National Library of Energy BETA

Sample records for valley power station

  1. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  2. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  3. Envelope amplifier design for wireless base-station power amplifiers

    E-Print Network [OSTI]

    Hsia, Chin

    2010-01-01

    Base Station Power Amplifiers . . . . . . . . . . . .for High Efficiency Bbase Station Power Amplifiers,” in IEEEfor Wireless Base-Station Power Amplifiers A dissertation

  4. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  6. (Surveying isolated diesel power stations in Guatemala)

    SciTech Connect (OSTI)

    Waddle, D.B.

    1990-02-26

    I travelled to Guatemala City, Guatemala, to lead a team of specialists to study the operating, administrative, and management efficiency of isolated diesel power plants, operated by Instituto Nacional de Electrificacion (INDE). The study is part of a global initiative managed jointly by the Agency for International Development and the World Bank. The power plants were audited, including INDE's largest isolated diesel station, and two, much smaller municipal and privately owned stations. I returned to Oak Ridge on February 22, 1990.

  7. Optimal Base Station Density for Power Efficiency in Cellular Networks

    E-Print Network [OSTI]

    Haenggi, Martin

    Optimal Base Station Density for Power Efficiency in Cellular Networks Sanglap Sarkar, Radha, power consumption, power efficiency, optimal base station density. I. INTRODUCTION Cell size reduction by increasing the number of macro base stations or adding tiers of low powered base stations. There are two

  8. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect (OSTI)

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  9. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpenReykjanes Geothermal Power Station Jump to:

  10. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  11. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal Power Station Jump to: navigation, search

  12. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd JumpNesjavellir Geothermal Power Station Jump to: navigation,

  13. Power-aware Base Station Positioning for Sensor Networks

    E-Print Network [OSTI]

    Bogdanov, Andrej

    Power-aware Base Station Positioning for Sensor Networks Andrej Bogdanov Elitza Maneva Samantha station, where the data can be processed. There are several power metrics that one can consider optimizing consider the problem of positioning data collecting base stations in a sensor network. We show

  14. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  15. Conceptual design of a submerged power station

    SciTech Connect (OSTI)

    Herring, J.S. )

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. Idaho National Engineering Laboratory is developing the concept of a submerged power stations (SPS). The reactor is located in the forward part of the vessel, while the turbine and generator are in the midsection, and the control and crew quarters are located at the opposite end of the vessel. The current design of the SPS has a 22.5-m o.d., is 146 m long, and has a total mass, including seawater in the annular region between the hulls, of 47,000 t. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 300 to 600 MW(electric) transmitted to shore by undersea cables. The SPS has the advantages of centralized fabrication and maintenance. The author believes that the SPS has significant safety and environmental advantages.

  16. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Energy Savers [EERE]

    for steadily building its renewable energy portfolio in an effort to support its members' green power initiatives. More than a decade ago, OMPA became the first commercial power...

  17. Yazoo Valley Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuanValley Elec Power

  18. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  19. Wabash Valley Power Association (28 Member Cooperatives)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  20. Envelope amplifier for broadband base-station envelope tracking power amplifier

    E-Print Network [OSTI]

    Zhu, Qiuyao

    2011-01-01

    Therefore, today’s base-station power amplifiers need to bethis chapter, the base-station power amplifier will be firstin section 1.3. Base-station Power Amplifiers Fig.1.1

  1. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01

    and Stationary Power: Hydrogen Energy Stations and theirand Stationary Power: Hydrogen Energy Stations and their2004) for power parks & energy stations. (10) DESIGNS/

  2. (Survey of three isolated diesel power stations in Guatemala)

    SciTech Connect (OSTI)

    Chronowski, R.A.

    1990-03-15

    I traveled to Guatemala City, Guatemala to participate with a team of specialists to study the operating, administrative, and management efficiency of isolated diesel power plants, operated by Instituto Nacional de Electrificacion (INDE). The study is part of a global initiative managed jointly by the Agency for International Development and the World Bank. The power plants were audited, including INDE's largest isolated diesel station, and two much smaller municipal and privately owned stations. I returned to the USA on February 20, 1990.

  3. Design of photovoltaic central power station concentrator array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  4. PV powering a weather station for severe weather

    SciTech Connect (OSTI)

    Young, W. Jr. [Florida Solar Energy Center, Cocoa, FL (United States); Schmidt, J. [Joe Schmidt, Inc., Miami, FL (United States)

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  5. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  6. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  7. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    eliminate the charging station peak power demand for EVcan lower the station’s peak power demand and reduce thefor a workplace charging station, solar PV power cannot be

  8. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  9. Power-Optimal Scheduling for a Green Base Station with Delay Constraints

    E-Print Network [OSTI]

    Sharma, Vinod

    Power-Optimal Scheduling for a Green Base Station with Delay Constraints Anusha Lalitha, Santanu with average delay constraint on the downlink of a Green Base- station. A Green Base-station is powered by both Terms--Power-optimal, Green Base station, Delay con- straint, multi-user. I. INTRODUCTION The main

  10. Fang Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||NewFale-Safe,Maine: EnergyFangFang

  11. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, New York:Pianacce Geothermal Power

  12. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp JumpRam PowerRamsey,SanRancia

  13. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  14. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  15. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  16. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  17. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  18. This memorandurn defines the manner in which central station heaters, power dumps and experilnent standby

    E-Print Network [OSTI]

    Rathbun, Julie A.

    This memorandurn defines the manner in which central station heaters, power dumps and experilnent power in the central station by an equally powerful heater during non-operating periods. It is s!VIS!ON ANN. PdUH:::~,ti\\JCH,. t~OATM- 453 lrltiV~MO. Gentral'Station Power and t

  19. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  20. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  1. Aalborg Universitet Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Reactive Power Support of Electrical Vehicle Charging Station Upgraded of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System," in Proc. IEEE PowerTech, 2015. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy

  2. Challenges and Opportunities for Compound Semiconductor Devices in Next Generation Wireless Base Station Power Amplifiers

    E-Print Network [OSTI]

    Asbeck, Peter M.

    Station Power Amplifiers Lawrence Larson, Peter Asbeck, and Donald Kimball Center for Wireless Communications, Dept of ECE, UCSD, La Jolla, CA 92093 Abstract -- Power Amplifiers for cellular base stations their networks to 3G services in the coming years, it is expected that the market for base station power

  3. Improving the Capacity in Wireless Networks Through Integrated Channel Base Station and Power Assignment

    E-Print Network [OSTI]

    Tassiulas, Leandros

    Improving the Capacity in Wireless Networks Through Integrated Channel Base Station and Power Allocation Algorithm (JRAA) that makes the channel base station and power assignment in a wireless net­ work base station and power assign­ ment. Finally several versions of the two­way channel assignment problem

  4. Observations of Earth space by self-powered stations in Antarctica S. B. Mende,1

    E-Print Network [OSTI]

    Mende, Stephen B.

    Observations of Earth space by self-powered stations in Antarctica S. B. Mende,1 W. Rachelson,1 R is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled

  5. Joint Optimal Channel Base Station and Power Assignment for Wireless Access \\Lambda

    E-Print Network [OSTI]

    Tassiulas, Leandros

    Joint Optimal Channel Base Station and Power Assignment for Wireless Access \\Lambda Symeon powers, forward (downstream) and reverse (upstream) channels, and base stations such that every mobile the transmission powers both of the base stations and the users will be controllable. This great flexibility

  6. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| OpenExploration AtArchbald Power Station

  7. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  8. Title: Dormant Smokestacks and Silent Turbines: The Adaptive Reuse of Early to Mid-twentieth century Power Stations

    E-Print Network [OSTI]

    -twentieth century Power Stations Author: Aliza Ross Advisor: Carol Clark The early to mid-century central station, identified today as a power station or power plant, has intrigued communities, architectural historians industrial buildings. Sited in historic industrial zones once discrete from city?s downtowns, power stations

  9. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  10. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    power source from inherent intermittent solar PV power.B. Solar PV Electricity Forecasting Fig. 1. Charging stationForecasting Power Output of Solar Photovoltaic System Using

  11. EECBG Success Story: Police Station Triples Solar Power - and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the North Community Police Substation in Henderson, Nevada installed new, roof-top photovoltaic panels that provide almost 40% of the station's electricity, up from 12.5%....

  12. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  13. Design, Modeling and Testing of the Askaryan Radio Array South Pole Autonomous Renewable Power Stations

    E-Print Network [OSTI]

    Besson, D Z; Ratzlaff, K; Young, R

    2014-01-01

    We describe the design, construction and operation of the Askaryan Radio Array (ARA) Autonomous Renewable Power Stations, initially installed at the South Pole in December, 2010 with the goal of providing an independently operating 100 W power source capable of year-round operation in extreme environments. In addition to particle astrophysics applications at the South Pole, such a station can easily be, and has since been, extended to operation elsewhere, as described herein.

  14. Design of a photovoltaic central power station: flat-plate array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  15. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  16. BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY (IPAC11 with shielding out to 1.2 m radius. W-C shielding likely needed beyond the target station, where ~ 800 kW power-carbide + water shielding of superconducting magnets for the target station at a Muon Collider or Neutrino Factory

  17. Envelope amplifier design for wireless base-station power amplifiers

    E-Print Network [OSTI]

    Hsia, Chin

    2010-01-01

    switching MOSFET, a Schottky diode and a power inductor. For comparator design, a high speed, low powerswitching frequency of the switchers will rise. This implies that a design trade-off between the switcher power

  18. Perspective on occupational radiation exposures at a hypothetical fusion power station

    SciTech Connect (OSTI)

    Easterly, C.E.; Cannon, J.B.

    1983-01-01

    If current technology were used, several major sources of potential occupational radiation exposure at fusion power stations would be quite similar to those at current light water reactor power stations. Based upon this similarity, crude estimates of doses received from various maintenance operations at fusion power reactors are made. The dose estimates reinforce the need for concurrent development of sophisticated remote maintenance devices and low-activation materials for fusion reactors. It is concluded that minimization of occupational doses can be best achieved by developing an overall maintenance strategy that combines the best features of remote techniques and low activation materials as opposed to developing one or the other exclusively.

  19. Extra-terrestrial nuclear power stations : transportation and operation

    E-Print Network [OSTI]

    Kane, Susan Christine

    2005-01-01

    Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

  20. BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    BEAM-POWER DEPOSITION IN A 4-MW TARGET STATION FOR A MUON COLLIDER OR A NEUTRINO FACTORY N of simulated power deposition in a y-z (vertical) section of the target station is shown in Fig. 2, and some, Coventry CV4 7AL, UK Abstract We present the results of power deposition in various components

  1. Incremental Design of a Power Transformer Station Controller using a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    systems, polynomial dynamical system, supervisory control problem, optimal control, SIGNAL, SIGALI, power property verification and/or simulation techniques. The control theory of Discrete Event Systems allows us the physical model and the control/verification objectives to be ensured/checked. The SIGNAL compiler

  2. Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.; Robichaud, R.; McLain, K.

    2005-05-01

    This poster summarizes the analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Available data were obtained on the wind resources, power plant conditions, load, and component cost. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities.

  3. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvalde County,VadeWest,Valinda,Valle

  4. WWTP Power Generation Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village of Wellington,FL97-11 SEPAStorageWWTP Power Generation

  5. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp JumpRam PowerRamsey,SanRancia 2

  6. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato, Alaska:Radicondoli Geothermal Power

  7. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty,NewHatteras2 Geothermal Power

  8. EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

  9. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  10. Supplementary Figures Figure S1. Ambient seismic noise levels in dB relative to velocity power at two stations,

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    Supplementary Figures Figure S1. Ambient seismic noise levels in dB relative to velocity power at two stations, HFN3 and BFN1, (Figure 1B). Both stations have three components (East, North, Vertical; or ENZ) but different types of instruments (EP, HH). The drop in power at frequencies less than 2 Hz

  11. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect (OSTI)

    Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)] [MOS, Inc., Melville, NY (United States)

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  12. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  13. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind Awards | Department of Energy

  14. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    SciTech Connect (OSTI)

    Saito, Hiroaki (Univ. of Electro-Communications, Tokyo (Japan) National Institute of Polar Research, Tokyo (Japan)); Sato, Natsuo (National Institute of Polar Research, Tokyo (Japan)); Tonegawa, Yutaka (Tokai Univ., Hiratsuka (Japan)); Yoshino, Takeo (Univ. of Electro-Communications, Tokyo (Japan)); Saemundsson, T. (Univ. of Iceland, Reykjavik (Iceland))

    1989-06-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere.

  15. Microearthquakes in and near Long Valley, California

    E-Print Network [OSTI]

    Steeples, Don W.; Pitt, A. M.

    1976-02-10

    Sixteen portable seismograph stations were deployed in the vicinity of the Long Valley geothermal area, California, from April 27 to June 2, 1973. Only minor microearthquake activity was detected in the Long Valley caldera, but a high level...

  16. Natural radiation in fly ashes from coal thermal power stations in Spain

    SciTech Connect (OSTI)

    Baro, J.; Sanchez-Reyes, A.; Chinchon, J.S.; Lopez-Soler, A.; Vazquez, E.; Yague, A.

    1988-01-01

    Specific activity in samples of fly ashes from Spanish coal thermal power stations at Abono (Asturias), Andorra (Teruel), Alcudia (Mallorca) and Cercs (Barcelona) was analysed by gamma ray spectrometry. The values obtained permit us to quantify the presence of different natural radionuclides from /sup 232/Th, /sup 238/U, /sup 235/U series and /sup 40/K. The models are defined on the basis of these data to calculate the dosimetric impact caused by the use of fly ashes in the concrete.

  17. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  18. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  19. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  20. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  1. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 44, NO. 3, PAGES 638--644, AUGUST 1995 1 Integrated Power Control and Base Station

    E-Print Network [OSTI]

    Yates, Roy

    Power Control and Base Station Assignment Roy D. Yates and Ching­Yao Huang Abstract--- In cellular integrate power control and base station assignment. In the context of a CDMA system, we consider mobile. This minimization occurs over the set of power vectors and base station assignments. We show

  2. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  3. Reliability and optimization studies of nuclear and solar powered systems utilizing a Stirling engine for the space station 

    E-Print Network [OSTI]

    Schmitz, Paul Charles

    1990-01-01

    RELIABILITY AND OPTIMIZATION STUDIES OF NUCLEAR AND SOLAR POWERED SYSTEMS UTILIZING A STIRLING ENGINE FOR THE SPACE STATION A Thesis by PAUL CHARLES SCHMITZ Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Nuclear Engineering RELIABILITY AND OPTIMIZATION STUDIES OF NUCLEAR AND SOLAR POWERED SYSTEMS UTILIZING A STIRLING ENGINE FOR THE SPACE STATION A Thesis...

  4. ESBWR response to an extended station blackout/loss of all AC power

    SciTech Connect (OSTI)

    Barrett, A. J.; Marquino, W. [New Plants Engineering, GE Hitachi Nuclear Energy, M/CA 75, 3901 Castle Hayne Road, Wilmington, NC 28402 (United States)

    2012-07-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

  5. Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms

    SciTech Connect (OSTI)

    Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. )

    1991-01-01

    To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

  6. Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real

    E-Print Network [OSTI]

    Harrison, Gareth

    . This will be contrasted in energy terms with the increase in dispatch available by operating more flexibly within extensions of the transmission network, mini- hydro schemes are often at the end of long open-ended radial of Real Power Export Aristides E. Kiprakis and A. Robin Wallace Institute for Energy Systems, University

  7. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect (OSTI)

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  8. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  9. LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

    SciTech Connect (OSTI)

    NONE

    1998-02-01

    This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.

  10. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  11. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    SciTech Connect (OSTI)

    None

    1998-04-01

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  12. The structural design of air and gas ducts for power stations and industrial boiler applications

    SciTech Connect (OSTI)

    Schneider, R.L.

    1996-10-01

    The purpose of this paper is to discuss the new American Society of Civil Engineers (ASCE) book entitled, The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. This 312 page book was published by the ASCE in August of 1995. This ASCE publication was created to assist structural engineers in performing the structural analysis and design of air and flue-gas ducts. The structural behavior of steel ductwork can be difficult to understand for structural engineers inexperienced in ductwork analysis and design. Because of this needed expertise, the ASCE committee that created this document highly recommends that the structural analysis and design of ducts be performed by qualified structural engineers, not be technicians, designers or drafters. There is a history within the power industry of failures and major degradation of flue-gas ductwork. There are many reasons for these failures or degradation, but in many cases, the problems may have been voided by a better initial design. This book attempts to help the structural engineer with this task. This book is not intended to be used to size or configure ductwork for flow and pressure drop considerations. But it does recommend that the ductwork system arrangement consider the structural supports and the structural behavior of the duct system.

  13. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska generators, including the potential for fuel spills and the emission of greenhouse gases and particulates

  14. HVCM Topology Enhancements to Support a Power Upgrade Required by a Second Target Station (STS) at SNS

    SciTech Connect (OSTI)

    Solley, Dennis J [ORNL] [ORNL; Anderson, David E [ORNL] [ORNL; Patel, Gunjan P [ORNL] [ORNL; Peplov, Vladimir V [ORNL] [ORNL; Saethre, Robert B [ORNL] [ORNL; Wezensky, Mark W [ORNL] [ORNL

    2012-01-01

    This paper discusses the topology used in the HVCMs at SNS to process power for both the cold and warm linac sections of the klystron gallery in support of extended operations at the megawatt level. In anticipation of a second target station and higher anticipated power levels, an enhancement to the present topology is being investigated. SPICE circuit simulations and preliminary experimental data will be presented.

  15. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  16. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  17. Experimental investigations of overvoltages in 6kV station service cable networks of thermal power plants

    SciTech Connect (OSTI)

    Vukelja, P.I.; Naumov, R.M.; Drobnjak, G.V.; Mrvic, J.D. [Nikola Tesla Inst., Belgrade (Yugoslavia)

    1996-12-31

    The paper presents the results of experimental investigations of overvoltages on 6kV isolated neutral station service cable networks of thermal power plants. The overvoltages were recorded with capacitive voltage measurement systems made at the Nikola Tesla Institute. Wideband capacitive voltage measurement systems recorded a flat response from below power frequencies to 10MHz. Investigations of overvoltages were performed for appearance and interruption of metal earth faults, intermittent earth faults, switching operation of HV motors switchgear, switching operation of transformers switchgear, and transfer of the network supply from one transformer to another. On the basis of these investigations, certain measures are proposed for limiting overvoltages and for the reliability of station service of thermal power plants.

  18. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro [Japan Atomic Energy Agency 4-33 Muramatsu, Tokaimura, Nakagun, Ibaraki 319-1194 (Japan)

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  19. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect (OSTI)

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  20. Predictability of PV power grid performance on insular sites without weather stations: use of artificial neural networks

    E-Print Network [OSTI]

    Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure; Poggi, Philippe

    2009-01-01

    The official meteorological network is poor on the island of Corsica: only three sites being about 50 km apart are equipped with pyranometers which enable measurements by hourly and daily step. These sites are Ajaccio (seaside), Bastia (seaside) and Corte (average altitude of 486 meters). This lack of weather station makes difficult the predictability of PV power grid performance. This work intends to study a methodology which can predict global solar irradiation using data available from another location for daily and hourly horizon. In order to achieve this prediction, we have used Artificial Neural Network which is a popular artificial intelligence technique in the forecasting domain. A simulator has been obtained using data available for the station of Ajaccio that is the only station for which we have a lot of data: 16 years from 1972 to 1987. Then we have tested the efficiency of this simulator in two places with different geographical features: Corte, a mountainous region and Bastia, a coastal region. ...

  1. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect (OSTI)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  2. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  3. EIS-0232: Sierra Nevada 2004 Power Marketing Program EIS (Central Valley Project)

    Broader source: Energy.gov [DOE]

    The Sierra Nevada Region needs to determine the level and character of capacity, energy, and other services that will be marketed beyond 2004. These services would be developed by combining potential hydropower operating approaches with power purchases. The Sierra Nevada Region also needs to establish eligibility and allocation criteria for the allocations of electric power resources to be marketed under contracts that will replace those expiring in 2004

  4. Tri-Generation Success Story: World's First Tri-Gen EnergyStation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley This Fuel Cell...

  5. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  6. Explosion at Hapton Valley Colliery, Lancashire 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 By H. S. ...

  7. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01

    Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

  8. Feasibility study for a new thermal power station in Latvia. Desk Study Report No. 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The Government of Latvia has requested the U.S. Trade and Development Program's (TDP's) assistance in financing the cost of a feasibility study to develop a new 300 MW thermal power station aimed at reducing the present shortage of electricity. The objectives are: A review of the power sector in general, and the thermal power subsector in particular, to identify the deficiencies and requirements; Preliminary identification of a suitable site; Development of an optimum plant size; An economic and financial analysis of the proposed project; Development of engineering cost estimates and project schedule; Development of a financing plan and preparation of the necessary material for the government to seek financing from international investors/lenders; Assessment of the training requirements of the Latvian power sector engineers and managers.

  9. Application of a 2-D particle tracking model to simulate entrainment of winter flounder larvae at the Millstone Nuclear Power Station

    E-Print Network [OSTI]

    Dimou, Nadia K.

    1989-01-01

    A 2-D random walk model, developed by Dimou (1989) as part of this research project, was used to simulate entrainment at the Millstone Nuclear Power Station of winter flounder larvae hatched within Niantic River.

  10. The culture of selected marine fish in ponds receiving thermal effluent from a power station and their use as biological monitors of water quality 

    E-Print Network [OSTI]

    Pane, Joseph John

    1976-01-01

    THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE AS BIOLOGICAL MONITORS OF WATER QUALITY A Thesis by JOSEPH JOHN PANE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject: Wildlife and Fisheries Sciences THE CULTURE OF SELECTED MARINE FISH IN PONDS RECEIVING THERMAL EFFLUENT FROM A POWER STATION AND THEIR USE...

  11. The culture of marine fish and their use as biological monitors of water quality in ponds receiving heated discharge water from a power station 

    E-Print Network [OSTI]

    Linder, Donald Ray

    1974-01-01

    For Individual Fish Tables 1 through 12. Length-Weight and Standard Length-Total Length Relationships for Each Sample Of Fish Tables 1 through 9 173 174 247 332 345 xx LIST OF TABLES Table Page Distribution of experimental fish populations... were periodically sampled to determine growth, survival, snd condi- tion. LITERATURE REVIEW Effects of Power Station Effluents Power stations normaljy discharge water which is 6 to 9 C above ambient water temperature (Davidson and Bradshaw 1967; de...

  12. First waste-to-energy power station put into operation in Vietnam has successfully produced electricity from household and industrial waste as a

    E-Print Network [OSTI]

    Columbia University

    First waste-to-energy power station put into operation in Vietnam Vietnam has successfully produced electricity from household and industrial waste as a newly-generated power supply has come online of the first turbine of the waste-powered electricity plant has been successful. The plant can produce 14,400KW

  13. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  14. Citrus Production in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01

    . TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS.... . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up to July, 1929...

  15. Search of Axions at the Kuo-Sheng Nuclear Power Station with a High-Purity Germanium Detector

    E-Print Network [OSTI]

    Chang, C M; Chou, M H; Deniz, M; Huang, H X; Lee, F S; Li, H B; Li, J; Liao, H Y; Lin, S T; Singh, V; Wu, S C; Xin, B; al, et

    2006-01-01

    A search of axions produced in nuclear transitions was performed at the Kuo-Sheng Nuclear Power Station with a high-purity germanium detector of mass 1.06 kg at a distance of 28 m from the 2.9 GW reactor core. The experimental signatures were mono-energetic lines produced by their Primakoff or Compton conversions at the detector. No evidence of axion emissions were observed and model-independent constraints on the axion mass $m_a$, branching ratio $\\braxion$, and couplings $\\gagg$, $\\gaee$ were placed. Limits on $\\gagg ^2 \\braxion

  16. Predictability of PV power grid performance on insular sites without weather stations: use of artificial neural networks

    E-Print Network [OSTI]

    Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure; Poggi, Philippe; Haurant, P; 10.4229/24thEUPVSEC2009-5BV.2.35

    2010-01-01

    The official meteorological network is poor on the island of Corsica: only three sites being about 50 km apart are equipped with pyranometers which enable measurements by hourly and daily step. These sites are Ajaccio (41\\degree 55'N and 8\\degree 48'E, seaside), Bastia (42\\degree 33'N, 9\\degree 29'E, seaside) and Corte (42\\degree 30'N, 9\\degree 15'E average altitude of 486 meters). This lack of weather station makes difficult the predictability of PV power grid performance. This work intends to study a methodology which can predict global solar irradiation using data available from another location for daily and hourly horizon. In order to achieve this prediction, we have used Artificial Neural Network which is a popular artificial intelligence technique in the forecasting domain. A simulator has been obtained using data available for the station of Ajaccio that is the only station for which we have a lot of data: 16 years from 1972 to 1987. Then we have tested the efficiency of this simulator in two places w...

  17. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  18. Solar Technology Validation Project - Hualapai Valley Solar (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-02

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-07-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  19. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    shaving and backup power, and the station is expected toor “onsite power”), energy stations offer a potentially moreCharacteristics of Energy Station Power Technologies Low/

  20. Hainan Chengpo PowerStation Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co LtdGuntherGreen Power CoElectricHaeChengpo

  1. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    electricity by heat power plants, hydropower plants and nuclear plants, which are all centralized large system and would have a low cost of every kWh of electricity. However, traditional generation method electricity management method for this topology is of great demand to be developed. 2. Model Formulation

  2. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E. (Pleasanton, CA)

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  3. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  4. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    SciTech Connect (OSTI)

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  5. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    E-Print Network [OSTI]

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-01-01

    Silicon Valley with the I-Grid ® System Prepared for Imre Gyuk Energy StorageSilicon Valley with the I-Grid System Acknowledgments The authors thank Imre Gyuk, DOE Energy Storage

  6. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  7. EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  9. Power network verication and optimization at planning stages

    E-Print Network [OSTI]

    Du, Peng

    2012-01-01

    tive resistances among power stations for reducing the powerresistances among power stations for decreasing power lossesresistances among power stations for reducing the power

  10. Design, Construction and Operation of a Low-Power, Autonomous Radio-Frequency Data-Acquisition Station for the TARA Experiment

    E-Print Network [OSTI]

    Kunwar, S; Allen, C; Belz, J; Besson, D; Byrne, M; Farhang-Boroujeny, B; Gillman, W H; Hanlon, W; Hanson, J; Myers, I; Novikov, A; Prohira, S; Ratzlaff, K; Rezazadeh, A; Sanivarapu, V; Schurig, D; Shustov, A; Smirnova, M; Takai, H; Thomson, G B; Young, R

    2015-01-01

    Employing a 40-kW radio-frequency transmitter just west of Delta, UT, and operating at 54.1 MHz, the TARA (Telescope Array RAdar) experiment seeks radar detection of extensive air showers (EAS) initiated by ultra-high energy cosmic rays (UHECR). For UHECR with energies in excess of $10^{19}$ eV, the Doppler-shifted "chirps" resulting from EAS shower core radar reflections should be observable above background (dominantly galactic) at distances of tens of km from the TARA transmitter. In order to stereoscopically reconstruct cosmic ray chirps, two remote, autonomous self-powered receiver stations have been deployed. Each remote station (RS) combines both low power consumption as well as low cost. Triggering logic, the powering and communication systems, and some specific details of hardware components are discussed.

  11. Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station

    E-Print Network [OSTI]

    H. T. Wong; TEXONO Collaboration

    2006-11-14

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 $\\cpd$ near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron anti-neutrino flux of $\\rm{6.4 \\times 10^{12} cm^{-2} s^{-1}}$, the limit on the neutrino magnetic moments of $\\rm{\\munuebar < 7.4 \\times 10^{-11} \\mub}$ at 90% confidence level was derived. Indirect bounds on the $\

  12. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station

    SciTech Connect (OSTI)

    Reto Giere; Mark Blackford; Katherine Smith

    2006-10-15

    The research presented here was conducted within the scope of an experiment investigating technical feasibility and environmental impacts of tire combustion in a coal-fired power station. Previous work has shown that combustion of a coal + tire blend rather than pure coal increased bulk emissions of various elements (e.g., Zn, As, Sb, Pb). The aim of this study is to characterize the chemical and structural properties of emitted single particles with dimensions <2.5 {mu}m (PM2.5). This transmission electron microscope (TEM)-based study revealed that, in addition to phases typical of coal fly ash (e.g., aluminum-silicate glass, mullite), the emitted PM2.5 contains amorphous selenium particles and three types of crystalline metal sulfates never reported before from stack emissions. Anglesite, PbSO{sub 4}, is ubiquitous in the PM2.5 derived from both fuels and contains nearly all Pb present in the PM. Gunningite, ZnSO{sub 4}H{sub 2}O, is the main host for Zn and only occurs in the PM derived from the coal + tire blend, whereas yavapaiite, KFe{sup 3+}(SO{sub 4}){sub 2}, is present only when pure coal was combusted. It is concluded that these metal sulfates precipitated from the flue gas may be globally abundant aerosols and have, through hydration or dissolution, a major environmental and health impact. 66 refs., 2 figs., 1 tab.

  13. Low velocity zone under Long Valley as determined from teleseismic events

    E-Print Network [OSTI]

    Steeples, Don W.; Lyer, H. M.

    1976-02-10

    A temporary seismograph station network was used to estimate teleseismic P wave residuals in the vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in the west central part of the Long Valley...

  14. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  15. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  16. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01

    PV energy used for EV charging and reducing grid peak power7. Measured PV power and EV charging load Fig. 6. Chargingthe measured PV power and EV charging load. The actual grid

  17. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  18. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  19. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

  20. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    fall in new nuclear power stations after Fukushima. Thenuclear-power- stations-fukushima Hvistendahl, M. (2007,

  1. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  2. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  3. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  4. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    SciTech Connect (OSTI)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  5. An Indo-American partnership program for Indian power station flyash emission control -- A solution of a national problem

    SciTech Connect (OSTI)

    Roy, S.K.; Dasgupta, P.K. [Peerless Technologies, Calcutta (India); Sanyal, A. [International Environmental and Energy Consultants, Oakbrook Terrace, IL (United States); Bennett, R. [AddChem Systems, Houston, TX (United States)

    1996-11-01

    Power generation in India rose from a meager 1,362 MW in 1947 to over 76,700 MW in 1994. The industry is committed to add 140,000 MW by 2010 to address the current gap in demand and supply of power as well as to meet the industrial growth of the country. The properties of Indian coal are different from those of the Western countries like USA, UK etc. The difference stems from their separate geological origins. Indian coal is basically of permian age with minor tertiary types, compared to the carboniferous coals of the Western countries. Perhaps the most significant property of Indian coal is its high ash content derived from the preponderance of sedimentation based minerals, intimately dispersed in the coal matrix. This paper describes an Indo-US partnership program for a trial application of a cost effective US technology of SO3 conditioning to an Indian power plant with the objective of transferring the technology to India.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  7. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  8. Microsoft PowerPoint - Station Service for SWPA_June _17_2015 - HDC.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM ScienceCORPSStation Service

  9. Letter of Intent for KASKA: High Accuracy Neutrino Oscillation Measurements with anti-nu_es from Kashiwazaki-Kariwa Nuclear Power Station

    E-Print Network [OSTI]

    M. Aoki; K. Akiyama; Y. Fukuda; A. Fukui; Y. Funaki; H. Furuta; T. Hara; T. Haruna; N. Ishihara; T. Iwabuchi; M. Katsumata; T. Kawasaki; M. Kuze; J. Maeda; T. Matsubara; T. Matsumoto; H. Minakata; H. Miyata; Y. Nagasaka; T. Nakagawa; N. Nakajima; H. Nakano; K. Nitta; M. Nomachi; K. Sakai; Y. Sakamoto; K. Sakuma; M. Sasaki; F. Suekane; H. Sugiyama; T. Sumiyoshi; H. Tabata; N. Tamura; M. Tanimoto; Y. Tsuchiya; R. Watanabe; O. Yasuda

    2006-07-11

    One of the current most-demanded experiments in neutrino physics is to measure the last mixing angle theta_13. KASKA is an experiment to detect new type of reactor neutrino oscillation and to measure sin^2 2theta_13 accurately using the world's most powerful nuclear reactor complex; Kashiwazaki-Kariwa nuclear power station. KASKA utilizes near and far detectors of identical structure at nearly optimized baselines and underground depths to cancel most of the systematics and reduce backgrounds. The expected sensitivity is sin^2 2theta_13~0.015, which is 10 times better sensitivity than the current upper limit measured by CHOOZ reactor experiment. Extension of KASKA project has potential to accurately measure other anti-nu_e oscillation parameters. Intense and precisely known neutrino flux measured by the KASKA-theta_13 phase can be used to pin down sin^2 2theta_12 at a baseline ~50km and to measure Dm^2_13 for the first time at a baseline ~5km. This Letter of Intent describes physics motivation, detector system and expected performance of the KASKA experiment.

  10. Letter of Intent for KASKA: High Accuracy Neutrino Oscillation Measurements with anti-nu_es from Kashiwazaki-Kariwa Nuclear Power Station

    E-Print Network [OSTI]

    Aoki, M; Fukuda, Y; Fukui, A; Funaki, Y; Furuta, H; Hara, T; Haruna, T; Ishihara, N; Iwabuchi, T; Katsumata, M; Kawasaki, T; Kuze, M; Maeda, J; Matsubara, T; Matsumoto, T; Minakata, H; Miyata, H; Nagasaka, Y; Nakagawa, T; Nakajima, N; Nakano, H; Nitta, K; Nomachi, M; Sakai, K; Sakamoto, Y; Sakuma, K; Sasaki, M; Suekane, F; Sugiyama, H; Sumiyoshi, T; Tabata, H; Tamura, N; Tanimoto, M; Tsuchiya, Y; Watanabe, R; Yasuda, O

    2006-01-01

    One of the current most-demanded experiments in neutrino physics is to measure the last mixing angle theta_13. KASKA is an experiment to detect new type of reactor neutrino oscillation and to measure sin^2 2theta_13 accurately using the world's most powerful nuclear reactor complex; Kashiwazaki-Kariwa nuclear power station. KASKA utilizes near and far detectors of identical structure at nearly optimized baselines and underground depths to cancel most of the systematics and reduce backgrounds. The expected sensitivity is sin^2 2theta_13~0.015, which is 10 times better sensitivity than the current upper limit measured by CHOOZ reactor experiment. Extension of KASKA project has potential to accurately measure other anti-nu_e oscillation parameters. Intense and precisely known neutrino flux measured by the KASKA-theta_13 phase can be used to pin down sin^2 2theta_12 at a baseline ~50km and to measure Dm^2_13 for the first time at a baseline ~5km. This Letter of Intent describes physics motivation, detector system...

  11. Operational Performance Evaluation of Boiler 9 at the TAMU Power Plant at College Station, Submitted to the Power Plant of Texas A&M University 

    E-Print Network [OSTI]

    Wei, G.; Veteto, B.; Liu, M.

    1996-01-01

    As part of the engineering assistance project, the ESL staff worked with operating staff at the power plant: (1) to evaluate the boiler efficiency of boiler 9 by using combustion analysis; (2) to evaluate gas and steam meters by using measured air...

  12. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01

    production equipment (e.g. electrolyzer, steam reformer) (iffeedstock costs differences. Electrolyzer stations yield theuses an alkaline electrolyzer powered by grid electricity to

  13. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    production equipment (e.g. electrolyzer, steam reformer) (iffeedstock costs differences. Electrolyzer stations yield theuses an alkaline electrolyzer powered by grid electricity to

  14. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    E-Print Network [OSTI]

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-01-01

    affect the regional power grid. January 23, 2003, AirplaneParadigm in Distribution Grid Power Quality And Reliability5 3. Description of the I-Grid Power-Quality and Reliability

  15. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  16. PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations

    SciTech Connect (OSTI)

    Bander, T.J.

    1982-11-01

    This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

  17. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  18. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  19. Planning the New Citrus Orchard in the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Maxwell, Norman P. (Norman Paul)

    1951-01-01

    horticulturist for the Lower Rio Grande Valley Experiment Station at Weslaco, Texas. The committee included representatives of the Texas Agricultural Experiment Station, the Texas Agricultural Extension Service and the Texas Citrus Commission. CONTENTS... .................................................. 17 Tangors ................................................ 17 Lemons ................................................... 18 Other Citrus .................................................. 18 Planting Considerations...

  20. A Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station

    E-Print Network [OSTI]

    Wong, H T; Lin, S T; Lee, F S; Singh, V; Wu, S C; Chang, C Y; Chang, H M; Chen, C P; Chou, M H; Deniz, M; Fang, J M; Hu, C H; Huang, H X; Jon, G C; Kuo, W S; Lai, W P; Lee, S C; Li, J; Liao, H Y; Lin, F K; Lin, S K; Lu, J Q; Sheng, H Y; Su, R F; Tong, W S; Xin, B; Yeh, T R; Yue, Q; Zhou, Z Y; Zhuang, B A

    2007-01-01

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 $\\cpd$ near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron anti-neutrino flux of $\\rm{6.44 \\times 10^{12} cm^{-2} s^{-1}}$, the limit on the neutrino magnetic moments of $\\rm{\\munuebar < 7.2 \\times 10^{-11} \\mub}$ at 90% confidence level was derived. Indirect bounds of the $\

  1. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    SciTech Connect (OSTI)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  2. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  3. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  4. NV PFA - Steptoe Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  5. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect (OSTI)

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  6. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  7. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  8. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  9. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  10. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  11. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  12. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

  13. Oriel UV Exposure Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumption (Million CubicLSDOriel UV Exposure Station

  14. 50,000-Watt AM Stations IA | MB | MI | MN | NE | ND | ON | SD | WI | Station News | Owners | TV Captures | Links

    E-Print Network [OSTI]

    Allen, Gale

    that broadcast with a power of 50,000 Watts day and night. Some of these stations are what was once known50,000-Watt AM Stations IA | MB | MI | MN | NE | ND | ON | SD | WI | Station News | Owners | TV Captures | Links 50,000-Watt AM stations This list includes AM stations in the United States and Canada

  15. Citrus Varieties for the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01

    TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict~!baa! % khhani~al Callep oof TsM~: Co.... Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none of these are of com- mercial importance...

  16. EIS-0086: Conversion to Coal, New England Power Company, Salem Harbor Generating Station Units 1, 2, and 3, Salem, Essex County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Units I, 2, and 3 of the Salem Harbor Generating Station from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  17. Station GPS permanente IPG Paris DGF Uchile

    E-Print Network [OSTI]

    Vigny, Christophe

    and autonomous energy (battery and solar panel). HISTORIC Semi-permanent GPS station installed since 08­DEC- 2007.08295 - 68.92680 DESCRIPTION North Chile II region, semipermanent GPS station from IPGP / DGF network telephone nearby NONO Electric power nearby NONO equipment storage available YESYES possibility of leaving

  18. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  19. M Station, Austin 

    E-Print Network [OSTI]

    Mathon, S.

    2011-01-01

    $300 ID LL SS WE EA MR EQ AE LEED Platinum (Standard) 90 ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) 9081 ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 108 ID LL... SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning Location ID...

  20. The Village Base Station Kurtis Heimerl

    E-Print Network [OSTI]

    California at Berkeley, University of

    deployment due to low power requirements that enable local generation via solar or wind; · explicit support. At around 20W, its power consumption is low enough to avoid diesel genera- tors and the corresponding damaging equipment [2]. We propose operating the entire base station on solely wind or solar power, which

  1. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  2. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  4. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: �¢���¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). �¢���¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. �¢���¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. �¢���¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. �¢���¢ Maintain safety as the top priority in the system design and operation. �¢���¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  5. Spring Valley Public Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting Program Info Sector Name Utility Administrator Spring Valley Public Utilities Website http:www.SaveEnergyInSpringValley.com State Minnesota Program Type Rebate...

  6. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  7. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  8. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  9. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  10. A Phase I Archaeological Survey of a Proposed Sewer Line and Lift Station for the Tradition Golf and Country Club at University Ranch in Central Brazos County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-15

    An archaeological survey of a sewer line and lift station (approximately 211 acres) in central Brazos County, Texas was conducted in November 2000 and February 2001 by Brazos Valley Research Associates of Bryan, Texas under Texas Antiquities Permit...

  11. Cooperative Base Stations for Green Cellular Networks Choungmo Fofack Nicaise Eric

    E-Print Network [OSTI]

    the the base stations of an operator's network. 2.1 Power saving-oriented network and capacity planning model with no power saving. Methodology: the constraint (i) defines the minimum number of base stations to cover all represents a limitation on the power that can be saved by turning off some base stations completely

  12. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  13. Dam break risk assessment in Baker Valley (Chilean Patagonia)

    E-Print Network [OSTI]

    Natale, Elisabetta

    2009-01-01

    An hydroelectric project was proposed by HidroAysen Company in the Aysen Region of Chilean Patagonia. It consisted of the installation of five hydroelectric power stations, two on Rio Baker and three on Rio Pascua, with ...

  14. Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    This report fulfills the M3 milestone M3FT-13PN0810022, “Report on Inspection 1”, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

  15. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

  16. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    The Economist (2012). Nuclear power: The 30-year itch. TheDramatic fall in new nuclear power stations after Fukushima.environment/2012/mar/08/fall-nuclear-power- stations-

  17. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  18. Abstract--In Universal Mobile Telecommunication System (UMTS), the downlink capacity is limited by the base station

    E-Print Network [OSTI]

    by the base station transmission power. Therefore, power control plays an important role to minimize the available power resources of UMTS base stations to MBMS sessions running in the network. Furthermore stations to support many simultaneous MBMS sessions. MBMS transmissions have increased power requirements

  19. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  20. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  1. Controlled Use Robot Colony Power Supply Gary Parker

    E-Print Network [OSTI]

    Parker, Gary B.

    of charging solar panels a continuous power station. Brooks a robot, Attila, which batteries recharged panels

  2. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  3. Advanced conceptual design of the solar-repowering system for West Texas Utilities Company, Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-07

    The results of the conceptual design study reported include the development of a workable design for a sodium-cooled tower focus repowering system, the costs required to construct that design, and the determination of the benefits which could be obtained. A number of trade studies and optimizations were carried out in order to derive the most cost-effective design that also had the greatest potential for widespread application and commercialization. These studies are identified and their results are presented and discussed. The overall plant design is described and diagrammed, as are each of the subsystems: the heliostats, external receiver, master control, heat transport, thermal storage, electric power generating, and steam generating subsystems. Each subsystem's cost is summarized by major component. The subsystem is then described with its major components in terms of physical characteristics, requirements, and performance. An economic analysis is presented based on the internal rate of return to the project owner, and development plans are described. Appended is the system requirements specification. The testing and results for a sodium-cooled receiver panel are described. (LEW)

  4. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan­ dersteg valley and 1100 feet above, there is another, smaller, secret valley---the Gasterntal. Flat green fields

  5. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan- dersteg valley and 1100 feet above, there is another, smaller, secret valley--the Gasterntal. Flat green fields

  6. MANAGEMENT OF AGRICULTURAL WASTES LOWER FRASER VALLEY

    E-Print Network [OSTI]

    #12;MANAGEMENT OF AGRICULTURAL WASTES IN THE LOWER FRASER VALLEY SUMMARY REPORT - A WORKING DOCUMENT Presented on Behalf of: The Management of Agricultural Wastes in the Lower Fraser Valley Program of the Agricultural Nutrient Management in the Lower Fraser Valley program. The ideas and opinions expressed herein do

  7. Determination of station blackout frequency-duration relationships

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.; Balakrishna, S.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to the essential and nonessential electrical buses in a nuclear power plant. This generally involves the loss of redundant off-site power sources and the failure of two or more emergency diesel generators (EDGs). The US Nuclear Regulatory Commission (NRC) has proposed requiring all commercial reactors to have the capability of coping with a station blackout of a specified duration. The NRC has also proposed 4 or 8 h as acceptable durations, depending on plant susceptibility to the occurrence of station blackout events. Analyses were performed to determine expected station blackout frequencies representative of a majority of domestic nuclear power plants. A methodology based on that developed by the NRC was used. Representative industry data for loss of off-site power (LOOP) events and EDG reliability were used in the analyses.

  8. Technical Design Report, Second Target Station

    SciTech Connect (OSTI)

    Galambos, John D.; Anderson, David E.; Bechtol, D.; Bethea, Katie L.; Brown, N.; Carden, W. F.; Chae, Steven M.; Clark, A.; Counce, Deborah M.; Craft, K.; Crofford, Mark T.; Collins, Richard M.; Cousineau, Sarah M.; Curry, Douglas E.; Cutler, Roy I.; Dayton, Michael J.; Dean, Robert A.; Deibele, Craig E.; Doleans, Marc; Dye, T.; Eason, Bob H.; Eckroth, James A.; Fincrock, C.; Fritts, S.; Gallmeier, Franz X.; Gawne, Ken R.; Hartman, Steven M.; Herwig, Kenneth W.; Hess, S.; Holmes, Jeffrey A.; Horak, Charlie M.; Howell, Matthew P.; Iverson, Erik B.; Jacobs, Lorelei L.; Jones, Larry C.; Johnson, B.; Johnson, S.; Kasemir, Kay; Kim, Sang-Ho; Laughon, Gregory J.; Lu, W.; Mahoney, Kelly L.; Mammosser, John; McManamy, T.; Michilini, M.; Middendorf, Mark E.; O'Neal, Ed; Nemec, B.; Peters, Roy Cecil; Plum, Michael A.; Reagan, G.; Remec, Igor; Rennich, Mark J.; Riemer, Bernie; Saethre, Robert B.; Schubert, James Phillip; Shishlo, Andrei P.; Smith, C. Craig; Strong, William Herb; Tallant, Kathie M.; Tennant, David Alan; Thibadeau, Barbara M.; Trumble, S.; Trotter, Steven M.; Wang, Z.; Webb, Steven B.; Williams, Derrick C.; White, Karen S.; Zhao, Jinkui

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  9. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  10. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2007-06-20

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  11. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  12. Enhancing the energy efficiency of radio base stations 

    E-Print Network [OSTI]

    Holtkamp, Hauke Andreas

    2014-06-30

    This thesis is concerned with the energy efficiency of cellular networks. It studies the dominant power consumer in future cellular networks, the Long Term Evolution (LTE) radio Base Station (BS), and proposes mechanisms ...

  13. Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERAL ASSIGNMENTGame-ChangingGandolfi

  14. Bellavista Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Generation Delivered to Grid (MWh) Plant Parasitic Consumption (MWh) Well-Field Parasitic Consumption (MWh) Well Field Number of Production Wells (total) Number of Injection Wells...

  15. Polk Power Station Unit 1, Florida

    SciTech Connect (OSTI)

    Hornick, M.

    2007-10-15

    Problems encountered during the demonstration phase of the Polk River IGCC plant have been resolved and the plant is now operating reliably.

  16. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies Ltd JumpSutton,(RedirectedSvartsengi

  17. Te Mihi Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbotts LtdTarlton,Tazewell County, Illinois:Te Mihi

  18. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation, searchHeber,HeinsightPrivate

  19. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS)ServeronSesta

  20. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) | OpenMohave County, Arizona:MokaiMokai

  1. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:JustKandiyohiCounty,Kawar Energy

  2. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources

  3. Poihipi Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: Energy Resources JumpOhio:Pod Generating GroupPoihipi

  4. Ngawha Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy Resources JumpNgawha Geothermal Area Jump

  5. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillion CorporationOgle

  6. Birdsville Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLC JumpBiofameDataBirdsville

  7. Husavik Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergy

  8. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III IKosovo-USAIDIII

  9. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  10. EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts.

  11. The Hunter Valley Access Undertaking

    E-Print Network [OSTI]

    Bordignon, Stephen; Littlechild, Stephen

    2012-04-25

      13  FERC  staff  play  a  similar  role  with  respect  to  rate  applications  by  interstate  pipeline  and  transmission networks in the US. (Littlechild 2011)  EPRG No.1206...  coal from mines in the Hunter Valley region to  the Port of Newcastle  for export. Approximately 16  coal producers have either  existing or planned operations in the region, and it has been estimated that the  coal  shipped  on  the  network  equates  to  around  $9  billion  worth  of  export...

  12. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  13. Recommendations to Address Power Reliability Concerns Raised...

    Office of Environmental Management (EM)

    to Address Power Reliability Concerns Raised as a Result of Pending Environmental Regulations for Electric Generation Stations Recommendations to Address Power Reliability Concerns...

  14. FIBER-OPTIC BUS-ORIENTED SINGLE-HOP INTERCONNECTIONS AMONG MULTI-TRANSCEIVER STATIONS

    E-Print Network [OSTI]

    ,ooffer substantial advantages in power budget and the maximum number of stations that can be interconnected withoutFIBER-OPTIC BUS-ORIENTED SINGLE-HOP INTERCONNECTIONS AMONG MULTI-TRANSCEIVER STATIONS Yitzhak Birk among a set of stations, each equipped with multiple, say c, transmitters and receivers. It employs cz

  15. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  16. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  17. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  18. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  19. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  20. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  1. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  2. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  3. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  4. Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

    Office of Environmental Management (EM)

    Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

  5. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Prev Next Title: Single-valley engineering in graphene...

  6. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  7. A Study of Visitor Bicycle Use in Yosemite Valley

    E-Print Network [OSTI]

    Co, Sean; Kurani, Ken; Turrentine, Tom

    2000-01-01

    Merced to better understand bicycle use in Yosemite Valley.A Study of Visitor Bicycle Use in Yosemite Valley UCD-ITS-V Bicycle rental

  8. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. Strawberries at Troupe Station

    E-Print Network [OSTI]

    Green, Edward C.

    1904-01-01

    THE TEXAS A&M UNIVERSITY SYSTEM DANIEL C. PFANNSTIEL, DIRECTOR COLLEGE STATION, TEXAS I COVER Kenneth Hoffman, Extension demonstrator, and Hollis Duke, Atascosa County Extension agent, inspect a field of Fresno strawberries in Poteet. as Strawberries... George Ray McEachern and Bluefford G. Hancock* ery vigorous plant and can r a wide range of conditions. However, a profitable crop, definite practices are strawberry plant has three basic parts-tlle wn, and leaves. The roots are shallow and rbing...

  10. The Hidden Valley-Langdraney

    E-Print Network [OSTI]

    Lhundup

    2001-01-01

    , is now in Ngayabling (the land of the Yak's Tail). May the fortunate living beings of this world be guided to the palace of Zangdog Pelri (the peak of Copper Mountain) by you Lord Ugyen. Journal of Bhutan Studies 66 Living in this era... ) who is surrounded by Manaka the daughters of Amitabhs. They entertain and preach while on auspicious days the celestial beings (Amitabhs) from heaven and serpents (klu) bathe in the pond formed at the inner most part of the valley. On the slope...

  11. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump to:

  12. Magic Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:MagicValley Jump

  13. Sun Spot One (SS1): San Luis Valley, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  14. Sun Spot One (SS1): San Luis Valley, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2008-06-10

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  15. DC Power Distribution Systems 

    E-Print Network [OSTI]

    Savage, P.

    2012-01-01

    - A FLEXIBLE ALTERNATIVE ..OR ELECTRICAL POWER SUPPLY S. D. REYNOLDS Manager of Industrial Marketing & Services Tennessee Valley Authority Chattanooga, Tennessee ABSTRACT In an increasingly competitive operating environment, utilities must... place greater emphasis on developing programs that benefit the customer while at the same time benefiting the utility. Economy Surplus Power (ESP) is such a program. ESP offers industrial customers attractively priced power supply arrangements based...

  16. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01

    Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

  17. Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station

    E-Print Network [OSTI]

    Fay, Noah

    , the Navajo Generating Station (NGS), that is among the dirtiest coal power plants in the country1 Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station Sonya largest user of energy in the state of Arizona. It is powered by a coal plant in Northern Arizona

  18. Licking Valley Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLiberty Power Corp. Place: RhodeLichuanValley

  19. File:LongValley Strat.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonasterwind crossword.pdfInvitation-EnglishLongValley

  20. Concho Valley Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson,InformationConcho Valley Elec

  1. MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN

    E-Print Network [OSTI]

    Harinarayana, T.

    Although, many countries are utiliszing the geothermal energy for power generation, India is yet to join) Acknowledgements iii) Contents 1. INTRODUCTION 1 1.1 What is Geothermal energy ? 1 1.2 Global Scenario 2 1.3 MTMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

  2. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  3. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  4. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  5. HISTORICAL VEGETATION AND DRAINAGE PATTERNS OF WESTERN SANTA CLARA VALLEY

    E-Print Network [OSTI]

    describing landscape ecology in Lower Peninsula, West Valley, and Guadalupe Watershed Management Areas San

  6. Antenna unit and radio base station therewith

    DOE Patents [OSTI]

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  7. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  8. Central Station DHC Phase 1 feasibility

    SciTech Connect (OSTI)

    Henderson, H.L.

    1992-03-01

    This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

  9. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  10. UIC/HALSTED CTA STATION

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    UIC/HALSTED CTA STATION TAYLOR STREET ROOSEVELT ROAD POLK STREET MILLERSTREET CARPENTERSTREET VERNON PARK HARRISON STREET EISENHOWER EXPRESSWAY I-290 DANRYANEXPRESSWAYI-90/94 POLK STREET MORGANSTREET

  11. Locating PHEV Exchange Stations in V2G

    E-Print Network [OSTI]

    Pan, Feng; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

  12. Approximating Minimum-Power Degree and Connectivity Problems

    E-Print Network [OSTI]

    Kortsarz, Guy

    . The power con- sumption of a station determines its transmission range, and thus also the stations it can. Assigning power levels to the stations (nodes) determines the resulting communi- cation network. ConverselyApproximating Minimum-Power Degree and Connectivity Problems Guy Kortsarz Vahab S. Mirrokni Zeev

  13. Optimal Power Masking in Soft Frequency Reuse based

    E-Print Network [OSTI]

    Gross, James

    from the power radiated by the base station of neighboring cells in their communication band-carrier the base stations are restricted to a certain power bound. All these approaches to mitigating CCI can the fraction of the maximum transmit power that the base station may use depending at the part of the spectrum

  14. Bear Valley Electric Service- Solar Initiative Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  15. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  16. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  17. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  18. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  19. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    Eastside San Joaquin Tulare Central Valley Base Period (m/y)Eastside Delta San Joaquin Tulare Central Valley BaseSacramento Eastside San Joaquin Tulare Central Valley Severe

  20. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    California’s northern Sacramento Valley* DBH class, inches†woodlands in the northern Sacramento Valley. In: Proc Sympfirewood harvest in northern Sacramento Valley by Richard B.

  1. Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley

    E-Print Network [OSTI]

    Lubell, Mark; Fulton, Allan

    2007-01-01

    agriculture in the Sacramento River Valley by Mark Lubellquality management in the Sacramento River Valley. Data fromencourage growers in the Sacramento River Valley to

  2. Potential economic impacts of irrigation-water reductions estimated for Sacramento Valley

    E-Print Network [OSTI]

    Lee, Hyunok; Sumner, Daniel A.; Howtt, Richard

    2001-01-01

    Water Cuts in the Sacramento Valley. UC Agricultural Issuesare also the poorest in the Sacramento Valley. All of thereductions estimated for Sacramento Valley Hyunok Lee u

  3. High speed imager test station

    DOE Patents [OSTI]

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  4. High speed imager test station

    DOE Patents [OSTI]

    Yates, George J. (Santa Fe, NM); Albright, Kevin L. (Los Alamos, NM); Turko, Bojan T. (Moraga, CA)

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  5. PacificSouthwestResearchStationPrograms Pacific Southwest Research Station

    E-Print Network [OSTI]

    PacificSouthwestResearchStationPrograms Pacific Southwest Research Station Publications List Air Pollution and Global Change Impacts on Western Forest Ecosystems Center for Urban Forest Research Chemical branch of the USDA Forest Service in the states of California and Hawaii and the U.S.-affiliat- ed

  6. Alan a. Blggs Agriculture Canada, Research Station, Vineland Station, Ontario

    E-Print Network [OSTI]

    Biggs, Alan R.

    Alan a. Blggs Agriculture Canada, Research Station, Vineland Station, Ontario IntegratedApproach to Controlling LeucostomaCankerof Peachin Ontario Peach (Prunuspersica (L.) Batsch) is the third most valuable fruit crop in Ontario, Canada, following appIes (Matus domestica Barkh.) and grapes (Vizisspp.). In 1988

  7. The Effects of Size on Farm Survival and Success in The El Paso Valley

    E-Print Network [OSTI]

    Condra, Gary D.; Richardson, James W.

    1979-01-01

    OF SIZE ON - FARM SURVIVAL AND SUCCESS I N THE EL PAS0 VALLEY1 by Gary D. Condra2 and James W. Richardson3 'A more complete discussion of the methodology, input data, and references is available in the project completion report: Economic Analysis... of Alternative Farm Sizes in El Paso County Texas by James W. Richardson, Tom P. Zacharias, Gary D. Condra, and Donald D. Stebbins. 2Area Economist-Management, Texas Agricultural Extension Service 3Assistant Professor, Texas Agricultural Experiment Station...

  8. Repowering of the Midland Nuclear Station 

    E-Print Network [OSTI]

    Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

    1988-01-01

    , Michigan The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The eXisting nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility... in the midst of a repa..'erin;J that will convert it to a natural gas-fired carbined cycle cogeneration plant. 'Ihe nuclear project started in 1967 as a two unit plant utilizin;J pressurized water reactors to supply 1,357 MW of electric generatin...

  9. Nespelem Valley Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd JumpNesjavellir Geothermal Power Station Jump to:

  10. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

  11. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  12. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  13. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    Z. 2015. Progress report: subsidence in the Central Valley,Ingebritsen SE. 1999. Land subsidence in the United States.Ireland RL. 1986. Land subsidence in the San Joaquin Valley,

  14. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  15. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  16. Station GPS permanente IPG Paris DGF Uchile UNAP Iquique

    E-Print Network [OSTI]

    Vigny, Christophe

    NetRS, Antenna TRIMBLE Zephyr geodetic and autonomous energy (battery and solar panel). HISTORIC Semi.71476292 - 69.82727839 1675.36 DESCRIPTION North Chile II region, semi-permanent GPS station IPGP / DGF network in the nature telephone nearby NONO Electric power nearby NONO equipment storage available YESYES possibility

  17. Station GPS permanente IPG Paris DGF Uchile UNAP Iquique

    E-Print Network [OSTI]

    Vigny, Christophe

    -glue. Receptor TRIMBLE NetRS, Antenna TRIMBLE Zephyr geodetic and autonomous energy (battery and solar panel IPGP / DGF network installed during Dec- 2007. MONUMENTATION Station located in the coastal platform nearby NONO Electric power nearby NONO equipment storage available YESYES possibility of leaving

  18. Contribution of valley-side erosion to sedimentation problems in Wolf Pen Creek, College Station, Texas 

    E-Print Network [OSTI]

    Wilson, Rachel Suzanne

    2000-01-01

    , or urbanized). However, the state of urbanization is not the controlling factor in the case of Wolf Pen Creek and many other similar urban drainage basins. Instead, the level of stability varies with other factors, namely the geology of the basin and climate...

  19. Tri-Generation Success Story: World's First Tri-Gen Energy Station - Fountain Valley

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC27,Inc.Tri-Generation

  20. The Evolution and Life Cycle of Valley Cold Pools

    E-Print Network [OSTI]

    Wilson, Travis Harold

    2015-01-01

    drainage flows undercut the preexisting valley air and liftof drainage flows is their ability to undercut and lift

  1. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  2. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  3. Project Reports for Elk Valley Rancheria- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  4. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  5. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    2008-05-30

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  6. E cient Layout of a Passive, Single-Hop, Fiber-Optic Interconnection (among N stations)

    E-Print Network [OSTI]

    E cient Layout of a Passive, Single-Hop, Fiber-Optic Interconnection (among N stations-hop, ber-optic interconnection among n stations, each with two trans- mitters and one receiver, and a round, but the layout of this interconnection poses a challenge both in terms of wiring complex- ity and power budget

  7. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighland ViewdefaultJulySeptemberMovingHot Plate

  8. Loss of pressurizer water level during station blackout

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to both the essential and nonessential electrical buses in a nuclear power plant. The US Nuclear Regulatory Commission (NRC) has proposed a requirement that all plants be capable of maintaining adequate core cooling during station blackout events lasting a specified duration. The NRC has also suggested acceptable specified durations of four or eight hours, depending on individual plant susceptibility to blackout events. In a pressurized water reactor (PWR), the occurrence of a station blackout event results in the functional loss of many plant components, including main feedwater, reactor coolant pumps, the emergency core cooling system, and pressurizer heaters and spray. Nevertheless, PWRs have the capability of removing decay heat for some period of time using steam-driven auxiliary feedwater pumps and the natural-circulation capability of the primary system. The purpose of this investigation is to determine the early response of a PWR to station blackout conditions. In particular, the effect of primary coolant shrinkage and inventory loss on pressurizer level is examined to gain insight into the operational and analytical issues associated with the proposed station blackout coping requirement.

  9. Retrofit of Tehran City Gate Station C.G.S. No. 2 by Using Turboexpander 

    E-Print Network [OSTI]

    Seresht, R. T.; Ja, H. K.

    2010-01-01

    air components. 6. Liquefaction gases (like Helium). 7. Separating condensable components of natural gas. 8. Power generation from geothermal energy. Retrofit of Tehran City Gate Station C.G.S. No.2 by Using Turboexpander Yasun Farayand Company...

  10. Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod

    SciTech Connect (OSTI)

    Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

    2005-07-30

    Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

  11. Acceptance and operability test report for the 327 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 327 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  12. Acceptance {ampersand} operability test report for the 324 building retention process sewer diverter station

    SciTech Connect (OSTI)

    Olander, A.R.

    1996-09-04

    This test report includes the results of acceptance and operability testing of the 324 building diverter station. The test included steps for flushing, calibrating, and operating the system on backup power.

  13. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  14. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  15. USBIA-Mission Valley Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA RegionforUSto AlterUSBIA-Mission

  16. Silicon Valley Power - Commercial Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDISTDepartment SEMIANNUAL REPORTgas is

  17. Silicon Valley Power - Residential Energy Efficiency Rebate Program |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDISTDepartment SEMIANNUAL REPORTgas isDepartment of Energy

  18. Silicon Valley Power - Solar Electric Buy Down Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith Ultra-DeepwaterShutting theLower

  19. Twin Valleys Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrackI Wind Farm Jump to:7)Twin

  20. Golden Valley Electric Association - Sustainable Natural Alternative Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping

  1. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan PublicMountainKirkwoodWind

  2. Minnkota Power Cooperative Wind Turbine (Valley City) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search Name Minn-DakotaInformation Minnkota

  3. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe Jump to:WKV AG JumpWaareeWabash

  4. Boulder Valley School District (Colorado) Power Purchase Agreement Case

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrial LocalAprilstaff(1967) |of

  5. Rocketdyne Propulsion and Power DOE operations annual site environmental report 1996

    SciTech Connect (OSTI)

    Tuttle, R.J.

    1997-11-10

    Rocketdyne currently operates several facilities in the San Fernando Valley/Simi Valley area, for manufacturing, testing, and research and development (R and D). These operations include manufacturing liquid-fueled rocket engines, such as the Space Shuttle Main Engine (SSME) and engines used for expendable launch vehicles used to place artificial satellites into orbit. This work includes fabrication and testing of rocket engines, lasers, and heat-transfer systems; and R and D in a wide range of high-technology fields, such as the electrical power system for the Space Station. Previously, this work also included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the Atomics International Division (AI). AI was merged into Rocketdyne in 1984 and many of the AI functions were transferred to existing Rocketdyne departments. This nuclear work was terminated in 1988, and subsequently, all radiological work has been directed toward decontamination and decommissioning (D and D) of the previously used nuclear facilities and associated site areas. The majority of this work is done for the Department of Energy (DOE). This Annual Site Environmental Report for 1996 concentrates on the environmental conditions related to DOE operations at Area IV of SSFL and at De Soto.

  6. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  7. Types of Stations and Activities at Each: 1) Short Station

    E-Print Network [OSTI]

    ) from starboard A-Frame­ Hydro Team · Fe CTD cast (1) at some locations - Wu · VPR cast (1) from stern A camera deployed from ice-Cooper/Grebmier team · If necessary, small boat work to access ice- Gradinger small boat ­ Moran At 5-6 Open Water Stations: · Van Veen Grab sampling from stern A-frame, 3/8" wire, 3

  8. Valley Entrepreneurial Network monthly meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewingValidating extendedArchived CERESBOEValley

  9. EECE 595: SPREAD SPECTRUM COMMUNICATIONS 1 Distributed Power Control in CDMA Cellular

    E-Print Network [OSTI]

    station will corrupt the other signals. Another reason for power control is the battery life time. High of each mobile station. The transmission power of the mobile stations is determined solely on localEECE 595: SPREAD SPECTRUM COMMUNICATIONS 1 Distributed Power Control in CDMA Cellular System Aly El

  10. Analysis of an Up/Down Power Control Algorithm for the CDMA Reverse Link under Fading #

    E-Print Network [OSTI]

    Mandayam, Narayan

    signal to interference ratio (SIR). On the reverse link, the base station controls the transmit power of the mobile stations so that each user meets its SIR requirement. Power control schemes can be centralized [1, power control is usually done based on (feedback) commands from the base station where the transmit

  11. A Survey of Power Plant Designs

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    to produce steam. The steam spins the turbine, which drives the generator. Source: Tennessee Valley Authority) www.ent.ohiou.edu/~thermo/ index.html The General James M Gavin Steam Power Plant near Cheshire, Ohio University #12;Combustion Turbine Power Plant Open System The turbine burns either natural gas or oil. Fuel

  12. LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station

    E-Print Network [OSTI]

    Ohta, Shigemi

    LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station: * Energy range: 2.1 to 24 keV * Low divergence mode 60m 55m 50m 45m 40m 35m 30m SAXS SAXS SCD SSA VFM HFM DCMKB's Gi-SAXS/WAXS sample Liquids sample Gi

  13. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  14. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  15. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  16. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  17. EIS-0183: EPA Notice of Availability of the Final Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Beaver Valley Power Station, Units 1 and 2, Plant Specific, Issuing Nuclear Power Plant Operating License for an Additional 20- Year Period, Pennsylvania DOEEIS-0183,...

  18. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  19. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValley Geothermal Project Jump

  20. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  1. Community Leadership: Best Practices for Brazos Valley 

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01

    . #0;? Foster the creation networks between community and university entities 5. Nonprofit Resource Center #0;? Participate in efforts to organize and develop a nonprofit resource center The implementation of these action steps can help strengthen... by the Brazos Community Foundation and the Brazos Valley at large. These roles received wide support, were feasible - based on available resources, and aligned with the mission and purpose of BCF. Students developed a series of action steps to provide...

  2. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpenTees Valley Biofuels Jump

  3. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva, Maryland: Energy ResourcesValley

  4. Assessment and use of Loy Yang brown coal for power generation

    SciTech Connect (OSTI)

    Ottrey, A.; Woskoboenko, F. [HRL Technology Pty Ltd., Mulgrave, Victoria (Australia); Draper, I.; Fitzclarence, N. [Loy Yang Power Ltd., Traralgon, Victoria (Australia)

    1996-12-31

    The Loy Yang brown coal resource in the Latrobe Valley of Victoria has been extensively characterized in respect of: the extent, distribution and structure of the resource; the variations in properties throughout the resource; and evaluation of the behavior of the coal during processing. The resource characterization program involved an extensive borehole drilling program, backed by geological modelling and comprehensive material characterization (chemical, physical and petrological). Evaluation of the behavior of the coal has involved theoretical modelling, laboratory-scale investigations, pilot-scale combustion tests and observations on full-scale boilers. The Loy Yang open cut mine currently annually supplies 26 million tonne (Mt) of brown coal to: the 4 x 4500 MW units operated by Loy Yang Power Ltd.; the 2 x 500 MW units operated by Edison Mission Ltd.; and a steam-fluidized bed dryer operated by Dry Coal Australia Pty Ltd. (a joint venture between Lurgi and Australian Char Pty Ltd.). This paper highlights significant features of Loy Yang Power`s operations in the mine and the power station, with particular emphasis on ash fouling and slagging behavior.

  5. Control system for, and a method of, heating an operator station of a work machine

    DOE Patents [OSTI]

    Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

    2005-04-05

    There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

  6. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  7. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  8. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  9. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Kennedy-Bowdoin, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area...

  11. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Ground Gravity Survey At Dixie Valley Geothermal Area (Allis, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  12. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These...

  13. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  14. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

  15. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  16. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  17. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  18. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  19. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  20. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  1. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  2. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  5. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  7. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  8. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  9. The Mechanics of Unrest at Long Valley Caldera, California. 2...

    Open Energy Info (EERE)

    gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley...

  10. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

  11. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature...

  12. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  13. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  14. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  15. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  16. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  17. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic...

  18. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated...

  19. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  20. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  1. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  2. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

  3. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  4. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  5. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Abstract A...

  6. Multiple Ruptures For Long Valley Microearthquakes- A Link To...

    Open Energy Info (EERE)

    Tremor(Question) Abstract Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not...

  7. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  8. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  9. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  10. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  11. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  12. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  13. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  14. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  16. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration...

  17. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  18. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    fault zone-like structure extending from the baseof Dixie Valley to a broad, deep crustal conductor beneaththe Stillwater-Humboldt Range area. The deep conductor...

  19. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  20. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  1. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    System. Geothermics. () . Related Geothermal Exploration Activities Activities (4) Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Isotopic...

  2. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  4. Voluntary Protection Program Onsite Review, West Valley Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review...

  5. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  6. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Additional References Retrieved from...

  7. DOE Awards Contract for the West Valley Demonstration Project...

    Energy Savers [EERE]

    to the U.S. Department of Energy (DOE) West Valley Demonstration Project (WVDP), and the New York State Energy Research and Development Authority (NYSERDA) in performing a...

  8. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  9. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  10. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  12. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  13. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  14. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  15. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...

  18. Rocky Mountain Research Station 20142017 Strategic Framework

    E-Print Network [OSTI]

    Rocky Mountain Research Station 2014­2017 Strategic Framework #12;Rocky Mountain Research Station 240 West Prospect Fort Collins, CO 80526 (970) 498-1100 www.fs.fed.us/rmrs High mountain lake at GLEES (Glacier Lakes Ecosystem Experiments Site) #12;1ROCKY MOUNTAIN RESEARCH STATION -- 2014­2017 STRATEg

  19. Farmscape ecology of a native stink bug in the Sacramento Valley

    E-Print Network [OSTI]

    2002-01-01

    to rural roadsides in the Sacramento Valley of Cali­ fornia:tomato, a major crop in the Sacramento Valley. This is notLPJM Prop-am. In the Sacramento Valley, there are several

  20. Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley

    E-Print Network [OSTI]

    Owens, Peter Marshall

    2005-01-01

    in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

  1. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force Presentation...

  2. When Emergency Rooms Close: Ambulance Diversion in the West San Fernando Valley

    E-Print Network [OSTI]

    Natasha Mihal; Renee Moilanen

    2005-01-01

    of diversion on the West Valley, identifies major problemsa working group of the five West Valley hospitals to exposehigh diversion rates in the West Valley and proposed ways to

  3. Modeling pedestrian flows in train stations: The example of Lausanne railway station

    E-Print Network [OSTI]

    Bierlaire, Michel

    Modeling pedestrian flows in train stations: The example of Lausanne railway station Flurin S, April 15 ­ 17, 2015 #12;Modeling pedestrian flows in train stations: The example of Lausanne railway Engineering EPFL ­ Ecole Polytechnique Fédérale de Lausanne Modeling pedestrian flows in train stations

  4. Battery-State Dependent Power Control as a Dynamic Game

    E-Print Network [OSTI]

    , for example, that a station that transmits at high power prevents the signal of other stations from being1 Battery-State Dependent Power Control as a Dynamic Game Ishai Menache and Eitan Altman Faculty power in a noncooperative way. The novelty of our model is in considering the dynamic game in which

  5. EU 'confident' of star power site By Jo Twist

    E-Print Network [OSTI]

    option because of its position on the war in Iraq. Star power After the International Space Station, Iter stations, and would pave the way for commercial power production. In a fusion reaction, energy is producedEU 'confident' of star power site By Jo Twist BBC News Online science staff Europe is still

  6. Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain View CA, USA

    E-Print Network [OSTI]

    Fiat, Amos

    Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain University, Ithaca NY, USA Aleksandrs Slivkins, Microsoft Research Silicon Valley, Mountain View CA, USA We

  7. Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster

    E-Print Network [OSTI]

    Steinfield, Charles

    Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster Valley biotech region located in Denmark and Southern Sweden. Responding companies included established

  8. VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

  9. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  10. Transportation and Stationary Power Integration Workshop: A California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A California Perspective Transportation and Stationary Power Integration Workshop: A California Perspective Overview of California regulations, latest funded hydrogen stations, and...

  11. Taipei terminal rail station : casting an urban gateway

    E-Print Network [OSTI]

    Tsai, May Deanna

    1991-01-01

    Access is a key issue in the design of railway stations. The evolution of the train station typology, has resulted in many types of stations based on the development of the stations' access. Since rail travel on a larger ...

  12. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  13. Load-Sensitive Transmission Power Control in Wireless Ad-hoc Networks Seung-Jong Park Raghupathy Sivakumar

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    transmis- sion power depends on several network characteristics such as the number of stations, the network problem in ad-hoc wireless networks. The transmission power of the stations in a network determines the network topol- ogy, The transmission power of the stations in a network deter- mines the network topology

  14. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltraUnalakleet Valley Elec Coop

  15. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrass Valley

  16. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley Ethanol

  17. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudorOpenApplicationDixie Valley

  18. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,Valley

  19. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop Place:

  20. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcornNRELAlineasolarValley

  1. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltosPenoyer Valley Electric Coop Jump

  2. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJumpPowder RiverValley

  3. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority (Kentucky)

  4. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley AuthorityTennessee

  5. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API VersionVadiumNevada) JumpValley

  6. Valley View Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric

  7. Antelope Valley Neset | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:AnsonNebraska:Valley

  8. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen Energy Information Geothermal AreaAire Valley

  9. Imperial Valley Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal project

  10. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem IncLighthouse Solar Address:Valley

  11. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList ofBalanceLittle Valley Geothermal

  12. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia:BlueBioStarValley

  13. Bolton Valley Resort | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass Ridge Wind2BoeingBolton Valley

  14. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,GeorgiaValley Geothermal Project Jump to:

  15. Bear Creek Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585Bear Creek Valley

  16. Bethel Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy| DepartmentBethel Valley Watershed. Topics

  17. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest Valley

  18. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest ValleyWest

  19. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA VALLEY

  20. Counting Mountain-Valley Assignments for Flat Folds

    E-Print Network [OSTI]

    Hull, Thomas C.

    Counting Mountain-Valley Assignments for Flat Folds Thomas Hull Department of Mathematics Merrimack), a mountain-valley (MV) assignment is a function f : E {M,V} which indicates which crease lines are con- vex can be thought of as a structural blueprint of the fold.) Creases come in two types: mountain creases

  1. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  2. Pilgrim Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilger Estates HotStation Jump

  3. Circuits in Power Electronics J. Waldvogel

    E-Print Network [OSTI]

    Grohs, Philipp

    control of locomotives and electric cars, control of power stations and power networks, etc. For everyCircuits in Power Electronics J. Waldvogel Research Report No. 94-13 October 1994 Seminar f¨ur Angewandte Mathematik Eidgen¨ossische Technische Hochschule CH-8092 Z¨urich Switzerland #12;Circuits in Power

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  5. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  6. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  7. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  8. Core Analysis At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs Valley Area (DOE GTP)

  9. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs ValleyEnergy2003) | Open

  10. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01

    station and equipment costs Capital equipment costs Non-a function of capital cost and is therefore represented intechnology and therefore capital cost and maintenance cost

  11. Reference Designs for Hydrogen Fueling Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and piping & instrumentation diagrams * Ancillary Results - Near-term FCEV rollout scenario analysis year-by-year - Near-term hydrogen station rollout analysis year-by-year...

  12. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  13. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  14. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  15. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  16. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  17. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  18. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design Task: Project Deliverable 2-2 On-Board Storage Systems Analysis...

  19. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  20. Reference Designs for Hydrogen Fueling Stations Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  1. Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective

    E-Print Network [OSTI]

    Singer, Michael

    Development of the Lower Sacramento Valley Flood-Control System: Historical Perspective L. Allan in the Sacramento Valley. The valley is a broad, low plain with backswamp basins that were frequently inundated in the Sacramento Valley due to high flow variability, mining sedimentation, lack of a coordinated levee system

  2. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown

  3. Travale 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource HistoryFuelTravale 3 Geothermal

  4. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource HistoryFuelTravale 3 Geothermal4

  5. Development of Power-head based Fan Airflow Station 

    E-Print Network [OSTI]

    Wang, G.; Liu, M.

    2005-01-01

    ............................................ 17 2.9 Effect of Particle Size on NOx Emission from Numerical Modeling (A) and Experimentation (B) ............................................. 19 2.10 Effect of Coal Rank and Particle Size on NOx Emission ................... 21 2.11 Effect... with CCOFA and SOFA for improved NOx emissions. They described the process the utility used to tune the airflow patterns to maximize NOx reduction with minimal impact on combustion performance. The boiler studied was a tangentially fired boiler with five...

  6. Bryan Balkenbush Fukushima Daiichi Nuclear Power Station `Issue'

    E-Print Network [OSTI]

    Toohey, Darin W.

    on reactor 2 since it used a fuel known as mox or mixed oxide because it contains reclaimed plutonium which of iodine although the EPA states that it is far below levels that would be of concern April 4th : 11,500 : The reactor temperature is approximately 580 degrees Fahrenheit (normal is around 500 degrees, if it were

  7. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDCHydrogenin Classic Cars Goss'Upstate

  8. Hellisheidi Geothermal Power Station - South Iceland | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation, searchHeber,HeinsightPrivate LtdHelius

  9. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpen EnergyNew York: Energy

  10. Genesee Power Station LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpen EnergyNew York: EnergyLP Biomass

  11. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California:Martin,

  12. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedcoInformation Twenty-Nine PalmsSelva 1

  13. Springerville Generating Station Solar System Solar Power Plant | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention andWellSpringWorksWisconsin:Energy

  14. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation Montana Watershed ProtectionMontauk,Monteverdi 1

  15. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation Montana Watershed ProtectionMontauk,Monteverdi 12

  16. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activities <LEDSGP/hometrainingLPGEsco delJolla,Leccia

  17. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activitiesPlata ElectricLackawanna,Oregon: EnergyLago

  18. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy ResourcesProjectMississippi: EnergyLawrie v.

  19. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, New York:Pianacce Geothermal

  20. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia, New York:Pianacce Geothermal3