National Library of Energy BETA

Sample records for valley power station

  1. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    SciTech Connect (OSTI)

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  2. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  3. Minnkota Power Cooperative Wind Turbine (Valley City) | Open...

    Open Energy Info (EERE)

    Valley City) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Valley City) Facility Minnkota Power Cooperative Wind Turbine (Valley City) Sector Wind...

  4. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  5. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  8. Fang Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  9. Poihipi Power Station | Open Energy Information

    Open Energy Info (EERE)

    Poihipi Power Station General Information Name Poihipi Power Station Sector Geothermal energy Location Information Location Poihipi Road, Near Taupo, Waikato, New Zealand...

  10. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OMPA) and Silicon Valley Power (SVP) of Santa Clara, California, as the winners of the ... and integrating wind energy in Santa Clara, where the municipal electric ...

  11. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  12. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  13. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  14. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  15. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  16. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  17. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  18. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  19. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  20. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  1. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  2. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Wind Awards | Department of Energy Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards June 17, 2014 - 8:17am Addthis The U.S. Department of Energy, together with the American Public Power Association (APPA), today recognized the Oklahoma Municipal Power Authority (OMPA) and Silicon Valley Power (SVP) of Santa Clara, California, as the winners of the

  3. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  4. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  5. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  6. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  7. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  8. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  9. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  10. EECBG Success Story: Police Station Triples Solar Power - and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police ...

  11. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  12. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality This case study describes how the Owens Corning plant in Santa Clara, California, used DOE energy ...

  13. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. In addition, Customer Directed Rebates are...

  14. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  15. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  16. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  17. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  18. Nuova Lago Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  19. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  20. Cornia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  2. Carboli 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Bagnore 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  4. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect (OSTI)

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  5. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  6. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,065","8,612",92.3,"BWR","application/vnd.ms-excel","application/vnd.ms-

  7. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  8. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  11. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  12. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  13. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  16. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  17. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  18. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  19. WWTP Power Generation Station Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  20. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  2. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  3. Cerro Prieto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  4. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  5. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  6. Hellisheidi Geothermal Power Station - South Iceland | Open Energy...

    Open Energy Info (EERE)

    - South Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hellisheidi Geothermal Power Station - South Iceland Published...

  7. Boulder Valley School District (Colorado) Power Purchase Agreement Case Study

    Broader source: Energy.gov [DOE]

    Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the 20 year life of the agreement. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  8. Conceptual design of a submerged power station

    SciTech Connect (OSTI)

    Herring, J.S. )

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. Idaho National Engineering Laboratory is developing the concept of a submerged power stations (SPS). The reactor is located in the forward part of the vessel, while the turbine and generator are in the midsection, and the control and crew quarters are located at the opposite end of the vessel. The current design of the SPS has a 22.5-m o.d., is 146 m long, and has a total mass, including seawater in the annular region between the hulls, of 47,000 t. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 300 to 600 MW(electric) transmitted to shore by undersea cables. The SPS has the advantages of centralized fabrication and maintenance. The author believes that the SPS has significant safety and environmental advantages.

  9. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  10. Ngawha Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Plant Information Facility Type Binary Cycle Power Plant Owner Top Energy Number of Units 3 1 Commercial Online Date 1998 Power Plant Data Type of Plant...

  11. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  12. Wabash Valley Power Association (28 Member Cooperatives)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  13. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  14. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Info (EERE)

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  15. Birdsville Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Artesian Basin Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ergon Energy Number of Units 1 Commercial Online Date 1992 Power Plant Data Type of Plant Number...

  16. Design of photovoltaic central power station concentrator array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  17. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  18. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  19. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  20. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  1. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  2. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  3. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    Broader source: Energy.gov [DOE]

    This case study describes how the Owens Corning plant in Santa Clara, California, used DOE energy assessments and Silicon Valley Power utility incentives to save $252,000 annually through plant-wide improvements.

  4. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  5. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  6. Terra-Gen Power closes US$286m lease financing for Dixie Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power closes US286m lease financing for Dixie Valley Abstract NA Author Think...

  7. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  8. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  9. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  10. Machinery monitoring system installed at nuclear power station

    SciTech Connect (OSTI)

    Piety, K.; Hamrick, L.; McCurdy, A.

    1981-10-01

    The Grand Gulf Nuclear Station under construction in Mississippi will have a computer-based system to monitor 300 process variables and 200 vibration signals in each of the two units. The system's functions include monitoring support, startup/shutdown, surveillance, and diagnostics. The tasks associated with machinery monitoring are broken down into the initial plant design, construction and startup testing, and power-operation phases. The value of this monitoring is discussed and summarized in a table showing the impact of component failure on plant availability. 4 figures, 3 tables. (DCK)

  11. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  12. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  13. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  14. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  15. Police Station Triples Solar Power – and Savings

    Broader source: Energy.gov [DOE]

    The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs.

  16. Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station

    Broader source: Energy.gov [DOE]

    Deputy Secretary Elizabeth Sherwood-Randall's statement after visiting the Fukushima Dai-ichi Nuclear Power Station in Japan

  17. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  18. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  19. 2,"Laramie River Station","Coal","Basin Electric Power Coop"...

    U.S. Energy Information Administration (EIA) Indexed Site

    6,"Wyodak","Coal","PacifiCorp",332 7,"Top of the World Windpower Project","Wind","Duke Energy Top Of the World WindPower",200 8,"TransAlta Wyoming Wind","Wind","NextEra ...

  20. Perspective on occupational radiation exposures at a hypothetical fusion power station

    SciTech Connect (OSTI)

    Easterly, C.E.; Cannon, J.B.

    1983-01-01

    If current technology were used, several major sources of potential occupational radiation exposure at fusion power stations would be quite similar to those at current light water reactor power stations. Based upon this similarity, crude estimates of doses received from various maintenance operations at fusion power reactors are made. The dose estimates reinforce the need for concurrent development of sophisticated remote maintenance devices and low-activation materials for fusion reactors. It is concluded that minimization of occupational doses can be best achieved by developing an overall maintenance strategy that combines the best features of remote techniques and low activation materials as opposed to developing one or the other exclusively.

  1. Options to reduce the operating costs at fossil power stations

    SciTech Connect (OSTI)

    Mehl, L.; White, T.R.

    1998-12-31

    With the coming of deregulation in the electric power industry, existing power plants will have to evaluate options to reduce their operating costs in methods more commonly used in the industrial sector. Similar to organizations throughout the country, electrical generation companies are looking for ways to reduce their costs. The projected impact of figure deregulation on free enterprise production and trading have further emphasized this need. Historically, the ability to sell or dispatch electrical load based on economic advantages, has existed within local systems. Generating facilities with higher production costs must implement operating cost reductions or expect even lower capacity factors following deregulation. This paper examines various means to reducing operating costs and the methods used in their evaluation.

  2. EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

  3. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  4. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  5. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  6. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  8. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratorys monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  9. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect (OSTI)

    Barrett, A. J.; Marquino, W.

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

  10. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    SciTech Connect (OSTI)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  11. New materials for improving the efficiency of fossil-fired thermal power stations

    SciTech Connect (OSTI)

    Mayer, K.H.; Bendick, W.; Husemann, R.U.; Kern, T.; Scarlin, R.B.

    1998-07-01

    During the last 15--20 years ferritic-martensitic 9 to 12% chromium steels have been developed under international research programs which permit inlet steam temperatures up to approx. 625 C and pressures up to about 300 bar, thus leading to improvements in efficiency of around 8% versus conventional steam parameters. These new steels are already being applied in 12 European and 34 Japanese power stations with inlet steam temperatures up to 610 C. This paper will give an account of the content, scope and results of the research programs and of the experience gained during the production of components which have been manufactured from the new steels.

  12. Identifying fly ash at a distance from fossil fuel power stations

    SciTech Connect (OSTI)

    Flanders, P.J.

    1999-02-15

    A method has been developed to identify fly ash originating at fossil fuel power stations, even at a distance where the ash level is lower by a factor of 1000 from that close to a source. Until now such detection has been difficult and uncertain. The technique combines collection of particles, measurement of magnetization and coercive field, and microscopy. The analysis depends on the fact that ash from iron sulfide in fossil fuels is in the form of spherical magnetite. These particles have a relatively high coercive field H{sub c}, near 135 Oe, compared with airborne particulates from soil erosion which have an H{sub c} of {approximately}35 Oe. The coercive field of any sample therefore gives an indication for the percentage of fly ash relative to the total amount of magnetic material that is airborne. The concentration of ash from a large, isolated coal burning power station is found to fall off with the distance from the source, approximately as D{sup {minus}1}. As D increases there is a drop in H{sub c}, associated with the reduced amount of fly ash relative to the airborne particulates from soil erosion.

  13. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    SciTech Connect (OSTI)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. )

    1991-01-01

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

  14. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect (OSTI)

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  15. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  16. Mitigation of harmonic disturbance at pumped storage power station with static frequency converter

    SciTech Connect (OSTI)

    Chiang, J.C.; Wu, C.J.; Yen, S.S.

    1997-09-01

    This paper investigates the harmonic distortion problem and mitigation method at the Mingtan Pumped Storage Power Station in Taiwan, where six 300 MVA synchronous generators/motors are started by a static frequency converter (SFC) before the pumping stage. Since the SFC uses 6-pulse rectifier technique, a large amount of harmonic currents are produced during the starting period. The harmonic distortion level at each bus of the power plant was very high. Especially, the total harmonic distortion (THD) of current at the lighting feeder reached up to 184%, so that power fuses were burned out. At first a 5 mH reactor was inserted in the SFC feeder and a 5th order and high pass filter was installed. However, the harmonic distortion levels were still too high, but there is no space for additional higher-order filters. Finally, the SFC is fed with an individual transformer, and the harmonic disturbance problem is avoided. This paper also gives computer simulations to investigate the harmonic distortion problems and verify the mitigation methods.

  17. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  18. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  19. Experimental study of stack plume rise and dispersion at the power station

    SciTech Connect (OSTI)

    Not Available

    1986-10-10

    This paper describes the primary results of stack plume rise and dispersion experiment at Xu Zhou power station during November-December, 1978. (1) Under neutral and near-neutral stratification conditions, the 2/3 power law is the optimizing formula up to date, because of its calculated values in coincidence with observed. (2) Vertical of the buoyant plume from the tall stack is obviously stronger than that of non buoyant plume from the low stack. It is shown that the concept sof Pasquill(1976) model are acceptable, but formula should be modified. (3) From reliable monitoring data of SO/sub 2/ ground concentration, it is found that the effects of topography and stack height should be comprehensively taken into account in estimating dispersion by gaussian model. (4) It is suggested that in analyzing the stereophoto grammetric data of fluctuating plume, the square deviation of plume distribution should be considered as the sum of two parts--the distribution square deviation of the plume particulates relative to the instantaneous center line of the plume, and the distriubtion square deviaton of the instantaneous center line relative to the average center line of the plume. (5) Lidar is shown to be as effective as steroegraphic method in studying behavior of chimney plumes.

  20. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  1. Union Valley

    Broader source: Energy.gov [DOE]

    This document explains the cleanup activities and any use limitations for the land surrounding Union Valley.

  2. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  3. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect (OSTI)

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  4. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  5. Comparison of AB2588 multipathway risk factors for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1997-12-31

    Substances released from power plants may travel through various exposure pathways resulting in human health and environmental risks. The stack air emission`s primary pathway is inhalation from the ambient air. Multipathway factors (adjustment factors to the inhalation risk) are used to evaluate the importance of non-inhalation pathways (such as ingestion and dermal contact). The multipathway factor for a specific substance is the health risk by all pathways divided by the inhalation health risk for that substance. These factors are compared for fossil fuel power stations that submitted regulatory risk assessments in compliance with California Toxic Hot Spots Act (AB2588). Substances representing the largest contributions to the cancer risk are of primary concern: arsenic, beryllium, cadmium, chromium (+6), formaldehyde, nickel, lead, selenium, and PAHs. Comparisons of the chemical-specific multipathway factors show the impacts of regulatory policy decisions on the estimated health risk for trace substances. As an example, point estimates of the soil mixing depth, varying from 1 cm to 15 cm, relate to the relative importance of the pathway. For the deeper mixing depths, the root-zone uptake by homegrown tomato plants (for assumed consumption rate of 15% for San Diego) may result in high multipathway factors for several trace metals. For shallower mixing depths, soil ingestion may become the dominant non-inhalation pathway. These differences may lead to significantly different risk estimates for similar facilities located at different California locations such as to be under local regulatory authorities. The overall multipathway factor for the total cancer risk is about 2, much smaller than some of the chemical-specific factors. Science-based multipathway analysis should reduce much of the concern that may be due to policy-based decisions on pathway selection and high-value point-estimates of the parameters.

  6. EIS-0232: Sierra Nevada 2004 Power Marketing Program EIS (Central Valley Project)

    Broader source: Energy.gov [DOE]

    The Sierra Nevada Region needs to determine the level and character of capacity, energy, and other services that will be marketed beyond 2004. These services would be developed by combining potential hydropower operating approaches with power purchases. The Sierra Nevada Region also needs to establish eligibility and allocation criteria for the allocations of electric power resources to be marketed under contracts that will replace those expiring in 2004

  7. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect (OSTI)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  8. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  9. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect (OSTI)

    Goodman, Jr, F R

    1980-03-01

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  10. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  11. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4: Perform research on the Proton Exchange membrane

  12. EECBG Success Story: Police Station Triples Solar Power – and Savings

    Broader source: Energy.gov [DOE]

    With the help of an Energy Efficiency and Conservation Grant (EECBG), the North Community Police Substation installed new, roof-top photovoltaic panels that provide almost 40% of the station's electricity, up from 12.5%. The station now has a 90 kW PV system and will save between $4,000 and $6,000 a month in electric bills. Learn more.

  13. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect (OSTI)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  14. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    SciTech Connect (OSTI)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.

  15. Energy Department Applauds World’s First Fuel Cell and Hydrogen Energy Station in Orange County

    Broader source: Energy.gov [DOE]

    DOE issues the following statement in support of the commissioning of the world’s first tri-generation fuel cell and hydrogen energy station to provide transportation fuel to the public and electric power to an industrial facility, located at the Orange County Sanitation District's wastewater treatment plant in Fountain Valley, California.

  16. 1,"Chuck Lenzie Generating Station","Natural gas","Nevada Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Reclamation",1039.4 4,"Tracy","Natural gas","Sierra Pacific Power Co",897.6 5,"Harry Allen","Natural gas","Nevada Power Co",654 6,"Silverhawk","Natural gas","Nevada Power ...

  17. A Fresh Take on Groundwater at Amargosa Valley Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 25, 2012 A Fresh Take on Groundwater at Amargosa Valley Open House From drilling ... Interactive stations on Monitoring, Drilling, Sampling, Modeling, Protection and ...

  18. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  19. Tri-Generation Success Story: World's First Tri-Gen EnergyStation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley This Fuel Cell ...

  20. Lighthouse Solar Indian Valley | Open Energy Information

    Open Energy Info (EERE)

    Lighthouse Solar Indian Valley Address: 5062 McLean Station Road Place: Green Lane, PA Zip: 18054 Sector: Solar Phone Number: (215) 541-5464 Website: www.lighthousesolar.com...

  1. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  2. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect (OSTI)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  3. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  4. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  5. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antelope Valley Solar Ranch 1, a 242-MW photovoltaic (PV) solar generation project. ... Portfolio Projects TITLE XVII Powering New Markets: Utility-scale Photovoltaic Solar ...

  6. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Energy Savers [EERE]

    More Documents & Publications CRESCENT DUNES ANTELOPE VALLEY SOLAR RANCH Powering New Markets: Utility-scale Photovoltaic Solar REFF West PresentationPrepared Remarks...

  7. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  8. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  9. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    SciTech Connect (OSTI)

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  10. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  11. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  12. Best option for CO{sub 2} reduction in fossil-fired power stations

    SciTech Connect (OSTI)

    Pruschek, R.; Goettlicher, G.; Oeljeklaus, G.; Haupt, G.; Zimmermann, G.

    1998-07-01

    If CO{sub 2} emissions have to be reduced by 60 or even 80% by the middle of next century and energy supply still has to rely on coal, CO{sub 2} removal has to be considered as an option. Conceivable methods to remove CO{sub 2} from fossil fired power plants are removal from flue gas, combustion in O{sub 2}/CO{sub 2} or removal from a fuel gas after CO shift. If coal is to be used, the IGCC (Integrated Coal Gasification Combined Cycle) power plant with CO shift conversion and physical washing and the IGCC with O{sub 2}/CO{sub 2} firing were found to be the most appropriate options with respect to energy efficiency and economy. However, only the IGCC with CO shift and CO{sub 2} wash could be constructed on the basis of today's technology. Based on a Siemens Model V94.3A gas turbine-generator and proven process engineering components, the overall efficiency only decreases by acceptable 6% points with the need of an approximately 20% higher investment. In this case, the CO{sub 2} stream is of highest purity and therefore suited for both disposal or reuse in chemical processes. The largest potential for reuse of CO{sub 2} for chemical products is the production of methanol as a substitute of oil-based transport fuels. The projected integration of such a methanol synthesis in an IGCC is also briefly addressed.

  13. EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

  14. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  15. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  16. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  17. An evaluation of approximations of acute hazard indices based on chronic hazard indices for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1998-12-31

    The measures for evaluating risk under the Clean Air Act Amendments of 1990 are yet to be defined. Many risk assessments have used only chronic risk measures (lifetime cancer probability and chronic hazard index) based on yearly averages of long-term dispersion of substances into ambient air. In California, many facilities prepared risk assessments using hourly meteorological data and short-term emission rates, allowing the calculation of an acute hazard index. These risk assessments are more costly and labor-intensive than those using the annualized meteorological data. A simple scheme to estimate the acute hazard index from the chronic index is proposed. This scheme is evaluated for four electric power stations in Southern California. The simple scheme was found lacking due to the inability to reasonably estimate both the hourly emission rates from annual averages and hourly concentrations from annual concentrations. The need for the acute risk measure for stack emission can be questioned based on the more detailed risk assessments performed in California.

  18. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station

    SciTech Connect (OSTI)

    Reto Giere; Mark Blackford; Katherine Smith

    2006-10-15

    The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal + tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 {mu}m (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO{sub 4}, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO{sub 4}H{sub 2}O, is the main host for Zn and only occurs in the PM derived from the coal + tire blend, whereas yavapaiite, KFe{sup 3+}(SO{sub 4}){sub 2}, is present only when pure coal was combusted. It is concluded that these metal sulfates precipitated from the flue gas may be globally abundant aerosols and have, through hydration or dissolution, a major environmental and health impact. 66 refs., 2 figs., 1 tab.

  19. Solar Power Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Mill Valley, California Zip: 94941 Sector: Solar Product: Mill Valley-based independent power producer (IPP) focused on solar projects in the US References: Solar Power Partners...

  20. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  1. Hoopa Valley Tribe- 2006 Project

    Broader source: Energy.gov [DOE]

    The Hoopa Valley Tribe will assess the feasibility of smaller-scale hydroelectric facilities (between 100 KW and 5 MW). The feasibility study will focus on analyzing, qualifying, and quantifying the opportunity for the tribe to develop, own and operate hydroelectric plants on tribal lands, either for direct use by the tribe, or for selling power.

  2. West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

  3. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  4. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  5. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    the geothermal power plants. References Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore, Robert Sullivan (2007) The Shallow Hydrothermal System of Long Valley Caldera,...

  6. Community Response to Concentrating Solar Power in the San Luis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ... 2010 Community Response to Concentrating Solar Power in the San Luis Valley October 9, ...

  7. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  8. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  9. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  10. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  11. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  12. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  13. 2014 Annual Planning Summary for the West Valley Demonstration Project |

    Energy Savers [EERE]

    Department of Energy West Valley Demonstration Project 2014 Annual Planning Summary for the West Valley Demonstration Project The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project. PDF icon WVDP-NEPA-APS-2014.pdf More Documents & Publications 2014 Annual Planning Summary for the NNSA Los Alamos Field Office 2012 Annual Planning Summary for Bonneville Power Administration 2012 Annual Planning

  14. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  15. West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

  16. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  17. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  18. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  19. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    SciTech Connect (OSTI)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W.

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  20. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  1. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  2. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  3. Grand Valley Rrl Pwr Line, Inc | Open Energy Information

    Open Energy Info (EERE)

    Valley Rrl Pwr Line, Inc Place: Colorado Website: www.gvp.org Twitter: @GVRuralPower Outage Hotline: 970-242-0040 Outage Map: www.gvp.orgcontentoutage-map References: EIA Form...

  4. Exploratory Well At Long Valley Caldera Geothermal Area (McNitt...

    Open Energy Info (EERE)

    and Development of Geothermal Power in California Michael L. Sorey, Robert Edward Lewis, F.H. Olmsted (1978) The Hydrothermal System of Long Valley Caldera, California...

  5. Hoopa Valley Tribe - Small Hydro Project

    Energy Savers [EERE]

    Hydro Power Feasibility Study Hoopa Valley Tribe Curtis Miller cmiller@hoopa-nsn.gov (530)-625-5515 There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon, Steelhead and Rainbow trout. 50-60 inches of rainfall /year In the beginning In FY 2005 the Hoopa Tribal EPA received a grant from DOE to conduct a 2 year feasibility study for small scale hydropower on 7 major tributaries of the Reservation that flow into the Trinity River Concept of

  6. NV PFA - Steptoe Valley

    SciTech Connect (OSTI)

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  7. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  8. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industrys Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  9. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  10. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    Valley Solar Jump to: navigation, search Logo: All Valley Solar Name: All Valley Solar Address: 6851 Cahuenga Park Trail Place: Los Angeles, California Region: Southern CA Area...

  11. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource ...

  12. Bolton Valley Resort | Open Energy Information

    Open Energy Info (EERE)

    Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  13. West Valley Environmental Services LLC

    Office of Scientific and Technical Information (OSTI)

    by: West Valley Environmental Services LLC and URS Corporation Prepared for: U.S. Department of Energy DOE-WVDP Under: Contract DE-AC30-07CC30000 September 2010 10282 Rock Springs Road West Valley, New York 14171-9799 WEST VALLEY ENVIRONMENTAL SERVICES LLC AND URS CORPORATION WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2009 Department of Energy West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 14171-9799 To the Reader: This report,

  14. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Broader source: Energy.gov [DOE]

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  15. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  16. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    References: Blue Valley Energy Web Site1 On Jan 1st 2008, Valley Geothermal and Blue Sky Energy Solutions merged to form Blue Valley Energy LLC. Valley Geothermal, led by Monte...

  17. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  18. Bethel Valley Watershed | Department of Energy

    Energy Savers [EERE]

    Bethel Valley Watershed Bethel Valley Watershed This document discusses the Bethel Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem PDF icon Bethel Valley Watershed More Documents & Publications Bear Creek Valley Watershed Oak Ridge National Laboratory Cleanup Melton Valley Watershed

  19. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  20. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  1. Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  2. Microsoft Word - CROOKED RIVER VALLEY REHABILITATION PROJECT RECORD of DECISION.docx

    Energy Savers [EERE]

    Administration's Record of Decision For Crooked River Valley Rehabilitation Project August 2015 Decision Bonneville Power Administration (BPA) has decided to fund implementation of the Crooked River Valley Rehabilitation Project in Idaho County, Idaho. BPA's decision is based on the analysis documented in the Crooked River Valley Rehabilitation Project Final Environmental Impact Statement (DOE/EIS-0506, June 2015) and project record, and the selection of Alternative 2 by the United States Forest

  3. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  4. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  5. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  6. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH PDF icon DOE-LPO_Project-Posters_PV_CVSR.pdf More Documents & Publications EA-1840: Finding of No Significant Impact EA-1840: Final Environmental Assessment California Valley Solar Ranch Biological Assessment

  7. Valley Forge Corporate Center

    Energy Savers [EERE]

    55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and

  8. Golden Valley Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Whitewater Valley Rural EMC | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural EMC Jump to: navigation, search Name: Whitewater Valley Rural EMC Address: P.O. Box 349 Place: Liberty, Indiana Zip: 47353 Sector: Transmission Phone Number: (765)...

  10. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  11. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  12. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  13. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  14. Anderson Valley Brewing Company | Open Energy Information

    Open Energy Info (EERE)

    Valley Brewing Company Jump to: navigation, search Name: Anderson Valley Brewing Company Place: Mendocino Country, California Product: A microbrewery. The brewery is known for...

  15. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  16. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  17. Tippecanoe Valley School Corp | Open Energy Information

    Open Energy Info (EERE)

    Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN...

  18. Chuckawalla Valley State Prison | Open Energy Information

    Open Energy Info (EERE)

    Chuckawalla Valley State Prison Jump to: navigation, search Name: Chuckawalla Valley State Prison Place: Blythe, California Zip: 92226 Sector: Solar Product: Prison located in...

  19. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  20. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  1. Pumpernickel Valley Geothermal Project Thermal Gradient Wells...

    Open Energy Info (EERE)

    the geothermal activity in the valley are two areas with hot springs, seepages, and wet groundvegetation anomalies near the Pumpernickel Valley fault, which indicate that the...

  2. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  3. Smoky Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  4. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RANCH CALIFORNIA VALLEY SOLAR RANCH CALIFORNIA VALLEY SOLAR RANCH PROJECT SUMMARY In September 2011, the Department of Energy issued a 1.2 billion loan guarantee to finance ...

  5. Hoopa Valley Tribe- 1994 Project

    Broader source: Energy.gov [DOE]

    The Hoopa Valley Tribe is located in a northern California valley about 45 miles from the nearest city. The tribe is located in remote and mountainous area. The tribe was experiencing high energy costs to operate its community swimming pool due to the equipment's age, inefficient design, and the lack of a pool cover.

  6. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: • Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). • Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. • Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. • Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. • Maintain safety as the top priority in the system design and operation. • Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  7. Re: Potomac River Generating Station Department of Energy Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Advanced Notice of Power Outages. Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed ...

  8. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Potomac River Generating Station in Alexandria, Virginia Update 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit ...

  9. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  10. Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    This report fulfills the M3 milestone M3FT-13PN0810022, Report on Inspection 1, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

  11. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

  12. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  13. California Valley Solar Ranch Biological Assessment

    Broader source: Energy.gov [DOE]

    Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

  14. Refueling Stations | Open Energy Information

    Open Energy Info (EERE)

    Refueling Stations Jump to: navigation, search TODO: Add description List of Refueling Stations Incentives Retrieved from "http:en.openei.orgwindex.php?titleRefuelingStations...

  15. Pilgrim Station | Open Energy Information

    Open Energy Info (EERE)

    Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. 2006 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 6, 2006 CSP's Promise in Colorado Colorado's San Luis Valley picked as potential spot for concentrating solar power project. July 21, 2006 NREL Solar Researcher Honored ...

  17. Sierra Solar Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Sunnyvale, California Zip: 94086 Product: Developer of an undisclosed thin-film PV technology and headquartered in Silicon Valley, the company plans to...

  18. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  19. AMF Deployment, Ganges Valley, India

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi AMF Deployment, Ganges Valley, India GVAX will take place in the Ganges...

  20. South Valley Compliance Agreement Summary

    Office of Environmental Management (EM)

    the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9261990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities...

  1. Valley Electric Association- Net Metering

    Broader source: Energy.gov [DOE]

    The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

  2. Swauk Valley | Open Energy Information

    Open Energy Info (EERE)

    Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163,...

  3. Case Study - Sioux Valley Energy

    Energy Savers [EERE]

    Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and

  4. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  5. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  6. Valley Center Municipal Water District | Open Energy Information

    Open Energy Info (EERE)

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  7. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  8. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  9. Advanced conceptual design of the solar-repowering system for West Texas Utilities Company, Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-07

    The results of the conceptual design study reported include the development of a workable design for a sodium-cooled tower focus repowering system, the costs required to construct that design, and the determination of the benefits which could be obtained. A number of trade studies and optimizations were carried out in order to derive the most cost-effective design that also had the greatest potential for widespread application and commercialization. These studies are identified and their results are presented and discussed. The overall plant design is described and diagrammed, as are each of the subsystems: the heliostats, external receiver, master control, heat transport, thermal storage, electric power generating, and steam generating subsystems. Each subsystem's cost is summarized by major component. The subsystem is then described with its major components in terms of physical characteristics, requirements, and performance. An economic analysis is presented based on the internal rate of return to the project owner, and development plans are described. Appended is the system requirements specification. The testing and results for a sodium-cooled receiver panel are described. (LEW)

  10. CASL - Tennessee Valley Authority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    largest public power company, TVA plans to use more nuclear energy in achieving its vision to be one of the nation's leading providers of low-cost and cleaner energy. Key...

  11. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  12. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  13. Greening Gas Stations

    Energy Savers [EERE]

    eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Greening Gas Stations Prestene S. Garnenez Intern, Sandia National Laboratories Graduate Student, University of California, Los Angeles Department of Urban Planning eere.energy.gov It's Not Easy Being GREEN * What does it mean to be Green? * Can a Gas Station be Green? * How can a Gas Station be "Green"? * Image: inconvenientyouth.org eere.energy.gov What does it mean to be Green? * There are no "rules" for being

  14. Hoopa Valley Tribe- 1995 Project

    Broader source: Energy.gov [DOE]

    The Hoopa Valley Tribe is located in remote area about 45 miles from the nearest city. There is not much to keep the youth busy. The tribe purchased a 3,672-square-foot metal building and dedicated it to be used as a youth center.

  15. Santa Clara Valley Transportation Authority

    Broader source: Energy.gov [DOE]

    Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

  16. Husavik Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  17. Polk Power Station Unit 1, Florida

    SciTech Connect (OSTI)

    Hornick, M.

    2007-10-15

    Problems encountered during the demonstration phase of the Polk River IGCC plant have been resolved and the plant is now operating reliably.

  18. Bellavista Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  19. Te Mihi Power Station | Open Energy Information

    Open Energy Info (EERE)

    ectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  20. A10 Power | Open Energy Information

    Open Energy Info (EERE)

    Logo: A10 Power Inc. Name: A10 Power Inc. Address: 775 E. Blithedale Ave., 125 Place: Mill Valley, California Zip: 94941 Region: Bay Area Sector: Solar Product: Solar Financing...

  1. Determination of station blackout frequency-duration relationships

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.; Balakrishna, S.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to the essential and nonessential electrical buses in a nuclear power plant. This generally involves the loss of redundant off-site power sources and the failure of two or more emergency diesel generators (EDGs). The US Nuclear Regulatory Commission (NRC) has proposed requiring all commercial reactors to have the capability of coping with a station blackout of a specified duration. The NRC has also proposed 4 or 8 h as acceptable durations, depending on plant susceptibility to the occurrence of station blackout events. Analyses were performed to determine expected station blackout frequencies representative of a majority of domestic nuclear power plants. A methodology based on that developed by the NRC was used. Representative industry data for loss of off-site power (LOOP) events and EDG reliability were used in the analyses.

  2. Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California

    Broader source: Energy.gov [DOE]

    Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you’re filling up, this same fuel-station just so happens to be providing power back...

  3. Technical Design Report, Second Target Station

    SciTech Connect (OSTI)

    Galambos, John D.; Anderson, David E.; Bechtol, D.; Bethea, Katie L.; Brown, N.; Carden, W. F.; Chae, Steven M.; Clark, A.; Counce, Deborah M.; Craft, K.; Crofford, Mark T.; Collins, Richard M.; Cousineau, Sarah M.; Curry, Douglas E.; Cutler, Roy I.; Dayton, Michael J.; Dean, Robert A.; Deibele, Craig E.; Doleans, Marc; Dye, T.; Eason, Bob H.; Eckroth, James A.; Fincrock, C.; Fritts, S.; Gallmeier, Franz X.; Gawne, Ken R.; Hartman, Steven M.; Herwig, Kenneth W.; Hess, S.; Holmes, Jeffrey A.; Horak, Charlie M.; Howell, Matthew P.; Iverson, Erik B.; Jacobs, Lorelei L.; Jones, Larry C.; Johnson, B.; Johnson, S.; Kasemir, Kay; Kim, Sang-Ho; Laughon, Gregory J.; Lu, W.; Mahoney, Kelly L.; Mammosser, John; McManamy, T.; Michilini, M.; Middendorf, Mark E.; O'Neal, Ed; Nemec, B.; Peters, Roy Cecil; Plum, Michael A.; Reagan, G.; Remec, Igor; Rennich, Mark J.; Riemer, Bernie; Saethre, Robert B.; Schubert, James Phillip; Shishlo, Andrei P.; Smith, C. Craig; Strong, William Herb; Tallant, Kathie M.; Tennant, David Alan; Thibadeau, Barbara M.; Trumble, S.; Trotter, Steven M.; Wang, Z.; Webb, Steven B.; Williams, Derrick C.; White, Karen S.; Zhao, Jinkui

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  4. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  5. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2007-06-20

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  6. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  7. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  8. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &

  9. 1,"Mystic Generating Station","Natural gas","Constellation Mystic...

    U.S. Energy Information Administration (EIA) Indexed Site

    (MW)" 1,"Mystic Generating Station","Natural gas","Constellation Mystic Power LLC",1997.2 2,"Brayton Point","Coal","Brayton Point Energy LLC",1505 3,"Northfield Mountain","Pumped ...

  10. Re: Potomac River Generating Station Department of Energy Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: ...

  11. Electrolysis at Forecourt Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H 2 USA * Actively engaged in CEC solicitations ITM POWER INC. The Team so far...... KEY IS RENEWABLE ENERGY POWER PRICING - RAPID RESPONSE ELECTROLYSER ITM Electrolyser Clean ...

  12. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy - Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available

  13. South Valley Archived Soil & Groundwater Master Reports | Department of

    Energy Savers [EERE]

    Energy South Valley Archived Soil & Groundwater Master Reports South Valley Archived Soil & Groundwater Master Reports South Valley Archived Soil & Groundwater Master Reports PDF icon South Valley - South Valley Plume More Documents & Publications Slick Rock Archived Soil & Groundwater Master Reports Tuba City Archived Soil & Groundwater Master Reports Spook Archived Soil & Groundwater Master Reports

  14. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect (OSTI)

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  15. WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE Bryan Bower: 716-942-4368 June 28, 2012 Bill Taylor: 803-952-8564 West Valley Draft Waste Evaluation West Valley, New York - The U.S. Department of Energy (DOE) today released to the Nuclear Regulatory Commission (NRC), the public and the states of Nevada and Texas, for review and comment, a Draft Waste Incidental to Reprocessing (WIR) Evaluation (Draft Evaluation) for the concentrator feed makeup

  16. EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts.

  17. Dixie Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  18. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  19. James Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    James Valley Ethanol LLC Place: Gronton, South Dakota Zip: 57445 Product: Farmers owned cooperative that built and operates an ethanol production facility. Coordinates: 29.72369,...

  20. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  1. Hydrologic Monitoring Summary Long Valley Caldera, California...

    Open Energy Info (EERE)

    Summary Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published ORMAT internal report, 2010 DOI Not Provided Check for DOI...

  2. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Phil...

  3. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  4. Golden Valley Electric Association - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    30 Timer Controlling Exterior Vehicle Plug-In Outlet: 20 Switch Controlling Exterior Vehicle Plug-In Outlet: 10 Summary Golden Valley Electric Association's (GVEA) Builder...

  5. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Assessments Review, West Valley Demonstration Project - December 2014 EA-1552: Final Environmental Assessment 3Q CY2005 (PDF), Facility Representative Program Performance...

  6. Tennessee Valley Authority | Open Energy Information

    Open Energy Info (EERE)

    Authority Jump to: navigation, search Name: Tennessee Valley Authority Place: Tennessee Phone Number: (865) 632-2101 Website: www.tva.gov Twitter: @tvanewsroom Facebook: https:...

  7. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  8. Minnesota Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesMinnesota-Valley-Electric-Cooperative212971310374 Outage Hotline: 1-800-232-2328 Outage Map: outage.mvec.net References: EIA Form EIA-861...

  9. Squirrel Mountain Valley, California: Energy Resources | Open...

    Open Energy Info (EERE)

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  10. Dixie Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Dixie Valley is a city in Churchill County, Nevada. Energy Generation Facilities in Dixie Valley, Nevada Dixie Valley...

  11. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    Open Energy Info (EERE)

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  12. Poudre Valley R E A, Inc | Open Energy Information

    Open Energy Info (EERE)

    Poudre Valley R E A, Inc Jump to: navigation, search Name: Poudre Valley R E A, Inc Place: Colorado Website: www.pvrea.com Twitter: @PoudreValleyREA Facebook: https:...

  13. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station

    Broader source: Energy.gov [DOE]

    EERE supported the development of the world's first tri-generation station combined heat and power system that produces hydrogen in addition to heat and electricity.

  14. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,892,"7,119",91.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,885,"7,874",101.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  16. West Valley Demonstration Project: A Short History and Status | Department

    Office of Environmental Management (EM)

    Project West Valley Demonstration Project West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here. PDF icon West Valley Demonstration Project Administrative Consent Order, August 27, 1996 PDF icon West Valley Demonstration Project Administrative Consent Order, August 27, 1996 Summary PDF icon West Valley Demonstration Project Administrative Consent Order, March 5, 1992 PDF icon West Valley Demonstration Project Administrative Consent

  17. Workplace Charging Challenge Partner: Organic Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Valley Workplace Charging Challenge Partner: Organic Valley Workplace Charging Challenge Partner: Organic Valley Joined the Challenge: March 2015 Headquarters: La Farge, WI Charging Locations: N/A Domestic Employees: 802 Organic Valley is America's largest cooperative of organic farmers and a well-known organic brand. One of Organic Valley's goals is to promote a respect for the diversity, dignity, and interdependence of human, animal, plant, soil and global life. Organic Valley believes

  18. Lichuan City Yujiang River Valley Hydro Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lichuan City Yujiang River Valley Hydro Co Ltd Jump to: navigation, search Name: Lichuan City Yujiang River Valley Hydro Co., Ltd. Place: Hubei Province, China Zip: 445400 Sector:...

  19. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not...

  20. Hydrology of the Geothermal System in Long Valley Caldera, California...

    Open Energy Info (EERE)

    System in Long Valley Caldera, California Abstract Abstract unavailable. Author Michael L. Sorey Published Unpublished report for the Long Valley Hydrologic Advisory Committee,...

  1. Soil Sampling At Dixie Valley Geothermal Area (Nash & D., 1997...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Dixie Valley Geothermal Area...

  2. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  3. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  4. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and...

  5. Micro-Earthquake At Dixie Valley Geothermal Area (Katz & J.,...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Katz & J., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Dixie Valley Geothermal Area...

  6. DOE - Office of Legacy Management -- West Valley Demonstration...

    Office of Legacy Management (LM)

    Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site ...

  7. FTCP Site Specific Information - West Valley Demonstration Project |

    Energy Savers [EERE]

    Department of Energy West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012

  8. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  9. Langel Valley Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel...

  10. Surprise Valley Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal...

  11. Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration Activity...

  12. DOE - Office of Legacy Management -- Monument Valley Mill Site...

    Office of Legacy Management (LM)

    at the Monument Valley, Arizona, DOE Legacy Waste Site 2008 Pilot Study Status Report ... at the Monument Valley, Arizona, DOE Legacy Phytoremediation of the ...

  13. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San ...

  14. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Title: Single-valley engineering in graphene superlattices Authors: ...

  15. Smith Creek Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  16. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Environmental Management (EM)

    RFP for West Valley Demonstration Project Probabilistic Performance Assessment DOE Issues RFP for West Valley Demonstration Project Probabilistic Performance Assessment April 2,...

  17. Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

  18. Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

  19. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area...

  20. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

  1. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

  2. Compound and Elemental Analysis At Fish Lake Valley Area (DOE...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

  3. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley...

  4. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  5. Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal...

  6. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley...

  7. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley...

  8. Valley Fish Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Fish Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Valley Fish Farms Aquaculture Low Temperature Geothermal Facility Facility Valley Fish...

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  10. Enforcement Letter, West Valley Nuclear Services- March 30, 1998

    Broader source: Energy.gov [DOE]

    Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

  11. Compound and Elemental Analysis At Little Valley Area (Wood,...

    Open Energy Info (EERE)

    Little Valley Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood,...

  12. Santa Clara Valley Transportation Authority and San Mateo County...

    Office of Environmental Management (EM)

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell ...

  13. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  14. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  15. Sun Spot One (SS1): San Luis Valley, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  16. Sun Spot One (SS1): San Luis Valley, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2008-06-10

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  17. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  18. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  19. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fueling Station Locator Alternative Fueling Station Locator Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count

  20. Hoopa Valley Tribe - Small Hydropower Feasibility Study

    Energy Savers [EERE]

    Micro-Hydro Feasibility Study Hoopa Valley Tribe Curtis Miller The Hoopa Valley Reservation was established in 1868 by executive order of Ulysses S. Grant and contains the aboriginal homeland of the Hupa People. It encompasses approximately 100,000 acres and is 96% owned by the Hoopa Tribe. Salmon are the life blood of the Hupa and Yurok and Karuk people There are over 1200 miles of major streams within the Hoopa Valley Reservation many of which support Salmon and Rainbow trout. 50-60 inches of

  1. Cumberland Valley Electric Cooperative- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric Cooperative offers businesses rebates for energy efficient lighting and compressed air delivery retrofits.

  2. Enterprise Assessments Review, West Valley Demonstration Project – December 2014

    Broader source: Energy.gov [DOE]

    Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

  3. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  4. EA-239 Aroostook Valley Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Aroostook Valley Electric Company EA-239 Aroostook Valley Electric Company Order authorizing Aroostook Valley Electric Company to export electric energy to Canada. PDF icon EA-239 Aroostook Valley Electric Company More Documents & Publications EA-193 Energy Atlantic, LLC EA-380 Freeport Commodities EA-249 Exelon Generation Company LLC

  5. Scotts Valley Band of Pomo Indians: Scotts Valley Energy Office and Human Capacity Project

    Energy Savers [EERE]

    SCOTTS VALLEY BAND OF POMO INDIANS Project Energy Manager Temashio Anderson Project Location: Tribes of Lake County, California SCOTTS VALLEY TRIBAL MULTI-COUNTY WEATHERIZATION PROGRAM FY 2009-2011 FINAL TRIBAL ENERGY REVIEW AND UPDATE IRENIA QUITIQUIT, ENVIRONMENTAL DIRECTOR SCOTTS VALLEY EPA & NATURAL RESOURCES DEPARTMENT PROJECT ACCOMPLISHMENTS v Provided weatherization training to 35 tribal trainees to bring green job opportunities to Indian Country v 4 tribal trainees - Wx

  6. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  7. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    ScienceCinema (OSTI)

    None

    2014-07-31

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  8. Antenna unit and radio base station therewith

    DOE Patents [OSTI]

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  9. Carroll Valley, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Carroll Valley is a borough in Adams County, Pennsylvania. It falls under Pennsylvania's 19th congressional district.12...

  10. Elkhorn Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Elkhorn Valley Ethanol LLC Place: Norfolk, Nebraska Zip: 68701 Product: Operates a 40m gallon ethanol plant in Norfolk, Nebraska. Coordinates: 36.846825, -76.285069 Show Map...

  11. Fort Valley Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    Fort Valley Utility Comm Place: Georgia Phone Number: 478-825-7701 Website: fvutil.com Twitter: @fvutil Facebook: https:www.facebook.comfvutil Outage Map: fvutil.comnews...

  12. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  13. Lower Valley Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    LowerValleyEnergy Outage Hotline: 800-882-5875 References: Energy Information Administration.1 EIA Form 861 Data Utility Id 11273 This article is a stub. You can help OpenEI...

  14. Tennessee Valley Authority (Mississippi) | Open Energy Information

    Open Energy Info (EERE)

    Name: Tennessee Valley Authority Place: Mississippi References: Energy Information Administration.1 EIA Form 861 Data Utility Id 18642 This article is a stub. You can help OpenEI...

  15. Bear Valley Electric Service- Solar Initiative Program

    Broader source: Energy.gov [DOE]

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  16. Poudre Valley REA- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  17. Enterprise Assessments Review, West Valley Demonstration Project -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 | Department of Energy Radiological Controls Activity-Level Implementation The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's Office of Enterprise Assessments, conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June 9-13, 2014. PDF icon Enterprise Assessments Review, West Valley

  18. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Hanford Meteorological Station Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The HMS is operated by Mission Support Alliance for the U.S. Department of Energy. The HMS provides a

  19. Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  20. High speed imager test station

    DOE Patents [OSTI]

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  1. High speed imager test station

    DOE Patents [OSTI]

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  2. Wachs Cutter Tooling Station (4495)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  3. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  4. More California Gas Stations Can Provide Hydrogen than Previously Thought,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Study Says California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  5. Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Refueling Station Arkansas Launches Natural Gas-Powered Buses and Refueling Station to someone by E-mail Share Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Facebook Tweet about Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Twitter Bookmark Alternative Fuels Data Center: Arkansas Launches Natural Gas-Powered Buses and Refueling Station on Google Bookmark Alternative Fuels Data

  6. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  7. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  8. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  9. Quantum key distribution using card, base station and trusted authority

    DOE Patents [OSTI]

    Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas

    2015-04-07

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  10. Recommendations to Address Power Reliability Concerns Raised...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns Raised as a ...

  11. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Utility Id 40211 Utility Location Yes Ownership C NERC Location RFC,SERC NERC RFC Yes RTO PJM Yes ISO MISO Yes Activity Generation Yes Activity Transmission Yes Activity Buying...

  12. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    electricity bills in 14 schools by about 10% over the 20 year life of the agreement. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide...

  13. USBIA-Mission Valley Power | Open Energy Information

    Open Energy Info (EERE)

    632 10,550 6,150 56 1,165 1 1,913 34,256 20,342 2008-02 1,495 28,048 14,166 728 12,477 6,132 53 1,117 1 2,276 41,642 20,299 2008-01 1,506 28,324 14,173 698 11,962 6,122 63 1,402 1...

  14. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications Pumping, fan, and compressed air systems are important in glass fiber ... performed by DOE Energy Expert, Joe Junker, on the plant's pumping systems in 2007. Mr. ...

  15. Cumberland Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    Valley Rural E C C Jump to: navigation, search Name: Cumberland Valley Rural E C C Place: Kentucky Phone Number: 1-800-513-2677 Website: www.cumberlandvalley.coop Twitter:...

  16. San Luis Valley R E C, Inc | Open Energy Information

    Open Energy Info (EERE)

    Luis Valley R E C, Inc Jump to: navigation, search Name: San Luis Valley R E C, Inc Place: Colorado Phone Number: 1.800.332.7634 Website: www.slvrec.com Twitter: @SLVREC Facebook:...

  17. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Valley Elec Assn, Inc Jump to: navigation, search Name: Copper Valley Elec Assn, Inc Place: Alaska Phone Number: Copper Basin: 907-822-3211 or Valdez: 907-835-4301 Website:...

  18. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    Valley El Pwr Assn Jump to: navigation, search Name: Pearl River Valley El Pwr Assn Place: Mississippi Phone Number: Columbia: 601-736-2666 -- Hattiesburg: 601-264-2458 -- Purvis:...

  19. Minnesota Valley Coop L&P Assn | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Valley Coop L&P Assn Jump to: navigation, search Name: Minnesota Valley Coop L&P Assn Place: Minnesota Phone Number: 320-269-2163 or 1-800-247-5051 Website:...

  20. Tallahatchie Valley E P A | Open Energy Information

    Open Energy Info (EERE)

    Valley E P A Jump to: navigation, search Name: Tallahatchie Valley E P A Place: Mississippi Phone Number: 662.563.4742 Website: www.tvepa.comhome.aspx Outage Hotline: 662-563-4742...

  1. West Valley Demolition Marks Important Accomplishment for EM

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM marked one of its most significant achievements at the West Valley Demonstration Project (WVDP) with the completion of the site’s first nuclear facility demolition this spring.

  2. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers rebates for residential customers who wish to increase the energy efficiency of eligible homes. Contact Lower Valley Energy by phone for more specific information on the...

  3. Sulphur Springs Valley E C Inc | Open Energy Information

    Open Energy Info (EERE)

    Springs Valley E C Inc Jump to: navigation, search Name: Sulphur Springs Valley E C Inc Abbreviation: SSVEC Place: Arizona Phone Number: 1-(800) 422-3275 Website: www.ssvec.org...

  4. Red River Valley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    Red River Valley Coop Pwr Assn Jump to: navigation, search Name: Red River Valley Coop Pwr Assn Place: Minnesota Website: www.rrvcoop.com Facebook: https:www.facebook.comRRVCPA...

  5. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  7. Kankakee Valley Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    Kankakee Valley Rural E M C Jump to: navigation, search Name: Kankakee Valley Rural E M C Place: Indiana Phone Number: 219.733.2511 or 800.552.2622 Website: www.kvremc.com Outage...

  8. Long Valley Caldera Field Trip Log | Open Energy Information

    Open Energy Info (EERE)

    to library Conference Paper: Long Valley Caldera Field Trip Log Abstract NA Authors Gene A. Suemnicht and Bastien Poux Conference NGA Long Valley Field Trip, July 5-7, 2012;...

  9. The Near-Surface Hydrothermal Regime of Long Valley Caldera ...

    Open Energy Info (EERE)

    of Long Valley Caldera Citation Arthur H. Lachenbruch,Michael L. Sorey,Robert Edward Lewis,John H. Sass. 1976. The Near-Surface Hydrothermal Regime of Long Valley Caldera....

  10. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  11. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  12. Project Reports for Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  13. Lobbyist Disclosure Form - Silicon Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Lobbyist Disclosure Form - Silicon Valley Jonathan Silver, Energy Department executive director loans program, gave Colleen Quinn, Silicon Valley Leadership Group vice president of government relations and public policy, a broad overview of the work done by the LPO, and discussed the possible future of clean energy investment. PDF icon Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First

  14. Project Reports for Hoopa Valley Tribe- 2006 Project

    Broader source: Energy.gov [DOE]

    The Hoopa Valley Tribe will assess the feasibility of smaller-scale hydroelectric facilities (between 100 KW and 5 MW).

  15. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  16. DOE - Office of Legacy Management -- Rio Algom Lisbon Valley...

    Office of Legacy Management (LM)

    Valley Site (035 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  17. Kinarot Jordan Valley Technological Incubator | Open Energy Informatio...

    Open Energy Info (EERE)

    - Jordan Valley Technological Incubator Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Kinarot - Jordan...

  18. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  19. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration...

  20. Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  1. 2012 Annual Planning Summary for West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within West Valley Demonstration Project.

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar

    Office of Scientific and Technical Information (OSTI)

    Year 2009 (Technical Report) | SciTech Connect Technical Report: West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009 Citation Details In-Document Search Title: West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009 The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP),

  3. Technical Design Report, Second Target Station (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect SciTech Connect Search Results Technical Report: Technical Design Report, Second Target Station Citation Details In-Document Search Title: Technical Design Report, Second Target Station The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target

  4. Re: Potomac River Generating Station Department of Energy Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Advanced Notice of Power Outages. | Department of Energy Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No. 202-05-03: Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission outages that are scheduled for the upcoming

  5. Franklin Heating Station | Open Energy Information

    Open Energy Info (EERE)

    search Name: Franklin Heating Station Place: Minnesota Phone Number: 5072893534 Facebook: https:www.facebook.compagesFranklin-Heating-Station116610418398578 References:...

  6. Early Station Costs Questionnaire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Station Costs Questionnaire Early Station Costs Questionnaire Presentation by Marc Melaina, National Renewable Energy Laboratory, at the Hydrogen Infrastructure Market ...

  7. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Dagoutou Hydropower Station Jump to: navigation, search Name: Shimian Dagoutou Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product:...

  8. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Liuyang Hedong Hydropower Station Jump to: navigation, search Name: Liuyang Hedong Hydropower Station Place: Liuyang, Hunan Province, China Zip: 410305 Sector: Hydro Product:...

  9. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Eryuan Huian Hydropower Station Jump to: navigation, search Name: Eryuan Huian Hydropower Station Place: Dali Bai Autonomous Prefecture, Yunnan Province, China Zip: 671200 Sector:...

  10. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Baxin Hydropower Station Jump to: navigation, search Name: Tianlin Baxin Hydropower Station Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  11. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Danihe Hydropower Station Jump to: navigation, search Name: Shimian Danihe Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product: China-based...

  12. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  13. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  14. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    2008-05-30

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  15. Current Projects Beowawe Dixie Valley

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-temperature and co-produced resources represent a small but growing sector of hydrothermal development, in geothermal resources below 150°C (300°F). Considered non-conventional hydrothermal resources, these technologies are bringing valuable returns on investment in the near- term, using unique power production methods. U.S. DEPARTMENT OF ENERGY GEOTHERMAL TECHNOLOGIES OFFICE TIMOTHY REINHARDT CO-PRODUCTION TECHNOLOGY MANAGER Innovative Rotating Heat Exchanger Sandia National Lab The

  16. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  17. Loss of pressurizer water level during station blackout

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to both the essential and nonessential electrical buses in a nuclear power plant. The US Nuclear Regulatory Commission (NRC) has proposed a requirement that all plants be capable of maintaining adequate core cooling during station blackout events lasting a specified duration. The NRC has also suggested acceptable specified durations of four or eight hours, depending on individual plant susceptibility to blackout events. In a pressurized water reactor (PWR), the occurrence of a station blackout event results in the functional loss of many plant components, including main feedwater, reactor coolant pumps, the emergency core cooling system, and pressurizer heaters and spray. Nevertheless, PWRs have the capability of removing decay heat for some period of time using steam-driven auxiliary feedwater pumps and the natural-circulation capability of the primary system. The purpose of this investigation is to determine the early response of a PWR to station blackout conditions. In particular, the effect of primary coolant shrinkage and inventory loss on pressurizer level is examined to gain insight into the operational and analytical issues associated with the proposed station blackout coping requirement.

  18. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  19. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  20. Primus Power Corporation Wind Firming EnergyFarm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    central valley that consists of an array of 250kW EnergyPods(tm); plug-and-play zinc-flow battery modules and power electronics systems housed inside ISO shipping containers. ...

  1. Acceptance and operability test report for the 327 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 327 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  2. Acceptance {ampersand} operability test report for the 324 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 324 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  3. Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod

    SciTech Connect (OSTI)

    Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

    2005-07-30

    Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

  4. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  5. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  6. Rocketdyne Propulsion and Power DOE operations annual site environmental report 1996

    SciTech Connect (OSTI)

    Tuttle, R.J.

    1997-11-10

    Rocketdyne currently operates several facilities in the San Fernando Valley/Simi Valley area, for manufacturing, testing, and research and development (R and D). These operations include manufacturing liquid-fueled rocket engines, such as the Space Shuttle Main Engine (SSME) and engines used for expendable launch vehicles used to place artificial satellites into orbit. This work includes fabrication and testing of rocket engines, lasers, and heat-transfer systems; and R and D in a wide range of high-technology fields, such as the electrical power system for the Space Station. Previously, this work also included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International Division (AI). AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. This nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. The majority of this work is done for the Department of Energy (DOE). This Annual Site Environmental Report for 1996 concentrates on the environmental conditions related to DOE operations at Area IV of SSFL and at De Soto.

  7. Re: Potomac River Generating Station Department of Energy, Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits | Department of Energy evised plan for transmission outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Docket No. EO-05-01. Order No. 202-07-02: Potomac Electric Power Company ("Pepco") is providing you with the

  8. Dixie Valley Bottoming Binary Unit

    SciTech Connect (OSTI)

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  9. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  10. Valley Entrepreneurs' Network (VEN) Monthly Network Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VEN Monthly Network Meeting Valley Entrepreneurs' Network (VEN) Monthly Network Meeting WHEN: Mar 05, 2015 5:30 PM - 7:00 PM WHERE: Anthony's At the Delta North Paseo De Onate, Española, NM CATEGORY: Community INTERNAL: Calendar Login Event Description An evening of exciting enterprise networking with like-minded entrepreneurs. For more information, contact Alejandro, VEN Coordinator, at (505) 410-0959

  11. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  12. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  13. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  14. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect (OSTI)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  15. Inhomogeneity smoothing using density valley formed by ion beam deposition

    Office of Scientific and Technical Information (OSTI)

    in ICF fuel pellet (Journal Article) | SciTech Connect Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet We study the beam non-uniformity smoothing effect of the radiation transport in the density valley formed by an ion-beam deposition in an ion-beam inertial confinement fusion pellets by numerical simulation.

  16. West Valley Demonstration Project Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers West Valley Demonstration Project Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste

  17. Enterprise Assessments Review of the West Valley Demonstration Project Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fire Protection Program - March 2016 | Department of Energy the West Valley Demonstration Project Site Fire Protection Program - March 2016 Enterprise Assessments Review of the West Valley Demonstration Project Site Fire Protection Program - March 2016 March 2016 Review of the Fire Protection Program at the West Valley Demonstration Project The U.S. Department of Energy (DOE) independent Office of Enterprise Assessments (EA) conducted a review of the fire protection program at the West

  18. A Fresh Take on Groundwater at Amargosa Valley Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 25, 2012 A Fresh Take on Groundwater at Amargosa Valley Open House From drilling to sampling, groundwater was the topic on everyone's mind at a recent open house in Amargosa Valley, Nevada. On September 18, 2012, residents of Beatty, Amargosa Valley, Pahrump and other neighboring communities gathered at the Amargosa Community Center for the 4th Annual Groundwater Open House. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office conducts the annual

  19. West Valley Demonstration Project - North Plateau Lagoon 1 | Department of

    Office of Environmental Management (EM)

    Energy Demonstration Project - North Plateau Lagoon 1 West Valley Demonstration Project - North Plateau Lagoon 1 January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: West Valley Demonstration Project, NY Responsible DOE Office: Office of Environmental Management Plume Name: North Plateau Lagoon 1 Remediation Contractor: CH2M Hill Babcock and Wilcox West Valley , LLC (CHBWV) PBS Number: OH-WVDP-0040.01.1 Report Last

  20. Control system for, and a method of, heating an operator station of a work machine

    DOE Patents [OSTI]

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  1. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Exploration Activity Details...

  2. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. North Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1733771, -106.6233591 Show Map Loading map... "minzoom":false,"mappingse...

  4. South Valley, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0100487, -106.6780809 Show Map Loading map... "minzoom":false,"mappingse...

  5. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  6. Ground water in Animas Valley, Hidalgo County, New Mexico | Open...

    Open Energy Info (EERE)

    to library Report: Ground water in Animas Valley, Hidalgo County, New Mexico Author H. O. Reeder Published New Mexico State Engineer's Office, 1957 Report Number Technical...

  7. Magic Valley Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @magicvalleyEC Facebook: https:www.facebook.comMagicValleyEC?refts Outage Hotline: 1-866-225-5683 Outage Map: www.magicvalley.coopmapoutag...

  8. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  9. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  10. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Dixie...

  11. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  12. Canton Valley, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Canton Valley, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8342645, -72.8917676 Show Map Loading map......

  13. Spokane Valley, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    city in Spokane County, Washington.1 Utility Companies in Spokane Valley, Washington Modern Electric Water Company References US Census Bureau Incorporated place and minor...

  14. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Prescott Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6100243, -112.315721 Show Map Loading...

  15. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  16. West Valley Melter Draft Waste Evaluation Released for Public Comment |

    Energy Savers [EERE]

    Department of Energy West Valley Melter Draft Waste Evaluation Released for Public Comment West Valley Melter Draft Waste Evaluation Released for Public Comment March 11, 2011 - 12:00pm Addthis Media Contact Bill Taylor (513) 246-0539 william.taylor@emcbc.doe.gov West Valley, New York - The U.S. Department of Energy today released a Draft Waste Incidental to Reprocessing (WIR) Evaluation of a vitrification melter at the West Valley Demonstration Project (WVDP) for review and comment by the

  17. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    beneath the resurgent dome. References Christopher Farrar, Jacob DeAngelo, Colin Williams, Frederick Grubb, Shaul Hurwitz (2010) Temperature Data From Wells in Long Valley...

  18. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    of the Long Valley Caldera, California: Inferences from Measurements from 1988 to 2001 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  19. Pioneer Valley Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314, -72.6624209...

  20. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  1. Grass Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, California Connect Renewable Energy Inc DayStar Solar LLC formerly International Energy Trading LLC Environmental Capital Group LLC SMA America References US Census...

  2. Roaring Fork Valley- Energy Smart Colorado Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  3. Roaring Fork Valley- Energy Smart Colorado Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  4. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist...

    Open Energy Info (EERE)

    Long Valley Caldera Using Magnetotelluric and Time-domain Electromagnetic Measurements Stephen K. Park, Carlos Torres-Verdin (1988) A Systematic Approach to the Interpretation of...

  5. Geochemistry of Thermal Waters in Long Valley, Mono County, California...

    Open Energy Info (EERE)

    Long Valley, California, issue sodium bicarbonate-chloride waters containing 1000-1420 mgl of dissolved solids. Thermal waters of sodium bicarbonate-chloride composition are...

  6. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Dixie Valley Geothermal Area (Nash & D., 1997)...

  7. Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash ...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash & D., 1997)...

  8. Site Programs & Cooperative Agreements: West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact...

  9. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    Associates, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)...

  10. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy...

    Open Energy Info (EERE)

    Magmatic Systems Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early shallow exploration wells (<300m) were located...

  11. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Project Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early exploration wells (<300m) were drilled around...

  12. Conceptual Model At Dixie Valley Geothermal Area (Reed, 2007...

    Open Energy Info (EERE)

    mean residence times, large surface areas, and adjacent damage zones that provide permeability. The tracers were injected in the center of the Dixie Valley Geothermal Field and...

  13. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling...

  14. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  15. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Ileana M....

  16. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  17. Conceptual Model At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  18. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Christoph...

  19. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  20. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  1. Ground Magnetics At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  2. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  3. Remote Sensing For Geothermal Exploration Over Buffalo Valley...

    Open Energy Info (EERE)

    and spectral resolution of the data allows for the identification of carbonate, sulfate, silica and clay minerals. Quartz- and clay-rich regions of Buffalo Valley were...

  4. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  5. Elkhorn Valley Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Mesa County Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. USD 384 Blue Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Cherry Valley Elementary School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. Exploratory Boreholes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    the hydrothermal flow system. References Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore, Robert Sullivan (2007) The Shallow Hydrothermal System of Long Valley Caldera,...

  10. Office of Enterprise Assessments Review of the West Valley Demonostrat...

    Energy Savers [EERE]

    ... West Valley, LLC CRAD Criteria and Review Approach ... EMCBC Environmental Management Consolidated Business ... Head End Vent HLW High Level Waste I&C Instrumentation and ...

  11. Enterprise Assessments Review of the West Valley Demonstration...

    Office of Environmental Management (EM)

    ... West Valley, LLC CRAD Criteria, Review, and Approach ... responsible DOE line management organizations for ... transuranic (TRU) waste, low level radioactive waste, mixed ...

  12. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  13. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  14. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  15. Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney,...

    Open Energy Info (EERE)

    Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes...

  16. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Taylor & Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long...

  17. Hydrothermal Alteration Mineral Studies in Long Valley, In- Proceeding...

    Open Energy Info (EERE)

    in the Long Valley Caldera; Mammoth Lakes, CA; 07151986 Published Lawrence Berkeley Laboratory, 1986 DOI Not Provided Check for DOI availability: http:crossref.org...

  18. Magnetotelluric Studies In Grass Valley, Nevada | Open Energy...

    Open Energy Info (EERE)

    soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central...

  19. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oro Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3909071, -110.966488 Show Map Loading map... "minzoom":false,"mappingse...

  20. Makaha Valley, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Makaha Valley, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4822222, -158.2038889 Show Map Loading map... "minzoom":false,"mappin...