWDERS

    E-Print Network [OSTI]

    Chen, M.-H.

    2010-01-01T23:59:59.000Z

    Symposium on Powder Metallurgy - The Iron and Steel Inst.a Liquid Phase", Powder Metallurgy, 17 (33), 227 (1974). H.Other made by powder metallurgy techniques. ses to produce

  3. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  4. apatite powders prepared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , and thermal properties of Nafion powders prepared by high-energy ball milling of pellets is given. Nafion powders prepared in this manner exhibit thermal behavior similar...

  5. Electrochemical Studies of Packed Iron Powder Electrodes: Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Packed Iron Powder Electrodes: Effects of Common Constituents of Natural Waters on Corrosion Electrochemical Studies of Packed Iron Powder Electrodes: Effects of Common...

  6. Powder Metal Performance Modeling of Automotive Components ?AMD...

    Energy Savers [EERE]

    Powder Metal Performance Modeling of Automotive Components AMD 410 Powder Metal Performance Modeling of Automotive Components AMD 410 Presentation from the U.S. DOE Office of...

  7. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive...

  8. Neutron Powder Diffraction and Molecular Simulation Study of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K. Neutron Powder Diffraction and Molecular Simulation Study of the...

  9. Post project appraisal of Green Valley Creek, Solano County, California : design and management review

    E-Print Network [OSTI]

    Martin, Maureen; Fortin, Alex

    2003-01-01T23:59:59.000Z

    Associates, 1991. Green Valley Creek Restoration Plan. Beck,1996. Green Valley Creek Post-Construction Monitoring 3 Year1998. Green Valley Creek Post-Construction Monitoring 5

  10. Continuous blending of dry pharmaceutical powders

    E-Print Network [OSTI]

    Pernenkil, Lakshman

    2008-01-01T23:59:59.000Z

    Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

  11. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  12. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

  13. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Broader source: Energy.gov (indexed) [DOE]

    applies spray foam to a waste box to stabilize the contents and fill void space before the container is shipped off site for disposal. West Valley Accomplishments: Year in Review...

  14. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Exploration Basis The goal of this project was to better define the fault system running through the thermally active part of Dixie Valley and infer the sources for the heat...

  15. 25055 W. Valley Parkway Olathe, Kansas 66061

    E-Print Network [OSTI]

    Dyer, Bill

    25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

  16. Tantalum powder consolidation, modeling and properties

    SciTech Connect (OSTI)

    Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

    1996-10-01T23:59:59.000Z

    A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP`ing. HIP`ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP`ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP`ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions.

  17. Community Leadership: Best Practices for Brazos Valley

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01T23:59:59.000Z

    Community Leadership: Best Practices for Brazos Valley Report for the Brazos Community Foundation Executive Summary May 7, 2008 This report was prepared as part of a graduate student capstone project at the George Bush School of Government... and Public Service for our client, the Brazos Community Foundation (BCF). We believe the report has implications for the BCF and the broader nonprofit community in the Brazos Valley. The project team identified ten potential community leadership roles...

  18. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01T23:59:59.000Z

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  19. Slip casting nano-particle powders for making transparent ceramics

    DOE Patents [OSTI]

    Kuntz, Joshua D. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Landingham, Richard Lee (Livermore, CA); Hollingsworth, Joel P. (Oakland, CA)

    2011-04-12T23:59:59.000Z

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  20. Die-target for dynamic powder consolidation

    DOE Patents [OSTI]

    Flinn, J.E.; Korth, G.E.

    1985-06-27T23:59:59.000Z

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

  1. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21T23:59:59.000Z

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Valley wins High School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

  3. Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450

    E-Print Network [OSTI]

    Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

  4. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  6. Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

  7. LA Rooftop Solar Project Goes Online in San Fernando Valley ...

    Broader source: Energy.gov (indexed) [DOE]

    LA Rooftop Solar Project Goes Online in San Fernando Valley LA Rooftop Solar Project Goes Online in San Fernando Valley June 26, 2013 - 4:52pm Addthis Installing a rooftop solar...

  8. Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

  9. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1995-01-01T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  10. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1995-12-26T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  11. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-12-06T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  12. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1994-01-01T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  13. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  14. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  15. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  16. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  17. San Joaquin Valley Unified Air Pollution Control District

    E-Print Network [OSTI]

    #12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

  18. The Valley Fever Corridor Year 2 Fundraising Status

    E-Print Network [OSTI]

    Arizona, University of

    Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

  19. AN INVESTIGATION OF A THERMOPLASTIC-POWDER METALLURGY PROCESS FOR THE FABRICATION OF POROUS NIOBIUM RODS

    E-Print Network [OSTI]

    Nordin, Dennis R.

    2011-01-01T23:59:59.000Z

    Compositions, Powder Metallurgy, Vol. 8, No. 16, 1965. W.THERMOPLASTIC- POWDER METALLURGY PROCESS FOR THE FABRICATIONTHERMOPLASTIC- POWDER METALLURGY PROCESS FOR THE FABRICATION

  20. Powder River 0 20 40 KILOMETERS

    E-Print Network [OSTI]

    .S. coal basins. The Powder River Basin (PRB) in northeastern Wyoming and southeastern Montana (fig. 1 tons (MST), some 42 percent of the total coal pro- duction in the United States, making the PRB the single most important coal-producing basin in the Nation. About 426 MST (92 percent of total PRB coal

  1. Consolidation of aluminum 6061 powder by equal channel angular extrusion

    E-Print Network [OSTI]

    Pearson, John Montgomery

    1997-01-01T23:59:59.000Z

    Equal channel angular extrusion is a promising approach to obtaining full density in powder metallurgy applications. This method can impose large effective deformations through uniform shear strain. Aluminum alloy 6061 powder is used as a test...

  2. Quantum pumping of valley current in strain engineered graphene

    SciTech Connect (OSTI)

    Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

    2014-01-06T23:59:59.000Z

    We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

  3. SIS a new SFF method based on powder

    E-Print Network [OSTI]

    Asiabanpour, Bahram - Department of Engineering and Technology, Texas State University

    . This approach, used by SLS and 3D printing, is able to create thin and uniformly dense powder layers. Other

  4. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  5. Potential hydrologic characterization wells in Amargosa Valley

    SciTech Connect (OSTI)

    Lyles, B.; Mihevc, T.

    1994-09-01T23:59:59.000Z

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

  6. Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37 C in Urea-phase ceramic powder. Carbonated HA powders were formed from calcium nitrate tetrahydrate and di- ammonium properties. They were usually observed1 to be carbonate-substituted and calcium-decient. Synthetic body

  7. Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby

    E-Print Network [OSTI]

    Jerby, Eli

    - propagating high-temperature synthesis (SHS) for sintering of ceramic composites [14]. The magnetic (H, the microwave energy is supplied locally to the powder. It creates a confined hotspot, and initiates a self-propagating the powder prior to its ignition is simulated theoretically, taking into account the powder's temperature

  8. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1992-04-21T23:59:59.000Z

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  9. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-10-19T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  10. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-02-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  11. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-05-18T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  12. HTS powder synthesis and wire sintering

    SciTech Connect (OSTI)

    Peterson, D. [Los Alamos National Lab., NM (United States)

    1994-07-29T23:59:59.000Z

    Successful processing of HTS wires that exhibit superconducting properties and lengths appropriate for applications requires thoroughly understanding and carefully controlling experimental parameters. Initial important processing considerations are the quality and nature of the powder used to produce the superconductor within the wire composite. Following fabrication of the wire, sintering conditions must be chosen based on a knowledge of the phase behavior of the associated materials. HTS wire studies with our industrial partners have involved Bi-2212, Bi-2223, and Tl-1223 based systems. The goals of this project`s efforts in these collaborations have been directed towards: (1) Establishing procedures for HTS powder syntheses that produce superconductors with optimal properties; (2) Studying conditions for HTS wire sintering that produce high current densities appropriate for conductor applications. The Los Alamos project involves 6 staff, 3 technicians, and 4 postdoctoral students.

  13. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1994-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  14. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1993-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  15. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1993-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  16. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1992-01-01T23:59:59.000Z

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  17. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01T23:59:59.000Z

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  18. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10T23:59:59.000Z

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  19. The reflection of very cold neutrons from diamond powder nanoparticles

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; E. V. Lychagin; A. Yu. Muzychka; A. V. Strelkov; G. Pignol; K. V. Protasov

    2008-05-17T23:59:59.000Z

    We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.

  20. Powder Dropper | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7Powder Dropper This device

  1. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01T23:59:59.000Z

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  2. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  3. Elk Valley coal implements smartcell flotation technology

    SciTech Connect (OSTI)

    Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

    2008-06-15T23:59:59.000Z

    In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

  4. CONTRATOS ASIGNADOS CSIC REA TEMTICA REFERENCIA NOMBRE REA CSIC

    E-Print Network [OSTI]

    Fitze, Patrick

    ESPACIO RYC-2013-12729 CHANTAL VALERIANI Ciencia y Tecnologas Qumicas 8 IQFR INSTITUTO DE QUIMICA FISICA Tecnologa de Materiales 6 ICV INSTITUTO DE CERAMICA Y VIDRIO MADRID QUIMICA RYC-2013-12590 ANTONIO LEYVA PEREZ Ciencia y Tecnologas Qumicas 8 ITQ INSTITUTO DE TECNOLOGIA QUIMICA VALENCIA QUIMICA RYC-2013

  5. Citrus Production in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01T23:59:59.000Z

    LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

  6. Large Bore Powder Gun Qualification (U)

    SciTech Connect (OSTI)

    Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

    2012-04-02T23:59:59.000Z

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  7. VWZ-0011- In the Matter of West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a Motion to Dismiss filed by West Valley Nuclear Services, Inc. (West Valley) on May 18, 1999. In its Motion, West Valley seeks the partial dismissal of a Complaint filed...

  8. Multispectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et...

  9. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova &...

  10. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  11. Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

  12. Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

  13. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  14. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  15. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  16. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

  17. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

  18. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

  19. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1995 - 2000 Usefulness not indicated DOE-funding Unknown...

  20. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  1. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

  2. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

  3. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

  4. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

  5. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  6. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration program and multiple studies are being conducted to...

  7. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration program and multiple studies are being conducted to...

  8. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    Eric Sonnenthal, Jon Sainsbury, Joe Iovenitti, B. Mack Kennedy (2013) Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive...

  9. aburra valley caused: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Albian, Karrantza Valley, Northwest Spain): Implications Recherche Dveloppement, Carbonate Sedimentology Group, avenue Larribau sn, 64018 Pau Cedex - France e'Espagne) sont...

  10. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Exploration Activity...

  11. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

  12. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    Open Energy Info (EERE)

    Okaya & Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985)...

  14. Valley, Ames teams headed for National Science Bowl | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    school event will have 50 teams. Valley will be represented by Gabriel Mintzer, Ryan Thompson, Charles Napier, Sunita Kolareth and Arun Velamuri and coached by Nate Speichinger....

  15. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  16. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  17. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  18. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  19. antarctic dry valley: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  20. antarctic dry valleys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

  1. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley...

  2. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada,...

  3. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and...

  4. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley,...

  5. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    Open Energy Info (EERE)

    Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada,...

  6. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  7. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

  8. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

  9. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Research Program Update - Fiscal Year 2004 B. M. Kennedy, M. C. van Soest (2006) a Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Additional...

  10. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Helium Isotope...

  11. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  12. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Environmental Management (EM)

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic analysis...

  13. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

  14. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

  15. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

  16. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

  18. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

  20. Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)

    Broader source: Energy.gov [DOE]

    Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

  1. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,...

  2. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Taylor & Gerlach,...

  3. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  4. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada- relations between surface phenomena and the geothermal reservoir Jump to: navigation, search OpenEI...

  5. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  6. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  7. Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

  8. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  9. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  10. Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  11. Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  12. Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program

    Broader source: Energy.gov [DOE]

    Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

  13. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

  14. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  15. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

  16. EIS-0478: Antelope Valley Station to Neset Transmission Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings,...

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1991 - 1991 Usefulness not useful DOE-funding Unknown...

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

  19. Laser production of articles from powders

    DOE Patents [OSTI]

    Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

    1998-11-17T23:59:59.000Z

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

  20. Laser production of articles from powders

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Milewski, John O. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM); Nemec, Ronald B. (White Rock, NM); Barbe, Michael R. (White Rock, NM)

    1998-01-01T23:59:59.000Z

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

  1. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect (OSTI)

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01T23:59:59.000Z

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  2. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29T23:59:59.000Z

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  3. International Powder Metallurgy Conference September 4-8, 2002, Turkish Powder Metallurgy Association

    E-Print Network [OSTI]

    Gubicza, Jen

    Canal Univ., Suez, Egypt, mkassem54@yahoo.com c Dept. of General Physics, Etvs University, Budapest, P the particles of the initial powders are deformed heavily and repeatedly by high energy milling and the atoms and fracturing of the cold welded particles due to high energy collision [1]. The cold welding minimizes

  4. Mach stem characterization in Mbar designs using RSR powder

    SciTech Connect (OSTI)

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01T23:59:59.000Z

    Suitable selection of powders can be used as a modeling device for complicated experimental designs. The powder melt zone is clearly defined and the RSR-834 powder is reasonably well behaved. This experiment was with only one composition, size and distribution. However, it is believed that other morphologies, composition, and size distributions could result in a more complete modeling of the compaction process that would enable heuristic calculations of the combined effects of adiabatic temperature rise and entropic heating (strain/deformation).

  5. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

  6. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    of the West Valley Citizen Task Force More Documents & Publications EIS-0337: Draft Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley...

  7. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

    2012-07-25T23:59:59.000Z

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  8. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16T23:59:59.000Z

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  9. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21T23:59:59.000Z

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  10. Tailored net-shape powder composites by spark plasma sintering

    E-Print Network [OSTI]

    Khaleghi, Evan Aryan

    2012-01-01T23:59:59.000Z

    produced by spark plasma sintering, Powder Metall. , 51, 59nanoparticles in spark plasma sintering. Mater. Sci. Eng. ,Evolution During Spark Plasma Sintering, Ceram. Int. , 35,

  11. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation es011yakovleva2011p.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  12. advanced powder processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SEM) and chemical analysis. The powders were well crystalline and contained oxygen, carbon and hydrogen as impurities. Overall purity was better than 999%. The yield...

  13. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  14. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect (OSTI)

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01T23:59:59.000Z

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  15. Glow-discharge synthesis of silicon nitride precursor powders

    SciTech Connect (OSTI)

    Ho, P.; Buss, R.J.; Loehman, R.E. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (US))

    1989-07-01T23:59:59.000Z

    A radio-frequency glow discharge is used for the synthesis of submicron, amorphous, silicon nitride precursor powders from silane and ammonia. Powders are produced with a range of Si/N ratios, including stoichiometric, Si-rich, and N-rich, and contain substantial amounts of hydrogen. The powders appear to be similar to silicon diimide and are easily converted to oxide by water vapor. The powders lose weight and crystallize to a mixture of {alpha} and {beta}-Si{sub 3}N{sub 4} after prolonged heating at 1600{degree}C. Studies of spectrally and spatially resolved optical emission from the plasma are reported.

  16. Landtype-Association (LTA) Descriptions for the Flathead Valley2 Section M333B Flathead Valley

    E-Print Network [OSTI]

    Appendix 6 Landtype-Association (LTA) Descriptions for the Flathead Valley2 Section M333B Flathead illustrations: Figure 50: Map showing location of M333B within the Northern Region Figure 51: M333B distribution of LTAS within M333B Figure 53: Bar chart showing abundance of landform groups within M333B

  17. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  18. Environmental Assessment : Happy Valley [Substation Project].

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1982-05-01T23:59:59.000Z

    The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

  19. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,Little Valley Geothermal Area (Redirected

  20. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing atGreenhouse GasesRespond1CALIFORNIA VALLEY

  1. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,WetzelTechnologiesWhetstone, Arizona:Valley

  2. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 2010 ARRAA LiquidAL2010-03.pdfAMO PEERANTELOPE VALLEY

  3. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapitalInformationChemicalsAire Valley

  4. Clean Cities: Rogue Valley Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthern ColoradoRogue Valley Clean

  5. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataforma Itaipu deValley Fuel Ethanol

  6. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(RedirectedLightManufacturingDiablo Valley

  7. Sheep Valley Ranch | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners Wind FarmSheep Valley Ranch

  8. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | Open EnergyChippewa Valley Electric Coop Jump

  9. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: Energy ResourcesSouth,GrapeGrass Valley

  10. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)PearlPennsylvania StatePenoyer Valley

  11. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVIServicesValley Energy Jump

  12. CASL Core Partner - Tennessee Valley Authority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About UsTennessee Valley

  13. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd DiDixie HotDixie Valley

  14. Minnesota Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesota Valley

  15. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformation Tengchong County ZhongdianTennessee Valley

  16. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy CoopValley Geothermal

  17. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUserVHF Technologies SAValley ElectricValley

  18. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's picture Submitted byWhitewater Valley Rural EMC

  19. Gabbs Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStormGLOBALGabbs Valley Geothermal

  20. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley Elec Coop Jump to:

  1. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGoldenarticle is a stub. YouGrass Valley

  2. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl JumpSolar, Logo: All Valley

  3. Surprise Valley Electric Co-Op Trinity Shasta Lake

    E-Print Network [OSTI]

    Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

  4. TFC-0004- In the Matter of Tri-Valley CARES

    Broader source: Energy.gov [DOE]

    Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. 552.

  5. Process for preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-06-17T23:59:59.000Z

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  6. Gaseous Decomposition Products of Safety Powders

    E-Print Network [OSTI]

    Cubbison, C.E.

    1912-01-01T23:59:59.000Z

    19.6 Volume o f a i r added 70.8 T o t a l vo lume 90 .4 Volume a f t e r e x p l o s i o n 74.4 C o n t r a c t i o n 16.0 R e s i d u e a f t e r a b s o r p t i o n o f c a r b o n d i o x i d e 68.8 74.4 6 8 . 8 = 5 .6 . Oxygen p r e s e... DECOMPOSITION PRODUCTS OF SAFETY POWDERS. THESIS SUBMITTED FOR THE DEGREE OF BACHELOR OF SCIENCE I I THE DEPARTMENT OF CHEMICAL BHGUEBRING AT THE UNIVERSITY OF KANSAS. BY C.E.CUBBISOH 1912. RD01D7 MaDSfl COHTEHTS. * * * * Pago * P r e f a c e 6...

  7. Sinterable powders from laser driven reactions : final report

    E-Print Network [OSTI]

    Haggerty, John Scarseth

    1981-01-01T23:59:59.000Z

    Extremely fine, uniform ceramic powders have been synthesized from Sil4 NH3 and C2H4 gas phase reactants that are heated by absorbing optical energy emitted from a C02 laser. Resulting Si, Si3N4 and SiC powders have been ...

  8. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22T23:59:59.000Z

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  9. Synthesis of high purity sinterable silicon carbide powder

    SciTech Connect (OSTI)

    Boecker, W.D.; Mehosky, B.L.; Rogers, R.S.C.; Storm, R.S.; Venkateswaran, V. (Carborundum Co., Niagara Falls, NY (USA). Structural Ceramics Div.)

    1989-11-01T23:59:59.000Z

    High purity, submicron silicon carbide powders were produced via gas phase synthesis using a hydrogen/argon plasma. Two test facilities were constructed, a bench-scale unit and a larger pilot scale reactor. Three candidate silicon sources were evaluated:silicon tetrachloride (SiCl{sub 4}). dimethyldichlorosilane (CH{sub 3}){sub 2}(SiCl{sub 2}) and methyltrichlorosilane (CH{sub 3}SiCl{sub 3}). Product powders were evaluated on the basis of pressureless sinterability, surface area, agglomeration, particle size distribution, phase distribution and chemistry. Three commercial powders, Starck A10, Starck B10, and Carborundum submicron alpha silicon carbide, were also evaluated for comparison to the product powders. Powders were reproducibly synthesized at a rate of one pound per hour for standard run times of five hours. Product powders exhibited chemical and physical properties equal to or exceeding the commercial powders evaluated. In limited attempts to pressureless sinter the product powders, densities of 91% of theoretical were obtained with as-produced powder. Post-processing permitted densities in excess of 97% of theoretical. X-ray diffraction of the product indicates that the product powders are primarily beta poly-types, with traces of alpha present. Increased production rates to a target level of seven pounds per hour were not possible due to current transients produced by the pilot scale power supply. Extensive unsuccessful efforts to reduce or eliminate the transients are described. Low recovered product yields resulted from a failure of a product collection filter that was not discovered until the completion of the project.

  10. Multi-scale current activated tip-based sintering of powder-based materials

    E-Print Network [OSTI]

    El Desouky, Ahmed Mohamed

    2012-01-01T23:59:59.000Z

    Japan Society for powder Metallurgy 9 B. Srinivasaro, K. Oh-PM sintering method. Powder Metallurgy 45(4):322-328 47 Z.A.Japan Society of Powder Metallurgy 57(10): 654-659 106 M.

  11. Airborne particles in the San Joaquin Valley may affect human health

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

  12. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect (OSTI)

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; /UCLA; Soha, Aria; /Fermilab; Heppelmann, Steven; /Penn State U.; Gagliardi, Carl; /Texas A-M

    2011-11-16T23:59:59.000Z

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments. This test run if a proof-of-principle and allows the experiment to improve the design and performance of the final detectors. The experimenters have constructed prototypes of three different designs in order to investigate the characteristics of practical devices such as uniformity, linearity, longitudinal and transverse shower shapes. The first design is an array of 4 x 4 modules intended as a prototype for a practical device to be installed within two years in the STAR experimental hall. The modules are a combination of a spaghetti calorimeter and an accordion (hence 'spacordion'). Each sub-module is 1.44 cm x 1.44 cm x 15 cm and constructed individually. The second design is a prototype of 4 sub-modules constructed in one step, using a different construction technique. The third design is a set of single sub-modules each intended to test variations of the tungsten powder/embedded fiber concept by enhancing the light output/density using liquid scintillator or heavy liquids.

  13. amorphous ball-milled powders: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , and thermal properties of Nafion powders prepared by high-energy ball milling of pellets is given. Nafion powders prepared in this manner exhibit thermal behavior similar...

  14. Passive solar homes in Delaware Valley

    SciTech Connect (OSTI)

    Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

    1997-12-31T23:59:59.000Z

    This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

  15. Morphology and composition of Ni-Co electrodeposited powders

    SciTech Connect (OSTI)

    Maksimovic, V.M., E-mail: vesnam@vinca.rs [Institute of Nuclear Sciences, 'Vinca', University of Belgrade, 11001 Belgrade, P. O. Box 522 (Serbia); Lacnjevac, U.C. [Institute for Multidisciplinary research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia); Stoiljkovic, M.M. [Institute of Nuclear Sciences, 'Vinca', University of Belgrade, 11001 Belgrade, P. O. Box 522 (Serbia); Pavlovic, M.G. [Institute of Electrochemistry, ICTM, University of Belgrade, 11000 Belgrade, Njegoseva 12 (Serbia); Jovic, V.D. [Institute for Multidisciplinary research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia)

    2011-12-15T23:59:59.000Z

    The morphology, phase and chemical composition of Ni-Co alloy powders electrodeposited from an ammonium sulfate-boric acid containing electrolyte with different ratio of Ni/Co ions were investigated. The ratios of Ni/Co ions were 1/1, 1/2 and 1/3. The morphology, chemical composition and phase composition of the electrodeposited alloy powders were investigated using AES, SEM, EDS and XRD analysis. Composition of the electrolyte, i.e. the ratio of Ni/Co concentrations was found to influence both, the alloy phase composition and the morphology of Ni-Co alloy powders. At the highest ratio of Ni/Co = 1/1 concentrations typical 2D fern-like dendritic particles were obtained. With a decrease of Ni/Co ions ratio among 2D fern-like dendrites, 3D dendrites and different agglomerates were obtained. X-ray diffraction studies showed that the alloy powders mainly consisted of the face-centered cubic {alpha}-nickel phase and hexagonal close-packed {epsilon}-cobalt phase and minor proportions of face-centered cubic {alpha}-cobalt phase. The occurrence of the latter phase was observed only in the alloy powder with the higher cobalt concentration in electrolyte. The electrodeposition of Ni-Co powders occurred in an anomalous manner. - Highlights: Black-Right-Pointing-Pointer Ni-Co alloys powders were successfully electrodeposited. Black-Right-Pointing-Pointer Composition of the electrolyte (Ni/Co ions ratio) was found to influence on morphology of powders. Black-Right-Pointing-Pointer The electrodeposition of Ni-Co powders occurred in an anomalous manner.

  16. Powder segregation during the filling of a simple die

    E-Print Network [OSTI]

    Lawrence, Larry Raymond

    1968-01-01T23:59:59.000Z

    POWDER SEGREGATION DURING THE FILLING OF A SIMPLE DIE A study of powder segregation during die filling with two component mixes of lead particles has shown that: I. Segregation occurs by fines filtering down through the moving powder mass. This effect... = 2000', d = 841'. Lead Particles Segregation. 6 X vs X Fines in Mixture for Zones A, 8, and C in Vertical Sampling Device. D = 2000', d = 841' . Lead Particles Maximum Segregation. -BmaxXvs D/d for Zone A of Radial Sampler. Curve 1, D = 2000@; Curve...

  17. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U. (Ames, IA); McAvoy, Jon M. (Moline, IL); Anderson, Iver E. (Ames, IA); Ting, Jason (Ames, IA); Mi, Jia (Pittsburgh, PA); Terpstra, Robert (Ames, IA)

    2003-03-18T23:59:59.000Z

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  18. Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)

    Broader source: Energy.gov [DOE]

    Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

  19. Sulphur Springs Valley EC- SunWatts Loan Program

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

  20. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10T23:59:59.000Z

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...

  1. J. J. Crosetti: Pajaro Valley Agriculture, 1927 to 1977

    E-Print Network [OSTI]

    Regional HIstory Project, UCSC Library; Crosetti, J. J.; Jarrell, Randall

    1993-01-01T23:59:59.000Z

    Salinas Valley. You take the Tenneco Company, which is onethat conglomerates like Tenneco can claim? Crosetti: WellUnion 43, 45, 77 and UFW 48 Tenneco Company 60 The Grapes of

  2. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

  3. Present State of the Hydrothermal System in Long Valley Caldera...

    Open Energy Info (EERE)

    Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

  4. Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...

    Energy Savers [EERE]

    waste (HLW) which had been generated by the prior commercial reprocessing of spent nuclear fuel at the Western New York Nuclear Service Center in West Valley New York. The...

  5. Ohio River Valley Water Sanitation Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

  6. Quaternary Glaciations in the Lago Pueyrredn Valley, Argentina

    E-Print Network [OSTI]

    Hein, Andrew S.

    This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredn valley...

  7. Isotopic Analysis At Valley Of Ten Thousand Smokes Region Area...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten...

  8. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    Nevada- Summary of Doe Studies Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development at Dixie Valley, Nevada- Summary of...

  9. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated Dense Array and Transect MT Surveying at Dixie Valley...

  10. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

  11. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  12. Microsoft Word - Finely_NorthValley_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Manager - KEWM-4 Proposed Action: Finely Creek and North Valley Creek property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-58888 Categorical Exclusion...

  13. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

  14. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

  15. Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program

    Broader source: Energy.gov [DOE]

    BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

  16. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    by deep test wells below 10,000' in four deep tests. Impacts Proof of a new tectonic theory for the Imperial Valley. Funding Source American Recovery and Reinvestment Act of 2009...

  17. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    in the central caldera and later a portion of the caldera west of the Resurgent Dome. Well data established that the principal geothermal reservoir in Long Valley was not...

  18. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment

    SciTech Connect (OSTI)

    Tongsri, Ruangdaj, E-mail: ruangdt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Yotkaew, Thanyaporn, E-mail: thanyy@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Krataitong, Rungtip, E-mail: rungtipk@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Wila, Pongsak, E-mail: pongsakw@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Sir-on, Autcharaporn, E-mail: autchars@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Muthitamongkol, Pennapa, E-mail: pennapm@mtec.or.th [Materials Characterization Research Unit (MCRU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand); Tosangthum, Nattaya, E-mail: nattayt@mtec.or.th [Powder Metallurgy Research and Development Unit (PM-RDU), National Metal and Materials Technology Center, 114 Paholyothin, Klong 1, Klong Luang, Pathum Thani 12120 (Thailand)

    2013-12-15T23:59:59.000Z

    Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal ?-Cu{sub 6.25}Sn{sub 5} dendrites followed by ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ?-Cu{sub 3}Sn dendrites were followed by peritectic reaction (?-Cu{sub 3}Sn + liquid ? ?-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of ?-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the ?-Cu{sub 6.25}Sn{sub 5} + ?-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ?-Cu{sub 6}Sn{sub 5} phase. - Highlights: The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. Water-atomized CuSn powders contained mixed CuSn phases. Solidification and heat treatment of water-atomized CuSn powders are explained.

  20. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada

    SciTech Connect (OSTI)

    Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01T23:59:59.000Z

    Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

  1. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08T23:59:59.000Z

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  2. Influence of a river valley constriction on upstream sedimentation

    E-Print Network [OSTI]

    Kinnebrew, Quin

    1988-01-01T23:59:59.000Z

    to the downstream constriction. The Buckhorn Plantation, shown by the pattern, lies immediately upstream from the river valley constriction. roughness, the degree of the channel contraction, and the constriction entrance geometry. Conditions Inducing Flood...) for various constriction geometries and found that squared constriction entrances will produce a backwater effect more readily than a rounded entrance for all degrees of channel contraction (Chow, 1959). The geometry of the valley above the constriction...

  3. au powder surfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is known that Si3N4 powders are susceptible to oxidation when contacted with oxygen or water vapor on storage and processing. Danforth 5 detected a remarkable increase...

  4. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, B.H.; Wright, R.N.

    1993-12-14T23:59:59.000Z

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  5. aluminum powder part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

  6. aluminum garnet powders: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

  7. aluminum powder mixtures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

  8. aluminum germanium powders: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear applications. Two specific uses for which this powder is intended are Al2O3 pellets and Al2O 3 ? B4C composite pellets for use as thermal insulator or burnable neutron...

  9. Environmentally stable reactive alloy powders and method of making same

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22T23:59:59.000Z

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  10. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. es011yakovleva2010o.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  11. Apparatus for making environmentally stable reactive alloy powders

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31T23:59:59.000Z

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  12. alloyed powders kermetnye: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  13. alloy powder fabricated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  14. alloy powders produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  15. alloy powders obtained: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  16. alloyed powders hyperfine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  17. alloy powder prepared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy...

  18. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15T23:59:59.000Z

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  19. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  20. Neutron detectors comprising ultra-thin layers of boron powder

    DOE Patents [OSTI]

    Wang, Zhehul; Morris, Christopher

    2013-07-23T23:59:59.000Z

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  1. Quality experimental and calculated powder x-ray diffraction

    SciTech Connect (OSTI)

    Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

    1996-08-01T23:59:59.000Z

    For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

  2. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  3. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect (OSTI)

    R. A. Cordes; A. Donaldson

    2000-09-01T23:59:59.000Z

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  4. Stability of captopril in powder papers under three storage conditions

    SciTech Connect (OSTI)

    Taketomo, C.K.; Chu, S.A.; Cheng, M.H.; Corpuz, R.P. (Childrens Hospital, Los Angeles, CA (USA))

    1990-08-01T23:59:59.000Z

    The stability of captopril in powder papers under three different storage conditions was determined. Captopril 12.5-mg tablets were triturated with lactose to a final concentration of 2 mg of captopril in 100 mg of powder. A total of 240 powder papers were prepared and stored in class A prescription vials (80 papers), 002G plastic zip-lock bags (80 papers), and Moisture Proof Barrier Bags (80 papers). Immediately after preparation and at 1, 2, 3, 4, 8, 12, and 24 weeks of storage at room temperature, powder papers under each storage condition were reweighed and the contents were assayed for captopril concentration by a stability-indicating high-performance liquid chromatographic method. More than 90% of the initial captopril concentration was retained under all storage conditions during the first 12 weeks of the study. Captopril disulfide, a degradation product, was detected in one sample stored in a plastic zip-lock bag at 24 weeks. Captopril was stable for the entire 24-week period in powder papers stored in either the class A prescription vial or the Moisture Proof Barrier Bag. Captopril in powder papers is stable for at least 12 weeks when stored at room temperature under all three storage conditions.

  5. Urban air quality of Kathmandu valley

    SciTech Connect (OSTI)

    Sharma, C.K. [Royal Nepal Academy of Science and Technology, Kathmandu (Nepal)

    1996-12-31T23:59:59.000Z

    The oval shaped tectonic basin of Kathmandu valley occupying about 600 sq. km. of area is situated in the middle sector of Himalayan range. There are three districts in the alley, i.e. Kathmandu, Litilpur, and Bhaktapur. Out of the three the most populated is the Kathmandu city (the capital of Kingdom of Nepal) which has 668,000 population in an area of approximately 50 sq. km. The city population consumes energy about 1/3 of total imports of Nepal in the form of gasoline, diesel, kerosene, furnace oil and cooking gas. This has resulted heavy pollution of air in the city leading bronchitis, and throat and chest diseases. Vehicle has increased several fold leading in recent months to 100,000 in number in a road of about 900 kms., out of which 25% is only metalled. Most of two and three wheelers are polluting the air by emission gases as well as dust particulate. SO{sub 2} has been found to go as high as 202 micro grams per cubic meter and NO{sub 2} to 126 micro gram particularly in winter months when a thick layer of fog covers the valley up to 10:00 AM in the morning. All the gases are mixed within the limited air below the fog and the ground. This creates the problem. Furthermore, municipal waste of 500 m{sup 3} a day and also liquid waste directly dumping in Bagmati river to the tune of 500,000 liters per day makes city ugly and filthy. Unless pollution of air, water, and land are controlled in time, Nepal will lose much of its foreign exchange earnings from tourist industry. It is found that tourist arrivals are considerably reduced in recent years and most of hotels occupancy is 50 to 60% in peak time. Nepal is trying to introduce legal frame work for pollution control but it will take time to be effective like in other developing countries unless government is strong.

  6. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q

    E-Print Network [OSTI]

    Zheng, Yufeng

    In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q Y Biodegradation Cytotoxicity Powder metallurgy a b s t r a c t Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge

  7. Geochemical evolution of Mexicali Valley groundwaters

    SciTech Connect (OSTI)

    Makdisi, R.S.; Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Sanchez R., J.

    1982-08-10T23:59:59.000Z

    Isotopic and chemical compositions of Mexicali Valley groundwaters vary widely. Observed variations reflect different water origins, mineral-water reactions, lateral variations of delta facies as well as evaporation. Regional treatment of the groundwater data shows that northern and central regions are a mixture of old and new Colorado River water. Variations in water chemistry result from different groundwaters origins and the effects of lateral delta facies changes. Dissolution of gypsum and precipitation of carbonates, silicates, and phosphates are suggested. The eastern Mesa de San Luis and southern region water originates primarily from the Gila River catchment area. This water is undersaturated with respect to gypsum and carbonates and is oversaturated with respect to silicates. Most of the western groundwaters are a mixture of Colorado River and geothermal waters in the proximity of the Cerro Prieto geothermal field. Recharge to the geothermal aquifer is from the west as well as the north and east. Calcite is being precipitated out as the groundwater temperatures rise in response to the geothermal anomaly. Other western groundwaters reflect a dominant mixture of Colorado River water and evaporated lake water. Some Western groundwater samples suggest dilution by local rainwater and/or irrigation water.

  8. Direct laser powder deposition - 'State of the Art'

    SciTech Connect (OSTI)

    Sears, J.W.

    1999-11-01T23:59:59.000Z

    Recent developments on Laser Cladding and Rapid Prototyping have led to Solid Freeform Fabrication (SFF) technologies that produce net shape metal components by laser fusion of metal powder alloys. These processes are known by various names such as Directed Light Fabrication (DLF{trademark}), Laser Engineered Net Shaping (LENS{trademark}), and Direct Metal Deposition (DMD{trademark}) to name a few. These types of processes can be referred to as direct laser powder deposition (DLPD). DLPD involves fusing metal alloy powders in the focal point of a laser (or lasers) that is (are) being controlled by Computer Aided Design-Computer Aided Manufacturing (CAD-CAM) technology. DLPD technology has the capability to produce fully dense components with little need for subsequent processing. Research and development of DLPD is being conducted throughout the world. The list of facilities conducting work in this area continues to grow (over 25 identified in North America alone). Selective Laser Sintering (SLS{trademark}) is another type of SFF technology based on laser fusion of powder. The SLS technology was developed as a rapid prototyping technique, whereas DLPD is an extension of the laser cladding technology. Most of the effort in SLS has been directed towards plastics and ceramics. In SLS, the powder is pre-placed by rolling out a layer for each laser pass. The computer control selects where in the layer the powder will be sintered by the laser. Sequential layers are sintered similarly forming a shape. In DLPD, powder is fed directly into a molten metal pool formed at the focal point of the laser where it is melted. As the laser moves on the material it rapidly resolidifies to form a shape. This talk elaborates on the state of these developments.

  9. Isothermal nitridation kinetics of TiSi{sub 2} powders

    SciTech Connect (OSTI)

    Roger, J., E-mail: roger@lcts.u-bordeaux1.fr; Maill, L.; Dourges, M.A.

    2014-04-01T23:59:59.000Z

    The aim of the present work is to determine the kinetics of reaction between TiSi{sub 2} powder and gaseous nitrogen. Isothermal nitridation of TiSi{sub 2} powders with fine (1.4 m) and medium (4.5 m) particle size has been studied in pure nitrogen atmosphere from 1000 to 1200 C for duration up to 50 h. The isothermal nitridation kinetics of TiSi{sub 2} powders were investigated by thermogravimetry. The nitridation rate strongly depends on the particle size and temperature. Smaller size particle exhibits higher nitridation rate due to its larger surface area. The conversion process is complex with nucleation and growth of TiN at the surface of the grain and Si{sub 3}N{sub 4} inside the grain promoted by the Kirkendall effect with an influence of the volume increase. - Graphical abstract: Backscattered electrons image of a transverse TiSi{sub 2} grain nitrurated at 1100 C for 50 h. - Highlights: Influence of grain size on TiSi{sub 2} powder nitridation. Influence of temperature on TiSi{sub 2} powder nitridation. Experimental measurements of the nitridation kinetics. An explanation of the nitridation mechanism.

  10. Method for producing microcomposite powders using a soap solution

    DOE Patents [OSTI]

    Maginnis, Michael A. (Coker, AL); Robinson, David A. (Mobile, AL)

    1996-01-01T23:59:59.000Z

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  11. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  12. A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910

    E-Print Network [OSTI]

    Sorensen, Conner

    1968-01-01T23:59:59.000Z

    of western Kansas, in particular the community around Garden City, Kansas. This history attempts to relate the development of irrigation in the Arkansas Valley through its formative years, 1880-1910. The term "Arkansas River Valley" as used here refers...

  13. The diurnal cycle of air pollution in the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    Panday, Arnico Kumar

    2006-01-01T23:59:59.000Z

    This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

  14. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    E-Print Network [OSTI]

    Panday, Arnico K.

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

  15. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Office of Environmental Management (EM)

    Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern...

  16. Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley

    E-Print Network [OSTI]

    Leidner, Andrew

    2012-07-16T23:59:59.000Z

    The study area for this dissertation is the Texas Lower Rio Grande Valley (Valley). The overarching theme is water and includes regional water management, water management institutions, and water supply decision-making as it relates to community...

  17. Results of the Flowmeter-Injection Test in the Long Valley Exploratory...

    Open Energy Info (EERE)

    Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. EM Employees at West Valley Help Beat Goal for Food Banks

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  20. DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

  1. Aerosol flow reactor production of superconducting ceramic powder

    SciTech Connect (OSTI)

    Kodas, T. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Nuclear Engineering); Engler, E.; Lee, V.; Parkin, L.S. (Research Div., Almaden Research Center, San Jose, CA (US))

    1988-01-01T23:59:59.000Z

    Potential applications and basic studies of superconducting ceramics require the reproducible production of chemically homogeneous, ultrapure powders with controlled particle size distributions. Previous work has mainly examined the use of liquid and solid phase methods for superconducting powder production. In this work, it is shown that carbon-free, submicron powders based on the Y-Ba-Cu-O, La-Sr-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O systems can be produced in a gaseous flow system by reacting aerosol particles containing the nitrate salts of the appropriate metals in flowing oxygen at temperatures of 900 - 1100C. It is also demonstrated that composite Cu/YBa/sub 2/Cu/sub 3/O/sub 7/ wires can be fabricated by thermophoretic deposition of the particles onto the inner surface of a Cu tube hby sintering/annealing.

  2. A simple procedure to prepare spherical {alpha}-alumina powders

    SciTech Connect (OSTI)

    Liu Hongyu [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Gan Zhihong; Lin Yuan [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)

    2009-04-02T23:59:59.000Z

    Spherical {alpha}-alumina powders were prepared by the controlled hydrolysis of aluminum isopropoxide in a hydrolysis system consisting of octanol and acetonitrile. Diverse solvents to dissolve reactant formed diverse hydrolysis systems and affected particle shape of {alpha}-alumina powders. The precursors crystallized to {gamma}-alumina at 1000 deg. C and converted to {alpha}-alumina at 1150 deg. C without intermediate phases. The particle morphology of precursor was retained after it crystallized to {alpha}-alumina. The heating rate influenced the particle shape and the state of agglomeration during calcination process. The thermal properties of the precursors were characterized by thermal gravimetric and differential thermal analysis. X-ray diffraction technique was used to confirm the conversion of crystalline phase of alumina powders from amorphous to {alpha}-phase. Transmission electron microscopy was used to investigate the morphologies and size of the precursors and products.

  3. Nano powders, components and coatings by plasma technique

    DOE Patents [OSTI]

    McKechnie, Timothy N. (Brownsboro, AL); Antony, Leo V. M. (Huntsville, AL); O'Dell, Scott (Arab, AL); Power, Chris (Guntersville, AL); Tabor, Terry (Huntsville, AL)

    2009-11-10T23:59:59.000Z

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  4. Process for preparing fine grain titanium carbide powder

    DOE Patents [OSTI]

    Janney, M.A.

    1985-03-12T23:59:59.000Z

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  5. Method for forming biaxially textured articles by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  6. The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal

    E-Print Network [OSTI]

    1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal a bowl

  7. February 17, 2005 Traffic: See current conditions on all Valley freeways

    E-Print Network [OSTI]

    McGraw, Kevin J.

    ° Flagstaff 34° |Traffic Weather Site search| | | | | |Front Page Valley & State Sports Business Arizona Wheels Yes Ahwatukee Chandler Gilbert Glendale/Peoria Mesa Phoenix Scottsdale Southwest Valley Sun CitiesFebruary 17, 2005 Traffic: See current conditions on all Valley freeways PHOENIX 56° Tucson 53

  8. STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY

    E-Print Network [OSTI]

    STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY BY RICHARD THOMPSON AND ANDREW PEACE: Thompson, R (2005), Stand dynamics in Tilio-Acerion woodlands of the Clyde Valley. Highland Birchwoods, Munlochy #12;STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY by Richard Thompson* and Andrew

  9. Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene Zhenhua Wu,1

    E-Print Network [OSTI]

    Valley-Dependent Brewster Angles and Goos-Ha¨nchen Effect in Strained Graphene Zhenhua Wu,1 F. Zhai local strains in graphene can be tailored to generate a valley- polarized current. By suitable be used to construct a valley filter in graphene without the need for any external fields. DOI: 10

  10. [Having a] Life in the Happy Valley 1.2 Cris Pedregal Martin

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    [Having a] Life in the Happy Valley ­ 1.2 Cris Pedregal Martin Department of Computer Science known as ``The Happy Valley,'' henceforth simply ``the Valley.'' Specifically, we discuss food, cultural will strongly influence your well­being, your happiness, and ultimately your ability to function aca­ demically

  11. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  12. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01T23:59:59.000Z

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  13. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  14. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  15. Plantation settlement in the Brazos River Valley, 1820-1860

    E-Print Network [OSTI]

    Bornhorst, Jacquelyn Wooley

    1971-01-01T23:59:59.000Z

    +ary cultivation vras neces- sary ard +he mi'd climate insurepl good crops. Yet, not to. p many of the settlers ven! west of the Brazos Valley at first because -' t va the general impre sion in the early days that only the timber d. portion of the ta!e vas... STER GE ART S Eay I'9il i~'ajor 8 bjeci. : History FLANTATZON SETTLEYiZBT IN THE BRAVOS RIVER VALLEYS 1820-1860 A Thesis by Jac ~uelyn 'Jooley Eornhorst ARRrov H as to style ann content by: 8 a~ (Chg. raan oc Co~=. u. ttee) Plw~ &~ (I ies...

  16. AN INVESTIGATION OF HYDROSTATIC EXTRUSION AND OTHER DEFORMATION MODES FOR THE FABRICATION OF MULTI-FILAMENTARY NIOBIUM-TIN SUPERCONDUCTORS BY A POWDER METALLURGY APPROACH

    E-Print Network [OSTI]

    MacLeod, G.E.

    2010-01-01T23:59:59.000Z

    SUPERCONDUCTORS BY A POWDER METALLURGY ApPROACH By GLEN EARLTin Superconductors by a Powder Metallurgy Approach TABLE OFSUPERCONDUCTORS BY A POWDER METALLURGY APPROACH Glen Earl

  17. Combustion synthesis and quasi-isostatic densication of powder cermets

    E-Print Network [OSTI]

    Meyers, Marc A.

    Combustion synthesis and quasi-isostatic densication of powder cermets E.A. Olevskya,* , E-propagating High-temperature synthesis (also known as SHS or combustion synthesis) presents a bright potential equation parameters. The distortion undergone by the combustion synthesis products during QIP densi

  18. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect (OSTI)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01T23:59:59.000Z

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  19. Explosively driven low-density foams and powders

    DOE Patents [OSTI]

    Viecelli, James A. (Orinda, CA); Wood, Lowell L. (Simi Valley, CA); Ishikawa, Muriel Y. (Livermore, CA); Nuckolls, John H. (Danville, CA); Pagoria, Phillip F. (Livermore, CA)

    2010-05-04T23:59:59.000Z

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  20. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect (OSTI)

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13T23:59:59.000Z

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  1. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25T23:59:59.000Z

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  2. Development and Testing of a BI-2212 Textured Powder Conductor

    E-Print Network [OSTI]

    Damborsky, Kyle

    2014-03-10T23:59:59.000Z

    to ascertain the quality of the products. The third and final thrust was the development of a non-melt heat treatment that was shown to grow grains of Bi-2212 powder and densify composites. Measurements of the transport critical currents for the heat treated...

  3. INFLUENCE OF TORREFACTION TREATMENT ON WOOD POWDER PROPERTIES M. Almendrosa

    E-Print Network [OSTI]

    Boyer, Edmond

    INFLUENCE OF TORREFACTION TREATMENT ON WOOD POWDER PROPERTIES M. Almendrosa , O. Bonnefoyb , A de Saint-Etienne (EMSE), 158, Cours Fauriel, F-42023 Saint-Etienne, France ABSTRACT: Torrefaction and makes the grinding easier. Our project deals with the study of the effects of the combined torrefaction

  4. Skagit Valley Research Collection / Ian E. Efford (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    Skagit Valley Research Collection / Ian E. Efford (collector) Compiled by Christopher Hives (1997 of Creation / Physical Description o Collector's Biographical Sketch o Scope and Content o Notes File List-1982. 13 cm of textual records. 35 photographs. Collector's Biographical Sketch Ian Efford was an ecologist

  5. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Broader source: Energy.gov [DOE]

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  6. Citrus Variety Trends in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Alderman, D. C. (DeForest Charles)

    1951-01-01T23:59:59.000Z

    Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

  7. West Valley transfer cart control system design description

    SciTech Connect (OSTI)

    Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

    1993-01-01T23:59:59.000Z

    Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

  8. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18T23:59:59.000Z

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  9. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  10. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  11. Sustainability of irrigated agriculture in the San Joaquin Valley, California

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

  12. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  13. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  14. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07T23:59:59.000Z

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  15. Consolidation of zirconium-based metallic glass powder by equal channel angular extrusion

    E-Print Network [OSTI]

    Robertson, Jonathan Mark

    2002-01-01T23:59:59.000Z

    In this study, amorphous Zr??.?Nb?.?Cu??.?Ni??.?Al??.? (Vitreloy 106a) gas-atomized powder was consolidated by equal channel angular extrusion (ECAE). Several copper cans were filled with the powder, vacuum encapsulated and subjected to one...

  16. Fabrication of NiTi shape memory alloy from elemental powders by hot isostatic pressing

    E-Print Network [OSTI]

    McNeese, Matthew Doyle

    1997-01-01T23:59:59.000Z

    The research involved in this thesis was conducted to develop a procedure for producing cylindrical specimens of NiTi shape memory alloy for mechanical testing from elemental powders by hot isostatic pressing. Powders were mixed to ratios of 50...

  17. Fabrication of NiTi shape memory alloy from elemental powders by hot isostatic pressing

    E-Print Network [OSTI]

    McNeese, Matthew Doyle

    1997-01-01T23:59:59.000Z

    The research involved in this thesis was conducted to develop a procedure for producing cylindrical specimens of NiTi shape memory alloy for mechanical testing from elemental powders by hot isostatic pressing. Powders were mixed to ratios of 50...

  18. Electrically insulating phosphate coatings for iron powder based electromagnetic core applications

    E-Print Network [OSTI]

    Nolan, William Rane

    2009-01-01T23:59:59.000Z

    Powdered metals, such as iron, are a common building block for electromagnetic cores. An iron powder was reacted with phosphoric acid to create a layer of iron phosphate on each particle. This electrically insulating ...

  19. STUDIES OF DESIGN PARAMETERS IN THE FABRICATION OF Nb-Al-Ge SUPERCONDUCTORS BY THE POWDER METALLURGY INFILTRATION METHOD

    E-Print Network [OSTI]

    Granda, J.J.

    2010-01-01T23:59:59.000Z

    TicltcJ by a Powder Metallurgy Approach, (D. Eng. Thesis)SUPERCONDUCTORS BY THE POWDER METALLURGY INFILTRATION METHODBY TrIE POWDER METALLURGY INFILTRATION METHOD Jose J. Granda

  20. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01T23:59:59.000Z

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  1. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOE Patents [OSTI]

    Voigt, James A. (Corrales, NM); Sipola, Diana L. (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Anderson, Mark T. (Woodbury, MN)

    1999-01-01T23:59:59.000Z

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  2. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOE Patents [OSTI]

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01T23:59:59.000Z

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  3. Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York

    SciTech Connect (OSTI)

    N /A

    2004-01-16T23:59:59.000Z

    The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

  4. Powder, Pomp, Power: Toward a Typology and Genealogy of Effeminacies

    E-Print Network [OSTI]

    Hennen, Peter

    2001-04-01T23:59:59.000Z

    f~ , ------------------------- ~: .,:. ,: ...~ .I'~.- POWDER, POMP, POWER: TOWARD A TYPOLOGY AND GENEALOGY OF EFFEMINACIES PETER HENNEN University ofMinnesota Ananalysisofsomeofthevaryinghistoricalandcross-cultural meaningsof... believe it provides a unique perspective from which to analyze the sex/gender system of a given society. More specifically, an analysis of the historical uses of effeminacy can be seen as an indicator of a society's assumptions and attitudes toward women...

  5. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13T23:59:59.000Z

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  6. Report on Characterization and Processing of MDD Powder

    SciTech Connect (OSTI)

    Luther, Erik Paul [Los Alamos National Laboratory

    2012-08-21T23:59:59.000Z

    Uranium oxide powers most civilian nuclear reactors worldwide. A large infrastructure based on a well-established technology is in place to support this strategic component of the energy industry. Because uranium oxide fuels are used so ubiquitously, it is expected that ceramic fuel pellets will continue to be used. A better understanding of the properties of the starting materials, the processing methods used to fabricate fuel pellets and how the properties of pellets change in service, are important aspects being studied via experiments, models and simulations. A close integration of these approaches is essential if we are to find new ways to optimize both the fuel composition and structure for the purpose of improving performance, e.g., designed microstructures, reducing process losses, e.g. by net shape sintering, and enabling reprocessing of used fuel; e.g., incorporation of transuranics. Ceramic oxide fuel pellets are typically cold pressed and sintered from a powder feedstock. Consequently, a complete understanding of pellet fabrication requires a thorough knowledge of the process from powder synthesis through quality control and acceptance. In this study, uranium oxide powder synthesized by Modified Direct Denitration (MDD) is evaluated. Use of powders synthesized by novel, simplified approaches such as MDD are both a challenge and an opportunity. The MDD synthesis process offers an opportunity to simplify the fabrication process potentially reducing process losses. MDD also provides a simple path to incorporate transuranics from used fuel reprocessing with minimal handling. The challenge is to demonstrate and ultimately prove the reliability and reproducibility of simplified processing with the performance of fuel pellets experiencing in-pile service. This report summarizes a processing study of uranium oxide pellets made from MDD uranium oxide.

  7. Low temperature fabrication from nano-size ceramic powders

    SciTech Connect (OSTI)

    Gonzalez, E.J.; Piermarini, G.J.; Hockey, B. [and others

    1995-06-01T23:59:59.000Z

    The objective of the compaction process is to produce a dense green-state compact from a nanosize powder that subsequently can be sintered at high temperatures to form a dense ceramic piece. High density in the green-state after pressing is of primary importance for achieving high densities after sintering. Investigation of the compaction behavior of ceramic powders, therefore, is an important part of characterization of raw ceramic powders and evaluation of their compaction behavior, analysis of interaction between particles, and the study of microstructure of green body (unsintered) during pressure-forming processes. The compaction of nanosize ceramic particles into high density green bodies is very difficult. For the nanosize materials used in this study (amorphous Si{sub 3}N{sub 4} and {gamma} Al{sub 2}O{sub 3}), there is no evidence by TEM of partial sintering after synthesis. Nevertheless, strong aggregation forces, such as the van der Waals surface forces of attraction, exist and result in moderate precursor particle agglomeration. More importantly, these attractive surface forces, which increase in magnitude with decreasing particle size, inhibit interparticle sliding necessary for particle rearrangement to denser bodies during subsequent compaction. Attempts to produce high density green body compacts of nanosize particles, therefore, generally have been focused on overcoming these surface forces of attraction by using either dispersive fluids or high pressures with or without lubricating liquids. In the present work, the use of high pressure has been employed as a means of compacting nanosize powders to relatively high green densities.

  8. Powder River County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E A,Poway,

  9. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect (OSTI)

    Brown, Geoffrey W [Los Alamos National Laboratory; Sandstrom, Mary M [Los Alamos National Laboratory; Giambra, Anna M [Los Alamos National Laboratory; Archuleta, Jose G [Los Alamos National Laboratory; Monroe, Deirde C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  10. PDC bits find application in San Joaquin Valley

    SciTech Connect (OSTI)

    Fox, J.P.; Wood, J.E.

    1984-04-01T23:59:59.000Z

    Polycrystalline diamond compact (PDC) bits have been successfully and economically used to drill sand and shale sections in the oilfields of the Southern San Joaquin Valley of California. ''Successful'' refers to reducing the number of days to drill a well by four to six days, and ''Economical'' refers to reducing the cost per foot for the sand and shale intervals drilled with PDC bits. Enhancements of design variables including variations in back rake and side rake angles, and improved selection (numbers and sizes) of nozzles have helped PDC bits be economical in the Southern San Joaquin Valley. In addition to conventional vertical wells, PDC bits used in conjunction with mud motors and steering tools have also been successfully used to directionally drill wells in this area.

  11. Laboratory work in support of West Valley glass development

    SciTech Connect (OSTI)

    Bunnell, L.R.

    1988-05-01T23:59:59.000Z

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report.

  12. A simulation of the Neolithic transition in the Indus valley

    E-Print Network [OSTI]

    Lemmen, Carsten

    2011-01-01T23:59:59.000Z

    The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

  13. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect (OSTI)

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05T23:59:59.000Z

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  14. Martensitic transformation behaviors of rapidly solidified TiNiMo powders

    SciTech Connect (OSTI)

    Kim, Yeon-wook, E-mail: ywk@kmu.ac.kr [Department of Advanced Materials, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of)] [Department of Advanced Materials, Keimyung University, 1000 Shindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of TiNiMo alloy powders is more useful than that of elemental powders of Ti, Ni and Mo. Ti{sub 50}Ni{sub 49.9}Mo{sub 0.1} shape memory alloy powders were prepared by gas atomization, and transformation temperatures and microstructures of those powders were investigated as a function of powder size. XRD analysis showed that the B2RB19 martensitic transformation occurred in powders smaller than 150 ?m. According to DSC analysis of the as-atomized powders, the B2R transformation temperature (T{sub R}) of the 2550 ?m powders was 18.4 C. The T{sub R} decreased with increasing powder size, however, the difference in T{sub R} between 2550 ?m powders and 100150 ?m powders is only 1 C. Evaluation of powder microstructures was based on SEM examination of the surface and the polished and etched powder cross sections and the typical images of the rapidly solidified powders showed cellular morphology. Porous cylindrical foams of 10 mm diameter and 1.5 mm length were fabricated by spark plasma sintering (SPS) at 800 C and 5 MPa. Finally these porous TiNi alloy samples are heat-treated for 1 h at 850 C, and then quenched in ice water. The bulk samples have 23% porosity and 4.6 g/cm{sup 3} density and their T{sub R} is 17.8 C.

  15. Radiation safety at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Hoffman, R.L.

    1997-05-06T23:59:59.000Z

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

  16. Citrus Varieties for the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01T23:59:59.000Z

    Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

  17. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energys proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  18. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  19. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  20. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  1. Airborne particles in the San Joaquin Valley may affect human health

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Central Valley alter the lungs of healthy adult rats. Envevidence of changes in the lungs, systemic circulation andto recover cells from the lungs. For experi- ments to date,

  2. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

  3. Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Associations (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

  4. Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada

    E-Print Network [OSTI]

    Ahmad, Sajjad

    1 Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County..................................................................................................................................... 4 Piedmont Geomorphology and Related Flood Hazards..................... 6 The Field Area

  5. Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  6. Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. The Long Valley/Mono Basin Volcanic Complex: A Preliminary Magnetotell...

    Open Energy Info (EERE)

    ValleyMono Basin Volcanic Complex: A Preliminary Magnetotelluric and Magnetic Variation Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  8. INTERPRETATION OF GRAVITY SURVEYS IN GRASS AND BUENA VISTA VALLEYS, NEVADA

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01T23:59:59.000Z

    resistivity, and seismic interpretations along selectedboth gra- vity and seismic interpretations at several pointsValley. Gravity and seismic interpretations also give The

  9. Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

  10. Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley...

    Open Energy Info (EERE)

    Subtask 3.2 DAS at Garner Valley. Preview Go to resource distributed acousti... fiber optics geothermal Additional Info Field Value Source http:gdr.openei.orgsubmissions465...

  11. Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program

    Broader source: Energy.gov [DOE]

    Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

  12. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Water Sampling Activity Date 1976 - 1976 Usefulness useful DOE-funding Unknown Exploration...

  13. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  14. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  15. Characterization of Hafnia Powder Prepared from an Oxychloride Sol Gel

    SciTech Connect (OSTI)

    McGilvery, Catriona M. [Imperial College, London; De Gendt, S [Imperial College, London; Payzant, E Andrew [ORNL; MacKenzie, M [Imperial College, London; Craven, A J [Imperial College, London; McComb, D W [Imperial College, London

    2011-01-01T23:59:59.000Z

    Hafnium containing compounds are of great importance to the semiconductor industry as a replacement for Si(O,N) with a high- gate dielectric. Whilst Hf is already being incorporated into working devices1, much is still to be understood about it. Here we investigate the crystallisation processes and chemistry of bulk HfO2 powders which will aid in interpretation of reactions and crystallisation events occurring in thin films used as gate dielectrics. Amorphous HfO2 powder was prepared via a sol-gel route using hafnium oxychloride (HfOCl2 xH2O) as a precursor. The powders were subjected to various heat treatments and analysed using x-ray diffraction (XRD) and thermal analysis techniques. It was found that a large change in the crystallisation pathway occurred when the sample was heated in an inert environment compared with in air. Instead of the expected monoclinic phase (m-HfO2), tetragonal HfO2 (t-HfO2) also formed under these conditions and was observed up to temperatures of ~760 C. The t-HfO2 particles, which are less than 30nm in size, eventually transform into m-HfO2 on further heating. Possible mechanisms for the crystallisation of t-HfO2 are discussed. It is proposed that within this temperature range t-HfO2 is stabilised due to the presence of oxygen vacancies in the inert environment, forming by the reduction of HfIV to HfIII. As the crystal grows in size as the temperature increases there are too few oxygen vacancies left in the structure to continue stabilising the t-HfO2 phase and so transformation to m-HfO2 occurs.

  16. Production of films and powders for semiconductor device applications

    DOE Patents [OSTI]

    Bhattacharya, R.N.; Noufi, R.; Li Wang

    1998-03-24T23:59:59.000Z

    A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

  17. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect (OSTI)

    Brogan, Michael A. [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hughes, Robert W. [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, Ronald I. [ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Gregory, Duncan H., E-mail: Duncan.Gregory@glasgow.ac.uk [WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2012-01-15T23:59:59.000Z

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  18. Bulk synthesis of nanoporous palladium and platinum powders

    DOE Patents [OSTI]

    Robinson, David B. (Fremont, CA); Fares, Stephen J. (Pleasanton, CA); Tran, Kim L. (Livermore, CA); Langham, Mary E. (Pleasanton, CA)

    2012-04-17T23:59:59.000Z

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  19. New coal dewatering technology turns sludge to powder

    SciTech Connect (OSTI)

    NONE

    2009-03-15T23:59:59.000Z

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  20. Bulk synthesis of nanoporous palladium and platinum powders

    DOE Patents [OSTI]

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15T23:59:59.000Z

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  1. QER - Comment of Powder River Energy Corporation | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de SanPutting ItQA20Powder

  2. Powder River Energy Corporation (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder River Energy

  3. Powder River Energy Corporation Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to ReducePoseidonPowder River

  4. Plan de Actuacin rea de Ciencias

    E-Print Network [OSTI]

    Fitze, Patrick

    Plan de Actuacin 2010-2013 rea de Ciencias Agrarias #12;NOTA: Por favor, en caso de requerir seguimiento y recursos asignados 61 #12;4 Plan de Actuacin 2010-13. rea4 4rea de Ciencias Agrarias Informacin General descripcin del rea El rea de Ciencias Agrarias del CSIC cubre un amplio espacio de

  5. Plan de Actuacin rea de Ciencias y

    E-Print Network [OSTI]

    Fitze, Patrick

    Plan de Actuacin 2010-2013 rea de Ciencias y Tecnologas Qumicas #12;NOTA: Por favor, en caso de Ciencias y Tecnologas Qumicas Informacin General descripcin del rea El rea de Ciencia y Tecnologas lneas de investigacin que se desarrollan en el rea de Ciencia y Tecnologas Qumicas Misin y visin

  6. rea de Ciencia y Tecnologas Qumicas

    E-Print Network [OSTI]

    Fitze, Patrick

    1 1 4 7 Plan de Actuacin rea de Ciencia y Tecnologas Qumicas #12;2 Plan de Actuacin 2014-2017 Anexo VIII: Plan de Actuacin del rea de Ciencia y Tecnologas Qumicas 1 1 4 7 RESumEN EjECutIvO La misin del rea de Ciencia y Tecnologas Qumicas (CTTQQ) es realizar una investigacin cientfico

  7. Plan de Actuacin rea de Ciencias y

    E-Print Network [OSTI]

    Fitze, Patrick

    Plan de Actuacin 2010-2013 rea de Ciencias y Tecnologas Fsicas #12;NOTA: Por favor, en caso de Ciencias y Tecnologas Fsicas Informacin General Descripcin del rea el rea de Ciencias y Tecnologas complejos y la fsica estadstica, as como las matemticas y las ciencias y tecnologas de la computacin

  8. Plan de Actuacin rea de Ciencia y

    E-Print Network [OSTI]

    Fitze, Patrick

    Plan de Actuacin 2010-2013 rea de Ciencia y Tecnologa de Alimentos #12;NOTA: Por favor, en caso valores objetivos 44 #12;4 Plan de Actuacin 2010-13. rea7 7rea de Ciencia y Tecnologa de Alimentos Informacin General descripcin del rea La creacin del rea de Ciencia y Tecnologa de Alimentos del CSIC se

  9. Plan de Actuacin rea de Ciencias de

    E-Print Network [OSTI]

    Fitze, Patrick

    Plan de Actuacin 2010-2013 rea de Ciencias de Materiales #12;NOTA: Por favor, en caso de requerir #12;4 Plan de Actuacin 2010-13. rea6 6rea de Ciencias de Materiales Informacin General Descripcin con objeto de acercarles a temas punteros relacionados con el rea de Ciencia y Tecnologa de

  10. rea de Ciencia y Tecnologas Fsicas

    E-Print Network [OSTI]

    Fitze, Patrick

    1 1 4 7 Plan de Actuacin rea de Ciencia y Tecnologas Fsicas #12;2 Plan de Actuacin 2014-2017 Anexo V: Plan de Actuacin del rea de Ciencia y Tecnologas Fsicas 1 1 4 7 RESumEN EjECutIvO La misin principal del rea CyTTFF es contribuir al avance de la ciencia y de la tecnologa, realizando

  11. rea de Humanidades y Ciencias Sociales

    E-Print Network [OSTI]

    Fitze, Patrick

    1 1 4 7 Plan de Actuacin rea de Humanidades y Ciencias Sociales #12;2 Anexo I: Plan de Actuacin del rea de Humanidades y Ciencias SocialesPlan de Actuacin 2014-2017 1 1 4 7 Plan de Actuacin del rea de Humanidades y Ciencias Sociales RESumEN EjECutIvO El rea de Humanidades y Ciencias Sociales

  12. CURSO INTERNACIONAL MANEJO DE REAS PROTEGIDAS

    E-Print Network [OSTI]

    silvestres con el desarrollo rural y ordenamiento del uso de la tierra Manejo de conflictos, la colaboracin estudios de caso, tanto de los EE.UU. como de pases en desarrollo. El trabajo en el aula se concentra en

  13. ENADE 2005 rea: MATEMTICA 1 FORMAO GERAL

    E-Print Network [OSTI]

    Liu, I-Shih

    voto. QUESTO 2 Leia e relacione os textos a seguir. O Governo Federal deve promover a incluso digital continentes. Nesse contexto, analise a seguinte notcia: No dia 10 de maro de 2005, o Presidente de Governo

  14. CAMPUS DE FERROL REA DE DEPORTES

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    adapta os movementos e posicins, que se desenvolven a partir de diferentes disciplinas de autodefensa

  15. REA Energy Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito, Ecuador:RAPID/Roadmap/19-CO-cRE DKWRE

  16. Towards a new high technology development in the Silicon Valley : a 21st century urban design vision

    E-Print Network [OSTI]

    Pang, Jonathan K. (Jonathan Kam)

    1988-01-01T23:59:59.000Z

    Santa Clara Valley, perhaps better known as the Silicon Valley, is currently facing many problems and uncertainties. The explosion of the high technology industry has changed the regional scene faster than anyone could ...

  17. Method for removing oxide contamination from silicon carbide powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    1984-08-01T23:59:59.000Z

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  18. Helium/solid powder O-ring leakage correlation experiments

    SciTech Connect (OSTI)

    Leisher, W.B.; Weissman, S.H.; Tallant, D.R.; Kubo, M.

    1983-01-01T23:59:59.000Z

    We have developed a method to test powder leakage that has passed O-ring seals. To validate this method we have spiked a test fixture with 98 ng of U and recovered 130 +- 25 ng of U. We did not detect U at a detection limit of 26 ng in a fixture which was treated as a blank. This method has been applied to the leakage of UO/sub 2/ powder passing the type of EPDM O-ring seals used in a SNM shipping cask belonging to PNC. Considering the three experimental tests in which no or very small quantities of U were detected as effective blank test, it appears that the level of external contamination is negligible. Therefore, we believe that the U quantities greater than 26 ng (6 tests) passed the primary O-ring seal. From this limited quantity of data, we observe no apparent correlation between the amount of U measured and either helium leak rate or equivalent tube diameter. The data for the 130/sup 0/C tests indicate the possibility of a U/time relationship; however, more data are needed for verification.

  19. Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing

    E-Print Network [OSTI]

    Ngai, Samuel S. H

    2005-01-01T23:59:59.000Z

    A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

  20. High-performance Ni[sub 3]Al synthesized from composite powders

    SciTech Connect (OSTI)

    Chiou, W.C.; Hu, C.T. (National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Materials Science and Engineering)

    1994-05-01T23:59:59.000Z

    Specimens of Ni[sub 3]Al + B of high density (>99.3 pct RD) and relatively large dimension have been synthesized from composite powders through processes of replacing plating and electroless Ni-B plating on Al powder, sintering, and thermal-mechanical treatment. The uniformly coated Ni layer over fine Al or Ni core particles constituting these coating/core composite powders has advantages such as better resistance to oxidation relative to pure Al powder, a greater green density as a compacted powder than prealloyed powder, the possibility of atomically added B to the material by careful choice of a suitable plating solution, and avoidance of the expensive powder metallurgy (PM) equipment such as a hot isostatic press (HIP), hot press (HP), etc. The final Ni[sub 3]Al + B product is made from Ni-B-Al and Ni-B-Ni mixed composite powders by means of traditional PM processes such as compacting, sintering, rolling, and annealing, and therefore, the dimensions of the product are not constrained by the capacity of an HIP or HP. The properties of Ni[sub 3]Al composite powder metallurgy (CPM) specimens tested at room temperature have been obtained, and comparison with previous reports is conducted. A tensile elongation of about 16 pct at room temperature was attained.

  1. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01T23:59:59.000Z

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  2. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect (OSTI)

    Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

    1999-03-01T23:59:59.000Z

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  3. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  4. West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe& FederalPleasePhotoWestWest Valley

  5. Walker Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(Redirected from Walker Lake Valley

  6. West Puente Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: EnergyMountain,Puente Valley, California:

  7. Carroll Valley, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar17193°,Valley,

  8. Yucca Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View NewYBRYemenYork,Yucca Valley,

  9. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill JumpCalifornia:Valley

  10. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouthTampaValley of the Sun

  11. Kankakee Valley Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota:Kankakee Valley Rural E

  12. Kaw Valley Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin ADKaw Valley Electric Coop

  13. Lac qui Parle Valley School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,ILEDSGP/join <Lac qui Parle Valley

  14. Hunting Valley, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources JumpHunting Valley, Ohio: Energy

  15. Hybla Valley, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 Corporation Jump to:Hybla Valley,

  16. Coosa Valley Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa Valley Electric Coop Inc Jump to:

  17. Cumberland Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPage EditCrystalsol OUCumberland Valley

  18. Duncan Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin SemichemDuke EnergyDukeDuncan Valley

  19. Pine Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal ProjectLake,BethlehemValley,

  20. Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermalPinecrest,NorthPink,PintoValley

  1. Poudre Valley R E A, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudre Valley R E A, Inc Jump to:

  2. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy Efficiency JumpPrenovaPrescott Valley,

  3. Sandy Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)ProjectValley, Nevada: Energy Resources

  4. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport | Open EnergyChippewa Valley Electric Coop

  5. Grand Valley Rrl Pwr Line, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: Energy ResourcesGrand Valley Rrl

  6. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh,1347943°, -82.820974°Valley

  7. Niobrara Valley El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNewNingguoNiobrara Valley El Member Corp

  8. Nishnabotna Valley R E C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX LtdNewNingguoNiobrara Valley El

  9. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis)Pearl River Valley El Pwr Assn Jump to:

  10. Sun Valley to Morgan Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpenSumpter,Sun CitySun RiverValley to

  11. Sunset Valley, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectraSunnyside,SunrepsSunset Valley, Texas:

  12. North Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy ResourcesGranby,Plains, Oregon:Sea, NewSt.Valley, New Mexico:

  13. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: EnergyOrlovista,Oro Valley, Arizona:

  14. Bear Valley Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France:Barstow,Bayport Biomass FacilityBearValley

  15. Squaw Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield, Tennessee: EnergySquaw Valley,

  16. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| ExplorationCooperstown, Wisconsin:NewCopper Valley Elec

  17. Licking Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang River Valley Hydro Co LtdLicking

  18. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytechLong Island PowerLong Valley

  19. Spring Valley Pub Utils Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, IncSouthwesternSparkSpring Valley Pub Utils

  20. Surprise Valley Electrification Corp. (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AGSurana TelecomSurprise Valley