Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Monitoring unrest in a large silicic caldera, the long Valley-inyo craters volcanic complex in east-central California  

Science Journals Connector (OSTI)

Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that...

D. P. Hill

1984-01-01T23:59:59.000Z

2

Inferences on the hydrothermal system beneath the resurgent dome in Long Valley Caldera, east-central California, USA, from recent pumping tests and geochemical sampling  

Science Journals Connector (OSTI)

Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of intense seismicity and ground deformation. Uplift totaling more than 0.7 m has been centered on the calderas resurgent dome, and is best modeled by a near-vertical ellipsoidal source centered at depths of 67 km. Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 710 km beneath the resurgent dome and a deeper source ?15 km beneath the calderas south moat and (2) the shallower source may contain components of magmatic brine and gas. The Long Valley Exploration Well (LVEW), completed in 1998 on the resurgent dome, penetrates to a depth of 3 km directly above this shallower source, but bottoms in a zone of 100C fluid with zero vertical thermal gradient. Although these results preclude extrapolations of temperatures at depths below 3 km, other information obtained from flow tests and fluid sampling at this well indicates the presence of magmatic volatiles and fault-related permeability within the metamorphic basement rocks underlying the volcanic fill. In this paper, we present recently acquired data from LVEW and compare them with information from other drill holes and thermal springs in Long Valley to delineate the likely flow paths and fluid system properties under the resurgent dome. Additional information from mineralogical assemblages in core obtained from fracture zones in LVEW documents a previous period of more vigorous and energetic fluid circulation beneath the resurgent dome. Although this system apparently died off as a result of mineral deposition and cooling (and/or deepening) of magmatic heat sources, flow testing and tidal analyses of LVEW water level data show that relatively high permeability and strain sensitivity still exist in the steeply dipping principal fracture zone penetrated at a depth of 2.6 km. The hydraulic properties of this zone would allow a pressure change induced at distances of several kilometers below the well to be observable within a matter of days. This indicates that continuous fluid pressure monitoring in the well could provide direct evidence of future intrusions of magma or high-temperature fluids at depths of 57 km.

Christopher D. Farrar; Michael L. Sorey; Evelyn Roeloffs; Devin L. Galloway; James F. Howle; Ronald Jacobson

2003-01-01T23:59:59.000Z

3

Hydrologic Monitoring Summary Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Hydrologic Monitoring Summary Long Valley Caldera, California Abstract Abstract...

4

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

5

Temperature Data From Wells in Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Temperature Data From Wells in Long Valley Caldera, California Abstract No abstract...

6

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

7

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

8

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

9

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley...

10

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

California Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (December 1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California,...

11

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

12

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

13

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

14

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

15

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the resurgent dome to provide a comprehensive conceptual model of the different stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system....

16

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

the resurgent dome to provide a comprehensive conceptual model of the different stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system....

17

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

18

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Tempel, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

19

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

20

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Core Holes At Long Valley Caldera Geothermal Area (Urban, Et...  

Open Energy Info (EERE)

Urban, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Urban, Et Al., 1987)...

22

Radon-222 in groundwater of the Long Valley caldera, California  

Science Journals Connector (OSTI)

In the Long Valley caldera, where seismicity has continued essentially uninterrupted...222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for ...

H. A. Wollenberg; A. R. Smith; D. F. Mosier; S. Flexser

23

New Evidence On The Hydrothermal System In Long Valley Caldera...  

Open Energy Info (EERE)

Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

24

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Exploration Activity...

25

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

26

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

27

Non-Double-Couple Microearthquakes At Long Valley Caldera, California,  

Open Energy Info (EERE)

Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Details Activities (1) Areas (1) Regions (0) Abstract: Most of 26 small (0.4<~M<~3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and

28

Technical Geologic Overview of Long Valley Caldera for the Casa...  

Open Energy Info (EERE)

Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal...

29

Drilling results from eastern Long Valley Caldera | Open Energy...  

Open Energy Info (EERE)

results from eastern Long Valley Caldera Abstract Abstract unavailable. Authors J.L. Smith and R.W. Rex Published American Nuclear Society, 1977 Report Number Energy and Mineral...

30

Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing  

E-Print Network [OSTI]

Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 earthquakes; Long Valley caldera; seismic moment tensors; swarms; seismic sources 1. Introduction The ¢rst

Foulger, G. R.

31

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

32

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area (Redirected from Long Valley Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Science guide for the Long Valley Caldera deep hole  

SciTech Connect (OSTI)

The Magma Energy Program of the US Department of Energy, Geothermal Technology Division, is planning to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California, in September 1988. The location of the well is in the central part of the caldera, coincident with a large number of shallow (5-7 km) geophysical anomalies identified through many independent investigations. Results from the hole will permit the following: direct investigation of the geophysical anomalies interpreted to be magma; investigation of the patterns and conditions of deep fluid circulation and heat transport below the caldera floor; determination of the amount of collapse and subsequent resurgence of the central portion of Long Valley caldera; and determination of the intrusion history of the central plutonic complex beneath the caldera, and establishment of the relationship of intrusive to eruptive events. The hole will thus provide a stringent test of the hypothesis that magma is still present within the central plutonic complex. If the interpretation of geophysical anomalies is confirmed, the hole will provide the first observations of the environment near a large silicic magma chamber. 80 refs., 7 figs., 2 tabs.

Rundle, J.B.; Eichelberger, J.C. (eds.)

1989-05-01T23:59:59.000Z

34

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

35

Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Hurwitz, Et Al., Long Valley Caldera Area (Hurwitz, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al., 2010) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Shaul Hurwitz, Christopher D. Farrar, Colin F. Williams (2010) The Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Long_Valley_Caldera_Area_(Hurwitz,_Et_Al.,_2010)&oldid=511152"

36

Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Newman, Et Al., Long Valley Caldera Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Andrew V. Newman, Timothy H. Dixon, Noel Gourmelen (2006) A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Long_Valley_Caldera_Area_(Newman,_Et_Al.,_2006)&oldid=425656"

37

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) |  

Open Energy Info (EERE)

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=386973

38

Water-Rock interaction in the Long Valley Caldera (USA)  

Science Journals Connector (OSTI)

Water-rock interactions within the main thermal aquifer in the Long Valley Caldera are evaluated using water chemistry data from a new suite of samples. The results reflect the impact of increased geothermal production and major CO2 loss, which appears to drive calcite precipitation in the aquifer. The study provides qualitative information on the rates of mineral reactions and the response times of chemical geothermometers to declining temperatures.

W.C. Evans; S. Hurwitz; D. Bergfeld; J. Lewicki; M.A. Huebner; C.F. Williams; S.T. Brown

2013-01-01T23:59:59.000Z

39

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network [OSTI]

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

40

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ~15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L. Galloway, James F. Howle, Ronald Jacobson (2003) Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera,

42

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

43

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) |  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Fraser Goff, Harold A. Wollenberg, D. C. Brookins, Ronald W. Kistler (1991) A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff,_Et_Al.,_1991)&oldid=692527"

44

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

45

Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Al., 1991) Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Discusses temperature and lithologic data from a dozen or so wells drilled, both by industry and the scientific community. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits

46

Study of Volcanic Sources at Long Valley Caldera, California, Using Gravity Data and a Genetic Algorithm Inversion Technique  

Science Journals Connector (OSTI)

We model the source inflation of the Long Valley Caldera, California, using a genetic algorithm ... numerous attempts to model the magma injection at Long Valley Caldera from deformation data, this has proven...

M. Charco; J. Fernndez; K. Tiampo

2004-01-01T23:59:59.000Z

47

Study of Volcanic Sources at Long Valley Caldera, California, Using Gravity Data and a Genetic Algorithm Inversion Technique  

Science Journals Connector (OSTI)

We model the source inflation of the Long Valley Caldera, California, using a genetic algorithm ... numerous attempts to model the magma injection at Long Valley Caldera from deformation data, this has proven...

M. Charco; J. Fernndez; K. Tiampo; M. Battaglia; L. Kellogg

2004-07-01T23:59:59.000Z

48

The Thermal Regime In The Resurgent Dome Of Long Valley Caldera,  

Open Energy Info (EERE)

Thermal Regime In The Resurgent Dome Of Long Valley Caldera, Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Details Activities (1) Areas (1) Regions (0) Abstract: Long Valley Caldera in eastern California formed 0.76 Ma ago in a cataclysmic eruption that resulted in the deposition of 600 km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~ 290 MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40 MWe. The RD in the center of the caldera was uplifted by ~ 80 cm between 1980 and 1999 and was explained by most

49

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera

50

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

51

Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Several newer wells were cored, and the core analyses seemed to prove useful in most cases. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Long_Valley_Caldera_Area_(Sorey,_Et_Al.,_1991)&oldid=386930

52

Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik,  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=510433

53

Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et  

Open Energy Info (EERE)

Bergfeld, Et Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=510430"

54

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

55

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

56

Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Our preferred model for the unusual events is that of multiple ordinary earthquakes being triggered or forced by a fluid injection into a thin volcanic conduit. An example of such a structure would be a dike connected to one or more shear or wing fractures. In this model, resonant increases in pressure in the conduit would cause the shear fractures to fail seismically at fixed time delays. For the time delays seen at Long Valley,

57

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

58

Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and  

E-Print Network [OSTI]

Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high that occurred between 1980 and 2000 in the Long Valley caldera area using a double- difference earthquake a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat

Waldhauser, Felix

59

Summary of recent research in Long Valley Caldera, California  

Science Journals Connector (OSTI)

Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 19891990, and 19971998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (710-km) source beneath the resurgent dome, there exists a deeper (?15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100200C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station.

Michael L. Sorey; Vicki S. McConnell; Evelyn Roeloffs

2003-01-01T23:59:59.000Z

60

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,  

Open Energy Info (EERE)

Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Details Activities (3) Areas (1) Regions (0) Abstract: We investigate the effects of viscoelastic (VE) rheologies surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid magmatic inflation episode and slip across the South Moat fault (SMF) in late 1997. We extend the spherical VE shell model of Newman et al. (Newman, A.V., Dixon, T.H., Ofoegbu, G., Dixon, J.E.,

62

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

63

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

64

Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies correlate with the location of known faults in agreement with previous

65

Summary Of Recent Research In Long Valley Caldera, California | Open Energy  

Open Energy Info (EERE)

Summary Of Recent Research In Long Valley Caldera, California Summary Of Recent Research In Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Summary Of Recent Research In Long Valley Caldera, California Details Activities (1) Areas (1) Regions (0) Abstract: Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and

66

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Useful for a whole variety of particular reservoir characterization goals, i.e.: "Isotopic values for the thermal waters become lighter with distance eastward from Casa Diablo, suggesting dilution with nonthermal ground waters from more easterly sources. In the Casa Diablo area, the effects of near-surface boiling cause the observed isotopic shift (along the line

67

New Evidence On The Hydrothermal System In Long Valley Caldera, California,  

Open Energy Info (EERE)

New Evidence On The Hydrothermal System In Long Valley Caldera, California, New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These

68

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...  

Open Energy Info (EERE)

The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

69

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

70

Magnetotellurics At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley

71

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7^10 km beneath the resurgent dome and a deeper source V15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

72

Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth  

E-Print Network [OSTI]

Three-dimensional crustal structure of Long Valley caldera, California, and evidence in Long Valley caldera in 1997. We performed a tomographic inversion for crustal structure beneath a 28 km--composition and state (old 8105); KEYWORDS: tomography, Long Valley, volcano, carbon dioxide, crustal structure

Foulger, G. R.

73

The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic  

E-Print Network [OSTI]

The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of Long Valley caldera by combining geodetic and micro-gravity data. Uplift from GPS and leveling, two intrusion as the primary cause of unrest, and confirm the intrusion of silicic magma beneath Long Valley

Segall, Paul

74

The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS,  

E-Print Network [OSTI]

The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source 44 existing leveling monuments in Long Valley caldera in July 1999, using dual frequency global in the Long Valley area and computed the vertical deformation by differencing GPS-based and leveled

Segall, Paul

75

Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References W. L. Pickles, P. W. Kasamayer, B. A. Martini, D. C. Potts, E. A. Silver (2001) Geobotanical Remote Sensing For Geothermal Exploration

76

Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) |  

Open Energy Info (EERE)

Lewicki, Et Al., 2008) Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References J. L. Lewicki, M. L. Fischer, G. E. Hilley (2008) Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Lewicki,_Et_Al.,_2008)&oldid=508150" Categories: Exploration Activities DOE Funded

77

Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is ongoing. In particular, we have InSAR stacks for over twenty pairs of

78

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

79

Core Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith & Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

80

Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes The temperature profile in LVEW consists of an upper part (within the volcanic fill) with generally conductive gradients averaging about 35degrees C/km. Within the underlying metamorphic basement, however,

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cuttings Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

82

Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Resistivity Log At Long Valley Caldera Area (Sorey, Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Resistivity Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Lithologic and resistivity logs from wells drilled into areas of less than 20 ohm-m resistivity show clay mineralization resulting from hydrothermal alteration within the volcanic fill (Nordquist, 1987). Low resistivity in the vicinity of well 44-16, identified in wellbore geophysical logs and two dimensional MT modeling is restricted to the thermal-fluid reservoirs in the early rhyolite and Bishop Tuff (Nordquist, 1987; Suemnicht, 1987). The MT data suggest that the resistivity structure near Mammoth Mountain is

83

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

84

Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may

85

Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984...  

Open Energy Info (EERE)

Basis Several core holes were also drilled in the caldera's west moat by Phillips Petroleum Company in 1982, including: PLV-1, drilled to approximately 711 m depth PLV-2,...

86

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera  

E-Print Network [OSTI]

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley.S. Geological Survey USGS Fact Sheet 2007-3045 2007 T Hot Creek flows through the Long Valley Caldera Airport Fish hatchery CH-10B 44-16 Well Well Long Valley C aldera Area of Map Californ i a The thermal

Torgersen, Christian

87

Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemical and isotopic characteristics of fluid sampled from the principal fracture zone in LVEW indicate that this fluid is not directly connected with or simply supplied by thermal water from the present-day hydrothermal system that flows around the southern edge of the resurgent dome from sources in the west moat. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

88

Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) |  

Open Energy Info (EERE)

2003) 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long

89

Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A.

90

Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) | Open  

Open Energy Info (EERE)

Pribnow, Et Al., 2003) Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina

91

Seismic Reflection Studies in Long Valley Caldera, Califomia  

E-Print Network [OSTI]

the shallow and deep geothermal aquifers within the area. The deep geothermal aquifer, the welded Bishop Tuff, was imaged as a fairly continuous reflector across the western moat of the caldera. Near-surface refraction information indicates that there may be a...

Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

1991-03-10T23:59:59.000Z

92

Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress,  

Open Energy Info (EERE)

Klusman & Landress, Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

93

Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al.,  

Open Energy Info (EERE)

Et Al., Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

94

Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

Sorey, Et Al., Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed XRD studies of alteration mineralogy in west-moat drill holes (Flexser, 1989, 1991-this volume) show that the present temperatures in RDO-8, PLV-1, and INYO-4 are well below (65degrees C or more) alteration temperatures, except in the lower part of RDO-8 (below about 300 m). No XRD evidence of epidote or other relatively high-temperature ( > 230 degrees C) alteration products was found in any of the core. At shallow depths in the

95

Proceedings of the symposium on the Long Valley Caldera: A pre-drilling data review  

SciTech Connect (OSTI)

This proceedings volume contains papers or abstracts of papers presented at a two-day symposium held at the Lawrence Berkeley Laboratory (LBL) on 17 and 18 March 1987. Speakers presented a large body of new scientific results and geologic-hydrogeoloic interpretations for the Long Valley caldera. The talks and the discussions that followed focused on concepts and models for the present-day magmatic-hydrothermal system. Speakers at the symposium also addressed the topic of where to site future scientific drill holes in the caldera. Deep scientific drilling projects such as those being contemplated by the DOE Division of Geothermal Technology (DGT), under the Magma Energy Program, and by the DOE Office of Energy Research, Division of Engineering and Geosciences (DEG), along with the USGS and NSE, under the Continental Scientific Drilling Program (CSDP), will be major and expensive national undertakings. DOE/DEG is sponsoring a program of relatively shallow coreholes in the caldera, and DOE/DGT is considering the initiation of a multiphase program to drill a deep hole for geophysical observations and sampling of the ''near magmatic'' environment as early as FY 1988, depending on the DOE budget. Separate abstracts have been prepared for the individual papers.

Goldstein, N.E. (ed.)

1987-09-01T23:59:59.000Z

96

Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings  

SciTech Connect (OSTI)

A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

1984-10-01T23:59:59.000Z

97

Geochemical modeling of the near-surface hydrothermal system beneath the southern moat of Long Valley Caldera, California  

Science Journals Connector (OSTI)

Geochemical reaction path and mass balance modeling techniques were used to test the hypothesis that an eastwardly flowing plume of thermal water in the southern moat of the Long Valley caldera system reacts with hydrothermally altered intra-caldera tuffs and mixes with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal waters and reaction with wall rock were simulated using the reaction path code EQ3/6. Mass balance calculations were conducted to estimate the extent of waterrock interaction between the intra-caldera tuffs and fluids. A mixing ratio of 82% thermal and 18% non-thermal water reacting with altered tuff minerals closely matches Casa Diablo fluid compositions and minerals observed in petrographic studies. Results of this study show that the mineralogy and fluid chemistry observed in the shallow reservoir at Long Valley caldera are formed in an open system. Further, calcite precipitated in the system serves as a sink for high levels of CO2 generated by the deeper magmatic system. Our study serves as an example that processes acting in a geothermal system can be effectively quantified using geochemical modeling and mass balance calculations.

Regina N. Tempel; Daniel M. Sturmer; Jill Schilling

2011-01-01T23:59:59.000Z

98

Spherical and ellipsoidal volcanic sources at Long Valley caldera, California, using a genetic algorithm inversion technique  

Science Journals Connector (OSTI)

We model the second inflation period at Long Valley caldera, California using a genetic algorithm technique and high quality geodetic measurements of elevation changes and baseline extensions. We compare two source inversions for both spherical Mogi point sources and the finite prolate ellipsoid of Yang and Davis. A sensitivity analysis for the genetic algorithm is performed based upon synthetic data set inversions on similar sources in order to better constrain the areal location, orientation, and volume of the potential sources. The spherical sources are well constrained, the larger located at 9.9km beneath the resurgent dome, with a volume of 0.036km3, while the second, at only 0.008km3, is located at a depth of 7.3km beneath the south moat. The depths to the ellipsoidal sources are switched, with the larger source at a depth of 9.6km and the smaller at 11.8km, with volumes of 0.037 and 0.002km3, respectively.

K.F Tiampo; J.B Rundle; J Fernandez; J.O Langbein

2000-01-01T23:59:59.000Z

99

Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach  

Science Journals Connector (OSTI)

We investigate the surface deformation of the eastern California area that includes Long Valley caldera and Mono Basin. We apply the SAR Interferometry (InSAR) algorithm referred to as Small \\{BAseline\\} Subset (SBAS) approach that allows us to generate mean deformation velocity maps and displacement time series for the investigated area. The results presented in this work represent an advancement of previous InSAR studies of the area that are mostly focused on the deformation affecting the caldera. In particular, the proposed analysis is based on 21 SAR data acquired by the ERS-1/2 sensors during the 19922000 time interval, and demonstrates the capability of the SBAS procedure to identify and analyze displacement patterns at different spatial scales for the overall area spanning approximately 5000km2. Two previously unreported localized deformation effects have been detected at Paoha Island, located within the Mono Lake, and in the McGee Creek area within the Sierra Nevada mountains, a zone to the south of the Long Valley caldera. In addition a spatially extended uplift effect, which strongly affects the caldera, has been identified and analyzed in detail. The InSAR results clearly show that the displacement phenomena affecting the Long Valley caldera have a maximum in correspondence of the resurgent dome and are characterized by the sequence of three different effects: a 19921997 uplift background, a 19971998 unrest phenomenon and a 19982000 subsidence phase. Moreover, the analysis of the retrieved displacement time series allows us to map the extent of the zone with a temporal deformation behavior highly correlated with the detected three-phases deformation pattern: background uplift-unrest-subsidence. We show that the mapped area clearly extends outside the northern part of the caldera slopes; accordingly, we suggest that future inversion models take this new evidence into account. The final discussion is dedicated to a comparison between the retrieved InSAR measurements and a set of GPS and leveling data, confirming the validity of the results achieved through the SBAS-InSAR analysis.

P. Tizzani; P. Berardino; F. Casu; P. Euillades; M. Manzo; G.P. Ricciardi; G. Zeni; R. Lanari

2007-01-01T23:59:59.000Z

100

Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding  

Science Journals Connector (OSTI)

Temperatures of 100C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800C magma chamber at 68 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclt-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a?1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ?m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.

Daniel F.C Pribnow; Claudia Schtze; Suzanne J Hurter; Christina Flechsig; John H Sass

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study  

Science Journals Connector (OSTI)

Joint measurements of ground deformation and micro-gravity changes are an indispensable component for any volcano monitoring strategy. A number of analytical mathematical models are available in the literature that can be used to fit geodetic data and infer source location, depth and density. Bootstrap statistical methods allow estimations of the range of the inferred parameters. Although analytical models often assume that the crust is elastic, homogenous and isotropic, they can take into account different source geometries, the influence of topography, and gravity background noise. The careful use of analytical models, together with high quality data sets, can produce valuable insights into the nature of the deformation/gravity source. Here we present a review of various modeling methods, and use the historical unrest at Long Valley caldera (California) from 1982 to 1999 to illustrate the practical application of analytical modeling and bootstrap to constrain the source of unrest. A key question is whether the unrest at Long Valley since the late 1970s can be explained without calling upon an intrusion of magma. The answer, apparently, is no. Our modeling indicates that the inflation source is a slightly tilted prolate ellipsoid (dip angle between 91 and 105) at a depth of 6.5 to 7.9km beneath the caldera resurgent dome with an aspect ratio between 0.44 and 0.60, a volume change from 0.161 to 0.173km3 and a density of 1241 to 2093kg/m3. The larger uncertainty of the density estimate reflects the higher noise of gravity measurements. These results are consistent with the intrusion of silicic magma with a significant amount of volatiles beneath the caldera resurgent dome.

M. Battaglia; D.P. Hill

2009-01-01T23:59:59.000Z

102

The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells  

Science Journals Connector (OSTI)

Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperaturedepth profiles in five deep boreholes (3271,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate horizontal groundwater velocities in the hydrothermal flow unit under the RD that range from 1.9 to 2.8m/yr, which corresponds to a maximum power flowing through the RD of 34MW. The relatively low temperatures and large isothermal segments at the bottom of the temperature profiles are inconsistent with the presence of magma at shallow crustal levels.

Shaul Hurwitz; Christopher D. Farrar; Colin F. Williams

2010-01-01T23:59:59.000Z

103

East Central Energy (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

Energy (Wisconsin) Energy (Wisconsin) Jump to: navigation, search Name East Central Energy Place Wisconsin Utility Id 5574 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1200/kWh Commercial: $0.1130/kWh Industrial: $0.0968/kWh The following table contains monthly sales and revenue data for East Central Energy (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

104

East Central Electric Cooperative - Residential Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Cooling Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Replacement ground source heat pump - $150 per ton Complete system (unit and ground loop) - $750 per ton Electric water heater - $150 Energy Star Room AC - $50 Energy Star clothes washer - varies depending on cost Energy Star dishwasher - varies depending on cost Provider East Central Electric Cooperative East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water

105

East Central Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name East Central Energy Place Minnesota Utility Id 5574 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - Interruptible Commercial General Service - Single Phase Industrial General Service - Three Phase Industrial Industrial- Interruptible Industrial Residential Residential Small General Service - Single Phase Commercial Small General Service - Three Phase Commercial Average Rates Residential: $0.1300/kWh

106

The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS, leveling and two-color EDM data  

Science Journals Connector (OSTI)

We surveyed 44 existing leveling monuments in Long Valley caldera in July 1999, using dual frequency global positioning system (GPS) receivers. We have been able to tie GPS and leveling to a common reference frame in the Long Valley area and computed the vertical deformation by differencing GPS-based and leveled orthometric heights. The resurgent dome uplifted 747 cm from 1975 to 1999. To define the inflation source, we invert two-color EDM and uplift data from the 19851999 unrest period using spherical or ellipsoidal sources. We find that the ellipsoidal source satisfies both the vertical and horizontal deformation data, whereas the spherical point source cannot. According to our analysis of the 19851999 data, the main source of deformation is a prolate ellipsoid located beneath the resurgent dome at a depth of 5.9 km (95% bounds of 4.97.5 km). This body is vertically elongated, has an aspect ratio of 0.475 (95% bounds are 0.250.65) and a volume change of 0.086 km3 (95% bounds are 0.060.13 km3). Failure to account for the ellipsoidal nature of the source biases the estimated source depth by 2.1 km (35%), and the source volume by 0.038 km3 (44%).

M Battaglia; P Segall; J Murray; P Cervelli; J Langbein

2003-01-01T23:59:59.000Z

107

Pepsico Research Travel Fellowships for Russia, Eurasia, and East-Central Europe  

E-Print Network [OSTI]

Pepsico Research Travel Fellowships for Russia, Eurasia, and East-Central Europe Pepsi travel to Russia, Eurasia, and East-Central Europe, for the purposes of conducting research

Qian, Ning

108

Comments of East Central Energy- Minnesota | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

East Central Energy- Minnesota East Central Energy- Minnesota Comments of East Central Energy- Minnesota Because of the lack of ubiquitous coverage by major carriers or operating telephone companies, East Central Energy has contracted with our G&T, Great River Energy for private wireless services to our substations. No single vendor or combination of several vendors could provide an integrated solution Great River Energy has deployed a fully integrated IP network to 36 of ECE's remote sites of our electric system. The IP network transports data information for SCADA and AMR; metering information. We also use this network to perform maintenance on substation control equipment. The rural environment and substation in particular present challenges. Carriers and telephone companies build to mass markets. Substations are

109

East Central Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

East Central Energy - Residential Energy Efficiency Rebate Program East Central Energy - Residential Energy Efficiency Rebate Program East Central Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount LEDs: $3/bulb (limit 3 bulbs) CFL Recycling: $0.50 per bulb Central AC: $30 - $330 Air-Source Heat Pump: $300 - $630 Heat Pump/AC Tune Up: $25 Refrigerator/Freezer (with recycling of old unit): $75 Ductless Air-Source Heat Pumps: $300 Geothermal Heat Pump: $400/ton HVAC ECM: $100 Storage Water Heating: $100 - $200 Storage Space Heating: $25/KW Provider East Central Energy

110

East Central Energy - Commercial Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

East Central Energy - Commercial Energy Efficiency Rebate Program East Central Energy - Commercial Energy Efficiency Rebate Program East Central Energy - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate The maximum rebate amount shall be the lesser of 50% of the project cost or $50,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Motors: $5 per HP Variable Frequency Drives: $30 per HP Chillers: $10 - $20 per ton, plus $2/ton bonus for each 0.01 EER/SEER over base Cooling Towers: $3 per nominal tower ton Air Handling Systems: $170 per VAV box

111

East-Central Iowa Rural Elec Coop | Open Energy Information  

Open Energy Info (EERE)

East-Central Iowa Rural Elec Coop East-Central Iowa Rural Elec Coop Jump to: navigation, search Name East-Central Iowa Rural Elec Coop Place Iowa Utility Id 5588 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Communication Netowrk Hubs 120 Line Unit Commercial Communication Network Hubs 240 Line Unit Commercial Communication Network Hubs 480 Line Unit Commercial Heat Plus Multi Phase(October-May) Heat Plus Single Phase(October-May) Large Power Service Industrial Large Power Service Time of Day Industrial

112

Steady state deformation of the Coso Range, east central California,  

Open Energy Info (EERE)

Steady state deformation of the Coso Range, east central California, Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry Details Activities (2) Areas (1) Regions (0) Abstract: Observations of deformation from 1992 to 1997 in the southern Coso Range using satellite radar interferometry show deformation rates of up to 35 mm yr -1 in an area approximately 10 km by 15 km. The deformation is most likely the result of subsidence in an area around the Coso geothermal field. The deformation signal has a short-wavelength component, related to production in the field, and a long-wavelength component,

113

PEPSICO Fellowships for Research Travel in Russia, Eurasia, and East Central Europe  

E-Print Network [OSTI]

PEPSICO Fellowships for Research Travel in Russia, Eurasia, and East Central Europe Pepsi to Russia, Eurasia, and East Central Europe, for the purposes of conducting research. In exceptional cases

Qian, Ning

114

Gas geochemistry of the Valles caldera region, New Mexico and comparisons with gases at Yellowstone, Long Valley and other geothermal systems  

Science Journals Connector (OSTI)

Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210300C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ?13CCO2 values (?3 to ?5) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ?1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 19821998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (19871993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).

Fraser Goff; Cathy J. Janik

2002-01-01T23:59:59.000Z

115

East Central Oklahoma Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Elec Coop Inc Oklahoma Elec Coop Inc Jump to: navigation, search Name East Central Oklahoma Elec Coop Inc Place Oklahoma Utility Id 5598 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Pumping (Single Phase), Schedule CP-1 Commercial Commercial Pumping (Three Phase), Schedule CP-1 Commercial Commercial Service-Single Phase, Schedule C-1 Commercial Commercial Service-Three-Phase, Schedule C-1 Commercial Commercial Time of Use (Single-Phase), Schedule TOU-C Commercial Commercial Time of Use (Three-Phase), Schedule TOU-C Commercial

116

SNAKE SPECIES RICHNESS IN RELATION TO HABITAT IN THE POST OAK SAVANNAH OF EAST CENTRAL TEXAS  

E-Print Network [OSTI]

This project examined snake species richness and relative abundances in a heterogeneous landscape within the post oak savannah of East Central Texas. Snakes were sampled using funnel traps (with drift fences for terrestrial species) and hand capture...

Putegnat, John

2006-07-11T23:59:59.000Z

117

Short Reversal of the Palaeomagnetic Field about 280 000 Years Ago at Long Valley, California  

Science Journals Connector (OSTI)

A reversal of the palaeomagnetic field is recorded in exposed lake sediments at Long Valley and Mono Basin in east-central California. ... reversal is estimated to be several thousand years long and 280 000 years...

Joseph C. Liddicoat; Roy A. Bailey

1989-01-01T23:59:59.000Z

118

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Area Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510466

119

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

120

The nascent Coso metamorphic core complex, east-central California, brittle  

Open Energy Info (EERE)

nascent Coso metamorphic core complex, east-central California, brittle nascent Coso metamorphic core complex, east-central California, brittle upper plate structure revealed by reflection seismic data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The nascent Coso metamorphic core complex, east-central California, brittle upper plate structure revealed by reflection seismic data Details Activities (1) Areas (1) Regions (0) Abstract: The relationships between upper crustal faults, the brittle-ductile transition zone, and underlying magmatic features imaged by multifold seismic reflection data are consistent with the hypothesis that the Coso geothermal field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex. The reflection images were processed using a non-linear simulated

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=692533"

122

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=692539"

123

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Surface_Gas_Sampling_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=689392

124

Caldera Depression | Open Energy Information  

Open Energy Info (EERE)

Caldera Depression Caldera Depression Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Caldera Depression Dictionary.png Caldera Depression: Calderas form from the catastrophic eruption of large amounts of felsic lava and ash. Emptying of the magma chamber and subsequent collapse of the overlying volcanic edifice forms a ring-shaped caldera depression up to several kilometers in diameter. The edges of the underlying magma chamber are roughly marked by a ring fracture zone that acts as a conduit for ongoing volcanism and hydrothermal activity. Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression

125

Environmental and Performance Analysis of a 5kW Horizontal Axis Wind Turbine in East Central Alberta.  

E-Print Network [OSTI]

??This thesis investigates the environmental and performance results of a 5kW horizontal axis wind turbine installed in east-central Alberta. Life cycle assessment (LCA) methodology was (more)

Rooke, Braden

2012-01-01T23:59:59.000Z

126

Nest predation, predator abundance, and avian diversity in transmission line corridors and adjacent habitats in east central Texas  

E-Print Network [OSTI]

corridors may have differential effects on wildlife communities in adjacent vegetation types in a heterogeneous landscape. I evaluated the effects of ROW corridors on avian and nest predator communities in forests and pastures in east central Texas in 1998...

Hubbard, Tani Ann

2000-01-01T23:59:59.000Z

127

Owens Valley A Major Rift between the Sierra Nevada Batholith and Basin and Range Province, U.S.A.  

Science Journals Connector (OSTI)

Quaternary volcanic features associated with the rift include: 1) Long Valley, a 17 by 32 km rhyolitic caldera...3...of Bishop Tuff, 2) Mono Craters rhyolitic ring structure north of Long Valley, 3) Big Pine basa...

Michael F. Sheridan

1978-01-01T23:59:59.000Z

128

Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A.  

Science Journals Connector (OSTI)

Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility ... Mono Basin plus surface and groundwater in Owens Valley accounts for about 80 p...

R. Forrest Hopson

129

Compound and Elemental Analysis At Valles Caldera - Redondo Area (Goff &  

Open Energy Info (EERE)

Area (Goff & Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=510463

130

Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Details Activities (18) Areas (8) Regions (0) Abstract: Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios

131

A comparative study of the macroinvertebrate communities in three oxbow lakes and the Brazos River in East Central Texas  

E-Print Network [OSTI]

Macroinvertebrate communities of the Brazos River and three of its oxbow lakes, in East Central Texas, were sampled from the summer of 1994 to the spring of 1996. The floodplain for this area is predominantly nutrient-rich forested and agricultural...

Lanza, Shirley Anne

2003-01-01T23:59:59.000Z

132

Temporal trends of pollution Pb and other metals in east-central Baf n Island inferred from lake sediment geochemistry  

E-Print Network [OSTI]

pollution Lead stable isotopes Paleolimnology Arctic lakes Sediment geochemistry Atmospheric deposition long-term histories of atmospheric Pb pollution (Brännvall et al., 2001). In addition, stable isotopesTemporal trends of pollution Pb and other metals in east-central Baf n Island inferred from lake

Wolfe, Alexander P.

133

Temporal trends of pollution Pb and other metals in east-central Baffin Island inferred from lake sediment geochemistry  

E-Print Network [OSTI]

pollution Lead stable isotopes Paleolimnology Arctic lakes Sediment geochemistry Atmospheric deposition long-term histories of atmospheric Pb pollution (Brännvall et al., 2001). In addition, stable isotopesTemporal trends of pollution Pb and other metals in east-central Baffin Island inferred from lake

Briner, Jason P.

134

Collective efficacy as identified by teachers at Heritage Middle School, East Central Independent School District, San Antonio, Texas  

E-Print Network [OSTI]

the students at Heritage Middle School successful. iv The second question studied was, What is the relationship between selected demographic variables and the perceptions of the teachers regarding collective efficacy at Heritage Middle School, East Central... Based on Ethnicity ............................................................................................. 64 10 Independent Samples t-test of the White and Hispanic Teachers From Heritage Middle School in the Perceived Collective Efficacy Survey...

Naumann, Luisa Maria

2008-10-10T23:59:59.000Z

135

Seismic reflection evidence for two phase development of Tertiary basins from east-central Nevada  

SciTech Connect (OSTI)

Two east-west seismic reflection profiles crossing Antelope Valley, Smokey Valley, Railroad Valley and Big Sand Springs Valley demonstrate the evolution of Tertiary extension from broad sags to narrow, fault-bounded basins. Seismic reflection data was acquired for the Anschutz Corporation by the Digicon Corporation during the winter of 1988/1989. Reprocessing of a 480 channel, 60 fold, dynamite source experiment enabled good imaging of the basin stratigraphy. These data suggest two distinct phases of basin development occurred, separated by a regional unconformity. The early phase is characterized by development of a broad basin riddled with many small offset normal faults. The later phase shows a narrowing of the basin and subsidence along one dominant structure, an apparent planar normal fault. The unconformity separating the two phases of extension marks a transition from broad subsidence to local asymmetric tilting that took place over a short period of time relative to sedimentation rates. Antelope Valley and Railroad Valley clearly show strong evidence for two phase development, whereas Smokey Valley represents mostly the early phase and Big Sand Springs Valley represents only the later phase of extension. The absence of dating within the basins precludes the authors from determining if the abrupt tectonic transition within the basins resulted from differences in local strain rates or amounts, or was due to changes in regional stress fields.

Liberty, L.M.; Heller, P.L.; Smithson, S.B. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics)

1993-04-01T23:59:59.000Z

136

Three-Dimensional Imaging of the Crust and Upper Mantle in the Long Valley-Mono Craters Region, California, Using Teleseismic P-Wave Residuals  

Science Journals Connector (OSTI)

Teleseismic travel time residuals measured at 90 seismic stations centered on the Long Valley caldera in eastern California were inverted to ... resolved mid-crustal low-velocity bodies in the Long Valley region....

P. B. Dawson; H. M. Iyer; J. R. Evans

1992-01-01T23:59:59.000Z

137

Paleotectonic controls on deposition of upper Upper Jurassic La Casita Formation, east-central Chihuahua, Mexico  

SciTech Connect (OSTI)

Surface mapping of the basal Mesozoic La Casita Formation (upper Upper Jurassic) in east-central Chihuahua, Mexico, indicates initial Mesozoic sedimentation occurred in a segmented, interconnected subbasin of the Chihuahua trough. La Casite Formation (1200 m thick) is a tectonostratigraphic unit resting with angular unconformity on the Lower Permian Plomosas Formation. It consists primarily of siliciclastic material with sporadic interbedded limestones. The dominant lithofacies, approximately 1000 m thick, consists of turbiditic sandstone units (10-20 m) alternating with thicker, monotonous shale sequences. In the mapped area (approximately 30 km/sup 2/), flute cast measurements indicate flows from both the northeast (N20/degree/E) and southwest (S58/degree/W). Turbiditic sandstone units appear to pinch out and/or interfinger as they extend from the north and south into the central portion of the area. The initial opening of the Chihuahua trough is often associated with Late Jurassic block faulting, related to development of the ancestral Gulf of Mexico. Synrift depositional sequences of a similar age have been described in southern Coahuila, northern Zacatecas, and western Chiapas, Mexico. The subbasin (graben ) examined here may be ascribed a paleoposition near the western edge of the early Chihuahua trough. The western boundary of the early trough may have comprised a series of these subbasins, forming a cuspate or serrated coastline. Late Jurassic ammonites recovered from this and other localities along the length of the Chihuahua trough suggest that the subbasins were interconnected by means of an eastern continuous seaway.

Roberts, D.C.

1989-03-01T23:59:59.000Z

138

Type C: Caldera Resource | Open Energy Information  

Open Energy Info (EERE)

C: Caldera Resource C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Caldera resources may be found in many tectonic settings but are defined by their caldera structures which control the flow of the fluids in the system.

139

Process and Results of Hydrology in Long Valley Volcanoes of the Eastern Sierra Nevada Course  

E-Print Network [OSTI]

Process and Results of Hydrology in Long Valley Volcanoes of the Eastern Sierra Nevada Course Leigh of the Sierra Nevada Mountain Range, and specifically the Long Valley. In fact, many of the physical and chemical properties of the landforms in the Long Valley Caldera are the result of hydrothermal systems

Polly, David

140

Moment-tensor statistics of the 1997 Long Valley microearthquake swarm  

Science Journals Connector (OSTI)

Abstract. A simple, fast, moment-tensor inversion method using bandpass-filtered P-amplitudes was used to study the moment-tensor statistics of Long Valley caldera microearthquakes. The events were recorded in...

A. Stroujkova; P.E. Malin

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Imperial Valley IMPERIAL VALLEY  

E-Print Network [OSTI]

2013­2014 Bulletin Imperial Valley Campus #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2013-2014 SAN of the Imperial Valley Campus of San Diego State University. Its publication coincides with the campus' 54 years of providing higher education to the students of Imperial Valley. During this time we have evolved from

Gallo, Linda C.

142

Abstract Large volumes of silicic magma were pro-duced on a very short timescale in the nested caldera  

E-Print Network [OSTI]

tuff ? Timber Mountain tuff ? Oxygen isotopes ? Geochronology ? Isotope zoning ? Zircon ? Yucca ORIGINAL PAPER U­Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera Mountain Introduction Isotopic zoning in phenocrysts in larg

Bindeman, Ilya N.

143

Nonstatistical dynamics on the caldera  

E-Print Network [OSTI]

We explore both classical and quantum dynamics of a model potential exhibiting a caldera: that is, a shallow potential well with two pairs of symmetry related index one saddles associated with entrance/exit channels. Classical trajectory simulations at several different energies confirm the existence of the `dynamical matching' phenomenon originally proposed by Carpenter, where the momentum direction associated with an incoming trajectory initiated at a high energy saddle point determines to a considerable extent the outcome of the reaction (passage through the diametrically opposing exit channel). By studying a `stretched' version of the caldera model, we have uncovered a generalized dynamical matching: bundles of trajectories can reflect off a hard potential wall so as to end up exiting predominantly through the transition state opposite the reflection point. We also investigate the effects of dissipation on the classical dynamics. In addition to classical trajectory studies, we examine the dynamics of quantum wave packets on the caldera potential (stretched and unstretched). These computations reveal a quantum mechanical analogue of the `dynamical matching' phenomenon, where the initial expectation value of the momentum direction for the wave packet determines the exit channel through which most of the probability density passes to product.

Peter Collins; Zeb C. Kramer; Barry K. Carpenter; Gregory S. Ezra; Stephen Wiggins

2014-05-09T23:59:59.000Z

144

Analytical Modeling At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

145

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

146

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

147

Definition: Caldera Depression | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Caldera Depression Jump to: navigation, search Dictionary.png Caldera Depression Calderas form from the catastrophic eruption of large amounts of felsic lava and ash. Emptying of the magma chamber and subsequent collapse of the overlying volcanic edifice forms a ring-shaped caldera depression up to several kilometers in diameter. The edges of the underlying magma chamber are roughly marked by a ring fracture zone that acts as a conduit for ongoing volcanism and hydrothermal activity. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Caldera_Depression&oldid=699075"

148

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

149

Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a second binary geothermal power...

150

Field Mapping At Long Valley Caldera Geothermal Area (Sorey,...  

Open Energy Info (EERE)

is relatively low, promoting surface flow of geothermal fluids, as exemplified at Fish Hatchery springs. The distribution, quantity, and age of borate minerals in Searles...

151

Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...  

Open Energy Info (EERE)

pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered...

152

Exploratory Boreholes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Exploration Technique Exploratory Boreholes Activity Date 1992 - 2002 Usefulness useful DOE-funding Unknown Exploration Basis Mammoth Pacific LP drilled several...

153

Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Cuttings Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were...

154

Hydrologic and Geochemical Monitoring in Long Valley Caldera...  

Open Energy Info (EERE)

geothermal wells; flow rates of selected springs and stream sites; mean daily water or gas temperatures at selected sites; mean daily atmospheric pressures and water levels at...

155

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

156

Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...  

Open Energy Info (EERE)

Diablo field between 1993 and 1995 prompted the construction of the Basalt Canyon Pipeline later in 2005 to support the MP-I plant with additional fluids from wells 57-22 and...

157

Geodetic Survey At Long Valley Caldera Geothermal Area (Newman...  

Open Energy Info (EERE)

and components of two continuous GPS time series. Additionally, the model explains the spatial extent of deformation observed by InSAR data covering the 1997-98 inflation...

158

Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

and components of two continuous GPS time series. Additionally, the model explains the spatial extent of deformation observed by InSAR data covering the 1997-98 inflation...

159

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

and components of two continuous GPS time series. Additionally, the model explains the spatial extent of deformation observed by InSAR data covering the 1997-98 inflation...

160

Hyperspectral Imaging At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Kennedy at the University of California at Berkeley, CA. Isotopic ratios of helium and CO2 determined for gases sampled at LVEW were 3.66 Ra (3He4He ratio) and -6.4 %o (delta...

162

Development Wells At Long Valley Caldera Geothermal Area (Associates...  

Open Energy Info (EERE)

the Casa Diablo field are relatively shallow - about 137 m deep. Pumps are used to move water flowing in the western portion of the fields to the power plants. The average...

163

Development Wells At Long Valley Caldera Geothermal Area (Holt...  

Open Energy Info (EERE)

Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects: Units II and III...

164

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

each water sample were measured in the field within minutes following collection. Field processing of water samples was conducted in accordance with standard USGS protocols...

165

Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

conductive regions here may be caused by hydrothermal alteration or a fluid filled fracture system." References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter,...

166

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region...

167

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

thermal gradient in the center of the areas is around 320C m- 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the...

168

Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...  

Open Energy Info (EERE)

thermal gradient in the center of the areas is around 320C m- 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the...

169

Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...  

Open Energy Info (EERE)

Flux Sampling Activity Date - 2008 Usefulness useful DOE-funding Unknown Notes "CO2 and heat fluxes were measured over a six-week period (09082006 to 10242006) by the eddy...

170

Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

171

Core Analysis At Long Valley Caldera Geothermal Area (Sorey,...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

172

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

173

Water Sampling At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

174

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

175

Geothermometry At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

176

Water Sampling At Long Valley Caldera Geothermal Area (Goff,...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

177

Conceptual Model At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

178

Analytical Modeling At Long Valley Caldera Geothermal Area (White...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

179

Hydrologic and Geochemical Monitoring in Long Valley Caldera...  

Open Energy Info (EERE)

causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in...

180

Geothermal Literature Review At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist...  

Open Energy Info (EERE)

Magnetotelluric and Magnetic Variation Interpretation Philip E. Wannamaker, P.M. Wright, Zhou Zi-xing, Li Xing-bin, Zhao Jing-xiang (1991) Magnetotelluric Transect of Long...

182

Alicia Pardoski 1 History of the Long Valley Caldera  

E-Print Network [OSTI]

Geologic map of the Glass Mountain Quadrangle. Glass Mountain can be located in the lower left hand corner, 1977]. Using a lead-uranium method of dating the exposure was dated to be from the Triassic Period- uranium dating [Krauskopf & Bateman, 1977]. The granite is coarse grained, lacking both large amounts

Polly, David

183

Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer  

Science Journals Connector (OSTI)

Rapid evacuation of magma from the chamber responsible for the Bishop Tuff of Long Valley caldera, eastern California (over~6...1; Wilson and Hildreth 1997), provides a nearly instantaneous glimpse into a volum...

Mary R. Reid; Jorge A. Vazquez

2011-02-01T23:59:59.000Z

184

Geologic Results from the Long Valley Exploratory Well  

SciTech Connect (OSTI)

As a deep well in the center of a major Quaternary caldera, the Long Valley Exploratory Well (LVEW) provides a new perspective on the relationship between hydrothermal circulation and a large crustal magma chamber. It also provides an important test of models for the subsurface structure of active continental calderas. Results will impact geothermal exploration, assessment, and management of the Long Valley resource and should be applicable to other igneous-related geothermal systems. Our task is to use the cuttings and core from LVEW to interpret the evolution of the central caldera region, with emphasis on evidence of current hydrothermal conditions and circulation. LVEW has reached a depth of 2313 m, passing through post-caldera extrusives and the intracaldera Bishop Tuff to bottom in the Mt. Morrison roof pendant of the Sierran basement. The base of the section of Quaternary volcanic rocks related to Long Valley Caldera was encountered at 1800 m of which 1178 m is Bishop Tuff. The lithologies sampled generally support the classic view of large intercontinental calderas as piston-cylinder-like structures. In this model, the roof of the huge magma chamber, like an ill-fitting piston, broke and sank 2 km along a ring fracture system that simultaneously and explosively leaked magma as Bishop Tuff. Results from LVEW which support this model are the presence of intact basement at depth at the center of the caldera, the presence of a thick Bishop Tuff section, and textural evidence that the tuff encountered is not near-vent despite its central caldera location. An unexpected observation was the presence of rhyolite intrusions within the tuff with a cumulative apparent thickness in excess of 300 m. Chemical analyses indicate that these are high-silica, high-barium rhyolites. Preliminary {sup 40}Ar/{sup 39}Ar analyses determined an age of 626 {+-} 38 ka (this paper). These observations would indicate that the intrusions belong to the early post-collapse episode of volcanism and are contemporaneous with resurgence of the caldera floor. If they are extensive sills rather than dikes, a possibility being investigated through relogging of core from neighboring wells, they were responsible for resurgence. A {sup 40}Ar/{sup 39}Ar age of 769 {+-} 14 ka from Bishop Tuff at 820 m depth conforms with tuff ages from outside the caldera and indicates an absence of shallow hydrothermal activity (>300 C) persisting after emplacement. Work is proceeding on investigating hydrothermal alteration deeper in the well. This alteration includes sulfide+quartz fracture fillings, calcite+quartz replacement of feldspars, and disseminated pyrite in both the tuff and basement. Electron microprobe analysis of phases are being conducted to determine initial magmatic and subsequent hydrothermal conditions.

McConnell, Vicki S.; Eichelberger, John C.; Keskinen, Mary J.; Layer, Paul W.

1992-03-24T23:59:59.000Z

185

Rift valley  

Science Journals Connector (OSTI)

Valleys of subsidence with long steep parallel walls, as originally defined...J. W. Gregory (1894). rift valleys are evidently the geomorphic equivalents of or...Rift Valley Structure..., Vol. V). Quennell be...

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

186

Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera...  

Open Energy Info (EERE)

of 8 rhyolite domes or dome complexes erupted from vents which define the ring fracture within the caldera. They range in age from the time of caldera formation to 0.45 Ma...

187

Geologic Map of the Valles Caldera | Open Energy Information  

Open Energy Info (EERE)

of the Valles CalderaInfo GraphicMapChart Abstract The Valles caldera, located in the heart of the Jemez Mountains in north-central New Mexico, is the worlds premier example...

188

Hydrothermal Activity and Travertine Deposits in Valles Caldera Paul Withers  

E-Print Network [OSTI]

Hydrothermal Activity and Travertine Deposits in Valles Caldera Paul Withers Valles Caldera for the Valles Caldera hydrothermal system [fig]. Some fluids escape in acid springs and mud pits (Sulphur mineral deposits as they cool, specifically travertine. Travertine is a freshwater, calcium carbonate

Withers, Paul

189

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Union Valley  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding Union Valley.

191

Imperial Valley Campus IMPERIAL VALLEY  

E-Print Network [OSTI]

Bulletin Imperial Valley Campus 2012­2013 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2012-2013 SAN 2012-2013 It is with great pleasure that we present the 2012- 2013 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

192

Newberry Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newberry Caldera Geothermal Area Newberry Caldera Geothermal Area (Redirected from Newberry Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newberry Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (18) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.71666667,"lon":-121.2333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long  

Open Energy Info (EERE)

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Details Activities (6) Areas (1) Regions (0) Abstract: Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of

194

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

195

Valley evolution  

Science Journals Connector (OSTI)

The long profile of a stream is not identical with that of its valley since the former depends on the loops ... . The stream in its controls all the valley-forming processes although a direct influence is ... f...

Otto Frnzle

1968-01-01T23:59:59.000Z

196

Alpine Valley  

Science Journals Connector (OSTI)

The Alpine Valley (Vallis Alpes) is a great fault ... Alps Mountains. It is about 80 miles long and up to 7 miles wide. It ... runs down most of the center of the valley. Be sure that you show this exceptional...

Don Spain

2009-01-01T23:59:59.000Z

197

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) |  

Open Energy Info (EERE)

Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir dimensions. Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973;

198

Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Valles Caldera - Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New

199

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

200

Palaeomagnetism and Potassium-Argon Ages of Volcanic Rocks of Ngorongoro Caldera, Tanzania  

Science Journals Connector (OSTI)

......Volcanic Rocks of Ngorongoro Caldera, Tanzania* * Publication authorized by the Director...south-west wall of Ngorongoro caldera, Tanzania. The lowest three lavas are normally...Volcanic Rocks of Ngorongoro Caldera, Tanzania* C. S. Gromme, T. A. Reilly, A......

C. S. Gromm; T. A. Reilly; A. E. Mussett; R. L. Hay

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Subaqueous calderas in the Archean Abitibi greenstone belt: An overview and W.U. Mueller a,  

E-Print Network [OSTI]

, physical volcanology, dyke emplacement, and hydrothermal carbonate alteration. These subaqueous calderas-documented hydrothermal carbonate alteration isdiscussed and a newexploration model for calderas is presented Available online 6 January 2009 Keywords: Archean calderas VMS deposits Abitibi belt Volcanology Carbonate

Long, Bernard

202

Yellowstone Caldera Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Yellowstone Caldera Geothermal Region Yellowstone Caldera Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Yellowstone Caldera Geothermal Region Details Areas (3) Power Plants (0) Projects (0) Techniques (25) Map: {{{Name}}} Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Wyoming, Idaho, Montana Area 11,841 km²11,841,000,000 m² 4,570.626 mi² 127,455,339,900 ft² 14,161,836,000 yd² 2,925,970.305 acres USGS Resource Estimate for this Region Identified Mean Potential 44.0 MW44,000 kW 44,000,000 W 44,000,000,000 mW 0.044 GW 4.4e-5 TW Undiscovered Mean Potential 209.9 MW209,900 kW 209,900,000 W 209,900,000,000 mW 0.21 GW 2.099e-4 TW Planned Capacity Planned Capacity 0 MW0 kW 0 W 0 mW 0 GW 0 TW Plants Included in Planned Estimate 0 Plants with Unknown

203

Core Analysis At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Core Analysis Activity Date - 1992 Usefulness not indicated DOE-funding Unknown Notes...

204

Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

(Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...

205

Thermal Evolution Models for the Valles Caldera with Reference...  

Open Energy Info (EERE)

by commercial interests seeking hydrothermal resources. In addition, a number of test wells have been drilled just outside the calderas west margin by the Los Alamos...

206

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et Al., 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test...

207

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area...

208

Core Analysis At Newberry Caldera Area (Carothers, Et Al., 1987...  

Open Energy Info (EERE)

Carothers, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Newberry Caldera Area (Carothers, Et Al., 1987)...

209

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1992 Usefulness...

210

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Sulphur Springs Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Compound and...

211

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1986 Usefulness not...

212

Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Redondo Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Compound and Elemental Analysis...

213

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico Additional References Retrieved from "http:...

214

Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico Additional References Retrieved from "http:...

215

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki,...

216

Core Lithology, Valles Caldera No. 1, New Mexico | Open Energy...  

Open Energy Info (EERE)

obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature...

217

A 200 kyr Pleistocene Lacustrine Record from the Valles Caldera...  

Open Energy Info (EERE)

kyr Pleistocene Lacustrine Record from the Valles Caldera Insight: From Environmental Magnetism and Paleomagnetism Jump to: navigation, search OpenEI Reference LibraryAdd to...

218

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity...

219

Field Mapping At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

220

Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...  

Open Energy Info (EERE)

based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...

222

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...

223

Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...  

Open Energy Info (EERE)

Wilt, Stephen Vonder Haar (1986) A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Additional References Retrieved from "http:...

224

Internal Geology and Evolution of the Redondo Dome, Valles Caldera...  

Open Energy Info (EERE)

A detailed inventory was made of subsurface samples taken from deep geothermal test wells drilled in the resurgent Redondo dome in the Valles caldera of New Mexico. Attention...

225

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

226

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

227

The Valles Caldera is ready for its close-up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 2013 » January 2013 » The Valles Caldera Is Ready For Its Close-up Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit The Valles Caldera is ready for its close-up The first of three documentaries on the Valles Caldera could air on the local Public Broadcasting System as soon as January. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The piece explores the potential impact of climate change and the 2011 Los Conchas fire on the sensitive ecosystem in the area. The first of three documentaries on the Valles Caldera could air on the local Public Broadcasting System (KNME) as soon as January. The piece, called Valles Caldera: The Science, explores the potential impact of

228

Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Woldegabriel & Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Samples for age dating taken from core hole VC-2B in the Suphur Springs area of the Valles Caldera. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=387687"

229

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

1992) 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

230

Temperatures at the Base of the Seismogenic Crust Beneath Long Valley Caldera, California, and the Phlegrean Fields Caldera, Italy  

Science Journals Connector (OSTI)

In seismically active volumes of the crust, the base of the seismogenic zone commonly corresponds with the temperature at which the first mineral species in the crustal rock enters the quasi-plastic domain. This ...

David P. Hill

1992-01-01T23:59:59.000Z

231

Assessment of Long Valley as a site for drilling to the magmatic environment  

SciTech Connect (OSTI)

Recent earthquakes, ground uplift, and increased hydrothermal activity are only the most recent examples of intense tectonic and volcanic activity that has occurred at Long Valley caldera, CA, over the last 3 million years. A large number of geophysical experiments conducted by several hundred investigators over the past few years clearly indicates that a major body of magma exists within the central part of the caldera at drillable depths on the order of 5 km. Plans are underway to drill toward and eventually into this magma body. 2 figs., 1 tab.

Rundle, J.B.; Carrigan, C.R.; Hardee, H.C.; Luth, W.C.

1986-01-01T23:59:59.000Z

232

Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts,  

Open Energy Info (EERE)

Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown Notes We have described the experimental details, data analysis and forward modeling for scattered-wave amplitude data recorded during a teleseismic earthquake survey performed in the Valles Caldera in the summer of 1987. Twenty-four high-quality teleseismic events were recorded at numerous sites along a line spanning the ring fracture and at several sites outside of the caldera. References Peter M. Roberts, Keiiti Aki, Michael C. Fehler (1995) A Shallow

233

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

234

Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera,  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Redondo_Area_(Chipera,_Et_Al.,_2008)&oldid=510462

235

Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir

236

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...  

Open Energy Info (EERE)

in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36ClCl ratios in waters from high-temperature...

237

Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...  

Open Energy Info (EERE)

Hole VC-2A Abstract A scientific core hole has been drilled into the western ring fracture zone of the Valles Caldera, N.Mex. Hole VC-2A, the second scientific core hole in the...

238

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

239

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Et Al., 2008) Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Chipera, Et Al., 2008) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes X-Ray Diffraction, Scanning Electron Microscopy, and Electron Microprobe. References Steve J. Chipera, Fraser Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Chipera,_Et_Al.,_2008)&oldid=51046

240

A Low-Velocity Zone in the Basement Beneath the Valles Caldera...  

Open Energy Info (EERE)

the Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Low-Velocity Zone in the Basement Beneath the Valles Caldera,...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

242

Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands  

Science Journals Connector (OSTI)

The Miocene Tejeda caldera on Gran Canaria erupted ~20 rhyolitetrachyte ignimbrites (Mogn Group 1413.3Ma), followed by ~20 phonolitic lava flows and ignimbrites (Fataga Group 138.5Ma). Upper-Mogn tuffs have been severely altered immediately within the caldera margin, whereas extra-caldera Mogn ignimbrites, and overlying Fataga units, are apparently unaltered. The altered intra-caldera samples contain minerals characteristic of secondary fluidrock interaction (clays, zeolites, adularia), and relics of the primary mineral assemblage identified in unaltered ignimbrites (K-feldspar, plagioclase, pyroxene, amphibole, and groundmass quartz). Major and trace-element data indicate that Si, Na, K, Pb, Sr, and Rb, were strongly mobilized during fluidrock interaction, whereas Ti, Zr, and Nb behaved in a more refractory manner, experiencing only minor mobilization. The ?18O values of the altered intra-caldera tuffs are significantly higher than in unaltered extra-caldera ignimbrites, consistent with an overall low-temperature alteration environment. Unaltered extra-caldera ignimbrites have ?D values between ?110 and ?173, which may reflect Rayleigh-type magma degassing and/or post-depositional vapour release. The ?D values of the altered intra-caldera tuffs range from ?52 to ?131, with ambient meteoric water at the alteration site estimated at ca. ?15. Interaction and equilibration of the intra-caldera tuffs with ambient meteoric water at low temperature can only account for whole-rock ?D values of around ?45, given that ?Dclaywater is ca. ?30 at 100C, and decreases in magnitude at higher temperatures. All altered tuff samples have ?D values that are substantially lower than ?45, indicating interaction with a meteoric water source with a ?D value more negative than ?15, which may have been produced in low-temperature steam fumaroles. Supported by numerical modeling, our Gran Canaria data reflect the near-surface, epithermal part of a larger, fault-controlled hydrothermal system associated with the emplacement of the high-level Fataga magma chamber system. In this near-surface environment, fluid temperatures probably did not exceed 200250C.

Eleanor Donoghue; Valentin R. Troll; Chris Harris; Aoife O'Halloran; Thomas R. Walter; Francisco J. Prez Torrado

2008-01-01T23:59:59.000Z

243

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

244

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with well data was done whenever possible, there is some uncertainty to the

245

Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open  

Open Energy Info (EERE)

Geothermal Region (1990) Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) Exploration Activity Details Location Valles Caldera Geothermal Region Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

246

Ridge and valley topography  

Science Journals Connector (OSTI)

Viewed empirically, the ridge and valley province is a lowland (an assemblage of valley floors) surmounted by long, narrow, even-topped mountain ridges. Either ... the lowlands are disconnected or absent. The valley

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

247

Valles Caldera - Redondo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Redondo Geothermal Area Valles Caldera - Redondo Geothermal Area (Redirected from Valles Caldera - Redondo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.89,"lon":-106.58,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Geothermal Area Valles Caldera - Sulphur Springs Geothermal Area (Redirected from Valles Caldera - Sulphur Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (21) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9081,"lon":-106.615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

250

Imperial Valley Campus Bulletin  

E-Print Network [OSTI]

Imperial Valley Campus Bulletin 2011­2012 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2011-2012 SAN 2011-2012 It is with great pleasure that we present the 2011- 2012 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

251

West Valley  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

252

West Valley  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

253

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

254

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

255

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et  

Open Energy Info (EERE)

Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Rao,_Et_Al.,_1996)&oldid=692543" Category: Exploration

256

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Roberts, Et Al., 1995) Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional structural complexity within the low-Q zone that would account for a

257

X-Ray Diffraction (XRD) At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

258

A Core Hole in the Southwestern Moat of the Long Valley Caldera...  

Open Energy Info (EERE)

and serves as access for monitoring changes in water level, temperatures, and fluid chemistry. Authors Harold A. Wollenberg, Michael L. Sorey, Christopher D. Farrar, Art F....

259

New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera  

E-Print Network [OSTI]

B. K. (1984), Subcritical crack growth in geologicalinstabilities or subcritical crack growth could follow toand state friction, subcritical crack growth, and fracture

Brodsky, Emily; Prejean, Stephanie G.

2005-01-01T23:59:59.000Z

260

Valles Caldera - Redondo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valles Caldera - Redondo Geothermal Area Valles Caldera - Redondo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.89,"lon":-106.58,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon

262

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...  

Open Energy Info (EERE)

Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search OpenEI Reference...

263

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

264

The Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico...  

Open Energy Info (EERE)

began. We have attempted to test this model by comparing vertical profiles in pumice chemistry and lithic abundances in outflow sheet sections around the caldera. The underlying...

265

Valley Network (Venus)  

Science Journals Connector (OSTI)

Labyrinthic valley network (Fig. 1...). This is the most common type observed on Venus. Valleys are several km wide and 100 s km long. They are found within or near tectonically...1992, 1993, 2001...). Their morp...

Goro Komatsu

2014-06-01T23:59:59.000Z

266

Melton Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Melton Valley Watershed.

267

Bear Creek Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Bear Creek Valley Watershed.

268

Bethel Valley Watershed  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Bethel Valley Watershed.

269

Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The  

Open Energy Info (EERE)

Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Okueyama Volcano-Plutonic Complex, Southwest Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology Of The Okueyama Volcano-Plutonic Complex, Southwest Japan Details Activities (0) Areas (0) Regions (0) Abstract: A deeply eroded root of a Miocene Valles-type caldera cluster is exposed in the Okueyama volcano-plutonic complex in Kyushu, southwest Japan. The complex shows the relationship between an ash-flow caldera and a vertically zoned granitic batholith. The igneous activity of this complex began with the eruption of the Sobosan dacitic tuff and collapse of the Sobosan cauldron (18 _ 13 km). After an erosion interval, the Katamukiyama

270

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New  

Open Energy Info (EERE)

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Abstract The Valles caldera in New Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36Cl/Cl ratios in waters from high-temperature drill holes and from surface springs in this region. The waters fall into two general categories: recent meteoric water samples with low Cl- concentrations (< 10 mg/L) and relatively high 36Cl/Cl ratios

271

Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986)  

Open Energy Info (EERE)

Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

272

Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Wilt & Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

273

Density Log at Valles Caldera - Redondo Area (Wilt & Haar, 1986) | Open  

Open Energy Info (EERE)

Valles Caldera - Redondo Area (Wilt & Haar, 1986) Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density at Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Density Log Activity Date Usefulness not indicated DOE-funding Unknown Notes The density log indicates three major density units within the well section : a surface layer of caldera fill, lake deposits, and other recent alluvium (2.12 g/cm3); the Bandelier Tuff and underlying volcanic and sedimentary units (2.3--2.5 g/cm3); and the basement unit, consisting of the lower Paleozoic and the upper Precambrian (2.65 g/cm3). There are, of course, significant density variations within each unit, but for modeling

274

Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (21) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9081,"lon":-106.615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et  

Open Energy Info (EERE)

White, Et White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

276

Death Valley TronaWestend  

E-Print Network [OSTI]

Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

Laughlin, Robert B.

277

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

278

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

279

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

280

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Slim Holes At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Slim Holes At Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Newberry_Caldera_Area_(DOE_GTP)&oldid=402651" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

282

Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., 1999) Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes After circulating the mud out of the hole and replacing it with clear water, we attempted two injection tests; one into the open hole section (51 16'- 5360') below the HQ liner, and one into the annulus outside the uncemented part (2748' - -4800') of the liner. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

283

Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Acoustic Logs Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The acoustic borehole televiewer (BHTV) was run twice in the wellbore with limited success. There were several problems with the tool's fimctions, but images were successfully obtained over the interval from 2748' to 3635'. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

284

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells.

285

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

286

K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Details Activities (2) Areas (1) Regions (0) Abstract: Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large,

287

FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. | Department  

Broader source: Energy.gov (indexed) [DOE]

1 - In the Matter of Caldera Pharmaceuticals, Inc. 1 - In the Matter of Caldera Pharmaceuticals, Inc. FIA-13-0021 - In the Matter of Caldera Pharmaceuticals, Inc. On April 10, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Office of Information Resources (OIR), concluding that it could not locate any responsive documents. The Appellant, Caldera Pharmaceuticals, Inc., contested the adequacy of OIR's search for responsive documents pertaining to its FOIA request. The OHA reviewed the OIR's description of its search methodology, and determined that an adequate search for documents was conducted and that no responsive documents existed. Therefore, the OHA denied the Appeal.

288

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional

289

Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow  

E-Print Network [OSTI]

and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluidNumerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative

290

Core Log Valles Caldera No. 2A, New Mexico | Open Energy Information  

Open Energy Info (EERE)

2A, New Mexico Abstract Scientific core hole VC-2A was drilled into the western ring-fracture zone at Sulphur Springs in the Valles caldera, New Mexico. VC-2A, the second...

291

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Valles Caldera - Redondo Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles

292

Imperial Valley College Portland State University Imperial Valley College  

E-Print Network [OSTI]

Imperial Valley College Portland State University Imperial Valley College Transfer Worksheet If you) at Imperial Valley College (IVC), you can rest assured that those credits will also transfer to Portland State. Degree Requirements (BA, BS) #12;Imperial Valley College Portland State University 2. DEGREE REQUIREMENTS

Caughman, John

293

Green Valley Galaxies  

E-Print Network [OSTI]

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

294

Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)  

SciTech Connect (OSTI)

During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

Finger, J.T.; Jacobson, R.D.

1999-06-01T23:59:59.000Z

295

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project Enforcement Documents - West Valley Demonstration Project December 7, 1999 Preliminary Notice of Violation, West Valley Nuclear Services -...

296

Oversight Reports - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project Oversight Reports - West Valley Demonstration Project August 24, 2012 Independent Activity Report, West Valley Demonstration Project - July 2012...

297

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

298

Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

299

Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track Analysis Details Activities (2) Areas (1) Regions (0) Abstract: The zircon fission-track dating method was applied to the VC-2B core obtained from the active hydrothermal system at Sulphur Springs, Valles caldera, New Mexico. Four samples were analyzed to obtain both zircon ages and track length data from Permian strata to Precambrian quartz

300

Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Wilt & Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Telluric profiles, magnetotelluric sounding, dc resistivity, and electromagnetic sounding surveys were all performed over the caldera in hopes of outlining deep drilling targets (Group 7 Inc., 1972; McPhar, 1973; Geonomics Inc., 1976). These data are used to help define the electrical structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Slim Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Negotiations with California Energy Company, Incorporated (CECI), which owns leases in the Newberry KGRA led to an agreement for a cost-shared exploratory drilling project on CECI'Slease. In return for the cost-share, Sandia was to receive testing, production and cost data from the slhnholes and from the production wells drilled nearby, giving a direct comparison of productivity predicted from tests on the slimholes and that achieved by the actual production wells. Since locations, depths and lithology are also similar, there would also be a close comparison of drilling costs.

302

Resistivity Log At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes The generalized resistivity tog (Fig. 8) indicates a multilayer section with considerable resistivity contrast between the layers. The near-surface

303

Static Temperature Survey At Newberry Caldera Area (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Newberry Caldera Area Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Downhole data collection during this operation was primarily limited to temperature measurements. These temperature logs were taken with Sandia's platinum-resistance-thermometer (PRT) tool which along with a Sandia logging truck remained on-site for the entire project. This instrument uses a simple resistance bridge, with changes in resistance measured from the surface through a four-conductor cable. Since there are no downhole electronics, temperature drift with time is negligible and the PRT temperature measurements are considered a reference standard for this kind

304

Core Analysis At Valles Caldera - Sulphur Springs Area (Armstrong, Et Al.,  

Open Energy Info (EERE)

Et Al., Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In preparation for this work, 103 core samples were collected at 3-m ( IO ft) intervals from the Madera Limestone and underlying Sandia Formation (both of Pennsylvanian age) intersected in the depth interval 1296.1-1556.9 m (4252.5-5108.2 ft) in CSDP corehole VC-2B, completed in 1988 in the Sulphur Springs area of the Valles caldera (Hulen and Gardner, 1989). These samples were prepared as polished thin sections, and studied by

305

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Redondo Area (Wilt & Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

306

Micro-Earthquake At Newberry Caldera Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Area (2011) Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Newberry Caldera Geothermal Area (2011) Exploration Activity Details Location Newberry Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

307

The roles of magma and groundwater in the phreatic eurptions at Inyo Craters, Long Valley Caldera, California  

Science Journals Connector (OSTI)

The Inyo Craters (North Inyo Crater and South Inyo Crater), and a third crater, Summit Crater, are the largest of more than a dozen 650- to 550-yr-B.p. phreatic craters that lie in a 1-km-square area at the south...

Larry G Mastin

1991-11-01T23:59:59.000Z

308

Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes  

E-Print Network [OSTI]

Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes the information contained in volcano CO2 emissions is important from both a volcanic hazards perspective into this program. The opportunity will also be taken to map out CO2 emissions at these systems and to review what

Henderson, Gideon

309

Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future  

E-Print Network [OSTI]

.W.Chadwick@noaa.gov) [1] Since 2000, ambient seawater pressure has been precisely measured at five seafloor benchmarks vehicle to deploy a mobile pressure recorder (MPR) in campaign-style surveys. Additionally, seawater with magma storage in a shallow reservoir underlying the caldera at a depth of $3.5 km, and the current

Nooner, Scott

310

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

311

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

312

LVOC - Livermore Valley Open Campus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

313

Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA  

SciTech Connect (OSTI)

A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

2008-08-01T23:59:59.000Z

314

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit HIAR-WVDP-2011-11-07...

315

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

316

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR...

317

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire Valley Environmental1 This article...

318

Solar homes for the valley  

SciTech Connect (OSTI)

TVA has designed 11 passive solar homes in the public interest to encourage the development of solar housing in the Tennessee Valley region. The program, Solar Homes For The Valley, involves the design, construction, and testing of the 11 designs in each of four microclimatic areas within the region, (total of 44 homes).

Born, B.; Brewer, D.

1980-01-01T23:59:59.000Z

319

GEO Imperial Valley activities  

SciTech Connect (OSTI)

Geothermal Resources International, Inc. (GEO) in San Mateo, California, and PacifiCorp Credit, a subsidiary of PacifiCorp in Portland, Oregon, announced that since July 1987, the company has raised about $21 million to fund the initial development of GEO's East Mesa project. GEO will use a portion of the funds to meet its commitment to share in the cost of a $50 million, 230-kilovolt transmission line. The line will carry electricity generated from geothermal power plants in the Imperial Valley to a Southern California Edison substation in Riverside County, California. In September 1987, two GEO geothermal wells at East Mesa were completed, and GEO was drilling its third and fourth wells in the field. Test data results from these wells will be analyzed to decide whether GEO will construct a dual-flash or binary power plant. GEO has the geothermal rights on about 300,000 acres in five western states. In addition to its operations and development projects in The Geysers and the Imperial Valley, the company is continuing exploration projects on the flanks of the Newberry Crater in Central Oregon and in Hokkaido, Japan. GEO also has an international geotechnical service group in the United Kingdom, GeoScience Ltd., which provides geotechnical services to clients around the world and to the company's geothermal operations.

Not Available

1987-07-01T23:59:59.000Z

320

Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

primarily toward identifying the lithology and structure of the Waianae caldera (Sinton, 1979). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

322

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

323

Valley Forge Corporate Center  

Broader source: Energy.gov (indexed) [DOE]

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

324

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

South Valley Compliance Agreement Summary  

Broader source: Energy.gov (indexed) [DOE]

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

328

Retrofitting the Tennessee Valley Authority  

E-Print Network [OSTI]

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

329

AMF Deployment, Ganges Valley, India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. Growth in industries such as cement factories, steel mills, and the coal-fired...

330

Ecology of Owens Valley vole  

E-Print Network [OSTI]

Little current data exist concerning the status and ecology of Owens Valley vole (OVV; Microtus californicus vallicola), despite its California Department of Fish and Game listing as a Species of Special Concern. No formal studies have been...

Nelson, Fletcher Chris

2005-08-29T23:59:59.000Z

331

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

332

Morphology and downslope sediment displacement in a deep-sea valley, the Valencia Valley (Northwestern Mediterranean)  

Science Journals Connector (OSTI)

The Valencia Valley is a Quaternary, 200 km long deep-sea valley in the Valencia Trough, Western Mediterranean Sea ... A swathmapping survey approximately mid-way along the valley length, where the floor has an a...

Suzanne O'Connell; Belen Alonso; Kim A. Kastens; Andrs Maldonado

1985-01-01T23:59:59.000Z

333

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

334

West Valley Demonstration Project Low-Level Waste Shipment |...  

Office of Environmental Management (EM)

West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment...

335

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

SciTech Connect (OSTI)

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

336

Case Study - Sioux Valley Energy  

Broader source: Energy.gov (indexed) [DOE]

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

337

Moors Valley Play Trail Moors Valley Country Park is a very popular attraction  

E-Print Network [OSTI]

visitors to Moors Valley Country Park use the play trail. · Sport England's South West Regional PlanMoors Valley Play Trail objectives Moors Valley Country Park is a very popular attraction welcoming more than 750,000 visitors a year. Ranked in the top 20 national attractions Moors Valley is deemed

338

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2004-2005 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE present the 2004-2005 Bulletin of the Imperial Valley Campus of San Diego State University. Its in the educational opportunities offered at the Imperial Valley Campus of San Diego State University and look forward

Gallo, Linda C.

339

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2006-2007 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2006-2007 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

340

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2005-2006 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2005-2006 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teach ing

Gallo, Linda C.

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2007-2008 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2007-2008 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

342

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2008-2009 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2008-2009 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

343

Imperial Valley Campus San Diego State University  

E-Print Network [OSTI]

2014--2015 IVC 2014--2015 Bulletin Imperial Valley Campus San Diego State University #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2014-2015 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 760 clarification. #12;2 SDSU Imperial Valley Campus Bulletin 2014-2015 Message from the Dean It is with great

Gallo, Linda C.

344

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network [OSTI]

BULLETIN THE IMPERIAL VALLEY CAMPUS 2009-2010 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2009-2010 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

345

Award Recipient Poudre Valley Health System  

E-Print Network [OSTI]

2008 Award Recipient Poudre Valley Health System Poudre Valley Health System (PVHS) is a locally, oncology, and orthopedic care. Founded in 1925 as the Poudre Valley Hospital (PVH) in Fort Collins, Colo." · Afterfirstestablishingrelationshipswithphysicians,PVHS expanded its partner base to include entities such as home health agencies, a long-term care

Magee, Joseph W.

346

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody  

E-Print Network [OSTI]

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody Owens Valley Radio · [Need pictures of the telescopes] 1/24/2008 2Woody #12;The Owens ValleyThe Owens Valley 1/24/2008 3Woody in the future · 40 m ­ 1960s ­ 1-20 GHz ­ Long history single dish and VLBI · VLBA antenna, 25 m dia · Misc. ­ 5

Weinreb, Sander

347

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

348

Santa Clara Valley Transportation Authority  

Broader source: Energy.gov [DOE]

Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

349

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

350

Independent Oversight Review, West Valley Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

351

Hydrochemical features of a geothermal test well iin a volcanic caldera, MT. Pinatubo, Phillipines  

SciTech Connect (OSTI)

Mt. Pinatubo is one of several recent-age volcanoes along the west Luzon volcanic arc. A fumarole near the suminit emits gases with magmatic characteristics. Several thermal springs on the east and west flanks yield various fluid typos, including neutral chloride and bicarbonate. Three wellbores probed the Mt. Pinatubo caldera from elevations of +1230 through -1600 mRSL. Trajectories may be described as: central, crossing a boundary wall from the inside, and skirting a wall [probably] on the inside. Brine discharges indicate severe evapo-concentration effects accompanied by other phenomena. Severity of evapo-concentration indicates low fluid mobility near the wellbores. Large variations for ratios of component concentrations were observed, indicating negligible natural circulation (mixing). Implications about fluid movements and heat transfer processes are explored. Three components of steam can be quantified and all are significant: separate entry, adiabatic boiling, and boiling by rock heat.

Michels, D.E.; Clemente, V.C.; Ramos, M.N.

1991-01-01T23:59:59.000Z

352

Mechanically and optically controlled graphene valley filter  

SciTech Connect (OSTI)

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

353

Monument Valley Phytoremediation Pilot Study:  

Office of Legacy Management (LM)

1.8 1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0029501 Contents DOE/Grand Junction Office Monument Valley Ground Water Remediation Work Plan August 1998 Page v Contents Page Acronyms .

354

New Imperial Valley power line  

SciTech Connect (OSTI)

The Imperial Irrigation District placed its new 104-mile, 230kV transmission line in service in the Imperial Valley on September 14, 1988. The power line, with a rated capacity of 600 megawatts, transmits electricity generated at geothermal power plants. The transmission line was financed by 14 geothermal companies, whose participation was based on the amount of line-capacity they expect to use.

Not Available

1988-12-01T23:59:59.000Z

355

Lehigh Valley Chapter, ASM International ASM Materials Camp -Lehigh Valley for High School Students  

E-Print Network [OSTI]

Lehigh Valley Chapter, ASM International ASM Materials Camp - Lehigh Valley for High School careers. The week-long day camp is conducted by graduate students at Lehigh University, overseen

Gilchrist, James F.

356

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

357

Tippecanoe Valley School Corp | Open Energy Information  

Open Energy Info (EERE)

Valley School Corp Valley School Corp Jump to: navigation, search Name Tippecanoe Valley School Corp Facility Tippecanoe Valley School Corp Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN Coordinates 41.11098144°, -86.04468584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11098144,"lon":-86.04468584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Upper Scioto Valley School | Open Energy Information  

Open Energy Info (EERE)

Valley School Valley School Jump to: navigation, search Name Upper Scioto Valley School Facility Upper Scioto Valley School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Upper Scioto Valley Schools Energy Purchaser Upper Scioto Valley Schools Location McGuffey OH Coordinates 40.691542°, -83.786353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.691542,"lon":-83.786353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Glacier mass balances (19932001), Taylor Valley, McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

of measurement error and the resulting uncertainty in the mass-balance calculations. STUDY SITE Taylor Valley

Fountain, Andrew G.

362

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

363

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

364

Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING  

E-Print Network [OSTI]

Assessment Project SHORT-BILLED DOWITCHER WADES IN DEEPER WATER, NOTE LONG BILL DUNLIN #12;5 Tennessee Valley1 Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING Tennessee Valley Shorebird Assessment Project RESOURCES US SHOREBIRD CONSERVATOIN PLAN http

Gray, Matthew

365

A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada  

SciTech Connect (OSTI)

A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

2001-12-01T23:59:59.000Z

366

Enforcement Letter, West Valley Nuclear Services- March 30, 1998  

Broader source: Energy.gov [DOE]

Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

367

Kinarot Jordan Valley Technological Incubator | Open Energy Informatio...  

Open Energy Info (EERE)

Kinarot Jordan Valley Technological Incubator Jump to: navigation, search Name: Kinarot - Jordan Valley Technological Incubator Place: Israel Sector: Services Product: General...

368

2012 Annual Planning Summary for West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project 2012 Annual Planning Summary for West Valley Demonstration Project The ongoing and projected Environmental Assessments and Environmental Impact...

369

FTCP Site Specific Information - West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012...

370

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

371

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

372

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

373

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

374

Santa Clara Valley Transportation Authority and San Mateo County...  

Broader source: Energy.gov (indexed) [DOE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell...

375

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

376

DOE - Office of Legacy Management -- West Valley Demonstration...  

Office of Legacy Management (LM)

Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site...

377

EV Community Readiness projects: Delaware Valley Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO) EV Community Readiness projects: Delaware Valley Regional Planning...

378

DOE - Office of Legacy Management -- Tennessee Valley Authority...  

Office of Legacy Management (LM)

Tennessee Valley Authority - AL 01 FUSRAP Considered Sites Site: TENNESSEE VALLEY AUTHORITY (AL.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

379

Santa Clara Valley Transportation Authority and San Mateo County...  

Office of Environmental Management (EM)

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

380

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley  

E-Print Network [OSTI]

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 Does your water come) 828-1120. #12; DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 County FollowUp Meeting Tuesday, August 6th , 78:30 p.m. Room 101 Page: VCEPage County, 215 West Main

Liskiewicz, Maciej

382

The Valley Foundation School of Nursing  

E-Print Network [OSTI]

The Valley Foundation School of Nursing One Washington Square San José, CA 95192-0057 Voice: 408, Long Beach, Los Angeles, Maritime Academy Monterey Bay, Northridge, Pomona Sacramento, San Bernardino 2012-2013 is a busy one at The Valley Foundation School of Nursing! Our new curriculum will be fully

Su, Xiao

383

ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS  

E-Print Network [OSTI]

i ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS: HYDROLOGY, GROUNDWATER OPERATING RULE affect California's SWP (State Water Project) and CVP (Central Valley Project) water supply deliveries-operation of groundwater storage, both north and south of the Delta, can increase long-term average project deliveries

Lund, Jay R.

384

West Valley Accomplishments: Year in Review  

Broader source: Energy.gov [DOE]

WEST VALLEY, N.Y. EM and its contractor at the West Valley Demonstration Project (WVDP) made significant progress in decommissioning the former nuclear fuel reprocessing center this year, with a focus on preparing for high-level waste (HLW) relocation, deactivation and demolition of site facilities and shipment of waste for off-site disposal.

385

Results from Shallow Research Drilling at Inyo Domes, Long Valley Caldera, California and the Salton Sea Geothermal Field, Salton Trough, California  

Science Journals Connector (OSTI)

A goal of the thermal regimes sector of the U.S. Continental Scientific Drilling Program is to understand the intrusion of magma into the crust, the release of heat and volatiles from these intrusions, and the...

L. W. Younker; J. C. Eichelberger; P. W. Kasameyer

1988-01-01T23:59:59.000Z

386

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

387

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

388

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

389

NPP Tropical Forest: Magdalena Valley, Colombia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magdalena Valley, Colombia, 1970-1971 Magdalena Valley, Colombia, 1970-1971 Data Citation Cite this data set as follows: Folster, H. 1999. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Biomass, litterfall, and nutrient content of above-ground vegetation and soil were determined for a tropical seasonal evergreen forest at Magdalena Valley, Colombia, during an 18-month period in 1970 and 1971. The study was sponsored by the German Research Foundation. Of primary interest were biomass and nutrient dynamics of a forest stand that had developed atop a perched water table on a typical valley terrace. Perched water tables give rise to pseudogley soils with low pH, prolonged

390

Bolton Valley Resort | Open Energy Information  

Open Energy Info (EERE)

Bolton Valley Resort Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Bolton Valley VT Coordinates 44.4144038°, -72.83469647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4144038,"lon":-72.83469647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

392

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

393

East Central Penobscot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Penobscot, Maine: Energy Resources Penobscot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1155166°, -68.4228803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1155166,"lon":-68.4228803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Origin of gaseous hydrocarbons in east-central Texas groundwaters  

E-Print Network [OSTI]

increases. Calculations suggest addition of isotopically heavy carbon dioxide (as high as +10'%%do), COs probably coproduced with CH4 by acetate dissimilation. The isotopic difference in 5 C of Queen City-Sparta and Yegua-Cook Mountain gaseous.... Thermocatalytic gases form from the alteration of organic matter at an optimum temperature of about 12?C (Philippi, 1965). In general they have a 8' C values greater than -50'%%do and contain appreciable amounts of Cz+ (ethane, propane, butane, etc...

Coffman, Bryan Keith

1988-01-01T23:59:59.000Z

395

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network [OSTI]

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS of the Transmission to Access Renewable Resources in the Imperial Valley C­V. 1 Imperial Valley Study Group List, Heavy Power Flow Data C­V. 2 Imperial Valley Study Group, Appendix B, Transmission Planning

396

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

397

Numerical simulations of bedrock valley evolution by meandering rivers  

E-Print Network [OSTI]

of valley evolution pathways and the long-term stability of valley morphology under constant forcingNumerical simulations of bedrock valley evolution by meandering rivers with variable bank material Institute of Technology, Pasadena, California, USA Abstract Bedrock river valleys are fundamental components

398

Enterprise Assessments Review, West Valley Demonstration Project December 2014  

Broader source: Energy.gov [DOE]

Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

399

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

400

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

Drilling in Long Valley, California-- What Will We Learn? U.S. GEOLOGICAL SURVEY--REDUCING THE RISK FROM in the center of Long Valley Caldera during the summer and fall of 1998. Long Valley Exploratory Well Magma intrusions Magma intrusions CROSS SECTION OF LONG VALLEY CALDERA LONG VALLEY CALDERA RESURGENT DOMEMAMMOTH

Torgersen, Christian

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

402

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network [OSTI]

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

403

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

404

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Diablo Valley Name Lighthouse Solar Diablo Valley Address 2420 Sand Creek Road - C1308 Place Brentwood, CA Zip 94513 Sector Solar Phone number (925) 420-5121 Website http://www.lighthousesolar.com Coordinates 37.9434593°, -121.738203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9434593,"lon":-121.738203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Dakota Valley Wind Project Dakota Valley Wind Project Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355°, -96.524841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.548355,"lon":-96.524841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Unalakleet Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Unalakleet Valley Elec Coop Unalakleet Valley Elec Coop Jump to: navigation, search Name Unalakleet Valley Elec Coop Place Alaska Utility Id 40548 Utility Location Yes Ownership C NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service Commercial Residential Service Residential Average Rates Residential: $0.3920/kWh Commercial: $0.3680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Unalakleet_Valley_Elec_Coop&oldid=41190

407

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

408

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Broader source: Energy.gov (indexed) [DOE]

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

409

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Lighthouse Solar Indian Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Indian Valley Name Lighthouse Solar Indian Valley Address 5062 McLean Station Road Place Green Lane, PA Zip 18054 Sector Solar Phone number (215) 541-5464 Website http://www.lighthousesolar.com Coordinates 40.350689°, -75.475961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.350689,"lon":-75.475961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

412

VALMET-A valley air pollution model  

SciTech Connect (OSTI)

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

413

Lighthouse Solar Central Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Central Valley Name Lighthouse Solar Central Valley Address 2135 McCall Ave. Place Selma, CA Zip 93662 Sector Solar Phone number (559) 260-0796 Website http://www.lighthousesolar.com Coordinates 36.564699°, -119.611283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.564699,"lon":-119.611283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Hypocenter for the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

Using P- and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32/sup 0/39.50' N, Longitude 115/sup 0/19.80' W, Depth 8.0 km, Time 23:16:54.40 GMT.

Archuleta, R.J.

1982-06-01T23:59:59.000Z

415

E-Print Network 3.0 - aburra valley quo Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley Searles Valley TronaWestend Ridgecrest Searles... Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince... Chloride...

416

MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII  

SciTech Connect (OSTI)

Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.

L. BALICK; A. GILLESPIE; ET AL

2001-03-01T23:59:59.000Z

417

Open fissure mineralization at 2600 m depth in Long Valley Exploratory Well (California) insight into the history of the hydrothermal system  

Science Journals Connector (OSTI)

Long Valley Exploratory Well, drilled into the Resurgent Dome at Long Valley Caldera (California) to explore the potential of geothermal power in an active magmatic system, achieved temperatures of only ca. 100C at 25003000 m depth, well below the range expected atop an active magma chamber. Open fissures encountered at 2600 m depth are coated by mm-sized idiomorphic quartz crystals with first- and second-order growth discontinuities. Specific growth defects indicating rapid crystallization reflect sudden changes in SiO2 supersaturation. Fluid inclusions contain low salinity (05 wt% NaCl) and low CO2 (<3 mole%) aqueous fluids, with VL homogenization temperatures of 300350C, indicating trapping at more than 200C above the ambient temperatures measured within the borehole today. Fluid composition and inclusion density varies between and within the growth zones, reflecting progressive changes in the hydrothermal system during crystallization. Episodic crystallization from supersaturated fluids is interpreted to reflect sudden changes in the convection pattern, presumably induced by seismic activity, with a more recent and dramatic reorganization resulting in convective cooling. The quartz crystals are sensitive recorders of the earlier higher temperature history, unaffected by the present-day situation.

M. Fischer; K. Rller; M. Kster; B. Stckhert; V.S. McConnell

2003-01-01T23:59:59.000Z

418

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

419

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

420

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Valley View Wind Farm Facility Valley View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Valley View Transmission Energy Purchaser Xcel Energy Location Outside Chandler MN Coordinates 43.905808°, -96.020508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.905808,"lon":-96.020508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

422

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Penoyer Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Penoyer Valley Electric Coop Penoyer Valley Electric Coop Jump to: navigation, search Name Penoyer Valley Electric Coop Place Nevada Utility Id 40497 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Rate Commercial Lincoln County Residential Residential Residential Rate Residential Residential Rate- Lower Colorado Residence Residential Average Rates Residential: $0.0787/kWh Commercial: $0.0722/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

424

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

426

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

427

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Smoky Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Smoky Valley Wind Project Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766°, -97.683563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578766,"lon":-97.683563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

All Valley Solar All Valley Solar Name All Valley Solar Address 6851 Cahuenga Park Trail Place Los Angeles, California Year founded 1986 Phone number (661) 257-7780 Coordinates 34.1235069°, -118.345082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1235069,"lon":-118.345082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Whitewater Valley Rural EMC | Open Energy Information  

Open Energy Info (EERE)

Valley Rural EMC Valley Rural EMC Jump to: navigation, search Name Whitewater Valley Rural EMC Place Indiana Utility Id 20216 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS - General Service Multi Phase Commercial Schedule GS - General Service Single Phase Commercial Schedule GS TOU - General Service Time-of-Use Commercial Schedule IP - Industrial Power Service Industrial Schedule LP - Large Power Service Multi Phase Industrial Schedule LP - Large Power Service Single Phase Industrial

433

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Powell Valley Electric Coop Powell Valley Electric Coop Jump to: navigation, search Name Powell Valley Electric Coop Place Tennessee Utility Id 15293 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Industrial 1001 - 5000 KW Industrial General Power Industrial 51 - 1000 KW Industrial General Power Commercial 1001 - 5000 KW Commercial General Power Commercial 51 - 1000 KW Commercial General Power Commercial Less than 50 KW Commercial General Power Industrial Less than 50 KW Industrial

434

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

435

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

LongValley Strat.pdf Jump to: navigation, search File File history File usage Metadata File:LongValley Strat.pdf Size of this preview: 800 515 pixels. Full resolution (830 ...

436

A Home for Everyone San Joaquin Valley Housing  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

437

IMPACTS OF LANDSLIDE DAMS ON MOUNTAIN VALLEY MORPHOLOGY  

Science Journals Connector (OSTI)

Landslide dams can influence mountain-valley morphology significantly in the vicinity of the ... and their impoundments, and thus influence the long-term effects of these natural features on mountain-valley morph...

R.L. SCHUSTER

2006-01-01T23:59:59.000Z

438

2014 Annual Planning Summary for the West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project.

439

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

440

Soybean Production in the Rio Grande Valley  

E-Print Network [OSTI]

chlorosis or being high in chlorides, then it would be wise to #27;nd a variety that is less sensitive to iron chlorosis or to high chloride levels. In the Rio Grande Valley, soybean yields have been acceptable as long as supplemental water (irrigation... Grande Valley compensate for variation in plant populations. At low populations, soybean plants usually are bushy and set pods on long lateral branches near the ground. As populations increase, pods are set closer to the plant?s main stem and higher...

Fromme, D. D.; Isakeit, T.; Falconer, L.

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

West Valley College Portland State University Transfer Worksheet  

E-Print Network [OSTI]

West Valley College Portland State University Transfer Worksheet If you are taking classes that are part of the Intersegmental General Education Transfer Curriculum (IGETC) at West Valley College (WVC) #12;West Valley College Portland State University 2. DEGREE REQUIREMENTS The majority of majors at PSU

Caughman, John

442

Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity  

E-Print Network [OSTI]

's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The roleAedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity Alain Le Coupanec1 , Divya contro^le, Centre IRD de Montpellier, Montpellier, France Abstract Background: Rift Valley fever (RVF

Boyer, Edmond

443

Opening Remarks for the Fort Valley Centennial Celebration  

E-Print Network [OSTI]

West region. Given the rich historic con- text of Fort Valley, and the long-term studies and dataOpening Remarks for the Fort Valley Centennial Celebration G. Sam Foster, Station Director, U the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky

444

Putting the "Death" in Death Valley Paul Withers  

E-Print Network [OSTI]

of the rough map, continued due west to discover Death Valley... They were composed of three groups: thirtyPutting the "Death" in Death Valley Paul Withers In 1849, gold was discovered at Sutter's Mill of human suffering in a place they named Death Valley. [From here on, historical sources have a tendency

Withers, Paul

445

A Buried Valley System in the Strait of Dover  

Science Journals Connector (OSTI)

...Redding A series of buried valleys situated south of the submerged...recognized as infilled tunnel-valleys excavated subglacially during...the English Channel from the west. Before the Saalian a Chalk...associated with the tunnel-valleys and scouring out the present...

1975-01-01T23:59:59.000Z

446

REVIEW Open Access Towards a better understanding of Rift Valley  

E-Print Network [OSTI]

REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west , Matthieu Roger1 and Betty Zumbo7 Abstract Rift Valley fever virus (Phlebovirus, Bunyaviridae be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever

Paris-Sud XI, Université de

447

The California State University Imperial Valley Campus Bulletin  

E-Print Network [OSTI]

2010­2011 The California State University Imperial Valley Campus Bulletin #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2010-2011 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 the 2010 2011 Bulletin of the Imperial Valley Campus of San Diego State University. Its publication

Gallo, Linda C.

448

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network [OSTI]

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS/Agricultural/Water EndUse Energy Efficiency · Renewable Energy Technologies · Transportation Imperial Valley and Tehachapi Implementation Groups is the final report for the Imperial Valley and Tehachapi Implementation

449

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network [OSTI]

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

450

2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined from LiDAR topographic data and  

E-Print Network [OSTI]

deformation is accommodated on 22 structures east of Fish Lake Valley, or that rates of seismic 23 strain2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined; accepted 11 July 2007; published XX Month 2007. 9 [1] The Death Valley-Fish Lake Valley fault zone (DV- 10

Black, Robert X.

451

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley Fault and Pacific-North America Plate Boundary Strain Distribution  

E-Print Network [OSTI]

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley, Berkeley, CA 94720 and CEREGE, 13545 Aix en Provence, France The Death Valley-Fish Lake Valley fault (DV/yr at the northern end of the DV-FLVF in Fish Lake Valley. This decrease in slip rate is at odds with observations

Black, Robert X.

452

Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and  

E-Print Network [OSTI]

east of Fish Lake Valley, or that rates of seismic strain accumulation and release have not remainedSpatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined; accepted 11 July 2007; published 19 September 2007. [1] The Death Valley-Fish Lake Valley fault zone (DV

Frankel, Kurt L.

453

Mesoscale Influences on Nocturnal Valley Drainage Winds in Western Colorado Valleys  

Science Journals Connector (OSTI)

The mesoalpha-scale upper-level sounding network data collected during the 1984 ASCOT meteorological and tracer experiments provided a unique opportunity to analyze the nocturnal drainage wind in four different valleys in western Colorado, and to ...

Montie M. Orgill; John D. Kincheloe; Robert A. Sutherland

1992-02-01T23:59:59.000Z

454

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

457

Glasgow and Clyde Valley Integrated Habitat Networks  

E-Print Network [OSTI]

of expert stakeholder workshops. The model outputs are GIS maps that can be used to assess habitats and how & Clyde Valley Green Network Partnership 7th November 2008 All maps reproduced from Ordnance Survey using digital data on a geographic information system (GIS) to identify IHNs in the GCV area

458

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

459

Pearl River Valley Electric Power Association - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

460

West Valley Demonstration Project Phase I Decommissioning - Facility  

Broader source: Energy.gov (indexed) [DOE]

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

462

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

463

Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) |  

Broader source: Energy.gov (indexed) [DOE]

Magic Valley Electric Cooperative - ENERGY STAR Builders Program Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home: $150-$600 ENERGY STAR Home with Version 3.0 Checklist: $200 Marathon Water Heater Installation: $150 ENERGY STAR Heat Pump Water Heater: $250 Provider Magic Valley Electric Cooperative Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes

464

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect (OSTI)

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

465

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Broader source: Energy.gov (indexed) [DOE]

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

466

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

467

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

468

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

469

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

470

Boron isotopic variations in hydrous rhyolitic melts: a case study from Long Valley, California  

Science Journals Connector (OSTI)

For post-caldera dome inclusions, the modeled gas-saturated fractionation trends clearly fail to match measured variations, in particular for compatible trace elements such as Sr and Ba (Fig.3G, H). Furthermo...

A. K. Schmitt; J. I. Simon

2004-01-01T23:59:59.000Z

471

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

473

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

475

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Chippewa Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Chippewa Valley Electric Coop Chippewa Valley Electric Coop Place Wisconsin Utility Id 3498 Utility Location Yes Ownership C NERC Location MRO ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED CENTRAL AC CREDIT - RATE CODE AC Commercial DISTRIBUTED GENERATION RATE DG Commercial DUSK/DAWN LIGHTING RATE CODE L Lighting INDUSTRIAL TIME OF DAY RATE CODE I Industrial LARGE SINGLE PHASE/MEDIUM-LARGE THREE PHASE RATE CODE X Industrial MEDIUM SINGLE PHASE/SMALL THREE PHASE - RATE CODE W Commercial OFF-PEAK ELECTRIC SPACE HEATING RATE CODE H Commercial

477

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

479

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

480

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

A F F T EAST MESA, IMPERIAL VALLEY, CALIFORNIA J. H. Howard,reconnaissance of the Imperial Valley, California. USGSthe East Mesa area, Imperial Valley, California. TRW/

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley caldera east-central" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

482

Elk Valley coal implements smartcell flotation technology  

SciTech Connect (OSTI)

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

483

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Department of Industrial Engineering Spring 2012 Improving Medical Equipment Tracking at Muncy Valley Hospital  

E-Print Network [OSTI]

at Muncy Valley Hospital Overview Muncy Valley Hospital's Skilled Nursing Unit did not have any way in Muncy Valley Hospital's Skilled Nursing Unit. Approach Visited Muncy Valley Hospital Skilled Nursing Outcomes Muncy Valley Hospital Skilled Nursing Unit now has a way to track its medical equipment Less

Demirel, Melik C.

488

Presentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PSInSAR analysis  

E-Print Network [OSTI]

is exposed subaerially in the Longitudinal Valley (LV) (Figure 1b). This 150 km long NNE trending valleyPresentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from Valley (LV). The Longitudinal Valley Fault (LVF) is the main seismically active fault zone in this region

Demouchy, Sylvie

489

Crustal Structure and tectonics of the Imperial Valley Region California |  

Open Energy Info (EERE)

Crustal Structure and tectonics of the Imperial Valley Region California Crustal Structure and tectonics of the Imperial Valley Region California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Crustal Structure and tectonics of the Imperial Valley Region California Abstract N/A Authors Gary S. Fruis and William M. Kohler Published Journal U. S. GEOLOGICAL SURVEY, 1984 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crustal Structure and tectonics of the Imperial Valley Region California Citation Gary S. Fruis,William M. Kohler. 1984. Crustal Structure and tectonics of the Imperial Valley Region California. U. S. GEOLOGICAL SURVEY. N/A(N/A):285-297. Retrieved from "http://en.openei.org/w/index.php?title=Crustal_Structure_and_tectonics_of_the_Imperial_Valley_Region_California&oldid=682730"

490

West Valley Demolition Marks Important Accomplishment for EM | Department  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Debris is removed following demolition. Debris is removed following demolition. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility.

491

Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |  

Broader source: Energy.gov (indexed) [DOE]

West Valley Nuclear Services - March 30, 1998 West Valley Nuclear Services - March 30, 1998 Enforcement Letter, West Valley Nuclear Services - March 30, 1998 March 30, 1998 Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project This letter refers to the Department of Energy's (DOE) evaluation of West Valley Nuclear Services Company's (WVNS) report of a potential noncompliance with the requirements of 10 CFR 830.120 (Quality Assurance) and 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved inadequate hazards analysis, design review, and implementation of work controls during decontamination activities for a high-level waste tank mobilization pump, was identified by WVNS on

492

Independent Activity Report, West Valley Demonstration Project - July 2012  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

493

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

494

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

495

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

496

Poudre Valley REA - Photovoltaic Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50 per watt Provider Poudre Valley REA Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's Energy Office's (GEO) state-wide rebate program, and Poudre Valley REC customers are permitted to receive both rebates. Before receiving a rebate, applicants must have an energy audit of their home that includes a blower door test. The audit must

497

Independent Activity Report, West Valley Demonstration Project - November  

Broader source: Energy.gov (indexed) [DOE]

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

498

West Valley Demonstration Project 10282 Rock Springs Road  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

499

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

500

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Broader source: Energy.gov (indexed) [DOE]

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2