Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

118-K-1 Burial Ground - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant 118-K-1 Burial Ground Email Email Page | Print Print Page |Text Increase...

2

Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

3

Cleanup Verification Package for the 618-8 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

M. J. Appel

2006-08-10T23:59:59.000Z

4

Cleanup Verification Package for the 118-F-1 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

E. J. Farris and H. M. Sulloway

2008-01-10T23:59:59.000Z

5

Digging Begins at Hazardous Hanford Burial Ground - River Corridor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Digging Begins at Hazardous Hanford Burial Ground - River Corridor Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 Digging Begins at Hazardous Hanford Burial Ground - River Corridor Contractor Spent Two Years Preparing to Remediate 618-10 August 3, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE Cameron.Hardy@rl.doe.gov 509-376-5365 Todd Nelson, Washington Closure media@wch-rcc.com 509-372-9097 RICHLAND, WASH. - After careful preparation and characterization, the Department of Energy's (DOE) River Corridor contractor, Washington Closure Hanford, has begun remediation of one of the most hazardous burial grounds tackled to date on the Hanford Site's River Corridor. The $57 million American Recovery and Reinvestment Act project began with nearly two years of preparation and characterization before reaching their

6

Cleanup Verification Package for the 118-F-6 Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

H. M. Sulloway

2008-10-02T23:59:59.000Z

7

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, 3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1997 EA-1203: Finding of No Significant Impact Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington July 28, 1997 EA-1203: Final Environmental Assessment Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington

8

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Widening Trench 36 of the 218-E-12B Low-level Burial 76: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of Energy Hanford Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 11, 1999 EA-1276: Finding of No Significant Impact Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington February 11, 1999 EA-1276: Final Environmental Assessment Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site,

9

618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned  

SciTech Connect

A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

Darby, J. W.

2012-06-28T23:59:59.000Z

10

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

11

Vegetation uptake from burial ground alpha waste trenches  

SciTech Connect

This study was conducted as part of an evaluation of the potential radiological consequences of reinhabiting the SRS burial ground. The objective was to determine the uptake of buried, low-level, transuranic waste from unlined earthen trenches by forest vegetation. Two tree plots were established in 1979. One plot was put over a trench containing alpha waste and the other in an area without trenches. When the tree seedlings were sampled during 1979 and 1980, and analysized for {sup 239}Pu and {sup 238}Pu, there was only a small difference in radionuclude concentration between trees planted over the trench and those planted on the control plot because of the limited root intrusion into the trench by the seedlings. However, when trees were sample in 1986, 1987, and 1988 and analyzed for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 237}Np activity, the average activity of all of these isotopes was significantly higher over the trenches than in the control plot. These measurements indicate that tree roots will extract transuranic isotopes from buried, low-level waste. The amount of radioisotopes moved from the trenches to the surface is small and the level in the trees is low enough that dose from exposure will be small. The long term effects of transport of radioisotopes from the trenches to the surface soil was evaluated by estimating the accumulation in the surface soil. Transuranic activity in selected food crops was calculated using the soil activity and the literature derived concentration factors. In all cases, the activity of the transuranic isotopes in the edible portion of the plants was quite low. The activity in the leaf tissue was much higher than in the seed. However, it should be noted that in only one case was the activity higher than the naturally occurring activity of {sup 40}K in the pine foliage.

Murphy, C.E. Jr.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

12

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

13

Hanford facility dangerous waste permit application, low-level burial grounds  

SciTech Connect

The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

Engelmann, R.H.

1997-08-12T23:59:59.000Z

14

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-07-01T23:59:59.000Z

15

Transuranic element uptake and cycling in a forest over an old burial ground  

SciTech Connect

The consequences of returning the Savannah River Site (SRS) burial ground area to general public access at the time of completion of the SRS mission is being investigated. This study includes evaluation of the radiological impact to inhabitants of the area under a number of scenarios that include the return of the land to farming or forestry use with or without exhumation of the buried waste.

Murphy, C.E. Jr.; Tuckfield, J.C.

1992-01-01T23:59:59.000Z

16

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

17

Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...  

Open Energy Info (EERE)

Area (Schaefer, 1983) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1983 - 1983 Usefulness...

18

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

19

Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds  

SciTech Connect

Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier to mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.

Phillips, S.J.; Fischer, D.D.; Crawford, R.C. [Westinghouse Hanford Co., Richland, WA (United States); Rising, J.L. [Pacific Northwest Lab., Richland, WA (United States)

1982-06-01T23:59:59.000Z

20

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text  

SciTech Connect

This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

22

Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds  

SciTech Connect

The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

None

2006-03-30T23:59:59.000Z

23

A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994  

SciTech Connect

This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

1994-11-01T23:59:59.000Z

24

Source terms of radionuclides in shallow-land-burial sites. [Maxey Flats, West Valley, Barnwell, Sheffield  

SciTech Connect

A research program is under way to provide source term data on the chemical and radionuclide contents of trench waters at low level radioactive waste disposal sites and to provide information on the geochemical behavior of radionuclides under simulated field conditions. Trench waters were sampled at four commercial waste burial sites and analyzed for chemical and radionuclide constituents. The sorption, diffusion and precipitation behavior of radionuclides were studied using site specific sediments and trench waters. Radionuclide leach rates from solidified waste, under simulated trench conditions, were also determined.

Pietrzak, R.F.; Dayal, R.

1982-01-01T23:59:59.000Z

25

Groundwater transport modeling of constituents originating from the Burial Grounds Complex  

SciTech Connect

The Savannah River Site (SRS), operates a number of sites for the land disposal of various leachable radionuclide, organic, and inorganic wastes. Located within the General Separations Area (GSA) of SRS are the Low Level Radioactive Waste Disposal Facility (LLRWDF) and the Old Burial Ground (OBG). A portion of the LLRWDF has been designated as the Mixed Waste Management Facility (MWMF). The OBG began receiving waste in 1952 and was closed in 1974. Various wastes, including transuranic, intermediate and low level beta-gamma, and solvents, were received during this period of operation. In 1969, prior to the closing of the OBG, a portion of the MWMF/LLRWDF (the MWMF) began receiving waste. GeoTrans, Inc. was contracted by WSRC to conduct a numerical modeling study to assess groundwater flow and contaminant transport in the vicinity of the MWMF in support of an Alternate Concentration Limits demonstration for the Part B permit. The project was divided into two phases: development of a groundwater flow model of the hydrogeologic system underlying the MWMF which includes the entire GSA, and development of a solute transport model to assess migration of 19 designated constituents of concern (COCs) over a period 30 years into the future. The first phase was completed in May of 1992 and the results documented in GeoTrans (1992). That report serves as the companion volume to the present contaminant transport modeling report. The transport study is intended to develop predictions of concentration and mass flux of the 19 COCs at downgradient exposure points over the 30 year period of interest. These results are to be used in human health and ecological risk assessments which are also being performed in support of the Part B permit.

Andersen, P.F.; Shupe, M.G.; Spalding, C.P. [GeoTrans, Inc., Sterling, VA (US)

1992-10-30T23:59:59.000Z

26

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs  

SciTech Connect

This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific environmental monitoring requirements for final site characterization and certification surveys are beyond the scope of this Addendum. Data collection associated with site reconnaissance and preselection is not specifically addressed, but it is recognized that such data may be useful in designing the preoperational program. Predisposal control measures, quality assurance, and record-keeping (other than inventory records) associated with waste disposal operations are also not addressed. The primary intent of routine environmental surveillance at a LLWBG is to help ensure that site activities do not cause significant transport of radioactivity from the site, resulting in an unacceptable health hazard to people. Preoperational environmental surveillance serves to determine for later comparison the background radioactivity levels, either naturally occurring or the result of man's activities (e.g. world-wide fallout or an adjacent nuclear facility), in and around the proposed burial ground site. The operational environmental surveillance program is used to estimate radiological conditions, both onsite and offsite as a possible result of burial ground activities, including trench closure(s). These data help to determine LLWBG compliance with regulatory requirements. During the post-operational period environmental surveillance should normally be an extension of the program carried out during operations, with appropriate deletions (or modifications) to account for the differences between operational and post-operational activities at the site. During the long-term storage and custodial care period, environmental surveillance serves to verify the radionuclide confinement capability of the burial ground and to identify problem situations requiring remedial action. For waste removal (exhumation), the environmental surveillance program is again modified to account for the greatly increased potential for direct radiation and contamination spread. At the time of decommissioning, "environmental surveillance" takes on a new meaning, from that of an ongoing prog

Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

1981-07-01T23:59:59.000Z

27

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

28

Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks  

E-Print Network (OSTI)

is the GPS station LEWI on the Mt Lewis in the Shoshone mountain range west of the Crescent Valley (Figure 1Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks Valley, Nevada, USA. The LOS displacements of up to 25 centimeters during the 1992­2002 period are caused

Amelung, Falk

29

Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground  

SciTech Connect

This study was performed to evaluate the potential for transport of lead from the Hanford Site 218-E-12B Burial Ground to the surrounding surface- and groundwater. Burial of metal components containing nickel alloy steel and lead at this location may eventually result in release of lead to the subsurface environment, including groundwater aquifers that may be used for domestic and agricultural purposes in the future and, ultimately, to the Columbia River. The rate at which lead is transported to downgradient locations depends on a complex set of factors, such as climate, soil and groundwater chemistry, and the geologic and hydrologic configuration of the subsurface region between the burial ground and a potential receptor location. The groundwater transport analysis was conducted using a one-dimensional screening model with a relatively conservative matrix of parameters obtained from the hydrogeologic and geochemical studies.

Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

1992-10-01T23:59:59.000Z

30

Estimation of the release and migration of lead through soils and groundwater at the Hanford Site 218-E-12B Burial Ground. Volume 1, Final report  

SciTech Connect

This study was performed to evaluate the potential for transport of lead from the Hanford Site 218-E-12B Burial Ground to the surrounding surface- and groundwater. Burial of metal components containing nickel alloy steel and lead at this location may eventually result in release of lead to the subsurface environment, including groundwater aquifers that may be used for domestic and agricultural purposes in the future and, ultimately, to the Columbia River. The rate at which lead is transported to downgradient locations depends on a complex set of factors, such as climate, soil and groundwater chemistry, and the geologic and hydrologic configuration of the subsurface region between the burial ground and a potential receptor location. The groundwater transport analysis was conducted using a one-dimensional screening model with a relatively conservative matrix of parameters obtained from the hydrogeologic and geochemical studies.

Rhoads, K.; Bjornstad, B.N.; Lewis, R.E.; Teel, S.S.; Cantrell, K.J.; Serne, R.J.; Smoot, J.L.; Kincaid, C.T.; Wurstner, S.K.

1992-10-01T23:59:59.000Z

31

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

32

Flow and transport model of the Savannah River Site Old Burial Grounds using Data Fusion modeling (DFM)  

SciTech Connect

The Data Fusion Modeling (DFM) approach has been used to develop a groundwater flow and transport model of the Old Burial Grounds (OBG) at the US Department of Energy`s Savannah River Site (SRS). The resulting DFM model was compared to an existing model that was calibrated via the typical trial-and-error method. The OBG was chosen because a substantial amount of hydrogeologic information is available, a FACT (derivative of VAM3DCG) flow and transport model of the site exists, and the calibration and numerics were challenging with standard approaches. The DFM flow model developed here is similar to the flow model by Flach et al. This allows comparison of the two flow models and validates the utility of DFM. The contaminant of interest for this study is tritium, because it is a geochemically conservative tracer that has been monitored along the seepline near the F-Area effluent and Fourmile Branch for several years.

NONE

1995-11-01T23:59:59.000Z

33

Geohydrology of the 218-W-5 Burial Ground, 200-West Area, Hanford Site  

SciTech Connect

Construction a disposal facility for solid, mixed low-level radioactive and hazardous wastes at the Hanford Site in southeastern Washington State (Figure 1) is planned. A site-specific performance assessment for each new disposal facility to ensure that wastes will be isolated from the environment is required. To demonstrate the adequacy of the facility for isolating the wastes, computer codes are used to simulate the physical processes that could cause the waste to migrate to underground water supplies or to the land's surface. The purpose of this report is provide a compilation and interpretation of geologic and hydrologic data available use in the performance assessment modeling. A variety of data are needed to model flow and transport from a solid-waste burial trench. These data include soil water content, soil moisture potential, saturated and unsaturated hydraulic conductivity, and phase mineralogy of the soils and sediments within the vadose zone. The hydrologic data that are critical for quantifying the water storage and transport properties for unsaturated soils require a characterization of the heterogeneities of various soil layers and the moisture characteristic curves for these layers. Hydraulic properties and mineralogic data for the saturated sediments are also important for modelling the flow and transport of wastes in the unconfined aquifer. This report begins with a discussion of the procedures and methods used to gather data both in the field and in the laboratory. This is followed by a summary of the geology, including the stratigraphic framework, lithofacies, and mineralogic/geochemical characteristics of the suprabasalt sediments. The hydrology of the region of the site is discussed next. In this discussion, the characteristics of the uppermost aquifer(s), unsaturated zone, and the various hydrogeologic units are presented. 54 refs., 39 figs., 11 tabs.

Bjornstad, B.N.

1990-05-01T23:59:59.000Z

34

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

35

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

36

Transuranic Waste Retrieval from the 218-W-4B and 218-W-4C Low-Level Burial Grounds, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05 05 Environmental Assessment Transuranic Waste Retrieval from the 218-W-4B and 218-W-4C Low-Level Burial Grounds, Hanford Site, Richland, Washington U.S. Department of Energy Washington, D.C. March 2002 DOE/EA-1405 U.S. Department of Energy Contents Environmental Assessment C-1 March 2002 CONTENTS PREFACE ....................................................................................................................................P-1 GLOSSARY ................................................................................................................................ G-1 SCIENTIFIC NOTATION CONVERSION CHART .................................................................... G-2 METRIC CONVERSION CHART...............................................................................................

37

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

38

Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ~15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L. Galloway, James F. Howle, Ronald Jacobson (2003) Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera,

39

Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is ongoing. In particular, we have InSAR stacks for over twenty pairs of

40

Oak Ridge Environmental Management Program Completes Work at Bethel Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge Environmental Management Program Completes Work at Bethel Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds September 1, 2011 - 12:00pm Addthis Media Contact Ben Williams http://www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately $17.5 million in American Recovery and Reinvestment Act funds. Oak Ridge's EM program was able to use Recovery Act funds to address five areas needing improvement, including Solid Waste Storage Areas 1 and 3. This included removing contaminated soil ("hot spots"), diverting clean

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

42

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

43

Ground-water resources of Lanfair and Fenner Valleys and vicinity, San Bernardino County, California  

SciTech Connect

Lanfair and Fenner Valleys and vicinity cover about 1300 square miles in eastern San Bernardino County, California. Average annual precipitation ranges from 3 to 10 inches over the area. Ground water is utilized primarily for stock and domestic purposes, and occurs in the unconsolidated deposits as well as in the highly fractured consolidated rocks. Ground-water levels in wells range from 5 to 600 feet below land surface, and well yields range from 3 to 1200 gallons per minute throughout the study area. Records indicate that water levels are at or near their predevelopment levels. Springs occur along faults and formational contacts and generally discharge less than 5 gallons per minute. Measured ground-water outflow from Lanfair Valley at Piute Spring ranged from 100 to 630 acre-feet per year. Outflow from Fenner Valley was estimated to be 270 acre-feet per year. Most of the water is of good quality for domestic and stock use. However, water from two wells indicates a concentration of sulfate that exceeds the recommended limit for drinking water. Water supplies are adequate for present needs. However, large-scale pumping would result in the lowering of the water table and a reduction of the ground water in storage. 10 refs., 2 figs., 4 tabs.

Freiwald, D.A.

1984-07-01T23:59:59.000Z

44

Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices  

SciTech Connect

This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

Conner, K.R.

2000-12-12T23:59:59.000Z

45

Effect of faulting on ground-water movement in the Death Valley region, Nevada and California  

SciTech Connect

This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

Faunt, C.C.

1997-12-31T23:59:59.000Z

46

Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site  

SciTech Connect

The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

N /A

1999-12-08T23:59:59.000Z

47

Sorption measurements performed under site-specific conditions - Maxey Flats, Kentucky, and West Valley, New York, disposal sites. [Shallow land burial  

SciTech Connect

Sorption coefficients have been determined using site-specific sediments and trench waters, collected from the Maxey Flats, Kentucky, and West Valley, New York, low-level radioactive waste disposal sites. Experimental apparatus and procedures are described to preserve the anoxic character of the liquid phases during experiments. Experiments using anoxic and oxidized trench waters were performed as functions of solution pH, soil/solution ratio, water and soil composition. The lowest sorption was observed with the combination of anoxic waters and untreated soil - the combination most closely resembling the immediate trench environment. For best results in predictive applications, sorption data should be determined under conditions which simulate those in the field as closely as possible. The total radionuclide retention capacity of reducing geochemical environments is the sum of sorption processes on solid phases, as well as precicipation, and coprecipitation reactions involving iron mineral phases (sulfides and oxyhydroxides).

Pietrzak, R.F.; Czyscinski, K.S.; Weiss, A.J.

1981-01-01T23:59:59.000Z

48

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

49

Simulations of strong ground motion for earthquakes in the Mexicali—Imperial Valley region  

Science Journals Connector (OSTI)

......Mexicali-Imperial Vullej~ regiori 757 CHIHUAHUA OBSERVAT I ONS 9 SYNTHETICS ( E m p i...observed strong motion data at station Chihuahua (CHI). To synthesiLe the ground accelerations...u n ~ i a and J. N. Brune VICTOR IA CHIHUAHUA CERRO PRIETO 100 `02 t - a [L 10-41......

Luis Munguía; James N. Brune

1984-12-01T23:59:59.000Z

50

Alternatives to shallow land burial  

SciTech Connect

During FY79 and FY80 the Los Alamos National Laboratory and its contractors performed a preliminary assessment of several alternatives to shallow land burial of low-level waste, including deeper burial, mined cavities, specially engineered storage buildings, well injection of liquid waste, and seabed disposal. Only deeper burial and mined cavities seem acceptable as near-term alternatives. A waste management program using a combination of disposal alternatives is recommended. Research needed to implement the deeper burial and mined cavity options is identified.

Burton, B.W.

1982-01-01T23:59:59.000Z

51

Oak Ridge Environmental Management Program Completes Work at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Management Program Completes Work at Bethel Valley Burial Grounds Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds September...

52

Imperial Valley IMPERIAL VALLEY  

E-Print Network (OSTI)

2013­2014 Bulletin Imperial Valley Campus #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2013-2014 SAN of the Imperial Valley Campus of San Diego State University. Its publication coincides with the campus' 54 years of providing higher education to the students of Imperial Valley. During this time we have evolved from

Gallo, Linda C.

53

Cloud-to-Ground Lightning Distribution and Its Relationship with Orography and Anthropogenic Emissions in the Po Valley  

Science Journals Connector (OSTI)

The main object of this work is to study the lightning climatology in the Po Valley in Italy and how it varies in time (interannual, annual, weekly, and daily time scales) and space (sea coast, plains, and mountain areas) and how that is related ...

Laura Feudale; Agostino Manzato

2014-12-01T23:59:59.000Z

54

Influence of site conditions on near-source high-frequency ground motion: case studies from earthquakes in Imperial Valley, CA. , Coalinga, CA. , and Miramichi, Canada  

SciTech Connect

In this thesis, three recent earthquake datasets are analyzed in which local recording-site geology strongly modifies near-source ground motion in the 1-30 Hz band. Site effects in this frequency band complicate seismic-source observations, such as estimation of earthquake source parameters and high-frequency discrimination between earthquakes and explosions, and seismic-hazard predictions for components of large engineering systems. The goals of this work are to examine the details of site amplification, and, in the process, to assess how site effects might be quantified and incorporated into seismology and engineering practice. The Imperial Valley study is motivated by a remarkable 1.7 g peak vertical-component acceleration recorded at station 6 of the El Centro accelerograph array during the 15 October 1979 Imperial Valley, Ca., earthquake. Analysis of geotechnical data suggests a plausible amplification mechanism: P-wave resonance related to water saturation in shallow sediments at station 6. The Coalinga dataset consists of seismograms from 26 aftershocks of the 2 May 1983 Coalinga, Ca., earthquake. Average horizontal-component ground motion is amplified on alluvium at downtown Coalinga relative to nearby rock by a factor of 3-4 at frequencies up to 5-15 Hz. Amplification apparently trades off with attenuation on alluvium at high frequencies. The Miramichi dataset consists of seismograms from 40 aftershocks of the 9 January 1982 Miramichi, New Brunswick, Canada, earthquake. Source-parameter measurements are influenced by strong site effects at frequencies greater than 15Hz, due to resonance in shallow layers of glacial till over bedrock.

Mueller, C.S.

1987-01-01T23:59:59.000Z

55

Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York  

SciTech Connect

This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10{sup {minus}6}/day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs.

Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

1991-10-01T23:59:59.000Z

56

Rift valley  

Science Journals Connector (OSTI)

Valleys of subsidence with long steep parallel walls,” as originally defined...J. W. Gregory (1894). rift valleys are evidently the geomorphic equivalents of or...Rift Valley Structure..., Vol. V). Quennell be...

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

57

Analysis of the NAN Ruin (LA15049) burial patterns: an examination of Mimbres social structure  

E-Print Network (OSTI)

of burials have changed dramatically through the years since the inclusion of archaeology as a bona fide field of study into the academic arena. From the early years of archaeology until well into this century, buri. als were often looked at as simply... the valley (Blake et al. 1986). The Mimbrenos left the Mimbres Valley within a short time of each other, leaving no apparent traces behind of their destination. There is a possibility based on architectural evidence that the decline of the Mimbres may have...

Ham, Elizabeth Jane

2012-06-07T23:59:59.000Z

58

Union Valley  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding Union Valley.

59

Imperial Valley Campus IMPERIAL VALLEY  

E-Print Network (OSTI)

Bulletin Imperial Valley Campus 2012­2013 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2012-2013 SAN 2012-2013 It is with great pleasure that we present the 2012- 2013 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

60

Burial container subsidence load stress calculations  

SciTech Connect

This document captures the supporting analyses conducted to determine if the LLCE (Long-Length Contaminated Equipment) burial containers are structurally adequate under different trench closure scenarios. The LLCE is equipment that was inside tank farm tanks.

Veith, E.M.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogeologic investigation of the Maxey Flats radioactive waste burial site, Fleming County, Kentucky  

SciTech Connect

Part of a hilltop named Maxey Flats was used as a commercial radioactive waste burial site from 1963 to 1977. The hill is about 9 miles from the city of Morehead. The climate of the area is humid, with normal annual precipitation 44.30 in. for the period 1941 through 1970. Most of the 47 burial trenches on the site are completed in weathered shale. They are covered with clay and crushed shale, but water infiltrates the covers and accumulates in the waste. The contaminated trench water is later removed and evaporated. Assuming water in trenches would not overflow onto the ground surface, flow through fractured rocks would be the principal means of contaminated-water transport if trench water were to move from the burial site. The bases of most trenches consist of a 1.5-ft-thick sandstone bed, at a depth of about 25 ft below ground level. Radionuclides have moved laterally through fractures in the bed as much as 270 feet from the nearest burial trench. Rocks underlying the burial site are of Mississippian, Devonian, and Silurian age, about 80% of which are shale. The bedrock has poor water-transmitting capability, and virtually all flow is through fractures. The spacing between most fractures is several feet, although it ranges from a few inches to more than 100 ft. Most fractures terminate, or are offset, at bedding planes. The ground-water system is therefore very nonuniform, and more permeable in the horizontal direction. At least eight hydrologic units underlie the burial site.

Zehner, H.H.

1983-01-01T23:59:59.000Z

62

Valley evolution  

Science Journals Connector (OSTI)

The long profile of a stream is not identical with that of its valley since the former depends on the loops ... . The stream in its controls all the valley-forming processes although a direct influence is ... f...

Otto Fränzle

1968-01-01T23:59:59.000Z

63

Alpine Valley  

Science Journals Connector (OSTI)

The Alpine Valley (Vallis Alpes) is a great fault ... Alps Mountains. It is about 80 miles long and up to 7 miles wide. It ... runs down most of the center of the valley. Be sure that you show this exceptional...

Don Spain

2009-01-01T23:59:59.000Z

64

Environmental Stewardship | Department of Energy  

Energy Savers (EERE)

EM program regularly monitors capped burial grounds in Melton Valley, near the Oak Ridge National Laboratory. Oak Ridge's EM program regularly monitors capped burial...

65

Radionuclides in a deciduous forest surrounding a shallow-land-burial site in the eastern United States  

SciTech Connect

The objective of this study was to determine if radioactive materials buried in trenches at the Maxey Flats burial ground in eastern Kentucky have migrated into the surrounding oak-hickory forest. Forest floor litter, minearl soil, and tree leaves were sampled and the radionuclide content measured. (ACR)

Rickard, W.H.; Kirby, L.J.; McShane, M.C.

1981-06-01T23:59:59.000Z

66

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

67

Monument Valley Phytoremediation Pilot Study:  

Office of Legacy Management (LM)

1.8 1.8 U.S. Department of Energy UMTRA Ground Water Project Monument Valley Ground Water Remediation Work Plan: Native Plant Farming and Phytoremediation Pilot Study August 1998 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Prepared by MACTEC Environmental Restoration Services, LLC Grand Junction, Colorado Project Number UGW-511-0015-10-000 Document Number U0029501 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0029501 Contents DOE/Grand Junction Office Monument Valley Ground Water Remediation Work Plan August 1998 Page v Contents Page Acronyms .

68

Low-level waste shallow burial assessment code  

SciTech Connect

PRESTO (Prediction of Radiation Exposures from Shallow Trench Operationns) is a computer code developed under United States Environmental Protection Agency funding to evaluate possible health effects from radionuclide releases from shallow, radioctive-waste disposal trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to a stable, local population for a 1000-year period following closure of the burial grounds. Several classes of submodels are used in PRESTO to represent scheduled events, unit system responses, and risk evaluation processes. The code is modular to permit future expansion and refinement. Near-surface transport mechanisms considered in the PRESTO code are cap failure, cap erosion, farming or reclamation practices, human intrusion, chemical exchange within an active surface soil layer, contamination from trench overflow, and dilution by surface streams. Subsurface processes include infiltration and drainage into the trench, the ensuing solubilization of radionuclides, and chemical exchange between trench water and buried solids. Mechanisms leading to contaminated outflow include trench overflow and downwad vertical percolation. If the latter outflow reaches an aquifer, radiological exposure from irrigation or domestic consumption is considered. Airborne exposure terms are evaluated using the Gaussian plume atmospheric transport formulation as implemented by Fields and Miller (1980).

Fields, D.E.; Little, C.A.; Emerson, C.J.

1981-01-01T23:59:59.000Z

69

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV.

NONE

1996-09-01T23:59:59.000Z

70

Ridge and valley topography  

Science Journals Connector (OSTI)

“Viewed empirically, the ridge and valley province is a lowland (an assemblage of valley floors) surmounted by long, narrow, even-topped mountain ridges. Either ... the lowlands are disconnected or absent. The valley

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

71

NPP Tropical Forest: Magdalena Valley, Colombia  

NLE Websites -- All DOE Office Websites (Extended Search)

Magdalena Valley, Colombia, 1970-1971 Magdalena Valley, Colombia, 1970-1971 Data Citation Cite this data set as follows: Folster, H. 1999. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Description Biomass, litterfall, and nutrient content of above-ground vegetation and soil were determined for a tropical seasonal evergreen forest at Magdalena Valley, Colombia, during an 18-month period in 1970 and 1971. The study was sponsored by the German Research Foundation. Of primary interest were biomass and nutrient dynamics of a forest stand that had developed atop a perched water table on a typical valley terrace. Perched water tables give rise to pseudogley soils with low pH, prolonged

72

Low-level waste management in the South. Task 4. 2 - long-term care requirements. [Shallow land burial  

SciTech Connect

This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table.

Not Available

1983-01-01T23:59:59.000Z

73

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

74

Imperial Valley Campus Bulletin  

E-Print Network (OSTI)

Imperial Valley Campus Bulletin 2011­2012 #12;#12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2011-2012 SAN 2011-2012 It is with great pleasure that we present the 2011- 2012 Bulletin of the Imperial Valley higher education to the students of Imperial Valley. During this time we have evolved from an institution

Gallo, Linda C.

75

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

76

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

77

Multibeam Observations of Mine Scour and Burial near Clearwater, Florida, Including a Test of the VIMS 2D Mine Burial Model  

E-Print Network (OSTI)

of the VIMS 2D Mine Burial Model by Monica L. Wolfson A thesis submitted in partial fulfillment Comparison of A3 Multibeam Observations to the VIMS 2D Burial Model Comparison of F8 Multibeam Observations to the VIMS 2D Burial Model

New Hampshire, University of

78

Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A.  

Science Journals Connector (OSTI)

Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility ... Mono Basin plus surface and groundwater in Owens Valley accounts for about 80 p...

R. Forrest Hopson

79

LARGE DEXTRAL OFFSET ACROSS OWENS VALLEY, CALIFORNIA FROM 148 MA TO 1872 A.D.  

E-Print Network (OSTI)

Lake (Fig. 2) along a branch of the Owens Valley fault zone, and is well dis- played just west1 LARGE DEXTRAL OFFSET ACROSS OWENS VALLEY, CALIFORNIA FROM 148 MA TO 1872 A.D. Allen F. Glazner1 (estimated moment magnitude ~7.5) occurred in Owens Valley. Ground breakage extended from Big Pine to Owens

Lee, Jeff

80

Valley Network (Venus)  

Science Journals Connector (OSTI)

Labyrinthic valley network (Fig. 1...). This is the most common type observed on Venus. Valleys are several km wide and 100 s km long. They are found within or near tectonically...1992, 1993, 2001...). Their morp...

Goro Komatsu

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Melton Valley Watershed  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Melton Valley Watershed.

82

Bear Creek Valley Watershed  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Bear Creek Valley Watershed.

83

Bethel Valley Watershed  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the Bethel Valley Watershed.

84

E-Print Network 3.0 - ancient human burials Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

population dans la rgion il y a 5000 ans avant aujourd'hui. The Big Bar Lake Burial: Middle Period Human... , excavation, and analysis of the remains.1 The human burial was...

85

Soybean Production in the Rio Grande Valley  

E-Print Network (OSTI)

chlorosis or being high in chlorides, then it would be wise to #27;nd a variety that is less sensitive to iron chlorosis or to high chloride levels. In the Rio Grande Valley, soybean yields have been acceptable as long as supplemental water (irrigation... Grande Valley compensate for variation in plant populations. At low populations, soybean plants usually are bushy and set pods on long lateral branches near the ground. As populations increase, pods are set closer to the plant?s main stem and higher...

Fromme, D. D.; Isakeit, T.; Falconer, L.

86

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

NONE

1996-09-01T23:59:59.000Z

87

Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

NONE

1997-04-01T23:59:59.000Z

88

DOE - Office of Legacy Management -- Monument Valley Mill Site - AZ 0-01  

Office of Legacy Management (LM)

Monument Valley Mill Site - AZ 0-01 Monument Valley Mill Site - AZ 0-01 FUSRAP Considered Sites Site: Monument Valley Mill Site (AZ.0-01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Monument Valley, Arizona, Processing Site Documents Related to Monument Valley Mill Site Data Validation Package for the June 2009 Water Sampling at the Monument Valley, Arizona, Processing Site; LMS/MON/S0609; October 2009 Natural and Enhanced Attenuation of Soil and Ground Water at Monument Valley, Arizona, and Shiprock, New Mexico 2006 Status Report June 2008 Data Validation Package for 2007 Groundwater Sampling at the Monument Valley, AZ Processing Site

89

Death Valley TronaWestend  

E-Print Network (OSTI)

Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

Laughlin, Robert B.

90

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

91

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

92

West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

93

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

94

Imperial Valley College Portland State University Imperial Valley College  

E-Print Network (OSTI)

Imperial Valley College Portland State University Imperial Valley College Transfer Worksheet If you) at Imperial Valley College (IVC), you can rest assured that those credits will also transfer to Portland State. Degree Requirements (BA, BS) #12;Imperial Valley College Portland State University 2. DEGREE REQUIREMENTS

Caughman, John

95

E-Print Network 3.0 - age temperature burial Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

or phenological differences may... ERDC TN-EMRRP-EI-03 September 2008 Short-Term Sediment Burial Effects on the Seagrass Phyllospadix... outfalls (Littler and Murray 1975) and...

96

Green Valley Galaxies  

E-Print Network (OSTI)

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

97

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

NONE

1996-09-01T23:59:59.000Z

98

Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California  

E-Print Network (OSTI)

signatures in the Owens Valley, California Jelmer W. Eerkens a,*, Amy M. Spurling a,c , Michelle A. Gras b, a village site in southern Owens Valley, eastern California. Previous archaeological studies suggest quarrying within long-distance trips to distant hunting grounds, and subsequently transported bifacial cores

99

Enforcement Documents - West Valley Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Enforcement Documents - West Valley Demonstration Project December 7, 1999 Preliminary Notice of Violation, West Valley Nuclear Services -...

100

Oversight Reports - West Valley Demonstration Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Oversight Reports - West Valley Demonstration Project August 24, 2012 Independent Activity Report, West Valley Demonstration Project - July 2012...

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers (EERE)

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

102

Graphics-based site information management at Hanford TRU burial grounds  

SciTech Connect

The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations.

Rod, S.R. (Pacific Northwest Lab., Washington, DC (United States))

1992-04-01T23:59:59.000Z

103

Graphics-based site information management at Hanford TRU burial grounds  

SciTech Connect

The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility`s components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations.

Rod, S.R. [Pacific Northwest Lab., Washington, DC (United States)

1992-04-01T23:59:59.000Z

104

Siting the industrial cemetery : new burial grounds and crematory for Braintree, MA  

E-Print Network (OSTI)

The contemporary urban condition has placed a great deal of stress upon American cemeteries. Many cemeteries, once sited at the edge of cities and towns, are now surrounded by urban sprawl and development of surrounding ...

Stump, Richard Edward

1996-01-01T23:59:59.000Z

105

Burial of terrestrial organic matter in marine sediments: A re-assessment  

E-Print Network (OSTI)

Burial of terrestrial organic matter in marine sediments: A re-assessment David J. Burdige being buried in marine sediments may be of terrestrial origin, with the majority of this terrestrial organic matter (TOM) burial occurring in muddy, deltaic sediments. These calculations further suggest

Burdige, David

106

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network (OSTI)

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

107

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source  

E-Print Network (OSTI)

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment : deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input

Wehrli, Bernhard

108

Dying Green A Film Screening and Panel Discussion about Green Burial  

E-Print Network (OSTI)

Dying Green A Film Screening and Panel Discussion about Green Burial March 20, 2014 6:00pm ­ 8:00pm to rest. The "Green Burial" movement is catching on in the U.S., and green cemetery options are now and panel discussion of the award-winning documentary, Dying Green (2011). Panel participants include Joshua

Virginia Tech

109

Substation grounding.  

E-Print Network (OSTI)

??Designing a proper substation grounding system is quite complicating. Many parameters affect its design. In order for a grounding design to be safe, it needs… (more)

Baleva, Inna

2012-01-01T23:59:59.000Z

110

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic  

Open Energy Info (EERE)

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station

111

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

112

Gravity and magnetic data of Midway Valley, southwest Nevada  

SciTech Connect

Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley.

Ponce, D.A.; Langenheim, V.E.; Sikora, R.F. [Geological Survey, Menlo Park, CA (United States)

1993-12-31T23:59:59.000Z

113

White River Valley Electric Cooperative - Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White River Valley Electric Cooperative - Energy Efficiency Rebate White River Valley Electric Cooperative - Energy Efficiency Rebate Program White River Valley Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Dual Fuel Heat Pump: 10 tons for Residential, 50 tons for Commercial Air Source Heat Pump: 10 tons Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Residential Sector Only: Refrigerator: $75 Electric Water Heater: $50 Room AC: $50 Both Commercial and Residential: Ground Source Heat Pump (New Installation): $750/ton Ground Source Heat Pump (Replacement) : $150/ton

114

Alternative techniques for low-level waste shallow land burial  

SciTech Connect

Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance.

Levin, G.B.; Mezga, L.J.

1983-01-01T23:59:59.000Z

115

Radionuclide distributions and migration mechanisms at shallow land burial sites  

SciTech Connect

During the past several years, Pacific Northwest Laboratory (PNL) has conducted research at the Maxey Flats Disposal Site (MFDS) for the US Nuclear Regulatory Commission (NRC). This work has identified the spectrum of radionuclides present in the waste trenches, determined the processes that were occurring relative to degradation of radioactive material within the burial trenches, determined the chemical and physical characteristics of the trench leachates and the chemical forms of the leached radionuclides, determined the mobility of these radionuclides, investigated the subsurface and surface transport processes, determined the biological uptake by the native vegetation, developed strategies for environmental monitoring, and investigated other factors that influence the long-term fate of the radionuclide inventory at the disposal site. This report is a final summary of the research conducted by PNL and presents the results and discussions relative to the above investigative areas. 45 refs., 31 figs., 17 tabs.

Kirby, L.J.; Toste, A.P.; Thomas, C.W.; Rickard, W.H.; Nielson, H.L.; Campbell, R.M.; McShane, M.C.; Wilkerson, C.L.; Robertson, D.E.

1991-02-01T23:59:59.000Z

116

Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites  

SciTech Connect

Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

Knight, M.J.

1983-04-01T23:59:59.000Z

117

Effects of sand burial depth on seed germination and seedling emergence of Cirsium pitcheri  

Science Journals Connector (OSTI)

A greenhouse study was conducted to determine the effects of sand burial on seed germination and seedling emergence of Cirsium pitcheri, a threatened species along Lake Huron sand dunes. In October 1996, seeds...

Hua Chen; M.A. Maun

1999-01-01T23:59:59.000Z

118

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network (OSTI)

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

119

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

NONE

1996-09-01T23:59:59.000Z

120

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report  

SciTech Connect

This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

122

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

123

Assessment of microbial processes on radionuclide mobility in shallow land burial. [West Valley, NY; Beatty, Nevada; Maxey Flats, Kentucky  

SciTech Connect

The impact of microbial metabolism of the organic substituents of low level radioactive wastes on radionuclide mobility in disposal sites, the nature of the microbial transformations involved in this metabolism and the effect of the prevailing environmental parameters on the quantities and types of metabolic intermediates accumulated were examined. Since both aerobic and anaerobic periods can occur during trench ecosystem development, oxidation capacities of the microbial community in the presence and absence of oxygen were analyzed. Results of gas studies performed at three commercial low level radioactive waste disposal sites were reviewed. Several deficiencies in available data were determined. Further research needs are suggested. This assessment has demonstrated that the biochemical capabilities expressed within the low level radioactive waste disposal site are common to a wide variety of soil bacteria. Hence, assuming trenches would not be placed in sites with such extreme abiotic conditions that all microbial activity is precluded, the microbial populations needed for colonization and decomposition of the organic waste substances are readily provided from the waste itself and from the soil of existing and any proposed disposal sites. Indeed, considering the ubiquity of occurrence of the microorganisms responsible for waste decomposition and the chemical nature of the organic waste material, long-term prevention of biodecomposition is difficult, if not impossible.

Colombo, P.; Tate, R.L. III; Weiss, A.J.

1982-07-01T23:59:59.000Z

124

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

125

Bulletinof the Seismological Society of America. Vol.68,No.1,pp.31-48.February1978 PREDICTABILITY OF STRONG GROUND MOTION IN THE IMPERIAL  

E-Print Network (OSTI)

OF STRONG GROUND MOTION IN THE IMPERIAL VALLEY: MODELING THE M4.9, NOVEMBER 4, 1976 BRAWLEY EARTHQUAKE on the propagation of long-period SH waves are predictable in the Imperial Valley. A study of the synthetic Fourier and seismicwave attenuation. INTRODUCTION The Imperial Valley of Southern California is unusual in that it has

Greer, Julia R.

126

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit HIAR-WVDP-2011-11-07...

127

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

128

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR...

129

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire Valley Environmental1 This article...

130

Solar homes for the valley  

SciTech Connect

TVA has designed 11 passive solar homes in the public interest to encourage the development of solar housing in the Tennessee Valley region. The program, Solar Homes For The Valley, involves the design, construction, and testing of the 11 designs in each of four microclimatic areas within the region, (total of 44 homes).

Born, B.; Brewer, D.

1980-01-01T23:59:59.000Z

131

GEO Imperial Valley activities  

SciTech Connect

Geothermal Resources International, Inc. (GEO) in San Mateo, California, and PacifiCorp Credit, a subsidiary of PacifiCorp in Portland, Oregon, announced that since July 1987, the company has raised about $21 million to fund the initial development of GEO's East Mesa project. GEO will use a portion of the funds to meet its commitment to share in the cost of a $50 million, 230-kilovolt transmission line. The line will carry electricity generated from geothermal power plants in the Imperial Valley to a Southern California Edison substation in Riverside County, California. In September 1987, two GEO geothermal wells at East Mesa were completed, and GEO was drilling its third and fourth wells in the field. Test data results from these wells will be analyzed to decide whether GEO will construct a dual-flash or binary power plant. GEO has the geothermal rights on about 300,000 acres in five western states. In addition to its operations and development projects in The Geysers and the Imperial Valley, the company is continuing exploration projects on the flanks of the Newberry Crater in Central Oregon and in Hokkaido, Japan. GEO also has an international geotechnical service group in the United Kingdom, GeoScience Ltd., which provides geotechnical services to clients around the world and to the company's geothermal operations.

Not Available

1987-07-01T23:59:59.000Z

132

Cosmogenic-nuclide burial ages for Pleistocene sedimentary fill in Unaweep Canyon, Colorado, USA  

Science Journals Connector (OSTI)

We applied both single-sample and isochron methods of cosmogenic-nuclide burial dating to determine the age of the sedimentary fill in Unaweep Canyon, western Colorado, USA. This stratigraphic sequence is of interest because it documents capture and diversion of the ancestral Gunnison River by the Colorado River during late Cenozoic incision of the Colorado Plateau. Seven 26Al–10Be burial ages from sedimentary infill penetrated by a borehole in central Unaweep Canyon, as well as a 26Al–10Be burial isochron age formed by multiple clasts and grain-size separates in a sample from the stratigraphically lower Gateway gravels, indicate that canyon blockage, initiation of lacustrine sediment accumulation, and presumed river capture, took place 1.41 ± 0.19 Ma. Lacustrine sedimentation ceased 1.34 ± 0.13 Ma.

Greg Balco; Gerilyn S. Soreghan; Dustin E. Sweet; Kristen R. Marra; Paul R. Bierman

2013-01-01T23:59:59.000Z

133

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region...

134

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

be described in Blackwell et al. (2010)." References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

135

Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

136

Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

137

The generation of martian floods by the melting of ground ice above dykes  

Science Journals Connector (OSTI)

... formed by extension. The surface has also been modified by enormous floods, probably of water, which often flowed out of valleys formed by the largest of these faults. By ... can provide a heat source to melt ground ice, and so provide a source of water for the floods that have been inferred to originate in some of the large valleys ...

Dan McKenzie; Francis Nimmo

1999-01-21T23:59:59.000Z

138

California Valley Solar Ranch Biological Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

139

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

140

Valley Forge Corporate Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

142

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

South Valley Compliance Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

146

Retrofitting the Tennessee Valley Authority  

E-Print Network (OSTI)

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

147

AMF Deployment, Ganges Valley, India  

NLE Websites -- All DOE Office Websites (Extended Search)

Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. Growth in industries such as cement factories, steel mills, and the coal-fired...

148

Ecology of Owens Valley vole  

E-Print Network (OSTI)

Little current data exist concerning the status and ecology of Owens Valley vole (OVV; Microtus californicus vallicola), despite its California Department of Fish and Game listing as a Species of Special Concern. No formal studies have been...

Nelson, Fletcher Chris

2005-08-29T23:59:59.000Z

149

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

150

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface  

E-Print Network (OSTI)

Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

Montgomery, David R.

151

Oil and Gas CDT Anomalous compaction and lithification during early burial in  

E-Print Network (OSTI)

Oil and Gas CDT Anomalous compaction and lithification during early burial in sedimentary basins training in a range of skills will mean opportunities for academic, government or Oil and Gas sector (e geoscience for oil and gas). References & Further Reading Neagu, R.C. Cartwright, J., Davies R.J. & Jensen L

Henderson, Gideon

152

The dead do not dress: contribution of forensic anthropology experiments to burial practices analysis  

E-Print Network (OSTI)

The dead do not dress: contribution of forensic anthropology experiments to burial practices Forensic Unit Laboratory of Anatomy, Biomechanics and Organogenesis (LABO), Université Libre de Bruxelles of human decomposition, and thus on the final arrangement of bones (in both forensic and archaeological

Paris-Sud XI, Université de

153

Morphology and downslope sediment displacement in a deep-sea valley, the Valencia Valley (Northwestern Mediterranean)  

Science Journals Connector (OSTI)

The Valencia Valley is a Quaternary, 200 km long deep-sea valley in the Valencia Trough, Western Mediterranean Sea ... A swathmapping survey approximately mid-way along the valley length, where the floor has an a...

Suzanne O'Connell; Belen Alonso; Kim A. Kastens; Andrés Maldonado…

1985-01-01T23:59:59.000Z

154

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

155

West Valley Demonstration Project Low-Level Waste Shipment |...  

Office of Environmental Management (EM)

West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment...

156

Summary Of Recent Research In Long Valley Caldera, California | Open Energy  

Open Energy Info (EERE)

Summary Of Recent Research In Long Valley Caldera, California Summary Of Recent Research In Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Summary Of Recent Research In Long Valley Caldera, California Details Activities (1) Areas (1) Regions (0) Abstract: Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and

157

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Useful for a whole variety of particular reservoir characterization goals, i.e.: "Isotopic values for the thermal waters become lighter with distance eastward from Casa Diablo, suggesting dilution with nonthermal ground waters from more easterly sources. In the Casa Diablo area, the effects of near-surface boiling cause the observed isotopic shift (along the line

158

Case Study - Sioux Valley Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

159

Moors Valley Play Trail Moors Valley Country Park is a very popular attraction  

E-Print Network (OSTI)

visitors to Moors Valley Country Park use the play trail. · Sport England's South West Regional PlanMoors Valley Play Trail objectives Moors Valley Country Park is a very popular attraction welcoming more than 750,000 visitors a year. Ranked in the top 20 national attractions Moors Valley is deemed

160

Studies on unsaturated zone hydrology and radionuclide migration at a shallow-land burial site  

SciTech Connect

We studied unsaturated zone hydrology and the migration of radionuclides at a shallow-land burial site located at Maxey Flats, Kentucky. The initial results indicate that the principal pathway of water entry into the trench was by percolation through the trench caps. Tritium-bearing water was found to be moving upward from a saturated waste-burial trench through the trench cap to the soil surface. Evidence of tritium movement at a depth of 3 to 4 meters was observed to a distance of about 5 meters laterally. No /sup 137/Cs migration was observed, but very small amounts of /sup 238/Pu and /sup 60/Co were found to have migrated short distances from the trench.

Schulz, R.K. (Univ. of California, Berkeley); Fowler, E.B.; Essington, E.H.; Polzer, W.L.

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Interim Report: CHEMICAL SPECIES OF MIGRATING RADIONUCLIDES AT COMMERCIAL SHALLOW LAND BURIAL SITES  

SciTech Connect

This is the first quarterly report for .the project "Chemical Species of Migrating Radionuclides at Commercial Shallow Land Burial Site" under the new reporting schedule requested by the sponsor. Future reports will be issued following each fiscal quarter, with the next report scheduled in October, 1982. The primary purpose of this project is to develop an understanding of the processes responsible for radionuclide migration at low-level waste burial sites. Chemical measurements of waste trench leachate and identification of chemical changes in leachate during migration will provide a basis for geochemical waste transport models. This project will produce for the U.S. Nuclear Regulatory Commission information to support guidance for implementation of 10 CFR 61, particularly in the development of criteria for low level waste disposal site selection, management, permanent closure and monitoring. Topics covered include: Experimental Trench and Well Study; Chemical Species Characterization; Specific Radionuclide Mapping; Organic Complexing Compounds,

Kirby,, L. J.; Rickard,, W. H.; Toste,, A. P.

1982-08-01T23:59:59.000Z

162

The effects of burial by sand on survival and growth of Pitcher’s thistle (Cirsium pitcheri) along lake huron  

Science Journals Connector (OSTI)

Greenhouse experiments were conducted to determine the effects of sand burial on survival and growth of seedlings ofCirsium pitcheri. In 1992–1993, seedlings were buried to depths of 0, 25, 50, 75, and 100% of th...

M. Anwar Maun; Heidi Elberling; Angelo D’Ulisse

1996-01-01T23:59:59.000Z

163

Quantifying breakage parameters of fragile archaeological components to determine the feasibility of site burial  

E-Print Network (OSTI)

for the mechanical failure of bone and ceramic. Laboratory tests on different stress/force conditions needed to break ceramic vessels and charcoal sticks revealed that newly constructed ceramics with an average wall thickness of 6 mm, buried no deeper than 25 cm... differential displacement of the soil relative to the archaeological components . Site burial, a geotechnical method of protection and preservation, is feasible if the amount of differential settlement is less than the . displacement necessary to cause...

Rushmore, Forest Paul

2012-06-07T23:59:59.000Z

164

Remnants of Ritual: A discussion of burial practices and material remains of Pompeian tombs  

E-Print Network (OSTI)

in a kiln, and fragments of tiles and pottery. She also writes that the structure collapsed most likely due to unintentional burning, after which the worshippers dug a pit into the collapsed rubble to deposit a burnt offering. Here, along... of their feasts likely remained. The examination of charred remains from burial pits at a Gallo- Roman cemetery at Faulqeumont in Moselle, France, may give us insight into material deposits around 1st century Roman graves. The graves were mostly pits, with a...

Geller, Jennifer

2013-04-01T23:59:59.000Z

165

The validity of analytical methods for predicting self burial of offshore pipelines  

E-Print Network (OSTI)

penetration of ~. D H drostatic ressure test hase, - Prior to placing a pipeline into service, it is necessary to perform a pressure test to insure that the structural integrity of the pipe was maintained during construction and to check for leaks...THE VALIDITY OF ANALYTICAL METHODS FOR PREDICTING SELF BURIAL OF OFFSHORE PIPELINES A Thesis by THOMAS KENWOOD HAMILTON Submitted to the Graduate College of Texas AEM University in partial fulfillment of the requirement for the degree...

Hamilton, Thomas Kenwood

2012-06-07T23:59:59.000Z

166

Mon Valley work plan  

Office of Legacy Management (LM)

GWSHP 1.8 GWSHP 1.8 U.S. Department of Energy UMTRA Ground Water Project Work Plan for Characterization Activities at the Shiprock UMTRA Project Site June 1998 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number UGW-511-0020-01-000 Document Number U0013400 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Note: Some of the section page numbers in the Table of Contents may not correspond to the page on which the section appears when viewing them in Adobe Acrobat. Document Number U0013400 Contents DOE/Grand Junction Office Work Plan for Characterization Activities at Shiprock Project Site June 1998 Draft Final Page v Contents Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1.0 Introduction .

167

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2004-2005 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE present the 2004-2005 Bulletin of the Imperial Valley Campus of San Diego State University. Its in the educational opportunities offered at the Imperial Valley Campus of San Diego State University and look forward

Gallo, Linda C.

168

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2006-2007 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2006-2007 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

169

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2005-2006 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2005-2006 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teach ing

Gallo, Linda C.

170

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2007-2008 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2007-2008 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

171

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2008-2009 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2008-2009 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

172

Imperial Valley Campus San Diego State University  

E-Print Network (OSTI)

2014--2015 IVC 2014--2015 Bulletin Imperial Valley Campus San Diego State University #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2014-2015 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 760 clarification. #12;2 SDSU Imperial Valley Campus Bulletin 2014-2015 Message from the Dean It is with great

Gallo, Linda C.

173

IMPERIAL VALLEY SAN DIEGO STATE UNIVERSITY  

E-Print Network (OSTI)

BULLETIN THE IMPERIAL VALLEY CAMPUS 2009-2010 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE pleasure that we present the 2009-2010 Bulletin of the Imperial Valley Campus of San Diego State University of Imperial Valley. During this time we have evolved from an institution created to grant elementary teaching

Gallo, Linda C.

174

Award Recipient Poudre Valley Health System  

E-Print Network (OSTI)

2008 Award Recipient Poudre Valley Health System Poudre Valley Health System (PVHS) is a locally, oncology, and orthopedic care. Founded in 1925 as the Poudre Valley Hospital (PVH) in Fort Collins, Colo." · Afterfirstestablishingrelationshipswithphysicians,PVHS expanded its partner base to include entities such as home health agencies, a long-term care

Magee, Joseph W.

175

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody  

E-Print Network (OSTI)

Owens Valley Radio ObsevatoryOwens Valley Radio Obsevatory David Woody Owens Valley Radio · [Need pictures of the telescopes] 1/24/2008 2Woody #12;The Owens ValleyThe Owens Valley 1/24/2008 3Woody in the future · 40 m ­ 1960s ­ 1-20 GHz ­ Long history single dish and VLBI · VLBA antenna, 25 m dia · Misc. ­ 5

Weinreb, Sander

176

Investigation of active faulting at the Emigrant Peak fault in Nevada using shallow seismic reflection and ground penetrating radar  

E-Print Network (OSTI)

The objective of this study was to assess fault displacement, off-fault deformation, and alluvial fan stratigraphy at the Emigrant Peak fault zone (EPFZ) in Fish Lake Valley, Nevada utilizing shallow seismic reflection (SSR) and ground penetrating...

Christie, Michael Wayne

2007-12-18T23:59:59.000Z

177

Valley County Secondary Data Analysis  

E-Print Network (OSTI)

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

178

Santa Clara Valley Transportation Authority  

Energy.gov (U.S. Department of Energy (DOE))

Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

179

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

180

Independent Oversight Review, West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

182

Mechanically and optically controlled graphene valley filter  

SciTech Connect

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

183

Effects of continual burial by sediment on morphological traits and dry mass allocation of Suaeda salsa seedlings in the Yellow River estuary: An experimental study  

Science Journals Connector (OSTI)

Abstract Information on the effects of continual burial by sediment on seedling survival and morphological growth in coastal marsh remains scarce. A greenhouse experiment was conducted to determine the effects of continual burial on seedling mortality, growth and dry mass allocation of Suaeda salsa in the coastal marsh of the Yellow River estuary. The seeds were planted at 0.5 cm depth in plastic pots filled with unsterilized sediment on May 5, 2012. A depth of 8 cm was chosen as the maximum of continual burial according to the sedimentary rate (6–7 cm) in the coastal marsh at seedling stage. Two weeks after emergence, seedlings were artificially buried to depths of 0 (D0, no burial), 33% (D33, burial of 1 mm d?1), 67% (D67, burial of 2 mm d?1), 100% (D100, burial of 3 mm d?1) and 133% (D133, burial of 4 mm d?1) of their mean height, with 20 days in total. Results showed that seedling height, stem and taproot diameter, number of branch, hypocotyl and taproot length, and dry mass were significantly affected by burial depth (p < 0.05). No seedlings died in the four burial treatments. Seedling heights in the D33 and D67 treatments were higher than those of the other treatments, indicating that shallow and moderate burials exhibited greater stimulation to seedling growth. Although stem diameter, number and length of branch, and dry mass of seedlings were stimulated in the four burials, the greatest stimulatory effect on stem diameter was observed in the D100 treatment while that on number and length of branch and dry mass occurred in the D67 treatment. With increasing burial depth (D67, D100 and D133), seedling taproot diameter and length decreased while hypocotyl length increased, reflecting that hypocotyl elongation might occur at the expense of development of the root system. The responses of morphological traits and dry mass allocation of S. salsa seedlings to the burial treatments indicated that they might have a special strategy to tolerate the continual burial in the coastal marsh of the Yellow River estuary. The use of thin-layer burial (2 mm d?1) to promote seedling vigor in degraded S. salsa marsh was feasible, and our study provided valuable information for the restoration of S. salsa marsh during seedling growth.

Zhigao Sun; Hongli Song; Wenguang Sun; Jingkuan Sun

2014-01-01T23:59:59.000Z

184

New Imperial Valley power line  

SciTech Connect

The Imperial Irrigation District placed its new 104-mile, 230kV transmission line in service in the Imperial Valley on September 14, 1988. The power line, with a rated capacity of 600 megawatts, transmits electricity generated at geothermal power plants. The transmission line was financed by 14 geothermal companies, whose participation was based on the amount of line-capacity they expect to use.

Not Available

1988-12-01T23:59:59.000Z

185

Evolution of stocks and massifs from burial of salt sheets, continental slope, northern Gulf of Mexico  

SciTech Connect

Salt structures in a 4000-km{sup 2} region of the continental slope, the northeast Green Canyon area, include stocks, massifs, remnant structures, and an allochthonous sheet. Salt-withdrawal basins include typical semicircular basins and an extensive linear trough that is largely salt-free. Counterregional growth faults truncate the landward margin of salt sheets that extend 30-50 km to the Sigsbee Escarpment. The withdrawal basins, stocks, and massifs occur within a large graben between an east-northeast-trending landward zone of shelf-margin growth faults and a parallel trend of counterregional growth faults located 48-64 km basinward. The graben formed by extension and subsidence as burial of the updip portion of a thick salt sheet produced massifs and stocks by downbuilding. Differential loading segmented the updip margin of the salt sheet into stocks and massifs separated by salt-withdrawal basins. Initially, low-relief structures evolved by trap-door growth as half-graben basins buried the salt sheet. Remnant-salt structures and a turtle-structure anticline overlay a salt-weld disconformity in sediments formerly separated by a salt sheet. Age of sediments below the weld is inferred to be be late Miocene to early Pliocene (4.6-5.3 Ma); age of sediments above the weld is late Pliocene (2.8-3.5 Ma). The missing interval of time (1-2.5 Ma) is the duration between emplacement of the salt sheet and burial of the sheet. Sheet extrusion began in the late Miocene to early Pliocene, and sheet burial began in the late Pliocene in the area of the submarine trough to early Pleistocene in the area of the massifs.

Seni, S.J. (Univ. of Texas, Austin (United States))

1991-03-01T23:59:59.000Z

186

Lehigh Valley Chapter, ASM International ASM Materials Camp -Lehigh Valley for High School Students  

E-Print Network (OSTI)

Lehigh Valley Chapter, ASM International ASM Materials Camp - Lehigh Valley for High School careers. The week-long day camp is conducted by graduate students at Lehigh University, overseen

Gilchrist, James F.

187

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

188

Tippecanoe Valley School Corp | Open Energy Information  

Open Energy Info (EERE)

Valley School Corp Valley School Corp Jump to: navigation, search Name Tippecanoe Valley School Corp Facility Tippecanoe Valley School Corp Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tippecanoe Valley School Corp Developer Performance Services Energy Purchaser Tippecanoe Valley School Corp Location Akron IN Coordinates 41.11098144°, -86.04468584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11098144,"lon":-86.04468584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Upper Scioto Valley School | Open Energy Information  

Open Energy Info (EERE)

Valley School Valley School Jump to: navigation, search Name Upper Scioto Valley School Facility Upper Scioto Valley School Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Upper Scioto Valley Schools Energy Purchaser Upper Scioto Valley Schools Location McGuffey OH Coordinates 40.691542°, -83.786353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.691542,"lon":-83.786353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

192

Glacier mass balances (19932001), Taylor Valley, McMurdo Dry Valleys, Antarctica  

E-Print Network (OSTI)

of measurement error and the resulting uncertainty in the mass-balance calculations. STUDY SITE Taylor Valley

Fountain, Andrew G.

193

Innovation and Social Capital in Silicon Valley  

E-Print Network (OSTI)

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

194

Hydrologic Monitoring Summary Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Hydrologic Monitoring Summary Long Valley Caldera, California Abstract Abstract...

195

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

196

Chemical species of migrating radionuclides at commercial shallow land burial sites. Quarterly progress report, May-July, 1984  

SciTech Connect

The primary purposes of this project are to develop an understanding of chemical processes that significantly influence the migration of radionuclides at commercial low-level waste (LLW) burial sites and to evaluate ecological field sampling procedures for monitoring the performance of these sites. This project will produce information to support guidance for implementation of 10 CFR 61, particularly in the development of criteria for LLW disposal site selection, management, permanent closure, and monitoring. It will also produce information needed by the Commonwealth of Kentucky as they finalize plans to stabilize, close, and monitor the Maxey Flats site. Significant current research results are reported for the following tasks: inorganic and organic radionuclide species chemical forms; subsurface migration and infiltration studies; specific radionuclide mapping at Maxey Flats and commercial shallow land burial sites; ecological monitoring at commercial shallow land burial sites; and technical program coordination for LLW research. 13 references, 4 figures, 1 table.

Kirby, L.J.; Rickard, W.H.

1984-08-01T23:59:59.000Z

197

Research Program at Maxey Flats and Consideration of Other Shallow Land Burial Sites  

SciTech Connect

The Maxey Flats research program is a multidisciplinary, multilaboratory program with the objectives to define the radiochemical and chemical composition of leachates in the burial trenches, define the areal distribution of radionuclides on the site and the factors responsible for this distribution, define the concentrations of radionuclides in vegetation both on and offsite and the uptake of radionuclides by representative agricultural crops, define the atmospheric pathways for radionuclide transport and the mechanisms involved, determine the subsurface migration rates of radionuclides and the chemical, physical, biological, and hydrogeological factors which affect this migration. and evaluate the engineering practices which influence the seepage of surface waters into the burial trenches. The program was initiated in 1979 and a research meeting was held at the Nuclear Regulatory Commission Headquarters on July 16, 1980, to report the research findings of each of the participating laboratories and universities. Important observations from the research are included in the Summary and the results reported for each of the research efforts are summarized in the individual reports that are combined to form this document.

,

1981-03-01T23:59:59.000Z

198

Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes  

SciTech Connect

A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

Jacobs, D.G.; Epler, J.S.; Rose, R.R.

1980-03-01T23:59:59.000Z

199

Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING  

E-Print Network (OSTI)

Assessment Project SHORT-BILLED DOWITCHER WADES IN DEEPER WATER, NOTE LONG BILL DUNLIN #12;5 Tennessee Valley1 Tennessee Valley Shorebird Assessment Project SHOREBIRD CONSERVATION AND MONITORING Tennessee Valley Shorebird Assessment Project RESOURCES US SHOREBIRD CONSERVATOIN PLAN http

Gray, Matthew

200

Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley  

SciTech Connect

Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs.

Not Available

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Enforcement Letter, West Valley Nuclear Services- March 30, 1998  

Energy.gov (U.S. Department of Energy (DOE))

Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project

202

Kinarot Jordan Valley Technological Incubator | Open Energy Informatio...  

Open Energy Info (EERE)

Kinarot Jordan Valley Technological Incubator Jump to: navigation, search Name: Kinarot - Jordan Valley Technological Incubator Place: Israel Sector: Services Product: General...

203

2012 Annual Planning Summary for West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project 2012 Annual Planning Summary for West Valley Demonstration Project The ongoing and projected Environmental Assessments and Environmental Impact...

204

FTCP Site Specific Information - West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project FTCP Site Specific Information - West Valley Demonstration Project Annual Workforce Analysis and Staffing Plan Report Calendar Year 2012...

205

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

206

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

207

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

208

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

209

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santa Clara Valley Transportation Authority and San Mateo County Transit District Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell...

210

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

211

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley...

212

DOE - Office of Legacy Management -- West Valley Demonstration...  

Office of Legacy Management (LM)

Valley Demonstration Project - NY 23 FUSRAP Considered Sites Site: West Valley Demonstration Project (NY.23) Designated Name: Alternate Name: Location: Evaluation Year: Site...

213

EV Community Readiness projects: Delaware Valley Regional Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Valley Regional Planning Commission (PA); Metropolitan Energy Information Center, Inc. (KS, MO) EV Community Readiness projects: Delaware Valley Regional Planning...

214

DOE - Office of Legacy Management -- Tennessee Valley Authority...  

Office of Legacy Management (LM)

Tennessee Valley Authority - AL 01 FUSRAP Considered Sites Site: TENNESSEE VALLEY AUTHORITY (AL.01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

215

Santa Clara Valley Transportation Authority and San Mateo County...  

Office of Environmental Management (EM)

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

216

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

217

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

218

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley  

E-Print Network (OSTI)

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 Does your water come) 828-1120. #12; DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 County FollowUp Meeting Tuesday, August 6th , 78:30 p.m. Room 101 Page: VCEPage County, 215 West Main

Liskiewicz, Maciej

219

The Valley Foundation School of Nursing  

E-Print Network (OSTI)

The Valley Foundation School of Nursing One Washington Square San José, CA 95192-0057 Voice: 408, Long Beach, Los Angeles, Maritime Academy Monterey Bay, Northridge, Pomona Sacramento, San Bernardino 2012-2013 is a busy one at The Valley Foundation School of Nursing! Our new curriculum will be fully

Su, Xiao

220

ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS  

E-Print Network (OSTI)

i ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS: HYDROLOGY, GROUNDWATER OPERATING RULE affect California's SWP (State Water Project) and CVP (Central Valley Project) water supply deliveries-operation of groundwater storage, both north and south of the Delta, can increase long-term average project deliveries

Lund, Jay R.

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

West Valley Accomplishments: Year in Review  

Energy.gov (U.S. Department of Energy (DOE))

WEST VALLEY, N.Y. – EM and its contractor at the West Valley Demonstration Project (WVDP) made significant progress in decommissioning the former nuclear fuel reprocessing center this year, with a focus on preparing for high-level waste (HLW) relocation, deactivation and demolition of site facilities and shipment of waste for off-site disposal.

222

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

223

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

224

Bolton Valley Resort | Open Energy Information  

Open Energy Info (EERE)

Bolton Valley Resort Bolton Valley Resort Jump to: navigation, search Name Bolton Valley Resort Facility Bolton Valley Resort Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Bolton Valley VT Coordinates 44.4144038°, -72.83469647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4144038,"lon":-72.83469647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

226

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

227

A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910  

E-Print Network (OSTI)

. C. Introduction of the gasoline engine. D. Pumping Plant boom in the Arkansas Valley, 190^-1910. VI. The Politics of Irrigation 92 A. Irrigation as a public issue. B. Organization of Kansas irrigation interests. C. The demands of the Arkansas... properties of the tertiary mantle, there is very little run-off from the lands adjacent to the Arkansas and consequently no tributaries enter the Arkansas within the High 2Lakin Herald, September 27, 1881} Bruce F. Latta, Geology and Ground...

Sorensen, Conner

1968-01-01T23:59:59.000Z

228

Reactivity of evaporites during burial: An example from the Jurassic of Alabama  

SciTech Connect

The Jurassic Louann salt was the first significant sedimentary unit to accumulate in the Gulf of Mexico sedimentary basin. Br/Cl and {sup 87}Sr/{sup 86}Sr ratios of halite from a single core into the top of the formation record the evaporation of normal seawater to bittern stage. The bittern zone today consists of intergrown halite and sylvite. The Br and Rb contents of the solid phases, along with {sup 87}Sr/{sup 86}Sr ratios and Rb/Sr systematics, are inconsistent with precipitation of the existing phases from seawater evaporated in Jurassic time. Rather, petrography and fluid inclusion and solid phase chemistry from the bittern zone is consistent with postdepositional water/rock interaction which diagenetically modified a marine bittern assemblage to halite + sylvite. The chemistry of the Br- and Rb-rich saline formation waters characteristic of this area today, likewise, may reflect water/evaporite interaction during burial.

Land, L.S.; Eustice, R.A.; Mack, L.E. [Univ. of Texas, Austin, TX (United States)] [and others] [Univ. of Texas, Austin, TX (United States); and others

1995-09-01T23:59:59.000Z

229

Geochemistry of trench leachates at low-level radioactive waste burial sites  

SciTech Connect

Trench leachates from the low-level radioactive waste burial sites at Maxey Flats, Kentucky and Barnwell, South Carolina were sampled and analyzed for dissolved inorganic, organic, and radionuclide constituents. Relative to local groundwaters, the trench leachates exhibit significant modifications in major ion and radionuclide compositions. The formation and composition of the leachates can be attributed to site-specific hydrological and geochemical factors. Leaching and microbial degradation of waste materials are considered to be the important geochemical processes controlling the leachate compositions. Elevated concentrations of Na, K, Ca, Mg, Cl, dissolved organic and inorganic carbon, and various anthropogenic radionuclides reflect leaching of waste materials. Anoxic conditions as characterized by depletion of dissolved oxygen and sulphate, and high contents of alkalinity and ammonia reflect microbial decomposition of organic waste materials. Because of relatively stagnant water accumulations, the extent of modification is much greater in the Maxey Flats leachates as compared with those from Barnwell. 8 references, 2 figures, 2 tables.

Dayal, R.; Pietrzak, R.F.; Clinton, J.

1984-01-01T23:59:59.000Z

230

Ground water and energy  

SciTech Connect

This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

Not Available

1980-11-01T23:59:59.000Z

231

Effect of topography on ground movement due to longwall mining  

SciTech Connect

This paper presents an analysis of the effects of topography on static and dynamic ground movements and severity of damage inflicted on surface structures. A typical site containing varying topographical features (i.e., mountains, hillsides, valleys, and flat bottom land) representing the northern Appalachian region was chosen for the study. Typical subsidence monitoring techniques were employed. Frequent measurements were made as the face advanced.

Khair, A.W.; Quinn, M.K.; Chaffins, R.D.

1988-08-01T23:59:59.000Z

232

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network (OSTI)

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS of the Transmission to Access Renewable Resources in the Imperial Valley C­V. 1 Imperial Valley Study Group List, Heavy Power Flow Data C­V. 2 Imperial Valley Study Group, Appendix B, Transmission Planning

233

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

234

Numerical simulations of bedrock valley evolution by meandering rivers  

E-Print Network (OSTI)

of valley evolution pathways and the long-term stability of valley morphology under constant forcingNumerical simulations of bedrock valley evolution by meandering rivers with variable bank material Institute of Technology, Pasadena, California, USA Abstract Bedrock river valleys are fundamental components

235

Enterprise Assessments Review, West Valley Demonstration Project – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Review of the West Valley Demonstration Project Emergency Management Program Technical Basis and Emergency Preparedness

236

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

237

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

238

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network (OSTI)

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the… (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

239

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey,  

Open Energy Info (EERE)

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity Details Location Baltazor Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The gravity map of the Baltazor KGRA (Fig. 2) shows a gravity low within the valley area that presumably is related to low-density Cenozoic sediments. The steep gravity gradient along the east side of the valley suggests a north-trending normal fault. The thickness of low-density fill is estimated to be about 300 m in the southwestern part of the KGRA and

240

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Diablo Valley Name Lighthouse Solar Diablo Valley Address 2420 Sand Creek Road - C1308 Place Brentwood, CA Zip 94513 Sector Solar Phone number (925) 420-5121 Website http://www.lighthousesolar.com Coordinates 37.9434593°, -121.738203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9434593,"lon":-121.738203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Dakota Valley Wind Project Dakota Valley Wind Project Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355°, -96.524841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.548355,"lon":-96.524841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Unalakleet Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Unalakleet Valley Elec Coop Unalakleet Valley Elec Coop Jump to: navigation, search Name Unalakleet Valley Elec Coop Place Alaska Utility Id 40548 Utility Location Yes Ownership C NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service Commercial Residential Service Residential Average Rates Residential: $0.3920/kWh Commercial: $0.3680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Unalakleet_Valley_Elec_Coop&oldid=41190

244

Harquahala Valley Pwr District | Open Energy Information  

Open Energy Info (EERE)

Harquahala Valley Pwr District Harquahala Valley Pwr District Jump to: navigation, search Name Harquahala Valley Pwr District Place Arizona Utility Id 8139 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Gin Commercial Irrigation Pumping Commercial Non-Irrigation Agriculture Commercial Average Rates Industrial: $0.0565/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Harquahala_Valley_Pwr_District&oldid=410799

245

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

246

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Lighthouse Solar Indian Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Indian Valley Name Lighthouse Solar Indian Valley Address 5062 McLean Station Road Place Green Lane, PA Zip 18054 Sector Solar Phone number (215) 541-5464 Website http://www.lighthousesolar.com Coordinates 40.350689°, -75.475961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.350689,"lon":-75.475961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

SAVE THE DATE!!! The Silicon Valley  

E-Print Network (OSTI)

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

249

VALMET-A valley air pollution model  

SciTech Connect

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

250

Lighthouse Solar Central Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Logo: Lighthouse Solar Central Valley Name Lighthouse Solar Central Valley Address 2135 McCall Ave. Place Selma, CA Zip 93662 Sector Solar Phone number (559) 260-0796 Website http://www.lighthousesolar.com Coordinates 36.564699°, -119.611283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.564699,"lon":-119.611283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Ground Vibration Measurement  

Science Journals Connector (OSTI)

Measurement of ground vibration is important for checking of amplitudes of ... confirmation of efficiency of control measures of ground vibration. The properties of measuring instruments used can affect the resul...

Dr. Milutin Srbulov

2010-01-01T23:59:59.000Z

252

Hypocenter for the 1979 Imperial Valley earthquake  

SciTech Connect

Using P- and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32/sup 0/39.50' N, Longitude 115/sup 0/19.80' W, Depth 8.0 km, Time 23:16:54.40 GMT.

Archuleta, R.J.

1982-06-01T23:59:59.000Z

253

E-Print Network 3.0 - aburra valley quo Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Valley Searles Valley TronaWestend Ridgecrest Searles... Goldfield Lida Tempiute Gold Point Beatty Amargosa Valley Mercury Indian Springs PiocheCaselton Prince... Chloride...

254

Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada  

SciTech Connect

Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm{sup 3} along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation.

Ponce, D.A.; Langenheim, V.E.

1994-12-31T23:59:59.000Z

255

In situ gamma-ray spectrometric analysis of radionuclide distributions at a commercial shallow land burial site. [Maxey Flats, Kentucky  

SciTech Connect

Gamma-ray spectrometric analysis conducted at the Maxey Flats, Kentucky (USA) shallow land burial site confirmed that the waste radionuclides have been retained largely within the restricted area of the burial site. Concentrations of /sup 137/Cs and /sup 60/Co were comparable with those originating from global fallout and lower than concentrations measured in several other areas having similar rainfall. In-situ spectrometric analyses, corroborated by soil sample and vegetation analyses, indicate that the site has influenced /sup 60/Co levels slightly in the west drainage channel, but /sup 137/Cs did not originate from the site. Concentrations of /sup 60/Co, /sup 90/Sr and /sup 137/Cs determined in subsurface soils by well logging techniques confirmed that subsurface migration of waste-derived radionuclides to points outside the restricted area has not been a significant source of contamination of the environs adjacent to the site. 8 references, 8 figures.

Kirby, L.J.; Campbell, R.M.

1984-10-01T23:59:59.000Z

256

Agricultural aspects of monitoring and stabilization of shallow land-burial sites. Annual report, October 1, 1978-September 30, 1980  

SciTech Connect

The year FY 1979 was a transition year between start up of work at the low level waste burial site at Maxey Flats, Kentucky and completion of previous work involving laboratory studies with radionuclides. All of our studies are designed to solve problems or verify situations that exist in the field. The thrust at Maxey Flats by this group involves soil moisture and radionuclide movement at that burial site in a humid region. Vegetation cover is being manipulated, rooting depth is being studied, water penetration and flow are being measured, radionuclide uptake by plants and concentration in components of soil moisture are being measured. Goals are to determine how water is penetrating trenches and how to minimize such penetration. Laboratory studies involve fission and transuranic radionuclides with a future focus placed primarily upon field problems related to low level waste burial problems and soils. Some past studies being completed involved transuranic elements and a cross-section of USA soils. Different sized containers have been involved in the studies so that results can be extrapolated to field conditions. Analytical work is almost completed and the data are being synthesized. Some preliminary organization of the data is included in this annual report. Concentration ratios, plant part discrimination ratios and radionuclide ratios are included in the initial evaluation. The laboratory phase of this study is to be completed in the next fiscal year with more effort being redirected toward field studies at the shallow land waste burial site. Separate abstracts have been prepared for 9 items in this report for inclusion in the Energy Data Base.

Wallace, A.; Schulz, R.K.; Romney, E.M.; Nishita, H.; Herman, D.J.

1980-02-01T23:59:59.000Z

257

Mapping subsurface radionuclide migration and groundwater flow with organic tracers. [Shallow-land burial  

SciTech Connect

At Pacific Northwest Laboratory we have had the opportunity to study the subsurface migration of radionuclides at the Maxey Flats burial site. We constructed an experimental study area adjacent to one of the waste-filled trenches at the site. In this report we describe some preliminary results of organic research currently underway at Maxey Flats. This research is aimed at: (1) elucidating the role of organic species in the subsurface migration of radionuclides; and (2) testing the usefulness of artificial and in situ organic groundwater tracers for mapping radionuclide migration and groundwater flow. We also describe two analytical procedures developed for this research. First, as part of a survey study of organics in Maxey Flats groundwater we have developed a procedure for the isolation and characterization of trace levels of organics in radioactive groundwaters. Second, for a detailed chemical speciation study we developed a procedure based on steric exclusion chromatography for testing whether or not organics are chelated to radionuclides. 1 figure, 1 table.

Toste, A.P.; Kirby, L.J.; Pahl, T.R.; Myers, R.B.

1983-10-01T23:59:59.000Z

258

Chemical species of migrating radionuclides at commercial shallow land burial sites. Quarterly progress report, July-September 1983  

SciTech Connect

The primary purpose of this project is to develop an understanding of chemical processes that significantly influence the migration of radionuclides at commercial low-level waste burial sites. Chemical measurements of waste trench leachate and identification of chemical changes in leachate during migration will provide a basis for geochemical waste transport models. This project will produce for the US Nuclear Regulatory Commission (NRC) information to support guidance for implementation of 10 CFR 61, particularly in the development of criteria for low level waste disposal site selection, management, permanent closure and monitoring. This project will also produce information needed by the Commonwealth of Kentucky as they finalize plans to stabilize, close and monitor the Maxey Flats site. Current research results are presented for the following tasks: (1) chemical forms inorganic and organic radionuclide species; (2) subsurface migration and infiltration studies; (3) specific radionuclide mapping at Maxey Flats and other commercial shallow land burial sites; (4) ecological monitoring at commercial shallow land burial sites; and (5) technical program coordination for low-level waste research. 17 references, 6 figures, 3 tables.

Kirby, L.J.; Rickard, W.H.; Toste, A.P.

1983-11-01T23:59:59.000Z

259

Studies of transport of waste radionuclides, through soil at the Maxey Flats, Kentucky, waste-burial site  

SciTech Connect

Two areas at the waste-burial site are being used to study the interaction of soil with liquid waste - one near Trench 19S and the other between an experimental trench and Trench 27. Analyses of soil solutions near Trench 19S indicate that radionuclides have migrated from the waste-burial trench. The observed distribution of radionuclides in that area suggests that /sup 3/H, as tritiated water, has moved the greatest distance. Movement of /sup 137/Cs is essentially nonexistent. The migration of /sup 238/Pu and /sup 60/Co lies between those two extremes. The distance that /sup 3/H has moved, at an approximated depth of 4 m, is about 9 m. Additional porous cup samplers were installed at depths to 8 m to better evaluate the distribution of radionuclides near Trench 19S. Results from soil moisture measurements by R.K. Schulz of the University of California at Berkeley indicate a preferential movement of water into the waste trench through its cap. Our study of the /sup 3/H in surface soils outside the perimeter fence of the burial site suggests that contamination of the near-surface soil water occurs and could be from an airborne source, possible originating from the site evaporator. Another localized source could be associated with underflow from a burial trench that surfaces outside the perimeter fence. The /sup 3/H content in some soil solutions near an experimental trench suggest a preferential movement of water along an interface of an original soil profile and the overlying landfill. If such an interface were to intercept a burial trench and also outcrop off site, it could act as a preferential pathway for transport of radionuclides off site. The nonsorptive behavior of a small fraction of /sup 238/Pu in the Maxey Flats waste was interpreted as having been caused by an organic complex that is very slowly biodegradable. Organic constituents in the Maxey Flats soil, Tilsit Ap, may complex some of the /sup 238/Pu, making it mobile for some period of time.

Fowler, E.B.; Polzer, W.L.; Essington, E.H.

1983-01-01T23:59:59.000Z

260

Silicon Valley v2.0 A Cleantech Cluster in the Making  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Valley v2.0 A Cleantech Cluster in the Making Silicon Valley v2.0 A Cleantech Cluster in the Making Speaker(s): Paul Frankel Date: March 8, 2006 - 12:00pm Location: Bldg. 90 How can a we identify new opportunities for innovation, assess market potential, and develop the best pathways for sustained implementation, dissemination, and improvement of clean technologies? Considering the wealth of innovation generated and available throughout the UC and National Lab systems, and their pedigree of success at developing technologies that were ground breaking and timely, they seem logical places to undertake a sustained effort dedicated to identifying and launching market-driven solutions to solve environmental problems. Programs such as Berkeley's Lester Center (http:// entrepreneurship.berkeley.edu/), the Stanford Technology Ventures Program

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Substation grounding optimization.  

E-Print Network (OSTI)

??Substation grounding is a critical part of the overall electric power system. It is designed to not only provide a path to dissipate electric currents… (more)

Balev, Vadim

2014-01-01T23:59:59.000Z

262

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

263

Radionuclide transport from yucca Mountain and Inter-basin Flow in Death Valley  

SciTech Connect

Hydrodynamics and the U.S. Geological survey conducted studies to evaluate far-field issues related to potential transport, by ground water, of radionuclide into Inyo County from Yucca Mountain, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. The specific purpose of our research was to acquire geological, subsurface geology, and hydrologic data to: 1. Establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin, 2. Characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and 3. Evaluate the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA. 4. Evaluate the hydraulic connection between the Yucca Mountain repository and Franklin Lake Playa. The hydraulic characterization of the LCA is of critical interest to Inyo County and the U.S. Department of Energy because: 1. The upward gradient in the LCA at Yucca Mountain provides a natural barrier to radionuclide transport, 2. The LCA is a necessary habitat resource for the endangered Devil's Hole pup fish, and 3. The LCA is the primary water supply and source of water to the major springs in Death Valley National Park. This paper presents the results of our study program to evaluate if inter-basin flow exists between the Amargosa and Death Valley Basins through the LCA. The study presents the results of our structural geology analysis of the Southern Funeral Mountain range, geochemical source analysis of spring waters in the region, and a numerical groundwater model to simulate inter-basin flow in the Southern Funeral Mountain range. (authors)

Bredehoeft, J. [The Hydrodynamics Group (United States); Fridrich, C. [U.S. Geological Survey-Denver (United States); King, C.HG.M. [The Hydrodynamics Group, LLC (United States)

2007-07-01T23:59:59.000Z

264

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

265

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

266

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Valley View Wind Farm Facility Valley View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Valley View Transmission Energy Purchaser Xcel Energy Location Outside Chandler MN Coordinates 43.905808°, -96.020508° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.905808,"lon":-96.020508,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Ohio Valley Electric Corp | Open Energy Information  

Open Energy Info (EERE)

Ohio Valley Electric Corp Ohio Valley Electric Corp Place Ohio Utility Id 14015 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0450/kWh The following table contains monthly sales and revenue data for Ohio Valley Electric Corp (Ohio). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

268

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Penoyer Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Penoyer Valley Electric Coop Penoyer Valley Electric Coop Jump to: navigation, search Name Penoyer Valley Electric Coop Place Nevada Utility Id 40497 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Rate Commercial Lincoln County Residential Residential Residential Rate Residential Residential Rate- Lower Colorado Residence Residential Average Rates Residential: $0.0787/kWh Commercial: $0.0722/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

270

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

272

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

273

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Smoky Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Smoky Valley Wind Project Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766°, -97.683563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578766,"lon":-97.683563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

All Valley Solar All Valley Solar Name All Valley Solar Address 6851 Cahuenga Park Trail Place Los Angeles, California Year founded 1986 Phone number (661) 257-7780 Coordinates 34.1235069°, -118.345082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1235069,"lon":-118.345082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Whitewater Valley Rural EMC | Open Energy Information  

Open Energy Info (EERE)

Valley Rural EMC Valley Rural EMC Jump to: navigation, search Name Whitewater Valley Rural EMC Place Indiana Utility Id 20216 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS - General Service Multi Phase Commercial Schedule GS - General Service Single Phase Commercial Schedule GS TOU - General Service Time-of-Use Commercial Schedule IP - Industrial Power Service Industrial Schedule LP - Large Power Service Multi Phase Industrial Schedule LP - Large Power Service Single Phase Industrial

279

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Powell Valley Electric Coop Powell Valley Electric Coop Jump to: navigation, search Name Powell Valley Electric Coop Place Tennessee Utility Id 15293 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Industrial 1001 - 5000 KW Industrial General Power Industrial 51 - 1000 KW Industrial General Power Commercial 1001 - 5000 KW Commercial General Power Commercial 51 - 1000 KW Commercial General Power Commercial Less than 50 KW Commercial General Power Industrial Less than 50 KW Industrial

280

Differential-ground-motion array at Hollister Municipal Airport, California  

SciTech Connect

This report describes the differential array of seismometers recently installed at the Hollister, California, Municipal Airport. Such an array of relatively closely spaced seismometers has already been installed in El Centro and provided useful information for both engineering and seismological applications from the 1979 Imperial Valley earthquake. Differential ground motions, principally due to horizontally propagating surface waves, are important in determining the stresses in such extended structures as large mat foundations for nuclear power stations, dams, bridges and pipelines. Further, analyses of the records of the 1979 Imperial Valley earthquake from the differential array have demonstrated the utility of short-baseline array data in tracking the progress of the rupture wave front of an earthquake. 5 refs., 4 figs.

Bycroft, G.N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

282

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

LongValley Strat.pdf Jump to: navigation, search File File history File usage Metadata File:LongValley Strat.pdf Size of this preview: 800 515 pixels. Full resolution (830 ...

283

A Home for Everyone San Joaquin Valley Housing  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

284

IMPACTS OF LANDSLIDE DAMS ON MOUNTAIN VALLEY MORPHOLOGY  

Science Journals Connector (OSTI)

Landslide dams can influence mountain-valley morphology significantly in the vicinity of the ... and their impoundments, and thus influence the long-term effects of these natural features on mountain-valley morph...

R.L. SCHUSTER

2006-01-01T23:59:59.000Z

285

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

286

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

287

Geochemical investigations at Maxey Flats radioactive waste disposal site. [Shallow land burial  

SciTech Connect

As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables.

Dayal, R.; Pietrzak, R.F.; Clinton, J.

1984-09-01T23:59:59.000Z

288

2014 Annual Planning Summary for the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the West Valley Demonstration Project.

289

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

290

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

291

Prediction equations for significant duration of earthquake ground motions considering site and near-source effects  

E-Print Network (OSTI)

this study Event Imperial Valley Kern County San FranciscoItaly Santa Barbara Tabas, Iran Coyote Lake Imperial ValleyImperial Valley Imperial Valley Livermore Livermore Anza

Kempton, Justin J; Stewart, Jonathan P

2006-01-01T23:59:59.000Z

292

West Valley College Portland State University Transfer Worksheet  

E-Print Network (OSTI)

West Valley College Portland State University Transfer Worksheet If you are taking classes that are part of the Intersegmental General Education Transfer Curriculum (IGETC) at West Valley College (WVC) #12;West Valley College Portland State University 2. DEGREE REQUIREMENTS The majority of majors at PSU

Caughman, John

293

Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity  

E-Print Network (OSTI)

's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The roleAedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity Alain Le Coupanec1 , Divya contro^le, Centre IRD de Montpellier, Montpellier, France Abstract Background: Rift Valley fever (RVF

Boyer, Edmond

294

Opening Remarks for the Fort Valley Centennial Celebration  

E-Print Network (OSTI)

West region. Given the rich historic con- text of Fort Valley, and the long-term studies and dataOpening Remarks for the Fort Valley Centennial Celebration G. Sam Foster, Station Director, U the past century at Fort Valley Experimental Forest. With the help of our partners and collaborators, Rocky

295

Putting the "Death" in Death Valley Paul Withers  

E-Print Network (OSTI)

of the rough map, continued due west to discover Death Valley... They were composed of three groups: thirtyPutting the "Death" in Death Valley Paul Withers In 1849, gold was discovered at Sutter's Mill of human suffering in a place they named Death Valley. [From here on, historical sources have a tendency

Withers, Paul

296

A Buried Valley System in the Strait of Dover  

Science Journals Connector (OSTI)

...Redding A series of buried valleys situated south of the submerged...recognized as infilled tunnel-valleys excavated subglacially during...the English Channel from the west. Before the Saalian a Chalk...associated with the tunnel-valleys and scouring out the present...

1975-01-01T23:59:59.000Z

297

REVIEW Open Access Towards a better understanding of Rift Valley  

E-Print Network (OSTI)

REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west , Matthieu Roger1 and Betty Zumbo7 Abstract Rift Valley fever virus (Phlebovirus, Bunyaviridae be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever

Paris-Sud XI, Université de

298

The California State University Imperial Valley Campus Bulletin  

E-Print Network (OSTI)

2010­2011 The California State University Imperial Valley Campus Bulletin #12;BULLETIN THE IMPERIAL VALLEY CAMPUS 2010-2011 SAN DIEGO STATE UNIVERSITY 720 HEBER AVENUE CALEXICO, CALIFORNIA 92231 the 2010 2011 Bulletin of the Imperial Valley Campus of San Diego State University. Its publication

Gallo, Linda C.

299

Edmund G. Brown, Jr. IMPERIAL VALLEY AND TEHACHAPI  

E-Print Network (OSTI)

Edmund G. Brown, Jr. Governor IMPERIAL VALLEY AND TEHACHAPI IMPLEMENTATION GROUPS/Agricultural/Water EndUse Energy Efficiency · Renewable Energy Technologies · Transportation Imperial Valley and Tehachapi Implementation Groups is the final report for the Imperial Valley and Tehachapi Implementation

300

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network (OSTI)

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. It can be used to compute transient ground potential rise due to lightning or switching, and the ground impedance (i.e. resistance and reactance) at specified frequencies. This report, Volume 4, is a users manual and an installation and validation manual for the computer program TGRND (Transient GRouNDing System Analysis Program). This program computes transient ground potential rise resulting from lightning, switching, or other transient electric currents injected to a grounding system. The program also computes the impedance (i.e. resistance and reactance) of a grounding system as a function of frequency. This program can be utilized in an interactive or batch mode. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program TGRND and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

302

Ground Motion Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2nd Advanced ICFA Beam Dynamics Workshop 2nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6 - 9, 2000 SLAC Coordinators: Andrei Seryi & Tor Raubenheimer Proceedings Updated June 26, 2001 Agenda and Presentations Workshop photos Summaries Useful links Poster Goals Introduction to the problems Structure Registration Registered participants Committees Location, Accommodations and Travel Workshop on Ground Motion in Future Accelerators A workshop was held at SLAC that was devoted to ground motion and its effects on future accelerators. Ground motion and vibration can be a limiting effect in synchrotron light sources, hadron circular colliders, and electron/positron linear colliders. Over the last several years, there has been significant progress in the understanding of the ground motion and its effects, however, there are

303

2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined from LiDAR topographic data and  

E-Print Network (OSTI)

deformation is accommodated on 22 structures east of Fish Lake Valley, or that rates of seismic 23 strain2 Spatial variations in slip rate along the Death Valley-Fish Lake Valley 3 fault system determined; accepted 11 July 2007; published XX Month 2007. 9 [1] The Death Valley-Fish Lake Valley fault zone (DV- 10

Black, Robert X.

304

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley Fault and Pacific-North America Plate Boundary Strain Distribution  

E-Print Network (OSTI)

Spatial and Temporal Constancy of Seismic Strain Release Along the Death Valley-Fish Lake Valley, Berkeley, CA 94720 and CEREGE, 13545 Aix en Provence, France The Death Valley-Fish Lake Valley fault (DV/yr at the northern end of the DV-FLVF in Fish Lake Valley. This decrease in slip rate is at odds with observations

Black, Robert X.

305

Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and  

E-Print Network (OSTI)

east of Fish Lake Valley, or that rates of seismic strain accumulation and release have not remainedSpatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined; accepted 11 July 2007; published 19 September 2007. [1] The Death Valley-Fish Lake Valley fault zone (DV

Frankel, Kurt L.

306

Mesoscale Influences on Nocturnal Valley Drainage Winds in Western Colorado Valleys  

Science Journals Connector (OSTI)

The mesoalpha-scale upper-level sounding network data collected during the 1984 ASCOT meteorological and tracer experiments provided a unique opportunity to analyze the nocturnal drainage wind in four different valleys in western Colorado, and to ...

Montie M. Orgill; John D. Kincheloe; Robert A. Sutherland

1992-02-01T23:59:59.000Z

307

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Golden Valley County Secondary Data Analysis  

E-Print Network (OSTI)

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

310

Glasgow and Clyde Valley Integrated Habitat Networks  

E-Print Network (OSTI)

of expert stakeholder workshops. The model outputs are GIS maps that can be used to assess habitats and how & Clyde Valley Green Network Partnership 7th November 2008 All maps reproduced from Ordnance Survey using digital data on a geographic information system (GIS) to identify IHNs in the GCV area

311

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

312

Pearl River Valley Electric Power Association - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

313

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

314

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

315

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

316

Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Magic Valley Electric Cooperative - ENERGY STAR Builders Program Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) Magic Valley Electric Cooperative - ENERGY STAR Builders Program (Texas) < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home: $150-$600 ENERGY STAR Home with Version 3.0 Checklist: $200 Marathon Water Heater Installation: $150 ENERGY STAR Heat Pump Water Heater: $250 Provider Magic Valley Electric Cooperative Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes

317

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

318

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

319

Assessment of Long Valley as a site for drilling to the magmatic environment  

SciTech Connect

Recent earthquakes, ground uplift, and increased hydrothermal activity are only the most recent examples of intense tectonic and volcanic activity that has occurred at Long Valley caldera, CA, over the last 3 million years. A large number of geophysical experiments conducted by several hundred investigators over the past few years clearly indicates that a major body of magma exists within the central part of the caldera at drillable depths on the order of 5 km. Plans are underway to drill toward and eventually into this magma body. 2 figs., 1 tab.

Rundle, J.B.; Carrigan, C.R.; Hardee, H.C.; Luth, W.C.

1986-01-01T23:59:59.000Z

320

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Valley Center Municipal Water District | Open Energy Information  

Open Energy Info (EERE)

Municipal Water District Municipal Water District Jump to: navigation, search Name Valley Center Municipal Water District Place Valley Center, California Zip 92082 Product VCMWD is the second largest water provider in San Diego County behind the City of San Diego. References Valley Center Municipal Water District[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Valley Center Municipal Water District is a company located in Valley Center, California . References ↑ "Valley Center Municipal Water District" Retrieved from "http://en.openei.org/w/index.php?title=Valley_Center_Municipal_Water_District&oldid=352717" Categories: Clean Energy Organizations Companies Organizations

322

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

323

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

324

Ground-penetrating radar survey of the Maxey Flats Low-Level Nuclear Waste Disposal Site, Fleming County, Kentucky  

SciTech Connect

A ground-penetrating radar survey was conducted at the Maxey Flats Low-Level Nuclear Waste Disposal Site, Kentucky, to more accurately determine the location of burial trenches and pits, and to identify locations and depths of any prominent subsurface features. A geologic/electromagnetic model of the site was developed and utilized for analysis of the acquired data. Depths of penetration derived from radar records correlate well with those calculated from the model. A final interpretation of the radar data is presented.

Horton, K.A.; Morey, R.M.

1982-06-01T23:59:59.000Z

325

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 2, is a users manual and an installation and validation manual for the computer program SMECC (Substation Maximum Earth Current Computation Program). This program analyzes the electric current distribution among grounded structures inside and outside a substation for different fault conditions. The fault conditions are automatically selected by the program, or they may be specified by the user, or both. The fault condition resulting in maximum substation earth current is identified and reported. Data requirements for this program are: ground impedance, transformer data, transmission line data, transmission line grounding impedances, etc. The program provides four types of standard outputs: (1) a report of voltages and current flow in the unfaulted system, (2) a brief report of the maximum ground potential rise (worst fault condition), (3) a summary report of all fault conditions which have been analyzed by the program, and (4) a detailed report of voltages and current flow for a selected set of fault conditions.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

326

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 25750 of 28,904 results. 41 - 25750 of 28,904 results. Article Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds Department of Energy's (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately $17.5 million in American Recovery and Reinvestment Act funds. http://energy.gov/em/articles/oak-ridge-environmental-management-program-completes-work-bethel-valley-burial-grounds Page Environmental Management Advisory Board (EMAB) The mission of the Environmental Management Advisory Board is to provide independent and external advice, information, and recommendations to the Assistant Secretary for Environmental Management ... http://energy.gov/em/services/communication-engagement/environmental-management-advisory-board-emab

327

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

328

Development and Application of a Paleomagnetic/Geochemical Method for Constraining the Timing of Burial Diagenetic and Fluid  

SciTech Connect

Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. While geochemical (e.g. stable isotope and organic analyses) and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas.

Elmore, Richard D.; Engel, Michael H.

2005-03-10T23:59:59.000Z

329

Summary of recent research in Long Valley Caldera, California  

Science Journals Connector (OSTI)

Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989–1990, and 1997–1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (7–10-km) source beneath the resurgent dome, there exists a deeper (?15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100–200°C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station.

Michael L. Sorey; Vicki S. McConnell; Evelyn Roeloffs

2003-01-01T23:59:59.000Z

330

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Tennessee Valley Authority (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Mississippi) Mississippi) Jump to: navigation, search Name Tennessee Valley Authority Place Mississippi Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0448/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Mississippi). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14,903 268,562 8 14,903 268,562 8

332

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Tennessee Valley Authority (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Authority (Alabama) Authority (Alabama) Jump to: navigation, search Name Tennessee Valley Authority Place Alabama Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0487/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Alabama). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 19,875 343,154 24 19,875 343,154 24

334

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Chippewa Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Chippewa Valley Electric Coop Chippewa Valley Electric Coop Place Wisconsin Utility Id 3498 Utility Location Yes Ownership C NERC Location MRO ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED CENTRAL AC CREDIT - RATE CODE AC Commercial DISTRIBUTED GENERATION RATE DG Commercial DUSK/DAWN LIGHTING RATE CODE L Lighting INDUSTRIAL TIME OF DAY RATE CODE I Industrial LARGE SINGLE PHASE/MEDIUM-LARGE THREE PHASE RATE CODE X Industrial MEDIUM SINGLE PHASE/SMALL THREE PHASE - RATE CODE W Commercial OFF-PEAK ELECTRIC SPACE HEATING RATE CODE H Commercial

336

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

338

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Minnesota Valley Electric Coop Minnesota Valley Electric Coop Place Minnesota Utility Id 12651 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule A- Single Phase Service Schedule B- 3 phase service 25 kW and greater Commercial Schedule B- 3 phase service less than 25 kW Schedule DH: Dual Heat Service Schedule EH: Electric Heat Service Schedule I: Single-Phase Irrigation Service Schedule I: Three-Phase Irrigation Service Schedule SL: 150 Watt HPS Lighting Schedule SL: 175 Watt MV Lighting Schedule SL: 400 Watt MV Lighting

339

Ground-Water Recharge in the Arid and Semiarid Southwestern United States --  

E-Print Network (OSTI)

by the international boundary with Mexico. Hyperarid condi- tions occur in Imperial Valley and Death Valley

340

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

A F F T EAST MESA, IMPERIAL VALLEY, CALIFORNIA J. H. Howard,reconnaissance of the Imperial Valley, California. USGSthe East Mesa area, Imperial Valley, California. TRW/

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

342

Elk Valley coal implements smartcell flotation technology  

SciTech Connect

In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

Stirling, J.C. [Elk Valley Coal Corporation, Elkford, BC (Canada)

2008-06-15T23:59:59.000Z

343

Stability of ice-sheet grounding lines  

Science Journals Connector (OSTI)

...for flow down shallow valleys, while the latter considers...Pine Island glacier in West Antarctica. Conclusions...Setting gives a single valley with a width equal to...presence of the internal valley, even if it is narrow...dynamical models of the West Antarctic Ice Sheet...

2010-01-01T23:59:59.000Z

344

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Department of Industrial Engineering Spring 2012 Improving Medical Equipment Tracking at Muncy Valley Hospital  

E-Print Network (OSTI)

at Muncy Valley Hospital Overview Muncy Valley Hospital's Skilled Nursing Unit did not have any way in Muncy Valley Hospital's Skilled Nursing Unit. Approach Visited Muncy Valley Hospital Skilled Nursing Outcomes Muncy Valley Hospital Skilled Nursing Unit now has a way to track its medical equipment Less

Demirel, Melik C.

349

Presentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PSInSAR analysis  

E-Print Network (OSTI)

is exposed subaerially in the Longitudinal Valley (LV) (Figure 1b). This 150 km long NNE trending valleyPresentday interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from Valley (LV). The Longitudinal Valley Fault (LVF) is the main seismically active fault zone in this region

Demouchy, Sylvie

350

Substation grounding programs  

SciTech Connect

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

351

Crustal Structure and tectonics of the Imperial Valley Region California |  

Open Energy Info (EERE)

Crustal Structure and tectonics of the Imperial Valley Region California Crustal Structure and tectonics of the Imperial Valley Region California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Crustal Structure and tectonics of the Imperial Valley Region California Abstract N/A Authors Gary S. Fruis and William M. Kohler Published Journal U. S. GEOLOGICAL SURVEY, 1984 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crustal Structure and tectonics of the Imperial Valley Region California Citation Gary S. Fruis,William M. Kohler. 1984. Crustal Structure and tectonics of the Imperial Valley Region California. U. S. GEOLOGICAL SURVEY. N/A(N/A):285-297. Retrieved from "http://en.openei.org/w/index.php?title=Crustal_Structure_and_tectonics_of_the_Imperial_Valley_Region_California&oldid=682730"

352

West Valley Demolition Marks Important Accomplishment for EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM West Valley Demolition Marks Important Accomplishment for EM June 13, 2013 - 12:00pm Addthis Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility. Demolition work is shown in February 2013. Demolition work is shown in February 2013. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Demolition continues in April 2013 with removal of internal components and concrete cell walls. Debris is removed following demolition. Debris is removed following demolition. Workers demolish the West Valley Demonstration Project's largest and most complex ancillary facility.

353

Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Nuclear Services - March 30, 1998 West Valley Nuclear Services - March 30, 1998 Enforcement Letter, West Valley Nuclear Services - March 30, 1998 March 30, 1998 Issued to West Valley Nuclear Services related to Hazard Analysis, Design Review, Work Control Implementation, and a Contamination Event at the West Valley Demonstration Project This letter refers to the Department of Energy's (DOE) evaluation of West Valley Nuclear Services Company's (WVNS) report of a potential noncompliance with the requirements of 10 CFR 830.120 (Quality Assurance) and 10 CFR 835 (Occupational Radiation Protection). This potential noncompliance, which involved inadequate hazards analysis, design review, and implementation of work controls during decontamination activities for a high-level waste tank mobilization pump, was identified by WVNS on

354

Independent Activity Report, West Valley Demonstration Project - July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

355

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

356

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

357

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

358

Poudre Valley REA - Photovoltaic Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program Poudre Valley REA - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $1.50 per watt Provider Poudre Valley REA Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's Energy Office's (GEO) state-wide rebate program, and Poudre Valley REC customers are permitted to receive both rebates. Before receiving a rebate, applicants must have an energy audit of their home that includes a blower door test. The audit must

359

Independent Activity Report, West Valley Demonstration Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

360

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

362

Rock deterioration in the Royal Tomb of Seti I, Valley of the Kings, Luxor, Egypt  

Science Journals Connector (OSTI)

A comparison of present tomb conditions of the Royal Tomb of Seti I in the Valley of the Kings with Burton's photographs (1921–1928) reveals that the rock structure and tomb decoration have undergone severe deterioration. In fact, several other Royal Tombs in the Valley of the Kings have shown similar decay features. Most of the Royal Tombs in the Valley of the Kings and the West Valley were excavated into the marls of the middle and lower part of Member I, the lowermost unit of the Thebes Formation. However, several tombs penetrate into the underlying interbedded shales and marls of the Esna Formation. All of them show severe, irreversible rock structure deterioration originating from swelling and shrinkage. Since the burial of Seti I, 3300 years ago, water and debris from flash floods had minor impacts on wall decoration of the uppermost chambers and on wall structure in the lower chambers. Historic flooding since the discovery of the tomb has caused major destruction of walls and pillars by repeated swelling and shrinkage of the shale. Moreover, accelerated humidity changes over the past 70 years have contributed to increasing deterioration of the rock structure. Rock mechanic analyses were done on samples from the tomb of Seti I in order to understand the propelling mechanism of deterioration. Marls and limestones of the Thebes Formation are predominantly composed of calcite, with 10–40% clay minerals and minor amounts of quartz and anhydrite. Sepiolite and palygorskite are the dominant clay minerals in the Thebes Formation, with subordinate amounts of kaolinite and illite/smectite mixed layers. The shales of the Esna Formation contain more than 70% clay minerals, which are composed of illite/smectite mixed layers, with high swelling capacity, kaolinite and subordinate palygorskite and sepiolite. The marls of the lower Thebes Formation showed dry compressive strength values between 48 MPa (7000 psi) and 78 MPa (11 300 psi) before violent failure, with a maximum elastic deformation of 0.4–0.5%. The Esna Shale samples had maximum stress loads of 60 MPa (8500 psi) and 74 MPa (10 800 psi) with a maximum deformation of more than 2%. The deformation character changed with increasing pressure from an elastic to an inelastic mode. Long-term swell tests on Esna Shale samples revealed an enormous water absorption and swelling capacity. Swell heaving is between 50 and 80%, most of which takes place within the first hour. The swell pressure exceeds 5 MPa (700 psi) and 13 MPa (1900 psi) with a deformation of 1.5 and 3.3%, respectively. The swell pressure increases to its maximum over a period of 7–12 days. The rock tests showed that the swell pressure capacity of the Esna shales might exceed the strength of the brittle and highly jointed marls of Member I, into which most of the tombs are hewn. The swell and water intake tests demonstrated that water absorption of the Esna shales is immediate. Mineralogical analyses showed that mixed-layer clay minerals are able to release enormous pressure, which may be ‘compensated’ through ductile deformation by the shales or may result in brittle failure of the marls.

Raphael A.J. Wüst; James McLane

2000-01-01T23:59:59.000Z

363

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2

364

VALMET: a valley air pollution model. Final report. Revision 1  

SciTech Connect

An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

Whiteman, C.D.; Allwine, K.J.

1985-04-01T23:59:59.000Z

365

Independent Oversight Review, West Valley Demonstration Project Transportation- September 2000  

Energy.gov (U.S. Department of Energy (DOE))

Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP)

366

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

California Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (December 1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California,...

367

"Potomac's Valley shall become a domain we create".  

E-Print Network (OSTI)

??Farmers in the South Branch Valley in Hampshire County, Virginia (present-day Hardy County, West Virginia), created a commercial agricultural system that made the South Branch… (more)

Lee, Elizabeth Oliver.

2008-01-01T23:59:59.000Z

368

Lobbyist Disclosure Form - Silicon Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First Solar Interested Parties - Shipp...

369

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

370

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

371

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

372

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

373

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA...

374

Static Temperature Survey At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

375

Conservation tillage production systems compared in San Joaquin Valley cotton  

E-Print Network (OSTI)

in San Joaquin Valley cotton by Jeffrey P. Mitchell, Danielfor 25% or more of overall cotton production costs. Thesesuccessfully elsewhere in the Cotton Belt may be a viable

Mitchell, Jeffrey; Munk, Dan; Prys, Bob; Klonsky, Karen; Wroble, Jon; De Moura, Rich

2006-01-01T23:59:59.000Z

376

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

is currently being utilized. References B. M. Kennedy, M. C. van Soest (2006) A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Additional References...

377

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

378

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

379

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

380

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date 1996 - 1997 Usefulness not indicated DOE-funding Unknown...

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...  

Open Energy Info (EERE)

to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein...

382

Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

383

Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

384

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

385

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

386

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the resurgent dome to provide a comprehensive conceptual model of the different stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system....

387

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

the resurgent dome to provide a comprehensive conceptual model of the different stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system....

388

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

389

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Tempel, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

390

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

391

Conceptual Model At Dixie Valley Geothermal Area (Parchman, Et...  

Open Energy Info (EERE)

Parchman, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Parchman, Et Al., 1981)...

392

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

393

Core Holes At Long Valley Caldera Geothermal Area (Urban, Et...  

Open Energy Info (EERE)

Urban, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Urban, Et Al., 1987)...

394

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

395

Sun Valley to Morgan Transmission Line | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: Sun Valley to Morgan Transmission Line EIS at na for na Environmental Impact Statement...

396

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate the World's First Long Distance 40Gbps RDMA Data Transfer News & Publications ESnet in the News ESnet News Media &...

397

Radon-222 in groundwater of the Long Valley caldera, California  

Science Journals Connector (OSTI)

In the Long Valley caldera, where seismicity has continued essentially uninterrupted...222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for ...

H. A. Wollenberg; A. R. Smith; D. F. Mosier; S. Flexser…

398

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

399

Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) ...  

Open Energy Info (EERE)

Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Peter E. Rose, Stuart D. Johnson, Phaedra Kilbourn (2001) Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene...

400

Zena conservation easement protects habitat in Willamette Valley...  

NLE Websites -- All DOE Office Websites (Extended Search)

central Willamette Valley for fi sh and wildlife habitat mitigation. Located in the Eola Hills about eight miles northwest of Salem (see map), this property provides refuge for...

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New Evidence On The Hydrothermal System In Long Valley Caldera...  

Open Energy Info (EERE)

Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

402

Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

403

Temperature Data From Wells in Long Valley Caldera, California...  

Open Energy Info (EERE)

Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Temperature Data From Wells in Long Valley Caldera, California Abstract No abstract...

404

Chemical Evolution and Chemical State of the Long Valley Magma...  

Open Energy Info (EERE)

Magma Chamber Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Chemical Evolution and Chemical State of the Long Valley Magma Chamber Abstract...

405

Technical Services Contract Awarded for West Valley Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley...

406

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Exploration Activity...

407

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

408

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

409

Idaho Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia  

NLE Websites -- All DOE Office Websites (Extended Search)

Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia Boise Clark Bonner Ada Shoshone Bingham Caribou Clearwater Fremont Power Adams Latah Twin Falls Bonneville Lincoln Oneida...

410

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

411

Substation grounding programs  

SciTech Connect

The five volume report comprises the user manual, installation, and validation manual and an applications guide for the SGA (Substation Grounding Analysis) software package. SGA consists of four computer programs: (1) SOMIP, (2) SMECC, (3) SGSYS, and (4) TGRND. The first three programs provide a comprehensive analysis tool for the design of substation grounding systems to meet safety standards. The fourth program, TGRND, provides a state of the art analysis tool for computing transient ground potential rise and ground system impedance. This part of the report, Volume 1, is a users manual and an installation and validation manual for the computer program SOMIP (SOil Measurement Interpretation Program). This program computes the best estimate of the parameters of a two layer soil model from usual soil resistivity measurements. Four pin or three pin soil measurements can be accommodated. In addition, it provides error bounds on the soil parameters for a given confidence level. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program SOMIP and provides two test cases for validation purposes. 4 refs.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering)

1992-05-01T23:59:59.000Z

412

The Mississippi Valley earthquakes of 1811 and 1812: Intesities, ground motion and magnitudes  

Science Journals Connector (OSTI)

...the same. m~ment. .. The Comet has been passingto the wesiward...of t~he boatmen a~ the landing, Wh(~ szpposed the bank...about the time o~ their landing , they saw,~hat the island...hol~, Anxfous to o~tain landing~ and dreading the high banks...

Otto W. Nuttli

413

Fracture-zone dewatering to control ground water inflow in underground coal mines. Report of Investigations/1985  

SciTech Connect

The Bureau of Mines investigation focuses on the identification and control of ground-water inflow problems that occur in the active sections of underground Appalachian coal mines. A fracture inflow survey of eight underground mines was conducted. Three types of mine fracture intercepts were identified, which are typical of wet section mining conditions. A mine in Preston County, WV was selected as the site for a fracture-zone dewatering experiment. Fracture trace analysis was used to site dewatering wells in a fracture valley setting ahead of mine development. The design, implementation, and results of the dewatering experiment are presented. The investigation suggests that fracture zones are responsible for the sudden release of stored ground water, which often occurs as mining sections advance beneath fracture valley topography. It is concluded, therefore, that dewatering operations that are designed to intercept the component of ground water that is stored in fracture zones will be most effective in controlling infiltration to active mine sections.

Schmidt, R.D.

1985-01-01T23:59:59.000Z

414

Alfalfa water use pinpointed in saline, shallow water tables of Imperial Valley  

E-Print Network (OSTI)

shallow water tables of Imperial Valley Khaled M. Bali Qin water user in the Imperial Valley several western states.shallow, use in the Imperial Valley, where it moderately

Bali, Khaled M.; Grismer, Mark E.; Snyder, Richard L.

2001-01-01T23:59:59.000Z

415

Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California, earthquake  

E-Print Network (OSTI)

Stochastic modeling of slip spatial complexities for the 1979 Imperial Valley, California motion from other earthquakes statistically similar to Imperial Valley. INDEX TERMS: 3210 Mathematical. Archuleta, Stochastic modeling of slip spatial complex- ities for the 1979 Imperial Valley, California

Archuleta, Ralph

416

Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley  

E-Print Network (OSTI)

in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

Owens, Peter Marshall

2005-01-01T23:59:59.000Z

417

Chemical characteristics, migration and fate of radionuclides at commercial shallow-land burial sites. [Maxey Flats, KY  

SciTech Connect

The subsurface migration of radionuclides has been studied at a commercial, shallow-land burial site of low-level nuclear waste at Maxey Flats, Kentucky. A variety of radionuclides including /sup 3/H, /sup 238,239,240/Pu, /sup 60/Co, /sup 137/Cs and /sup 90/Sr have migrated short distances on-site (meters to tens of meters). A number of the mobile radionuclides, notably plutonium and /sup 60/Co, appear to exist as anionic species with organic properties. As a result, we have studied the organic chemistry of radioactive leachates pumped from a number of waste burial trenches throughout the site. The major aim of the organic research is to elucidate the role of organic compounds in mediating the subsurface migration of the mobile radionuclides in groundwater. A survey study of the hydrophilic and hydrophobic organic content of the waste leachates has revealed that organic compounds are readily leached from the buried waste. Organic chelating agents like EDTA, HEDTA, and ED3A are the major hydrophilic organic compounds in the leachates, their concentrations ranging from 78 ppB to 19.5 ppM. A number of carboxylic acids are also present in the leachates, ranging from 671 ppB to 8.8 ppM, collectively. A variety of hydrophobic organic compounds including barbiturates and other aromatic compounds, presumably waste-derived, are also present in the leachates, generally at much lower ppB concentrations. A detailed chemical speciation study, aimed at determining whether any of the organic compounds identified in the survey study are associated with the mobile radionuclides, was undertaken using leachate from one of the waste trenches. It is clear that EDTA is chelated to plutonium and /sup 60/Co in the leachate, potentially mobilizing these radionuclides. Other radionuclides, /sup 137/Cs and /sup 90/Sr, may be associated with polar organic compounds such as carboxylic acids.

Toste, A.P.; Kirby, L.J.; Pahl, T.R.

1984-10-01T23:59:59.000Z

418

Grand valley irrigation return flow case study  

SciTech Connect

Irrigation water supply is furnished annually to about 71,500 acres of land in the Grand Valley of western Colorado. Return flows from that irrigation contribute about 780,000 tpy of salt to the Colorado River, causing an increase of 77 mg/l in the salinity concentration at Imperial Dam. A case study of water quality in this region is focused on: water quality data for irrigation and return flows/ identification of regulations that affect irrigation and return flows/ and a proposed program for controlling salinity levels. (1 map, 9 references, 8 tables)

Keys, J.W.

1981-06-01T23:59:59.000Z

419

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

420

E-Print Network 3.0 - antelope valley california Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Antelope Valley Solar Ranch One Maricopa Sun Solar... Complex Project T-Squared Inc. California Valley Solar Ranch Topaz Solar Farm Lost Hills Synapse Solar 2... Kramer...

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

422

Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fish Lake Valley Area (DOE GTP) Exploration...

423

E-Print Network 3.0 - aburra valley caused Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

distribution of air pollutants in an Alpine valley Motivation: High air... pollution in Alpine valleys during wintertime Only sparse routine measurements available...

424

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Gabbs Valley Area (DOE GTP) Exploration...

425

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

426

VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.  

Energy.gov (U.S. Department of Energy (DOE))

This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

427

Automatic Mapping of Valley Networks on I. Molloy a  

E-Print Network (OSTI)

Automatic Mapping of Valley Networks on Mars I. Molloy a and T. F. Stepinski b, aDepartment of Computer Science, Purdue University, 250 N. University St., West Lafayette, IN 47907, USA bLunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058, USA Abstract Martian valley networks bear some

Stepinski, Tomasz F.

428

The Davis Botanical Society Presents San Pedro Valley Park  

E-Print Network (OSTI)

The Davis Botanical Society Presents San Pedro Valley Park Saturday, February 22, 2014, 8 am to 6 and Half Moon Bay. San Pedro Valley Park comprises 1,150 acres located on San Pedro Mountain above Pacifica fee of $6.00 per car, and bridge tolls of $5.00 on the Bay Bridge going west and on the Carquinez

California at Davis, University of

429

Flow and Plume Dispersion in a Coastal Valley  

Science Journals Connector (OSTI)

An analysis is carried out of summertime surface and upper-air wind and temperature data from the Latrobe Valley in southeastern Australia. An easterly sea breeze is found to regularly penetrate over 100 km up the east-west-oriented valley, ...

William L. Physick; Deborah J. Abbs

1992-01-01T23:59:59.000Z

430

Volcanism of the Kenya Rift Valley [and Discussion  

Science Journals Connector (OSTI)

...research-article Volcanism of the Kenya Rift Valley [and Discussion] B. C. King G. R...Robson R. B. McConnell The Kenya rift valley is a sector of the rift system of eastern...distances of 200 km or more both to the west and east and is broadly centred on the...

1972-01-01T23:59:59.000Z

431

ROUTE 322 (Governor Rd) B ULLFROG VALLEY RD  

E-Print Network (OSTI)

ROUTE 322 (Governor Rd) B ULLFROG VALLEY RD HOPE DR HOPE DR SANDHILLRD CHERRY DR UNIVERSITY DR LIFE McDonald House 13 TO ROUTE 422 SIPE AVE 23 25 24 B ULLFROG VALLEY RD LUCY AVE To HOPE LODGE 26 Main Center for Applied Research 18 Life Lion Hangar 19 Student Housing 20 West Campus Health & Wellness

Maranas, Costas

432

The Aosta Valley Astronomical Observatory Carbognani, A.1,2  

E-Print Network (OSTI)

The Aosta Valley Astronomical Observatory Carbognani, A.1,2 1 B.P. 4229 F-06304 NICE Cedex 4 Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47 22 N, Long: 7° 28 42 E), at 1675 m

Paris-Sud XI, Université de

433

AFFORESTATION FOR IMPROVING VALLEY URBAN AIR-QUALITY  

E-Print Network (OSTI)

AFFORESTATION FOR IMPROVING VALLEY URBAN AIR-QUALITY Peter C Chu, Yuchun Chen*, and Shihua Lu), pollutant sources and sinks affect the air quality. Afforestation changes the mountain-valley local several heavy industrial factories) to improve the air-quality for the past two decades. Numerical model

Chu, Peter C.

434

Ground Squirrels and Gophers  

NLE Websites -- All DOE Office Websites (Extended Search)

Squirrels and Gophers Squirrels and Gophers Nature Bulletin No. 224-A April 2, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation GROUND SQUIRRELS AND GOPHERS On sunny summer days, a dusty-colored animal with yellowish and brown stripes, about the size of a small rat, often may be noticed creeping through the grass of prairies, pastures, golf courses or lawns. Watch him. He pauses every few feet to sit up, look and listen for a moment. Nervous and timid, he crouches low at every distant sound or passing shadow. Startle him and he scurries away, and then may suddenly halt and freeze, bolt upright, as stiff and straight as a stake driven in the ground. If approached, he gives a loud shrill trilling whistle and, with a flip of his tail, pops out of sight. Watch that spot closely and, in less than a minute, a snaky head appears. Be quiet. He has many enemies above ground and he also has a lot of curiosity. Presently he sits up upon his haunches again.

435

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

436

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

437

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

438

Clean Cities: San Joaquin Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Joaquin Valley Clean Cities Coalition Joaquin Valley Clean Cities Coalition The San Joaquin Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Joaquin Valley Clean Cities coalition Contact Information Linda Urata 661-342-8262 iwantcleanair@aim.com Spencer Schluter 661-599-9454 scschluter@gmail.com Coalition Website Clean Cities Coordinators Coord Linda Urata Coord Coord Spencer Schluter Coord Photo of Linda Urata In 2000, Linda Urata became the coordinator of the San Joaquin Valley Clean Cities coalition. Urata works at Kern Council of Governments in Bakersfield, California. There, she coordinates the Kern Energy Watch program, which is a local government and utility company partnership effort

439

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Silicon Valley Clean Cities (San Jose) Coalition Silicon Valley Clean Cities (San Jose) Coalition The Silicon Valley Clean Cities (San Jose) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Silicon Valley Clean Cities (San Jose) coalition Contact Information Margo Sidener 408-998-5865 margo@lungsrus.org Patricia Tind 408-998-5865 patricia@lungsrus.org Coalition Website Clean Cities Coordinators Coord Margo Sidener Coord Coord Patricia Tind Coord Photo of Margo Sidener Margo Sidener has been the coordinator of the Silicon Valley (San Jose) Clean Cities coalition since 2006. She also serves as the president and CEO of Breathe California of the Bay Area, the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight

440

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technical Services Contract Awarded for West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support Services February 21, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value. The task order will be issued from the Indefinite Delivery/Indefinite Quantity (ID/IQ) master contract, firm-fixed-price and time and materials. Under the task order, Safety and Ecology Corporation will perform technical

442

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

443

Wabash Valley Power Association - Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash Valley Power Association - Residential Energy Efficiency Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) Wabash Valley Power Association - Residential Energy Efficiency Program (Indiana) < Back Eligibility Residential Savings Category Appliances & Electronics Water Heating Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Indiana Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $400/unit Air-source Heat Pumps: $250-$1,500/unit Geothermal Heat Pumps: $1,500/unit Dual Fuel Heat Pump Rebate: $1,500 Appliance Recycling: $35 Provider Wabash Valley Power Association Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and Illinois. View the WVPA

444

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

445

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

446

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

447

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

448

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

449

Valley Electric Association - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

450

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

451

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley,  

Open Energy Info (EERE)

Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Abstract A collaborative effort among U. S. Department of Energy sponsored remote sensing specialists and industry recently culminated in the acquisition of hyperspectral data over a new exploration target in Dixie Valley, Nevada, U. S. A. Related research at the Energy & Geoscience Institute is currently focused on mineralogy mapping at the outcrop level. This will be extended to piedmont and valley fill soils to detect soil mineral anomalies that may be related to buried structures and sinters. Spectral mineral end-members

452

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

453

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Valley of the Sun Clean Cities (Phoenix) coalition Contact Information Bill Sheaffer 480-314-0360 bill@cleanairaz.org Brianna Graf 480-884-1623 brianna@cleanairaz.org Coalition Website Clean Cities Coordinators Coord Bill Sheaffer Coord Coord Brianna Graf Coord Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this all-volunteer coalition. The coalition has been actively involved with the state legislature as well as the key agencies, municipalities, and

454

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Railroad Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Railroad Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.434,"lon":-115.529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.…

2003-01-01T23:59:59.000Z

456

Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions  

SciTech Connect

We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

2009-11-04T23:59:59.000Z

457

Bureau Valley School District Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Valley School District Wind Farm Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bureau Valley School District Developer Engineers Architects Professional Corp. Energy Purchaser Bureau Valley School District Location Bureau Valley IL Coordinates 41.4661°, -89.678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4661,"lon":-89.678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

The LOFT Ground Segment  

E-Print Network (OSTI)

LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

2014-01-01T23:59:59.000Z

459

Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry  

E-Print Network (OSTI)

al., 1998]. [5] Although subsurface ice in Beacon Valley has long been known [Linkletter et al., 1973Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar of rock glaciers in the Beacon Valley sector of the McMurdo Dry Valleys, in East Antarctica, as part

Fountain, Andrew G.

460

Features of glacial valley profiles simply explained Robert S. Anderson,1  

E-Print Network (OSTI)

. [1] Glacial occupation of alpine valleys results in a distinct signature in the long-valley profile quantitatively the long timescale pattern of valley erosion while acknowledg- ing both the variability of climateFeatures of glacial valley profiles simply explained Robert S. Anderson,1 Peter Molnar,2 and Mark A

Mojzsis, Stephen J.

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica  

E-Print Network (OSTI)

as part of the McMurdo Dry Valleys, Long-Term Ecological Research (MCM-LTER) programme and is pres- ented, Antarc- tica. The valley is 33 km long and 12 km wide (Fig. 1). Taylor Valley is a polar desertThe biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica Heather E. Pugh1 *, Kathleen

Priscu, John C.

462

I Lower Yakima Valley Wetlands and Riparian  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Lower Yakima Valley Wetlands and Riparian - Restoration Project \ , Final Environmental Assessment DOENo. 0941 c Bonneville Power kdmi.nistration, Yakama Indian Nation, Bureawof Indian Affairs % J e;r%mBlYTlON OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was .prepared as a n account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes a n y legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

463

Shenandoah Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Shenandoah Valley Elec Coop Place Virginia Utility Id 17066 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100% RENEWABLE ENERGY ATTRIBUTES ELECTRIC SERVICE- RIDER R Residential INTERIM RATE INCREASE RIDER OD-09 SALES AND USE TAX SURCHARGE-Q SCHEDULE A-10 (UNBUNDLED) RESIDENTIAL SERVICE Residential SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 100 Watt - Customer-Owned Lighting SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 175 Watt -

464

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

Service Service Jump to: navigation, search Name Bear Valley Electric Service Place California Utility Id 17612 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 General Service, less than 20 kW A-1 General Service, less than 20 kW - Direct Access Commercial A-2 General Service, 20 to 50 kW A-2 General Service, 20 to 50 kW - Direct Access A-3 General Service, more than 50 kW Commercial

465

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

466

Sioux Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Place Minnesota Utility Id 17267 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Sioux Valley Energy (Minnesota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 471.643 6,546.783 2,704 29.053 345.695 163 162.948 2,211.723 68 663.644 9,104.201 2,935

467

Lower Valley Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Lower Valley Energy Inc Place Idaho Utility Id 11273 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C-1 Small Commercial Commercial C-2 Large Power Service Commercial I-1 Small Irrigation Service Commercial I-2 Large Irrigation Service Commercial I-3 Small Irrigation Optional Commercial L-1 Street and Yard Light Service-100W Sodium Vapor Lighting L-1 Street and Yard Light Service-175W Sodium Vapor Lighting L-1 Street and Yard Light Service-200W Sodium Vapor Lighting L-1 Street and Yard Light Service-250W Sodium Vapor Lighting L-1 Street and Yard Light Service-400W Sodium Vapor Lighting

468

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

California California Utility Id 19840 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1340/kWh Commercial: $0.2500/kWh Industrial: $0.0958/kWh The following table contains monthly sales and revenue data for Valley Electric Assn, Inc (California). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1.385 11.496 12 0.106 0.462 2 2.846 34.986 30 4.337 46.944 44

469

A review of research conducted by Los Alamos National Laboratory for the NRC with emphasis on the Maxey Flats, KY, shallow land burial site  

SciTech Connect

Studies to determine the impact of the Maxey Flats low-level waste burial site on the environment have been conducted since 1963. Neither the migration or lack of migration of waste radionuclide to offsite by subsurface flow has been unequivocally proved; the migration of tritium may be an exception. Some radionuclides, e.g. plutonium, did migrate short distances from a burial trench. The movement of ''only a short distance'' was attributed to the importance of a biopopulation in the soil and to the importance of soluble iron as a competitor for the chelate of the potentially mobile plutonium/chelate system. In both cases a soluble plutonium complex is degraded and the plutonium is released in a form that is sorbed by the soil. Soil moisture data in conjunction with tritium data indicate that infiltration into the trench was predominantly through the trench cap. Tritium data also indicate subsurface migration of tritium. 20 refs., 11 figs., 21 tabs.

Fowler, E.B.; Polzer, W.L.

1988-08-01T23:59:59.000Z

470

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

471

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

472

A study of the effect of weathering, silt content, and depth of burial on physical properties of shales from North-Central Texas  

E-Print Network (OSTI)

of the Agricultural and Mechanical College of Texas in Partial fulfillment of the requireaents for the degree of MASTER OF SCIENCE' Nays 1$58 Major Sub)acti Geology A BTUDX OF THF. FFFECT OF WEATHERING, SILT COBTFNTi AND DEPTH OF BURIAL ON PHTSICAL PBOPERTIFS... o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 27 IV. Physical properties for unweathered, non-silt? and un- weathered, silty samples collected along strike. V. Physical properties for unweathereds non-silty and ur. - weathered, silty samples collected at same...

Wilson, Edmon Doak

2012-06-07T23:59:59.000Z

473

Response of El Centro Steam Plant equipment during the October 15, 1979 Imperial Valley earthquake  

SciTech Connect

For the US Nuclear Regulatory Commission (NRC), Lawrence Livermore National Laboratory (LLNL) performed a dynamic seismic analysis of Unit 4 of the El Centro Steam Plant in El Centro, Calif. Built in 1968, Unit 4 is an oil- or gas-fired, steam-driven turbine-generator that was designed to resist a static lateral force equivalent to 20% of the dead and live load. The unit's structural and mechanical systems sustained only minor damage during the October 15, 1979 Imperial Valley earthquake that produced an estimated 0.5 g peak horizontal ground acceleration (0.66 g vertical) at the site. LLNL's seismic analysis was done to analytically estimate the equipment response, which, when compared to actual observation, will indicate the levels of actual equipment capacity. 15 refs., 51 figs., 11 tabs.

Nelson, T. A.; Murray, R. C.; Young, J. A.; Campbell, R. D.; Martore, J. A.; Levin, H. A.; Reiter, L.

1980-09-01T23:59:59.000Z

474

Assessment of the impact on crops of effluent gases from geothermal energy development in the Imperial Valley, California  

SciTech Connect

We have assessed the potential impact of regionally dispersed sources of geothermal gaseous effluents on crops in the Imperial Valley. We used a detailed model of the photosynthesis and growth of sugar beets fumigated by H/sub 2/S and CO/sub 2/ and generalized from the model calculations to other crops. Model calculations were made with estimates of time series of expected ground-level concentrations of H/sub 2/S and CO/sub 2/ calculated by the Air Quality Assessment element of the Imperial Valley Environmental Project (IVEP) at 22 locations around the valley. Results indicate that in the absence of interactions with other ambient pollutant gases, all locations would experience an increase (from slight to significant) in total growth of sugar beets. Seven locations will experience an increase of at least 10%. We calculated the emissions rate at which negative effects cancel out the benefits of H/sub 2/S fertilization; in the worst case, emission rates are expected to be no more than 1/13 this crossover rate. The expected emission rate will be less than that necessary for negative effects on the most sensitive species (such as alfalfa) by a factor of 4. Similar results for other crops are summarized in the report. If CO/sub 2/ emissions are increased proportionately, the dominance of deleterious effects is not expected to occur even under maximum development as set forth in IVEP scenario projections. 23 references, 8 figures, 6 tables.

Kercher, J.R.

1981-05-22T23:59:59.000Z

475

Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository  

SciTech Connect

Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

Inyo County

2006-07-26T23:59:59.000Z

476

A just transition from coal to renewable energy in the Hunter Valley of New South Wales, Australia  

Science Journals Connector (OSTI)

The Hunter Valley, New South Wales, Australia is one of the world's climate change hot-spots. It is where 40% of Australia's electricity is generated from five coal-fired power plants, and is the source of 100 million tonnes of black coal exported annually to the global markets. A growing number of local residents of the Hunter Valley are questioning the sustainability of the region's coal dependent economy because of its harmful local ecological and social impacts and its contribution to global warming. Environmental organisations and some labour unions have identified the need for a 'just transition' to clean, renewable energy-based economies at local, national and global scales to respond to these threats. A just transition is a process of economic restructuring from unsustainable economies towards ecological and social sustainability while creating new Green Jobs and supporting people and communities who might be disadvantaged during the change process. This article considers the potential for a just transition in the Hunter Valley with respect to coal mining, the export coal industry and domestic power generation. Attention is given to potential for common ground among key labour unions, environmentalists and local residents, and to the critical role of government intervention for a successful just transition process.

Geoff Evans

2007-01-01T23:59:59.000Z

477

Ground potential rise monitor  

DOE Patents (OSTI)

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

478

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Coachella Valley Fish Farm Aquaculture Low Temperature Geothermal Facility Facility Coachella Valley Fish Farm Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692°, -116.0772244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

479

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

480

USD 384 Blue Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Wind Project Blue Valley Wind Project Jump to: navigation, search Name USD 384 Blue Valley Wind Project Facility USD 384 Blue Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.433575°, -96.758011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.433575,"lon":-96.758011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "valley burial grounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

482

Navasota Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Navasota Valley Elec Coop, Inc Navasota Valley Elec Coop, Inc Jump to: navigation, search Name Navasota Valley Elec Coop, Inc Place Texas Utility Id 16146 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1170/kWh Commercial: $0.1100/kWh Industrial: $0.0718/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Navasota_Valley_Elec_Coop,_Inc&oldid=411152"

483

Maquoketa Valley Rrl Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Maquoketa Valley Rrl Elec Coop Maquoketa Valley Rrl Elec Coop Jump to: navigation, search Name Maquoketa Valley Rrl Elec Coop Place Iowa Utility Id 12642 Utility Location Yes Ownership C NERC Location RFC NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1180/kWh Commercial: $0.1040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Maquoketa_Valley_Rrl_Elec_Coop&oldid=411035" Categories:

484

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project |  

Open Energy Info (EERE)

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Jump to: navigation, search Project Lead Sioux Valley Southwestern Electric Cooperative, Inc. Country United States Headquarters Location Colman, South Dakota Additional Benefit Places Minnesota Recovery Act Funding $4,016,368.00 Total Project Value $8,032,736.00 Coverage Area Coverage Map: Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Coordinates 43.9824719°, -96.8144973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

485

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

486

Elkhorn Valley (07) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Valley (07) Wind Farm Valley (07) Wind Farm Jump to: navigation, search Name Elkhorn Valley (07) Wind Farm Facility Elkhorn Valley (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser Idaho Power Location Union County OR Coordinates 45.05034°, -117.780011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.05034,"lon":-117.780011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Roaring Fork Valley - Energy Smart Loan Program (Colorado) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) Roaring Fork Valley - Energy Smart Loan Program (Colorado) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Appliances & Electronics Water Heating Program Info Funding Source American Recovery and Reinvestment Act State Colorado Program Type Local Loan Program Rebate Amount $1,000 for small projects and up to $25,000 Provider Roaring Fork Valley - Energy Smart Program Residents of Eagle, Gunnison or Pitkin Counties may be eligible for financing through the Energy Smart Program. Loans as low as $1,000 with flexible terms are available for small projects, and larger projects may

488

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

489

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

490

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Abstract A series of four tracer tests was recently conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These tests have resulted in the first successful use of the compounds amino G and pyrenetetrasulfonate as tracers in a geothermal reservoir. The tracer candidates were subjected to simulated hydrothermal conditions in laboratory reactors at temperatures as high as 300°C in order to determine

491

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

492

Twin Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Twin Valley Electric Coop Inc Place Kansas Utility Id 18962 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric and/or Air Source Heat Pump Commercial Commercial Large Commercial Commercial Small Commercial Farm and Residential Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Twin_Valley_Electric_Coop_Inc&oldid=411888"

493

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126°, -120.9510675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

494

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607°, -121.4061076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

495

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

34: Hualapai Valley Solar Interconnection Project, Arizona 34: Hualapai Valley Solar Interconnection Project, Arizona EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona Overview Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator. Proposed infrastructure would consist of a solar field, power block, thermal energy storage system, substation site, transmission line, temporary laydown areas and other ancillary facilities. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

496

Non-Double-Couple Microearthquakes At Long Valley Caldera, California,  

Open Energy Info (EERE)

Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Details Activities (1) Areas (1) Regions (0) Abstract: Most of 26 small (0.4<~M<~3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and

497

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

498

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

499

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

500

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing