National Library of Energy BETA

Sample records for valley caldera california

  1. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. A four-dimensional viscoelastic deformation model for Long Valley Caldera, California, between 1995 and 2000

    E-Print Network [OSTI]

    Frankel, Kurt L.

    November 2005 Abstract We investigate the effects of viscoelastic (VE) rheologies surrounding a vertically Valley caldera, California: Evidence for viscoelastic rheology. J. Volcanol. Geotherm. Res. 105, 183: andrew.newman@eas.gatech.edu (A.V. Newman). Journal of Volcanology and Geothermal Research 150 (2006) 244

  3. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  4. The Mechanics of Unrest at Long Valley Caldera, California. 2...

    Open Energy Info (EERE)

    gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley...

  5. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface geological conditions within...

  6. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  7. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  8. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. Microearthquakes in and near Long Valley, California

    E-Print Network [OSTI]

    Steeples, Don W.; Pitt, A. M.

    1976-02-10

    Sixteen portable seismograph stations were deployed in the vicinity of the Long Valley geothermal area, California, from April 27 to June 2, 1973. Only minor microearthquake activity was detected in the Long Valley caldera, but a high level...

  10. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  11. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  12. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley. Because of this danger, the U.S. Forest Service has had to close parts of the Hot Creek Geologic Site the region. The attractions of Hot Creek, however, also harbor danger. The locations, dis- charge rates

  13. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  14. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  15. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  16. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  17. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  18. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  19. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  20. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  1. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  4. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  6. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  7. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  8. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  9. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  10. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  11. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  12. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  13. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  15. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  16. Technical Geologic Overview of Long Valley Caldera for the Casa...

    Open Energy Info (EERE)

    Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV Geothermal Development Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  17. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples...

  18. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  19. Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...

    Open Energy Info (EERE)

    The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  20. A core hole in the southwestern moat of the Long Valley caldera: Early results

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Sorey, M.L.; Farrar, C.D.; White, A.F.; Flexser, S.; Bartel, L.C.

    1986-12-01

    A continuously cored hole penetrated 715m into the southwestern moat of the Long Valley caldera. Temperatures in the post-caldera deposits increase rapidly with depth over the upper 335m to 202/sup 0/C, then remain nearly isothermal into the Bishop Tuff to the bottom of the hole. The depth to the Bishop is the shallowest, and the temperatures observed are among the highest in holes drilled in the caldera. The hole identifies a potential geothermal resource for the community of Mammoth Lakes, constrains the position of the principal heat source for the caldera's hydrothermal system, and serves as access for monitoring changes in water level, temperatures, and fluid chemistry.

  1. Satellites images, digitized topography, and the recognition of the Xela Caldera, Quezaltenango Valley, Guatemala

    SciTech Connect (OSTI)

    Foley, D. (Pacific Lutheran Univ., Tacoma, WA (United States). Dept. of Earth Sciences); McEwen, A.; Duffield, W. (Geological Survey, Flagstaff, AZ (United States)); Heiken, G. (Los Alamos National Lab., NM (United States))

    1992-01-01

    The authors propose, based on reconnaissance geology studies and interpretation of landforms as depicted by Landsat Thematic Mapper (TM) images combined with digitized topography, that the Quezaltenango basin of Guatemala is part of a caldera. The Quezaltenango basin is an elliptical depression, about 12 by 25 km and about 500 m deep. The proposed Xela Caldera extends beyond the basin more than 10 km to the north. The geomorphological features of the area that are typical of a geologically young large-scale caldera include bounding walls that have steep interior and gentle exterior slopes; broad flat areas at the base of the walls; at least one large block, about 3 by 12 km, that only partly floundered as the caldera collapsed; resurgence of a younger volcanic dome, flow and small-scale caldera complex (last active in 1818); younger volcanoes located along the structural margin of the major caldera (one of which is currently active) lobate features on the caldera margins that may indicate a multiple sequence of eruptions; and an active, high-temperature geothermal system. The valley is coincident with a gravity low. Extensive ash-flow tuff sheets that have no identified source are located north of the caldera, and may be the outflow deposits. The Xela caldera is similar in size to the Atitlan caldera, which lies about 50 km southeast of Quezaltenango. The Xela Caldera, if confirmed by future studies, may contain undiscovered geothermal resources, may present a significant geologic hazard to the more than 400,000 people who occupy the Quezaltenango valley, and may be a new member of the list of magmatic systems that have the capability to change global climate for several years.

  2. Geodetic Survey At Long Valley Caldera Geothermal Area (Newman...

    Open Energy Info (EERE)

    Caldera Geothermal Area Exploration Technique Geodetic Survey Activity Date 1995 - 2000 Usefulness not indicated DOE-funding Unknown Notes "We investigate the effects of...

  3. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    sites; mean daily atmospheric pressures and water levels at selected wells, and precipitation records for two sites.Seismicity within the caldera persisted at a relatively low...

  4. Proceedings of the second workshop on hydrologic and geochemical monitoring in the Long Valley Caldera

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A. (eds.)

    1986-12-01

    A workshop was held to review the results of hydrologic and geochemical monitoring and scientific drilling in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and techonic processes. Data from a 2400-ft deep core hole completed in June 1986 were presented at the 1986 workshop and participants discussed the need and rationale for siting locations for future scientific drilling in the caldera.

  5. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    of the (Unocal) Mammoth-1 well at Casa Diablo. This low resistivity region is unusually deep, extending into the pre-caldera basement to the northwest, and is roughly aligned with...

  6. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  7. A core hole into the hydrothermal system of the Long Valley caldera

    SciTech Connect (OSTI)

    Wollenberg, H.; White, A.; Flexser, S.; Sorey, M.; Farrar, C.

    1987-03-01

    To investigate the present-day hydrothermal system, the ''Shady Rest'' hole was continuously cored 715m into the southwestern moat of the Long Valley caldera. The hole intersected 100m of glacial till and 300m of postcaldera rhyolite before entering the welded Bishop Tuff and bottoming in that unit. A sharp temperature rise over the upper 350m, and near-isothermal conditions below reflect the presence of approx.200/sup 0/C water moving through open, calcite-lined fractures in silicified Early Rhyolite and Bishop Tuff. The depth to the Bishop is the shallowest encountered in holes in the caldera, and the temperatures measured are among the hottest observed in wells drilled within the caldera.

  8. Present State of the Hydrothermal System in Long Valley Caldera...

    Open Energy Info (EERE)

    California Abstract Results of test drilling to depths of 2 km and data on the chemical and isotopic content of waters from hot springs and fumaroles permit a conceptual...

  9. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie Valley Geothermal|(Newman,

  10. Resistivity Log At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish Lake Valley

  11. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    DE, Swain LA. 1989. Ground-water flow in the Central Valley,California Department of Water Resources. 2015. CaliforniaCalifornia Department of Water Resources. [cited 2015 Sep

  12. Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1984-10-01

    A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

  13. The Shallow Hydrothermal System of Long Valley Caldera, California | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe Needles GeothermalFinance |RuhlinEnergy

  14. Deformation of the Long Valley Caldera, California: Inferences...

    Open Energy Info (EERE)

    spheroid rather than an isotropic source, which suggests that magma came up through vertical cracks. However, the modeling suggests that the location changed with the depth...

  15. The Mechanics of Unrest at Long Valley Caldera, California: 1...

    Open Energy Info (EERE)

    spherical or ellipsoidal sources. We find that the ellipsoidal source satisfies both the vertical and horizontal deformation data, whereas the spherical point source cannot....

  16. Temperature Data From Wells in Long Valley Caldera, California | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy InformationEnergy Information Data From

  17. The Hydrothermal System of Long Valley Caldera, California | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind Resources <forGerman WindCombustion

  18. Hydrologic Monitoring Summary Long Valley Caldera, California | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologiesInformation Monitoring

  19. Hydrology of the Geothermal System in Long Valley Caldera, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologiesInformationOpen Energy

  20. Deformation of the Long Valley Caldera, California: Inferences from

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepi has not created

  1. Non-Double-Couple Microearthquakes At Long Valley Caldera, California,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd

  2. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  3. Melt Zones Beneath Five Volcanic Complexes in California: An...

    Open Energy Info (EERE)

    (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent...

  4. University Of California, Berkeley Valley Life Sciences Building

    E-Print Network [OSTI]

    University Of California, Berkeley Valley Life Sciences Building (VLSB) Building Emergency Plan Date Revised: January 2014 Prepared By: Derek Apodaca #12;TABLE OF CONTENTS I. BUILDING INFORMATION 1. Building Name 2. Building Coordinator Name 3. Alternate BC Name 4. Emergency Assembly Area Location 5

  5. Quail Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuail Valley, California: Energy

  6. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA VALLEY

  7. Core Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L PGabbs ValleyEnergy2003) | Open

  8. EA-1840: California Valley Solar Ranch Project in San Luis Obispo...

    Broader source: Energy.gov (indexed) [DOE]

    August 3, 2011 EA-1840: Final Environmental Assessment California Valley Solar Ranch Project in San Luis Obispo and Kern Counties, California August 3, 2011 EA-1840: Finding of No...

  9. The Thermal Regime in the Resurgent Dome of Long Valley Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgramSulFerox processItsCalifornia:

  10. Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California

    E-Print Network [OSTI]

    Fialko, Yuri

    Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California Yuri associated with currently active crustal magma bodies in Socorro, New Mexico, and Long Valley, California induced by magma migration are also important for forecasting local volcanic and seismic hazards. A prime

  11. Squaw Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley, California:

  12. Visitor center at the Antelope Valley California Poppy Reserve, Lancaster, California

    SciTech Connect (OSTI)

    Colyer, R.D.; Freeman, S.P.

    1981-01-01

    The Antelope Valley California Poppy Reserve contains the largest remaining stand of the California Poppy (Eschschozia Californica), the state flower of California. To welcome the thousands of people viewing the desert wildflowers each spring, the State of California decided to build a visitor/interpretive center. This building deals primarily with the question of fit; a building's fit aesthetically with its site and the fit of a building's design response to the climate of the site. In this case, both aspects of this question led the client and architects to seek an earth sheltered solution using materials at least metaphorically indigenous to the region. On both a technical and formal level, this building seeks to fit the unique climate and historical heritage of its site.

  13. Achieving Sustainability inCalifornia’s CentralValley

    E-Print Network [OSTI]

    Lubell, Mark; Beheim, Bret; Hillis, Vicken; Handy, Susan L.

    2009-01-01

    of agricultural sustainability. ” Agriculture, Ecosystems &19, 2009. Achieving Sustainability in California’s Centralvariables. Achieving Sustainability in California’s Central

  14. Gas Geochemistry Of The Valles Caldera Region, New Mexico And...

    Open Energy Info (EERE)

    Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Jump to: navigation, search OpenEI...

  15. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    or for transport to Southern California, and to parts of thetransport and resulting deposition in spawning gravels, North Coastal California.Ekman transport, inducing upwelling. The California Current

  16. Summary Of Recent Research In Long Valley Caldera, California | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the Entire

  17. The Mechanics of Unrest at Long Valley Caldera, California. 2. Constraining

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgram Jump to: navigation,

  18. The Mechanics of Unrest at Long Valley Caldera, California: 1. Modeling the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgram Jump to: navigation,Geometry

  19. New Evidence On The Hydrothermal System In Long Valley Caldera, California,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National MarineUSAIDCanaan, Connecticut:NewNewFrom Wells,

  20. Present State of the Hydrothermal System in Long Valley Caldera, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid,Areas- CovePrescienceGeodetically|

  1. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    Z. 2015. Progress report: subsidence in the Central Valley,Ingebritsen SE. 1999. Land subsidence in the United States.Ireland RL. 1986. Land subsidence in the San Joaquin Valley,

  2. California Central Valley Water Rights in a Changing Climate

    E-Print Network [OSTI]

    Schwarz, Andrew Mark

    2015-01-01

    contemplated to preserve stored water for critical periods.analysis in California water resources planning studies [California Department of Water Resources. [cited 2013 02

  3. Valley Center, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles Caldera -Center

  4. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

  5. RE OAKING THE VALLEYS: BRINGING NATIVE TREES BACK INTO CALIFORNIA'S SUBURBAN LANDSCAPES

    E-Print Network [OSTI]

    California landscapes through coordinated local stewardship, urban forestry, and parkland management programs an aerial canopy that reduces the urban heat island e ect (and associated health and energy impacts) while WORLD WAR II MOST OF THE VALLEY FLOOR HAS BEEN CLEARED for orchards, but a few trees remain

  6. Beryllium7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California

    E-Print Network [OSTI]

    Elmore, Andrew J.

    Beryllium7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California; revised 29 March 2011; accepted 1 April 2011; published 7 May 2011. [1] Beryllium7 is a potentially potential as a sediment tracer in desert environments. Beryllium7 in vegetation and the upper few cm of soil

  7. EA-1697: San Joaquin Valley Right-of-Way Project, California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California.

  8. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect (OSTI)

    Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  9. California Central Valley Water Rights in a Changing Climate

    E-Print Network [OSTI]

    Schwarz, Andrew Mark

    2015-01-01

    storage resulting from climate change at between 15% to 19%.Khan A, Schwarz A. 2010. Climate change characterization and2013. Indicators of climate change in California. [city? (

  10. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    and steelhead through the hydroelectric system in the mid-flows for non-federal hydroelectric projects, 107 andflows for non-federal hydroelectric projects but California

  11. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    of California, Berkeley. Technical Report No. 549. Freedman,Bay/Delta Estuary. Technical Report. Groot, C, Margolis, L.Chinook salmon. Canadian Technical Report of Fisheries and

  12. EA-1840: Department of Energy Loan Guarantee for the SunPower, Systems California Valley Solar Ranch Project in San Luis Obispo County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a...

  13. A Crescent from the Southern San Joaquin Valley, California

    E-Print Network [OSTI]

    Sutton, Mark Q.

    1989-01-01

    was discovered in the Elk Hills, California. approximatelyis lacking. THE ELK HILLS CRESCENT The crescent (Figs. 2 andFig. 3. Photograph of the Elk Hills crescent. The specimen

  14. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  15. California Red Scale and its Control in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Clark, S. W. (Sherman Wood); Friend, W. H. (William Heartsill)

    1932-01-01

    appli contl agail insec Th of tl pend; insect The California Red Scale is capable of doing such serious damage to citrus trees in the Lower Rio Grande Valley that its control, is one of the major problems of citrus fruit production... in this region. Environmental conditions are apparently so favorable for the de- velopment and multiplication of this insect that it is probably more active in the Valley than in any of the other citrus-producing areas of the United States. Infested host...

  16. Groundwater Overdraft in California's Central Valley: Updated CALVIN Modeling Using Recent CVHM and C2VSIM Representations

    E-Print Network [OSTI]

    Lund, Jay R.

    i Groundwater Overdraft in California's Central Valley: Updated CALVIN Modeling Using Recent CVHM water demands, groundwater availability, and local water management opportunities. This update project focused on improving groundwater representation in CALVIN, which included changing CALVIN groundwater

  17. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    a salmon population. In: Barnett, V, Turkman, KF, editors.Aquatic Sciences 57:915-927. Barnett-Johnson, RC, Ramos, FC,Santa Cruz, California: Barnett-Johnson, RRFC, Grimes, CB,

  18. Imperial Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFBIdeaEnergyFacility | OpenValley,

  19. Fountain Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to: navigation,County,FountainValley,

  20. Pine Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem Biomass Facility Jump to: navigation,Valley,

  1. Squirrel Mountain Valley, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquaw Valley,

  2. Bear Valley Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWindInc Jump to:Baywood-LosCreekValley

  3. Castro Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota: EnergyValley,

  4. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    Eastside San Joaquin Tulare Central Valley Base Period (m/y)Eastside Delta San Joaquin Tulare Central Valley BaseSacramento Eastside San Joaquin Tulare Central Valley Severe

  5. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect (OSTI)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  6. On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California

    E-Print Network [OSTI]

    Pusede, S. E.

    The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations ...

  7. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    SciTech Connect (OSTI)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  8. Conjunctive management of groundwater and surface water resources in the San Joaquin Valley of California

    SciTech Connect (OSTI)

    Quinn, N.W.T.

    1992-01-01

    The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show table lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.

  9. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    California’s northern Sacramento Valley* DBH class, inches†woodlands in the northern Sacramento Valley. In: Proc Sympfirewood harvest in northern Sacramento Valley by Richard B.

  10. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    California Department of Water Resources. Augerot, X. 2005.California Department of Water Resources. Bond N, Lake P.on steelhead. Prepared for the Water Forum. Available from:

  11. Bottom-up, decision support system development : a wetlandsalinity management application in California's San Joaquin Valley

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2006-05-10

    Seasonally managed wetlands in the Grasslands Basin ofCalifornia's San Joaquin Valley provide food and shelter for migratorywildfowl during winter months and sport for waterfowl hunters during theannual duck season. Surface water supply to these wetland contain saltwhich, when drained to the San Joaquin River during the annual drawdownperiod, negatively impacts downstream agricultural riparian waterdiverters. Recent environmental regulation, limiting discharges salinityto the San Joaquin River and primarily targeting agricultural non-pointsources, now addresses return flows from seasonally managed wetlands.Real-time water quality management has been advocated as a means ofmatching wetland return flows to the assimilative capacity of the SanJoaquin River. Past attempts to build environmental monitoring anddecision support systems to implement this concept have failed forreasons that are discussed in this paper. These reasons are discussed inthe context of more general challenges facing the successfulimplementation of environmental monitoring, modelling and decisionsupport systems. The paper then provides details of a current researchand development project which will ultimately provide wetland managerswith the means of matching salt exports with the available assimilativecapacity of the San Joaquin River, when fully implemented. Manipulationof the traditional wetland drawdown comes at a potential cost to thesustainability of optimal wetland moist soil plant habitat in thesewetlands - hence the project provides appropriate data and a feedback andresponse mechanism for wetland managers to balance improvements to SanJoaquin River quality with internally-generated information on the healthof the wetland resource. The author concludes the paper by arguing thatthe architecture of the current project decision support system, whencoupled with recent advances in environmental data acquisition, dataprocessing and information dissemination technology, holds significantpromise to address some of the problems described earlier in the paperthat have limited past efforts to improve Basin water qualitymanagement.

  12. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01

    complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene...

  13. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    in Central Valley rivers, many fall-run Chinook salmon nowrun Chinook salmon, Oncorhynchus tshawytscha, to yearlings at Feather Riverrun Chinook salmon breed and rear in low-elevation mainstem rivers (

  14. Satellites measure recent rates of groundwater depletion in California's Central Valley

    E-Print Network [OSTI]

    2011-01-01

    internally?draining Tulare Basin, are home to California’sriver basins, including the Tulare basin and the Centralriver basin, including the Tulare basin, which is consistent

  15. Temporal Trends in Hatchery Releases of Fall-Run Chinook Salmon in California's Central Valley

    E-Print Network [OSTI]

    Huber, Eric R.; Carlson, Stephanie M.

    2015-01-01

    California Press. 161 p. Barnett-Johnson R, Grimes CB, Royerby hatchery production (Barnett–Johnson et al. 2007). Therun Chinook salmon complex (Barnett– Johnson et al. 2007;

  16. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    to sample the important features of the upper crustal and deeper resistivity structures. Additional control on the shallowest resistivity is provided by a continuous...

  17. Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    2013-09-10

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes one 45 kN shear shaker (called “large shaker” on the basemap) test for three different measurement systems. The shaker swept from a rest, up to 10 Hz, and back down to a rest over 60 seconds. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. ?https://agu.confex.com/agu/fm1/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  18. Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes one 45 kN shear shaker (called “large shaker” on the basemap) test for three different measurement systems. The shaker swept from a rest, up to 10 Hz, and back down to a rest over 60 seconds. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. ?https://agu.confex.com/agu/fm1/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  19. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  20. Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    E-Print Network [OSTI]

    Goldstein, Allen

    Airborne observations of methane emissions from rice cultivation in the Sacramento Valley 2012; accepted 7 October 2012; published 8 December 2012. [1] Airborne measurements of methane (CH4 is not accounted for in the CARB inventory. Citation: Peischl, J., et al. (2012), Airborne observations of methane

  1. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect (OSTI)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

  2. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  3. Resource intensification in pre-contact central California: a bioarchaeological perspective on diet and health patterns among hunter-gatherers from the lower Sacramento Valley and San Francisco Bay 

    E-Print Network [OSTI]

    Bartelink, Eric John

    2006-08-16

    of sedentism. I test the hypothesis that health status, as measured by childhood stress and disease indicators, declined during the late Holocene in central California. I analyzed 511 human skeletons from ten archaeological sites in the Sacramento Valley...

  4. A Four-Dimensional Viscoelastic Deformation Model For Long Valley...

    Open Energy Info (EERE)

    1995 And 2000 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,...

  5. Solar Goes Big: Launching the California Valley Solar Ranch | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley | SystemSolarSolarSolar

  6. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  7. Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology

    SciTech Connect (OSTI)

    Morris, W.; Hill, J.

    1980-07-01

    Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

  8. Implications from a study of the timing of oil entrapment in Monterey siliceous shales, Lost Hills, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Julander, D.R. )

    1992-01-01

    The oil and gas-rich upper Miocene siliceous shales of the Monterey Group are the primary development target in the Lost Hills Oil Field, San Joaquin Valley, California. As a result of diagenesis, the siliceous shales can be subdivided by opal phase into three sections (from shallow to deep): the Opal-A diatomites which are rich in oil saturation; the Opal-CT porcellanites which are predominantly wet but include pockets of moderate oil saturation; and the Quartz cherts and porcellanites which in some places are highly oil saturated immediately below the Opal CT section. Productivity trends in each of the three sections have been established through drilling and production testing, but a predictive model was not available until a study of the timing of oil entrapment at Lost Hills was recently completed. The study included an analysis of the depositional history of the siliceous shales and timing of: (1) structural growth of the Lost Hills fold, (2) source-rock maturation, and (3) development of the opal-phase segregation of the Monterey shales. The study led to enhanced understanding of the known oil saturation and production trends in the three opal-phase sections and yielded a predictive model that is being used to identify areas in the field with remedial or delineation potential. The study also produced evidence of fold axis rotation during the Pliocene and Pleistocene that helps explain differences in fracture orientations within the Monterey shales.

  9. Sediment-adsorbed total mercury flux through Yolo Bypass, the primary floodway and wetland in the Sacramento Valley, California

    E-Print Network [OSTI]

    Springborn, M; Singer, MB; Singer, MB; Dunne, T

    2011-01-01

    sediment transport in the Sacramento River, California.Sediment transport Mass balance Yolo Bypass California a b sand transport of total mercury and methyl mercury in the Sacramento River basin, California.

  10. Influence of uplift on oil migration: Tulare heavy oil accumulations, west side San Joaquin Valley, California

    SciTech Connect (OSTI)

    Chamberlain, E.R.; Madrid, V.M.

    1986-07-01

    Shallow (2000 ft), heavy (11/sup 0/-14/sup 0/ API) oil accumulations within the Pleistocene, nonmarine, Tulare sands along the west side of the San Joaquin Valley represent major thermal enhanced oil recovery (EOR) objectives. These low-pressure reservoirs display a variety of petrophysical characteristics indicating a complex history of oil migration resulting from uplift of the Tulare reservoirs above the regional ground-water table (RGT). In the Cymric-McKittrick area, it is possible to correlate Tulare outcrops with subsurface log data and determine the relationship between oil saturation, structural elevation, and proximity to the present RGT. The observed relationship is that economic oil saturations (S/sub 0/ = 30-75%) occur in structural lows and grade updip to reduced oil saturations (S/sub 0/ = 0-30%). The equivalent sands above the RGT exhibit formation density log-compensated neutron log (FDC/CNL) cross-over. Basinward, as the entire Tulare reservoir dips below the RGT, it exhibits characteristics of conventional reservoirs, such as high water saturations in structural lows, grading upward to increased oil saturations in structural highs. The authors present the following model to explain these observations. (1) Oil migrated into Tulare sands and originally filled all stratigraphic/structural traps below the paleo-RGT. (2) Subsequent uplift of the Tulare reservoirs above the paleo-RGT resulted in gravity drainage of original accumulations into structural lows. (3) Washing of the oils by repeated ground-water fluctuations along with biodegradation resulted in the essentially immobile Tulare heavy oil accumulations observed today.

  11. Stevens and earlier miocene turbidite sandstones, southern San Joaquin Valley, California

    SciTech Connect (OSTI)

    Webb, G.W.

    1981-03-01

    A thick marine turbidite succession, dominantly coarse sandstone, underlies the southern part of the San Joaquin Valley. Sands are pebbly to fine grained, commonly poorly sorted, quartzose to arkosic, and are interbedded with dark shales bearing deep-water foraminifers. Graded bedding is common and, with the depths of 2000 to 6000 ft (610 to 1830 m) implied by the fauna, is taken to indicate a turbidity-current origin for most of the sands. The upper, middle, and lower Miocene turbidite section was revealed by extensive coring at Paloma, and is similar to the more widespread and oil and gas productive upper Miocene Stevens sandstone. The central-basin Stevens was deposited as channel sands on deep-sea fans derived from several discrete troughs or canyons on the eastern and southeastern margin of the basin prior to their burial by prograding Santa Margarita sand. Sand channels and lobes in the Bakersfield arch area were controlled locally by compaction structures. The rising Paloma anticline deflected Stevens sands for a time and the very last sands were guided also by incipient folds on the outer Bakersfield arch. Coarse Stevens conglomerates and sands shed from the emergent Temblor Range were deflected by the Buena Vista Hills, Elk Hills, and other anticlinal shoals and were deposited in intervening gaps as thick oil-productive channel sands. They merge with sands from the east side in flowing axially into the distal northwestern basin. Facies recognized in the subsurface include a meander-channel facies developed in the prograded muddy slope area upstream from the massive braided-sand facies.

  12. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

  13. Abstract Large volumes of silicic magma were pro-duced on a very short timescale in the nested caldera

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    tuff Æ Timber Mountain tuff Æ Oxygen isotopes Æ Geochronology Æ Isotope zoning Æ Zircon Æ Yucca ORIGINAL PAPER U­Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera Mountain Introduction Isotopic zoning in phenocrysts in larg

  14. Environmental justice implications of arsenic contamination in California¿s San Joaquin Valley: a cross-sectional, cluster-design examining exposure and compliance in community drinking water systems

    E-Print Network [OSTI]

    Balazs, Carolina L; Morello-Frosch, Rachel; Hubbard, Alan E; Ray, Isha

    2012-01-01

    implications of arsenic contamination in California’s SanHealth Impacts. In Water contamination and health. Edited byimplications of arsenic contamination in California’s San

  15. Collapse and Resurgence of the Valles Caldera, Jemez Mtns, NM...

    Open Energy Info (EERE)

    40Ar39Ar ages for rocks from the Valles caldera of New Mexico imply that resurgent uplift of the caldera floor occurred within 27 &plusmin; 27 k.y. of caldera collapse. Redondo...

  16. Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    SciTech Connect (OSTI)

    Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

    2008-11-01

    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

  17. Analysis of existing data from a Distributed Acoustic Sensing experiment at Garner Valley, California using noise correlation functions (PoroTomo Substask 3.2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xiangfang Zeng

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. ?https://agu.confex.com/agu/fm14/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  18. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect (OSTI)

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  19. Analysis of existing data from a Distributed Acoustic Sensing experiment at Garner Valley, California using noise correlation functions (PoroTomo Substask 3.2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xiangfang Zeng

    2015-03-26

    In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. ?https://agu.confex.com/agu/fm14/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf

  20. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    SciTech Connect (OSTI)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilities of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.

  1. Debris-flow benches: Dune-contact deposits record paleo-sand dune positions in north Panamint Valley, Inyo County, California

    SciTech Connect (OSTI)

    Anderson, S.P. (Univ., of California, Berkeley (USA)); Anderson, R.S. (Univ. of California, Santa Cruz (USA))

    1990-06-01

    Debris flows debouching onto the alluvial fan at the north end of Panamint Valley, California, have been episodically impounded behind sand dunes, resulting in boulder-strewn, nearly flat topped deposits in irregular basins upslope of the dune, whose upper surface is higher than the adjacent fan surface. Upslope migration of the dune field over and beyond these deposits eventually leaves them as debris-flow benches rising above the general fan surface. These features are therefore dune-contact forms, analogous to ice-contact forms such as kame terraces, in that both involve deposition against ephemeral barriers. Benches punctuate the alluvial-fan surface for 5 km downfan from the modern dune field. Clast seismic velocities of boulders on these benches indicate that bench ages increase monotonically with distance from the present dunes, implying that the dune field has migrated up the fan. Because the oldest bench is below the altitude of the highest pluvial lake shoreline in Panamint Valley (Gale Stage, ca. 50 ka) and slightly above the latest lakeshore (I Stage, ca. 14 ka), it seems likely that the dunes originated near the shore of the latest lake and have moved upfan at an average rate of 0.8 m/yr.

  2. Marking boundary : a didactic base camp facility between desert and mountain, along the Los Angeles aqueduct in Owens Valley, California

    E-Print Network [OSTI]

    Johns, Christopher Aaron, 1977-

    2004-01-01

    No problem for the future holds so great a potential for changing the quality of life in California as water and its supportive infrastructure. An obsession with water, which began with the infamous five words "there it ...

  3. A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO

    E-Print Network [OSTI]

    Wilt, M.

    2011-01-01

    of the ~lles Caldera geothermal system, New Mexico. Trans.of an active geothermal system in valles Caldera, Jemezarea, ~lles Caldera geothermal system, New Mexico. Los

  4. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    E-Print Network [OSTI]

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-01-01

    Silicon Valley with the I-Grid ® System Prepared for Imre Gyuk Energy StorageSilicon Valley with the I-Grid System Acknowledgments The authors thank Imre Gyuk, DOE Energy Storage

  5. Potential impacts of climate change on tropospheric ozone in California: A preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    E-Print Network [OSTI]

    Taha, Haider

    2001-01-01

    1700 PDT, July 13) in the Sacramento Valley, for cases CCMA1700 PDT, July 13) in the Sacramento Valley, for cases HCMBoard (CARB) 1995. “Sacramento Area Modeling Analysis for

  6. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Lachenbruch,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al., 1976)

  7. Time-Domain Electromagnetics At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy InformationTikanderEnergy1974) |

  8. Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...

    Open Energy Info (EERE)

    discharge, increase in fumarolic discharge, heat induced vegetation kills, and land subsidence. Factors responsible for such changes include seismic activity and related ground...

  9. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  10. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  11. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    and seismic data was conducted in 2003 to investigate the cause of recent uplift of the resurgent dome. Notes Modeling of deformation and microgravity data suggests...

  12. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and seismic data was conducted in 2003 to investigate the cause of recent uplift of the resurgent dome. Notes Modeling of deformation and microgravity data suggests...

  13. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    Diablo field between 1993 and 1995 prompted the construction of the Basalt Canyon Pipeline later in 2005 to support the MP-I plant with additional fluids from wells 57-22 and...

  14. Trace Element Analysis At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  15. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Activity Date - 1979 Usefulness useful DOE-funding Unknown Exploration Basis A1-horizon soil samples collected in the vicinity of the resurgent dome and a known geothermal source...

  16. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...

    Open Energy Info (EERE)

    - 2006 Usefulness useful DOE-funding Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  17. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line), the degree of energy balance...

  18. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Usefulness not indicated DOE-funding Unknown Notes "A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  19. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and the surrounding rocks. The casing in wells 13-26 and 68-28 were damaged during this process, prohibiting access to deeper parts of these wells below the perforation depth....

  20. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    estimated temperatures ranging from 240 to 273C, then flow laterally to the east and mix with cool groundwater that infiltrate and recharge the system along ring fractures and...

  1. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  2. Conceptual Model At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  3. Analytical Modeling At Long Valley Caldera Geothermal Area (White...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  4. Geothermometry At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  6. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  7. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    to about 610 m depth in a deep fault zone on the east side of the field. References Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects:...

  8. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    LVEW are best matched using modeled solutions for a flow system consisting of a rock matrix with finite hydraulic conductivity cut by a steeply dipping fracture with infinite...

  9. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by...

  10. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    in Menlo Park, CA. Low tritium values indicated that modern water injected during drilling andor recent (<50 years) meteoric recharge did not make up a significant...

  11. Hyperspectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral...

  12. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in...

  13. Multispectral Imaging At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults,...

  14. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    1983 to the east and north of Highway 395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a...

  15. Exploratory Boreholes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    excellent quality of these core holes yielded considerable new information into the stratigraphy beneath the southern moat zone, including evidence supporting the existence of a...

  16. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  17. Geothermometry At Long Valley Caldera Geothermal Area (McKenzie...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  18. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    resin. The resin was treated with 100 mL of 0.5 M sodium chloride in order to remove barium sulfate, which was precipitated by standard gravimetric methods, dried, and then...

  19. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

  20. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

  1. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of waters and gases from springs, wells, and steam vents;...

  2. Hydrologic and Geochemical Monitoring in Long Valley Caldera, Mono County,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,FuelEnergy Data

  3. Geothermal Literature Review At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) | Open1957) |Al., 2002)

  4. Geothermal Literature Review At Long Valley Caldera Geothermal Area (Sorey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) | Open1957) |Al., 2002)Et

  5. Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) | Open

  6. Drilling results from eastern Long Valley Caldera | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor Geothermal Resources Rules - Idaho Jump to:results

  7. Exploratory Well At Long Valley Caldera Geothermal Area (Suemnicht, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| OpenOpen Energy

  8. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance GeothermalOpen EnergyMclaren, 2010) |Et

  9. Static Temperature Survey At Long Valley Caldera Geothermal Area (Farrar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance GeothermalOpen EnergyMclaren, 2010)

  10. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) | Open(Battaglia,

  11. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) |

  12. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005MinnehahaElectricInformation2008) |(Newman, Et Al.,

  13. Multispectral Imaging At Long Valley Caldera Geothermal Area (Pickles, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN)Open EnergyOpenAl., 2001) |

  14. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, NewBranch Capital Jump to:Authority

  15. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open Energy

  16. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open

  17. Long Valley Caldera Field Trip Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite OnCounty Coop PowerEconomicsField

  18. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite OnCounty Coop

  19. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLite OnCounty CoopInformation

  20. Thermal Gradient Holes At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)

  1. Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitex Systems Jump to:County,

  2. Analytical Modeling At Long Valley Caldera Geothermal Area (White &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source Heat| Open

  3. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open

  4. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy Information

  5. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy

  6. Compound and Elemental Analysis At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) | Open Energy(McKenzie &

  7. Exploratory Boreholes At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirds || Open| OpenAl.,

  8. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey, 1985) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEvent PlanningBirds || Open|67)Open

  9. Hydrologic and Geochemical Monitoring in Long Valley Caldera, Mono County,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologiesInformation

  10. Hyperspectral Imaging At Long Valley Caldera Geothermal Area (Martini, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | Open EnergyOpen EnergyAl.,

  11. Isotopic Analysis At Long Valley Caldera Geothermal Area (Smith &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savings time.

  12. Magnetotelluric Transect of Long Valley Caldera: Resistivity Cross Section,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held &

  13. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpen EnergyEnergy(Pribnow, Et

  14. Modeling-Computer Simulations At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpen EnergyEnergy(Pribnow,

  15. Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy

  16. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy1984)

  17. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  18. Magnetotellurics At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  19. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  20. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

  1. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Abstract A...

  2. Multiple Ruptures For Long Valley Microearthquakes- A Link To...

    Open Energy Info (EERE)

    Tremor(Question) Abstract Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not...

  3. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  4. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.

    1992-06-01

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  5. Trends in the Sediment Yield of the Sacramento River, California, 1957–2001

    E-Print Network [OSTI]

    Wright, Scott A.; Schoellhamer, David H.

    2004-01-01

    Cenozoic tectonism of the Sacramento Valley, California:Public Information Officer, USGS Sacramento District Office.migration of the Middle Sacramento River, California: U.S.

  6. EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposed Midway Valley 3D Geophysical Exploration Project. Chevron U.S.A., Inc. and Santa Fe Energy Resources are proposing to conduct seismic...

  7. RESEARCH ARTICLE Caldera resurgence during magma replenishment

    E-Print Network [OSTI]

    City calderas Ben Kennedy & Jack Wilcock & John Stix Received: 16 February 2012 /Accepted: 30 June 2012 of thousands of years or less). (2) Immedi- ately before and during resurgence, dacite magma was intruded and developed faults and fractures. This fluid movement allows hydrothermal and geothermal systems to form

  8. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  9. Geologic interpretations of seismic scattering and attenuation for the Cianten Caldera and the surrounding area

    E-Print Network [OSTI]

    Hess, Clarion Hadleigh

    2013-01-01

    The Cianten Caldera in Indonesia is immediately adjacent to the producing portion of the Awibengkok geothermal field. The Cianten Caldera contains rocks similar to those in the Awibengkok field, however, the Cianten Caldera ...

  10. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    and the origin of the Sacramento Valley red fox Benjamin N.in arid habitats in the Sacramento Valley of California wellState University Sacramento, Sacramento, CA 95819, USA M. J.

  11. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area...

  12. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

  13. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water...

  14. Water Sampling At Valles Caldera - Sulphur Springs Area (Rao...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  15. Water Sampling At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  16. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas...

  17. Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Water Sampling At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  18. Thermal Evolution Models for the Valles Caldera with Reference...

    Open Energy Info (EERE)

    by commercial interests seeking hydrothermal resources. In addition, a number of test wells have been drilled just outside the calderas west margin by the Los Alamos...

  19. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas...

  20. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling...

  1. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area (Sasada, 1988)...

  2. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 1996 -...

  3. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...

  4. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  5. Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...

    Open Energy Info (EERE)

    Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles...

  6. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    temperature gradient, hydrogeochemical, hydrologic, and geologic data from 10 geothermal test wells and several hot springs were integrated to model the Valles caldera...

  7. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    temperature gradient, hydrogeochemical, hydrologic, and geologic data from 10 geothermal test wells and several hot springs were integrated to model the Valles caldera...

  8. Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  9. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data...

  10. Field Mapping At Valles Caldera - Redondo Geothermal Area (Bailey...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  11. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    based on surface mapping of the caldera. References Roy A. Bailey, Robert Leland Smith, Clarence Samuel Ross (1969) Stratigraphic Nomenclature of Volcanic Rocks in the Jemez...

  12. Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  13. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  14. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  15. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    respect to the caldera, to understand variations in gas compositions that occured during drilling and flow testing of the Valles scientific wells, and to compare Valles gases with...

  16. Direct-Current Resistivity Survey At Valles Caldera - Redondo...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Direct-Current Resistivity Survey At Valles Caldera - Sulphur...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Valles Caldera - Sulphur Springs Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  18. Compound and Elemental Analysis At Newberry Caldera Area (Goles...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Newberry Caldera Area (Goles & Lambert, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  19. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    E. Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA...

  20. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    E. Goff, Cathy J. Goff, Melissa Fittipaldo (2008) Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA...

  1. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  3. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  4. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  5. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Nishimura, Et Al., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  6. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  7. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Steck, Et Al., 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  8. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Nishimura, Et Al., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  9. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    this new map and cross sections represent the most current understanding of the stratigraphy, structure, and thermal gradients of the Valles caldera. The map and cross sections...

  10. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    this new map and cross sections represent the most current understanding of the stratigraphy, structure, and thermal gradients of the Valles caldera. The map and cross sections...

  11. Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Keiiti Aki, Michael C. Fehler (1995) A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico Additional References Retrieved from "http:...

  12. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  13. Structure and Stratigraphy Beneath a Young Phreatic Vent: South...

    Open Energy Info (EERE)

    Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. Glacial influence on caldera-forming eruptions Adelina Geyer a,

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    Glacial influence on caldera-forming eruptions Adelina Geyer a, , Ilya Bindeman b a CIMNE the world increasing productivity of mantle melting and eruptions from crustal magma chambers. However with the morphologically preserved calderas, correspond in time with "maximum glacial" conditions for the past several

  15. Type C: Caldera Resource | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy ResourcesLake,Fallon |WestTyonek,C: Caldera

  16. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville,Information 7thJersey: EnergyNewberry Caldera

  17. Caldera Rim Margins | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy ResourcesParish,Caldera Rim Margins Jump to:

  18. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  19. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  20. Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento

    E-Print Network [OSTI]

    Riparian Valley Oak (Quercus lobata) Forest Restoration on the Middle Sacramento River, California1 horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all that affect valley oaks on the Sacramento River floodplain will require additional study and more detailed

  1. HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1

    E-Print Network [OSTI]

    HABITAT AND POPULATIONS OF THE VALLEY ELDERBERRY LONGHORN BEETLE ALONG THE SACRAMENTO RIVER1 F, and Environmental Specialist, respectively, Jones & Stokes Associates, Inc., Sacramento, California. Abstract: Prior and Putah Creek in the Sacramento Valley, and along several rivers in the northern San Joaquin Valley

  2. Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...

    Open Energy Info (EERE)

    Evidence For An Ancient Avalanche Caldera Rim On The South Flank Of Mount Merapi, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  3. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Internal Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology...

  4. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

  5. Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico- Core Hole VC-2A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Scientific...

  6. California State University San Marcos 333 S. Twin Oaks Valley Road San Marcos, CA 92096-0001 Tel: 760.750.4408 Fax: 760.750.3240 rarlene@csusm.edu www.csusm.edu/advancement

    E-Print Network [OSTI]

    Puha, Amber

    Oaks Valley Road San Marcos, CA 92096-0001 Tel: 760 participates. 100% of your contribution is tax deductible Please return Marcos 333 S. Twin Oaks Valley Road San Marcos, CA 92096-0001 Questions

  7. Deposition trends of the Amnicola and Tulare sands, and relevance to the development of asphaltenes in a portion of the Cymric oil field, western San Joaquin Valley, California

    SciTech Connect (OSTI)

    Bell, P. (Irvine Valley College, CA (United States))

    1991-02-01

    The Cymric oil field is located on the southwestern margin of the San Joaquin Valley. The upper productive units include the lower Amnicola, and upper Tulare I and II sandstones. The Amnicola unit ranges from lacustrine to braided stream in depositional environment, it averages about 60 ft thick. The Tulare I and II sands are primarily braided stream to fan delta, with a thickness averaging about 300 ft total in the two units. The oil produced is of low gravity and is currently being produced by steamflood. The area studied is part of Chevron Fee land. Wells containing asphaltenes are strongly correlated to major channels within the producing units. A combination of flushing by meteoric water and possible biodegradation of the oil, which was migrating updip into these sands along higher porosity and permeability trends, resulted in the production of asphaltenes in the wells of a portion of the Cymric field. The development of a detailed stratigraphic framework allowed a recognition of a pattern to the problem wells, and suggested a plan of remediation and further planning for the development of the field. Certain other problem fields could be investigated by detailed stratigraphic means that could lead to better understanding of the placement of future well sites, or development of effective stream drive strategies with concomitant saving of time and field costs.

  8. Hydrology of Hydrothermal Systems in the Long Valley Caldera Hydrothermal activity in the Long Valley Caldera has had many different periods in its history of

    E-Print Network [OSTI]

    Polly, David

    the temperatures of the hydrothermal fluid. The geothermal systems and hydrothermal systems have been documented that the temperatures would be extremely high, akin to Yellowstone. But what they found were temperatures much lower). Hydrothermal Systems Summary Geothermal systems and the hydrothermal systems are an occurrence that happens

  9. Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport

    E-Print Network [OSTI]

    Singer, Michael

    Identifying eroding and depositional reaches of valley by analysis of suspended sediment transport in the Sacramento River, California Michael Bliss Singer and Thomas Dunne Donald Bren School of Environmental Science and Management, University of California Santa Barbara, California, USA Abstract. Spatial patterns

  10. Hot Spring Monitoring at Lassen Volcanic National Park, California 1983-1985

    SciTech Connect (OSTI)

    Sorey, Michael L.

    1986-01-21

    Data collected on several occasions between 1983 and 1985 as part of a hydrologic monitoring program by the U.S. Geological Survey permit preliminary estimation of the natural variability in the discharge characteristics of hydrothermal features in Lassen Volcanic National Park and the Lassen KGRA in northern California. The total rate of discharge of high-chloride hot springs along Mill Creek and Canyon Creek in the Lassen KGRA has averaged 20.9 {+-} 1.7 L/s, based on seven measurements of the flux of chloride in these streams. Measured chloride flux does not appear to increase with streamflow during the spring-summer snowmelt period, as observed at Yellowstone and Long Valley Caldera. The corresponding fluxes of arsenic in Mill Creek and Canyon Creek decrease within distances of about 2 km downstream from the hot springs by approximately 30%, most likely due to chemical absorption on streambed sediments. Within Lassen Volcanic National Park, measurements of sulfate flux in streams draining steam-heated thermal features at Sulphur Works and Bumpass Hell have averaged 7.5 {+-} 1.0 and 4.0 {+-} 1.5 g/s, respectively. Calculated rates of steam upflow containing, dissolved H{sub 2}S to supply these sulfate fluxes are 1.8 kg/s at Sulphur Works and 1.0 kg/s at Bumpass Hell.

  11. Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California

    E-Print Network [OSTI]

    2013-01-01

    initial results from the Sacramento River Project. Rest Ecolrestoration [Internet]. Sacramento (CA): CALFED Bay Deltasoil survey of the Sacramento Valley, California. U.S.

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  13. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  14. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

  15. Ward Valley status report: Science versus politics. Which will win?

    SciTech Connect (OSTI)

    Pasternak, A.D.

    1996-10-01

    The State of California has issued a license to US Ecology, Inc. to construct and operate a disposal facility for low-level radioactive waste (LLRW) at the remote, arid Ward Valley site in the Mojave Desert. The license and certification of the associated environmental documentation have been upheld by the California courts. The Ward Valley license is the first and, so far, only license to be issued for a new LLRW disposal facility pursuant to the Low-Level Radioactive Waste Policy Act enacted in 1980 and amended in 1985. However, the dates of construction and operation of the disposal facility are uncertain because the federal government has refused to sell land in Ward Valley to the State of California for the site of the Southwestern Compact`s regional disposal facility. The Clinton Administration`s repeated excuses for delaying the land transfer, and the circumstances of these delays, indicate that prospects for success of the Ward Valley project, and perhaps the Policy Act itself, depend on the outcome of a battle between science and politics. In view of these delays by the administration, Congressional action to Transfer the Ward Valley lands to California will serve both state and federal goals for safe disposal of LLRW.

  16. Project Reports for Scotts Valley Band of Pomo Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  17. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  18. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  19. Metropolitan Spillover and California's Central Valley

    E-Print Network [OSTI]

    Kroll, Cynthia A.

    1985-01-01

    SUTTER 67.0% TEHAMA 36.6% TULARE 62.4% YOLO 81.9% YUBA 71 4%San Joaquin, Stanislaus, and Tulare counties (see Figure 1).JOAQUIN STANISLAUS SUTTER TEHAMA TULARE YOLO YUBA _\\. _\\-—\\_

  20. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA

  1. Low velocity zone under Long Valley as determined from teleseismic events

    E-Print Network [OSTI]

    Steeples, Don W.; Lyer, H. M.

    1976-02-10

    A temporary seismograph station network was used to estimate teleseismic P wave residuals in the vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in the west central part of the Long Valley...

  2. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley impact crop produc- tion in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for 50

  3. X-Ray Diffraction (XRD) At Long Valley Caldera Geothermal Area (Flexser,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New1991) | Open Energy

  4. Water Sampling At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View NewOpen

  5. Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History View NewOpen| Open Energy

  6. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource History ViewInformation2003) | Open

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| Open

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al.,

  9. Trace Element Analysis At Long Valley Caldera Geothermal Area (Klusman &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergy FacilitiesInformationTown700 Jump to:Al., 2010)

  10. The Thermal Regime In The Resurgent Dome Of Long Valley Caldera...

    Open Energy Info (EERE)

    temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to...

  11. The Thermal Regime in the Resurgent Dome of Long Valley Caldera...

    Open Energy Info (EERE)

    temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to...

  12. X-Ray Diffraction (XRD) At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  13. A Core Hole in the Southwestern Moat of the Long Valley Caldera...

    Open Energy Info (EERE)

    and serves as access for monitoring changes in water level, temperatures, and fluid chemistry. Authors Harold A. Wollenberg, Michael L. Sorey, Christopher D. Farrar, Art F....

  14. Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| OpenAl., 1979)Al., 2003) |

  15. Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi: EnergyThermal Data And Deep

  16. Geodetic Survey At Long Valley Caldera Geothermal Area (Newman, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpenTechniques Jump to:New

  17. Geologic Map of the Long Valley Caldera, Mono-Inyo Craters Volcanic Chain,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | Open Energy2005) |(Laney,Jemezand

  18. Geothermometry At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) |

  19. Geothermometry At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFishOpen Energy1976) || Open

  20. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard(Kauahikaua & Klein,(Pribnow,

  1. Exploratory Well At Long Valley Caldera Geothermal Area (McNitt, 1963) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen

  2. Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| Open Energy

  3. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative CoolersExosun SasOpen| Open

  4. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolarProjectHill,EnergyEnergyEnergySoil1979)

  5. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman & Landress,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump1.2619821°, -80.1875065°Information1983) | Open1979)

  6. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel Biodieself rIngos PresovCore

  7. Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt.Infinifuel Biodieself rIngos PresovCore1993) |

  8. Isotopic Analysis At Long Valley Caldera Geothermal Area (Evans, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformation Goff, Et Al.,2002) | Open

  9. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open Energy(1990)|Al.,

  10. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | Open

  11. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Taylor &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) | OpenGerlach, 1983) |

  12. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996) |(Musgrave,Area2006)

  13. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (McKenzie &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,Open Energy Information1996)Al., 2003)Truesdell,

  14. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and Electric JumpDensityRiver

  15. Technical Geologic Overview of Long Valley Caldera for the Casa Diablo IV

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to: navigation,

  16. The Near-Surface Hydrothermal Regime of Long Valley Caldera | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgram Jump to:Information

  17. The Thermal Regime In The Resurgent Dome Of Long Valley Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgramSulFerox process

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)Al.,

  19. Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergy Information Thomas,Little|

  20. Water Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergy Information Thomas,Little||

  1. Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:Energy Information AreaEnergy Information

  2. A Core Hole in the Southwestern Moat of the Long Valley Caldera: Early

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergy Information Of The(Sichuan,

  3. A Transient Model of the Geothermal System of the Long Valley Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |RecentSulfonate as a Liquid-Phase Tracer at

  4. Casa Diablo/Long Valley Caldera Area, Mono County | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan:North Carolina:Wisconsin:

  5. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989)

  6. Conceptual Model At Long Valley Caldera Geothermal Area (Sorey, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002) ||Open EnergyOpen Energy1989)1991)

  7. Core Analysis At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy ResourcesCorbin2009)Open Energy|

  8. Core Holes At Long Valley Caldera Geothermal Area (Chu, Et Al., 1990) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen

  9. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988) | Open

  10. Core Holes At Long Valley Caldera Geothermal Area (Urban, Et Al., 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988) | OpenOpen

  11. Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007) Jump to:|Information|

  12. Field Mapping At Long Valley Caldera Geothermal Area (Sorey, 1985) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto ElectricMonaster And Coolbaugh, 2007) Jump

  13. Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint Geothermal AreaOpen Energy

  14. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind Jump

  15. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind Jump2008) | Open

  16. Ground Gravity Survey At Long Valley Caldera Geothermal Area (Laney, 2005)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New PagesInformationEnergy Information 2) JumpHot PotOpen|

  17. Hydrothermal Regime of the Southwest Moat of the Long Valley Caldera, Mono

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy Information Exploration

  18. Isotopic Analysis At Long Valley Caldera Geothermal Area (Goff, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savings time. |Information

  19. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savingsInformation 2007)

  20. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savingsInformationRock JumpOpen

  1. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) | OpenEnergy2004)

  2. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedicalInformation 2-2005)1995) |

  3. A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9) Jump to:13:28-07:00EboroNHawaii

  4. Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCoreField |

  5. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCoreField |1976)

  6. Cuttings Analysis At Long Valley Caldera Geothermal Area (Pribnow, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) Wind Farm JumpAlum| Open Energy2005) |

  7. Deep Drilling to the Magmatic Environment in Long Valley Caldera | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project)AreaDayDeadCounty,Energy

  8. Development Wells At Long Valley Caldera Geothermal Area (Holt & Campbell,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper| Open Energy1984) |

  9. 36Cl as a tracer in geothermal systems- Example from Valles Caldera...

    Open Energy Info (EERE)

    en.openei.orgwindex.php?title36Clasatraceringeothermalsystems-ExamplefromVallesCaldera,NewMexico&oldid739991" Categories: Reference Materials References Geothermal...

  10. 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...

    Open Energy Info (EERE)

    and biotite 40Ar39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of...

  11. The 1989 Earthquake Swarm Beneath Mammoth Mountain, California...

    Open Energy Info (EERE)

    Activity Abstract Mammoth Mountain is a 50,000- to 200,000-year-old cumulovolcano standing on the southwestern rim of Long Valley in eastern California. On 4 May 1989, two M ...

  12. Smoothing the Flow of Renewable Solar Energy in California's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy in California's Central Valley May 23, 2014 - 3:21pm Addthis This EnerVault flow battery stores power from the solar panels and releases it as needed. | Photo courtesy of...

  13. PRACTICAL TECHNIQUES FOR VALLEY ELDERBERRY LONGHORN BEETLE MITIGATION1

    E-Print Network [OSTI]

    -24, 1988, Davis, California 2 Resource Ecologist, Jones & Stokes Associates Inc., Sacramento, Calif.; Entomologist, U.S. Fish and Wildlife Service, Sacramento Endangered Species Office, Sacramento Calif of Flood Management, Sacramento Calif.; Owner and Manager, Cornflower Farms, Elk Grove, Calif. The valley

  14. Boron-lithium relationships in rhyolites and associated thermal waters of young silicic calderas, with comments on incompatible element behavior

    SciTech Connect (OSTI)

    Shaw, D.M. (McMaster Univ., Hamilton, Ontario (Canada)); Sturchio, N.C. (Argonne National Lab., IL (United States))

    1992-10-01

    This study had three goals: (1) to study B distribution in a rhyolitic volcanic sequence already extensively investigated for other elements; (2) to interpret the joint behavior of B and Li during the interaction of such rocks with subsurface waters; and (3) to assess the manner in which water affects the behavior of incompatible elements such as B and Gd. New B, Gd, and Sm analyses have been made on a suite of Yellowstone rhyolites, including fresh and partially devitrified glassy obsidian from surface exposures of several flows, a drill-core of increasing degrees of alteration in the Biscuit Basin Flow, and two drill-cores from other flows. Within the Biscuit Basin Flow, the Sm and Gd concentrations remain rather constant and behave conservatively, independent of alteration. Boron decreases from about 10 to 3 ppm with progressive alteration, and Li increases from about 40 ppm by a factor of 2-3 in the most altered rocks. Obsidians from the Valles and Long Valley calderas show greater Li loss during alteration. All the rhyolitic rocks lose B during aqueous alteration; the waters acquire both B and Li, but proportionately much more B. Natural waters of all kinds, including those from the three calderas, show six orders of magnitude range in aqueous B and Li, with a high degree of linear correlation and an average ratio B/Li essentially constant at 4.0. The linearity mainly expresses processes of dilution and concentration: reactions specific to B or Li engender waters with deviating B/Li.

  15. Ground-Dwelling Arthropod and Small Mammal Responses to Anthropogenic Disturbances Within Southern California Deserts: From Plant Invasions to Altered Fire Regimes

    E-Print Network [OSTI]

    Hulton VanTassel, Heather Lynn

    2015-01-01

    selected California sand dunes. Bureau of Land Management,Coachella Valley sand dunes, Coleoptera: (Tenebrionidae).schemes within a desert sand dune landscape. Journal of Arid

  16. An empirical-stochastic, event-based program for simulating inflow from a tributary network: Framework and application to the Sacramento River basin, California

    E-Print Network [OSTI]

    Singer, M B; Dunne, T

    2004-01-01

    tributaries of the Sacramento River, California, report,sensitivities of the Sacramento-San Joaquin River basin,Historical flooding in the Sacramento Valley, Pac. Hist.

  17. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles Caldera - Redondo

  18. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvaldeValles Caldera - RedondoValles

  19. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to: navigation,Valles Caldera

  20. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect (OSTI)

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  1. California's Housing Problem

    E-Print Network [OSTI]

    Kroll, Cynthia; Singa, Krute

    2008-01-01

    only improve California’s housing opportunities but produce2004: California’s Affordable Housing Crisis. 2004. http://Raising the Roof: California Housing Development Projections

  2. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Long Valley Caldera, Eastern California, Usa Abstract A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  3. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Long Valley Caldera, Eastern California, USA Abstract A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and...

  4. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  5. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  6. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008)

  7. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl.,

  8. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  9. NV PFA - Steptoe Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  10. The Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico...

    Open Energy Info (EERE)

    volume of 316 km3. Assuming approximately equal caldera fill, outflow, and distal ash volumes in large ignimbrites to the Otowi Member yields a value of 474 km3 DRE for the...

  11. 40Ar/39Ar Geochronology of Post-Valles Caldera Rhyolites, Jemez...

    Open Energy Info (EERE)

    40Ar39Ar Geochronology of Post-Valles Caldera Rhyolites, Jemez Volcanic Field, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 40Ar...

  12. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008) |2009)

  13. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl., 2008)(Roberts,

  14. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    E-Print Network [OSTI]

    Jin, Ling

    2010-01-01

    Vertical distribution of ozone at four sites in the UnitedAltshuler, S. ; Franco, G. Ozone formation in California'sSeinfeld, J. H. Analysis of ozone in the San Joaquin Valley

  15. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  16. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  17. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    SciTech Connect (OSTI)

    Sorey, M.L.; Evans, W.C. [U.S. Geological Survey, Menlo Park, California (United States)] Kennedy, B.M. [Lawrence Berkeley National Laboratory, Berkeley, California (United States)] Farrar, C.D. [U.S. Geological Survey, Carnelian Bay, California (United States)] Hainsworth, L.J. [Chemistry Department, Emory and Henry College, Emory, Virginia (United States)] Hausback, B. [Geology Department, California State University, Sacramento

    1998-07-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N{sub 2}/Ar ratios and nitrogen isotopic values indicate that the Mammoth Mountain gases are derived from sources separate from those that supply gas to the hydrothermal system within the Long Valley caldera. Various data suggest that the Mammoth Mountain gas reservoir is a large, low-temperature cap over an isolated hydrothermal system, that it predates the 1989 intrusion, and that it could remain a source of gas discharge for some time. {copyright} 1998 American Geophysical Union

  18. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    truck activity in California. Transport Policy. Volume 16,in California Travel Demand Reductions Decreasing transportCalifornia, USA. Transportation Research, Part D: Transport

  19. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process Commission approved a petition to add SCR systems to each of their three turbine units. The addition of SCR was required to meet the San Joaquin Valley Air Pollution Control District's (District) revised Rule 4703 NOx

  20. STATE OF CALIFORNIA _ THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    in Fellows in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process inconsistencies between the San Joaquin Valley Air Pollution Control District's permit issued to MSCC for each combustion turbine generators. · Revise the compliance test submittal time frame from 30 days

  1. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  2. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  3. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  4. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  5. Inversion for sources of crustal deformation and gravity change at the Yellowstone caldera

    SciTech Connect (OSTI)

    Vasco, D.W.; Taylor, C.L. (Geophysics Lab., Hanscom AFB, MA (USA)); Smith, R.B. (Univ. of Utah, Salt Lake City (USA))

    1990-11-10

    The Yellowstone caldera was formed in the latest of three explosive eruptions of rhyolites and ash flow tuffs totaling 3,700 km{sup 3} at 2, 1.2, and 0.6 m.y. before present. Its youthful volcanic history, widespread hydrothermal activity, intense seismicity, and extremely high heat flow, in excess of 30 times the continental average, marks the Yellowstone volcanic system as a giant caldera at unrest. Orthometric height increases of the caldera of up to 76 cm, measured from precise leveling surveys from 1923 to 1975-1977, were inverted to determine volume expansion source models for the caldera-wide deformation. For the 1923 to 1977 uplift episode, two regions of expansion were found: (1) in the northern part of the caldera near the Sour Creek resurgent dome of {approximately}0.37 km{sub 3}, and (2) in the southern part of the caldera, near the Mallard Lake resurgent dome of {approximately}0.41 km{sub 3}. Both bodies occur in the upper crust from near-surface depths to 6.0 km, but the largest volume expansions were found in the 3.0-6.0 km depth range. The southern caldera source volume, near the Mallard Lake dome, may extend down to 9.0 km. From 1976 to 1987, nearly simultaneous measurements of elevation and gravity changes were made on a profile across the northern caldera during a period of net uplift. Models of the temporal gravity variation infer that the volume increase for the northern caldera source must lie above 9.0 km and involved a density perturbation greater than +0.002 g/cm{sup 3}. The modeled volumetric sources are in the same general locations as bodies of low P wave velocities, high seismic attenuation, and large negative Bouguer gravity anomalies. It is likely that the modeled volumetric increases were caused by migration of magmas and/or the introduction of large volumes of hydrothermal fluids into the upper crust.

  6. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  7. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl.,Geothermal

  8. Harvesting Clean Energy How California Can Deploy Large-Scale Renewable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Harvesting Clean Energy How California Can Deploy Large-Scale Renewable Energy Projects Harvesting Clean Energy: How California Can Deploy Large-Scale Renewable Energy Projects on Appropriate acres of impaired lands in the Westlands Water District in the Central Valley may soon have

  9. Biogenic emissions from Citrus species in California Silvano Fares a,b,*, Drew R. Gentner c

    E-Print Network [OSTI]

    Goldstein, Allen

    Biogenic emissions from Citrus species in California Silvano Fares a,b,*, Drew R. Gentner c , Jeong May 2011 Accepted 26 May 2011 Keywords: BVOC emissions OVOC Terpene Basal emission rate Citrus a b such as the Central Valley of California. Moreover, the BVOC emissions from Citrus species have not been characterized

  10. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect (OSTI)

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  11. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  12. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    SciTech Connect (OSTI)

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  13. -California -Washington

    E-Print Network [OSTI]

    with Hawaii-based U.S. fisheries, as well as the fleets of other Pacific Rim nations. As such, the managementPacific - California - Oregon - Washington #12;Regional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed

  14. California's Environmental

    E-Print Network [OSTI]

    California at Davis, University of

    SB 375 and California's Environmental Goals Louise Bedsworth Deputy Director Governor's Office of Planning and Research January 22, 2014 UC Davis Policy Forum Series #12;A vision for California's future Strong economy Thriving urban areas Prosperous rural regions Clean Environment Clean and efficient energy

  15. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open Energy Information Dixie ValleyAl.,Geothermal Area

  17. Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by

    E-Print Network [OSTI]

    McCaffrey, Robert

    Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained and Geophysical Agency, Jakarta, Indonesia R. McCaffrey, D. A. Wark, and S. W. Roecker Department of Earth@rpi.edu) Fauzi and G. Ibrahim Meteorological and Geophysical Agency, Jakarta, Indonesia (fauzi@bmg.go.id) Sukhyar

  18. Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights

    E-Print Network [OSTI]

    Bindeman, Ilya N.

    Large-volume Rhyolite Genesis in Caldera Complexes of the Snake River Plain: Insights from-volume rhyolites in the shallow crust is an im- portant, yet enigmatic, process in the Snake River Plain and world; rhyolite; Snake River Plain, zircon *Corresponding author. E-mail: kwatts@uoregon.edu y E-mail: address

  19. Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua

    E-Print Network [OSTI]

    Williams-Jones, Glyn

    Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua Glyn Williams-gravity; passive degassing; persistent activity; convection 1. Introduction Located in western Nicaragua, Masaya. The main edi¢ce-building activity 0377-0273 / 03 / $ ^ see front matter ß 2003 Elsevier Science B.V. All

  20. Spring Valley Public Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting Program Info Sector Name Utility Administrator Spring Valley Public Utilities Website http:www.SaveEnergyInSpringValley.com State Minnesota Program Type Rebate...

  1. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  2. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  3. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  4. UNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA -FRESNO

    E-Print Network [OSTI]

    Hansen, James E.

    UNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA - FRESNO CENTRAL VALLEY CHRYSLER Report, Abridged Text with all 48 Figures was submitted to United States District Court, Eastern District, decreased snow-pack in certain mountain ranges, increased strength of storms driven by latent heat

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    economy from today’s levels, cutting energy consumption pertoday, though they will likely continue to improve and be refined over time. California’s Energy

  6. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  7. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    2000. California’s Energy Crisis, Whittington Vogel, Nancy (23 2001. California’s Energy Crisis, Whittington Girion,of” California’s Energy Crisis Jan Whittington Abstract This

  8. CaliforniaFIRST (California) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Photovoltaics Solar Water Heat Program Info State California Program Type PACE Financing The CaliforniaFIRST Program is a Property Assessed Clean...

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  10. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  11. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  12. West Puente Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago,Islip,Point Treatment PlantPuente

  13. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    (Company Institution) Ram Power, Inc. Awardee Website http:www.rampower.co.ukindex.php Funding Opportunity Announcement DE-FOA-0000109 DOE Funding Level (total award...

  14. Achieving Sustainability inCalifornia’s CentralValley

    E-Print Network [OSTI]

    Lubell, Mark; Beheim, Bret; Hillis, Vicken; Handy, Susan L.

    2009-01-01

    Redevelopment (9) • Eco-Industrial Park Development •Redevelopment (9) • Eco-Industrial Park Development •

  15. Achieving Sustainability inCalifornia’s CentralValley

    E-Print Network [OSTI]

    Lubell, Mark; Beheim, Bret; Hillis, Vicken; Handy, Susan L.

    2009-01-01

    solar, wind, and hydroelectric power. The goal is to be ablesolar, wind, and hydroelectric power. Barriers and Catalysts

  16. Grass Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrass

  17. Spring Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention andWell LogMount,Arizona:

  18. Mill Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to:Utah: EnergyMiljobil

  19. New River Geothermal Research Project, Imperial Valley, California

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio:Archaeological PermitsMilford,

  20. City of Moreno Valley,, California (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (Utility Company)Menasha,Monroe City,Moran,

  1. Apple Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,Summaries | Open EnergyRoadmap andApiWestApple

  2. Resistivity studies of the Imperial Valley geothermal area, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtdEnergyResidentialAlumDOEOpen

  3. Searles Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISaveScrippsSearch Home >Searles

  4. The Owens Valley Fault Zone Eastern California and Surface Faulting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgram JumpOpus Group Jump

  5. Yucca Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBR SolarYemenYucaipa,

  6. Cherry Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergyEnergyChengduSouthTree, Oklahoma:

  7. Geochemistry of Thermal Waters in Long Valley, Mono County, California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGemini SolarMichigan:Region,Reservoir| OpenOpen

  8. Moreno Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:

  9. Moreno Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:

  10. Morongo Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:Light JumpMorocco:

  11. Crustal Structure and tectonics of the Imperial Valley Region California |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-LaminatedCruisingOpen Energy

  12. California Valley Solar Ranch Biological Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministration ofSmall Vertical|<

  13. CALIFORNIA ENERGY COMMISSION California Energy Commission

    E-Print Network [OSTI]

    , CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY., LOCAL ENERGY AGGREGATION NETWORK, DR. LUIS PACHECO, PRESENTE.ORG, SIERRA CLUB, SOLAR ENERGY INDUSTRIES ASSOCIATION, AND THE VOTE SOLAR INITIATIVE FOR SOCIETAL COST-BENEFIT EVALUATION OF CALIFORNIA'S NET ENERGY

  14. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    and Chinook salmon bioenergetics: temperature, ration andOncorhynchus tshawytscha ) bioenergetics model. CanadianAS, Gross, ML. 1985. Bioenergetics of juvenile salmon during

  15. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    River and Fresno Slough to Tulare Lake and beyond (Figure 3-wet years, overflow from Tulare Lake passed down FresnoFresno Slough, connecting Tulare Lake and the San Joaquin

  16. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    serve for both flood control and water storage, and arefor both flood control and water storage. The reservoirs areSan Francisco Regional Water Quality Control Board, Oakland,

  17. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    effects of environmental heat stress on heat-shock mRNA andor other stresses induces synthesis of small "heat shock "

  18. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    rates for the upstream and downstream release groups, whichmonitoring of upstream and downstream migrants. Mostof fish released upstream or downstream of the Delta, most

  19. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    such as harvest, hatchery production, and water management.FR, St FR Sport Harvest Funded by Yuba County Water Agency,HARVEST Among the king salmon taken … by trolling in the salt water

  20. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    Management 24:198-210. Marr, DHA. 1965. The influence ofSociety 3(XVII):33. Marr, DHA. 1963. The influence ofBB, Scarnecchia, DL, La Marr, TJ. 1994. Summer distribution

  1. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    Oregon: Bonneville Power Administration. Annual ReportProposal to Bonneville Power Administration. NMFS. Bottom,migration. Bonneville Power Administration. Annual Report

  2. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    through June of around 4,000 cfs are required to produceadults and of around 7,500 cfs are required for runs ofRiver was above about 20,000 cfs, high when flow was less

  3. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    presumably two years old, or as “adults. ” The rationale forof returning adults, as 2-year old and small 3-year old fishSamples from adult returns % 6 yr-old Other early data are

  4. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    releases into the river from a hydropower project. Data fromSymposium on small hydropower and fisheries; Bethesda,instream flow needs in hydropower licensing. Palo Alto, CA:

  5. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    the bottom of migrating dredge ponds and were subsequentlypractice and rearing pond, there was great variation in thedepressions that become isolated ponds; even if the ponds do

  6. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    Kondolf, M, Grimaldo, L, Sommer, T, Killam, D, Brown, M,htm Feyrer, F, Sommer, T, Harrell, W. 2006. Importance ofFish Bulletin No. 34. Sommer, TR, Nobroga, ML, Harrell, WC,

  7. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    in the fall and winter, and neither term seems quite apt forand most populations are neither completely isolated nor1992). The fish sampled are neither a random nor a uniform

  8. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    hsp assays for monitoring temperature stress was confirmedB) water temperatures at the Pool 4 monitoring site in themean temperature greater than 21°C at a monitoring site (

  9. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    to capture drifting insects, their main food. For example,insects, especially waterboatmen, and crustaceans were the main foodinsects in stomachs provide evidence of the importance of riparian vegetation as a source of food.

  10. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    Data from Hill and Webber (1999) and Ward et al. (2004a,b).Data from Hill and Webber (1999) and Ward et al. (2004a,b).Hill and Webber 1999; Sommer et al. 2001; 2004; Ward et al.

  11. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01

    heavily modified by hydraulic mining, dams and diversions,modified by hydraulic mining, irrigation dams andOR. 1940. Hydraulic mining and debris dams in relation to

  12. Explosion at Hapton Valley Colliery, Lancashire 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 By H. S. ...

  13. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  14. California: California’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

  15. CALIFORNIA INVESTMENT PLAN FOR THE

    E-Print Network [OSTI]

    . California Air Resources Board California Energy Commission Gerhard Achtelik Mike Smith Independent Oil Marketers Association Gerald Secundy, California Council for Environmental and Economic and Anthony Brunello, California Resources Agency Rick Shedd, California Department of General Services John

  16. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan­ dersteg valley and 1100 feet above, there is another, smaller, secret valley---the Gasterntal. Flat green fields

  17. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan- dersteg valley and 1100 feet above, there is another, smaller, secret valley--the Gasterntal. Flat green fields

  18. MANAGEMENT OF AGRICULTURAL WASTES LOWER FRASER VALLEY

    E-Print Network [OSTI]

    #12;MANAGEMENT OF AGRICULTURAL WASTES IN THE LOWER FRASER VALLEY SUMMARY REPORT - A WORKING DOCUMENT Presented on Behalf of: The Management of Agricultural Wastes in the Lower Fraser Valley Program of the Agricultural Nutrient Management in the Lower Fraser Valley program. The ideas and opinions expressed herein do

  19. Elastomechanical methods in the exploration of the Valles Caldera, New Mexico. Final report, June 8, 1981-October 8, 1981

    SciTech Connect (OSTI)

    Bodvarsson, G.

    1981-01-01

    The Valles caldera in the Jemez Mountains of New Mexico is a case of an active caldera that is an object for a comprehensive ground tilt field program to map both elastic and rheic discontinuities. Based on a rather comprehensive theoretical development that is outlined in five separate Essays, estimates of the amplitudes of some of the possible ground tilt signals were obtained. Based on the results, the strongest signals of the order of 100 to 200 nanoradians would appear to result from the purely elastic response of the caldera fill to a barometric forcing. Moreover, assuming a magmatic underplate below the Valles, barometric forcing may lead to a flexure of the upper crust that could generate tilt signals of a similar magnitude. Present data material is insufficient to allow a useful estimate to be made of the possible tilt signals due to the rheic properties of a Valles pluton that may be in the state of partial fusion.

  20. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  1. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect (OSTI)

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  2. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  3. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    Francisco 20% have a garage · About 50% of USA, California new car buyers have a stable parking spot 25 feetUCDavis University of California A California Energy Commission Public Interest Energy Research · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End of life Spatial

  4. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  5. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100 public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear

  6. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    much individual California power plants increased earningspower plants were popular developments in California, butno new power plants had been constructed in California over

  7. Ancillary services market in California

    E-Print Network [OSTI]

    Gomez, Tomas; Marnay, Chris; Siddiqui, Afzal; Liew, Lucy; Khavkin, Mark

    1999-01-01

    www.caiso.com). California Power Exchange. 1998. PX Primer:Source: California Power Exchange) . 2 CaliforniaControl Automated Power Exchange Ancillary Service Balancing

  8. WESTWARD MIGRATING IGNIMBRITE CALDERAS AND A LARGE RADIATING MAFIC DIKE SWARM OF OLIGOCENE AGE, CENTRAL RIO GRANDE RIFT, NEW MEXICO

    E-Print Network [OSTI]

    Borchers, Brian

    WESTWARD MIGRATING IGNIMBRITE CALDERAS AND A LARGE RADIATING MAFIC DIKE SWARM OF OLIGOCENE AGE, CENTRAL RIO GRANDE RIFT, NEW MEXICO: SURFACE EXPRESSION OF AN UPPER MANTLE DIAPIR? CHAMBERLIN, Richard M., CHAPIN, Charles E., and McINTOSH, William C., New Mexico Bureau of Geology and Mineral Resources, New

  9. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    SciTech Connect (OSTI)

    Reheis, M.C.; Noller, J.S.

    1991-09-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    policy implications.   Energy Policy.   2009. 37 (12). ppin Southern California”, Energy Policy, 39 (2011) 1923–1938.and Policy and Director, Sustainable Transportation Energy

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    in California PEV Technology and Costs The main challengesthis analysis. FCV Technology and Costs A hydrogen fuel cell6. Hydrogen storage technology and cost status compared to

  12. The Hunter Valley Access Undertaking

    E-Print Network [OSTI]

    Bordignon, Stephen; Littlechild, Stephen

    2012-04-25

      13  FERC  staff  play  a  similar  role  with  respect  to  rate  applications  by  interstate  pipeline  and  transmission networks in the US. (Littlechild 2011)  EPRG No.1206...  coal from mines in the Hunter Valley region to  the Port of Newcastle  for export. Approximately 16  coal producers have either  existing or planned operations in the region, and it has been estimated that the  coal  shipped  on  the  network  equates  to  around  $9  billion  worth  of  export...

  13. High temperature affects olive fruit fly populations in California’s Central Valley

    E-Print Network [OSTI]

    2011-01-01

    is associated with heat stress that the flies experience insources to survive heat stress, it may be best to continueCombined effects of heat stress and food supply on flight

  14. Salmon Lifecycle Considerations to Guide Stream Management: Examples from California’s Central Valley

    E-Print Network [OSTI]

    Merz, Joseph E.; Workman, Michelle; Threloff, Doug; Cavallo, Brad

    2013-01-01

    such as predation, harvest, and water quality affect anand commercial harvest, habitat conditions and water qualitywater quality degradation, invasive species, harvest, and

  15. Targeting Agriculture: Air Quality Policy in California’s San Joaquin Valley

    E-Print Network [OSTI]

    Cline, Kurt

    2015-01-01

    J. Bier. 2003. “Davis to Voice Air Bill Support: GovernorDavis, material from the governor’s chap- tered bill files (

  16. The Dynamics of Social Indicator Research for California’s Central Valley in Transition

    E-Print Network [OSTI]

    DeLugan, Robin M.; Hernandez, Marcia D.; Sylvester, Dari E.; Weffer, Simón E.

    2011-01-01

    across our urban and rural communities and compliments (orto select urban and rural communities, provide data onin selected urban and rural communities in the Central San

  17. Salmon Lifecycle Considerations to Guide Stream Management: Examples from California’s Central Valley

    E-Print Network [OSTI]

    Merz, Joseph E.; Workman, Michelle; Threloff, Doug; Cavallo, Brad

    2013-01-01

    Lower Mokelumne River fall- run Chinook salmon escapementviability of Sacramento River winter-run Chinook salmon (estimation of Mokelumne River fall-run Chinook salmon (

  18. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  19. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  20. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...