Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bethel Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

study to find soluble contamination sources that contribute to the contamination of surface and ground waters. Once the remediation activities required by the Bethel Valley...

2

Melton Valley Watershed  

Broader source: Energy.gov (indexed) [DOE]

watershed. Wastes disposed in Melton Valley reside at a variety of locations, including solid waste landfills, trenches, liquid waste tanks and pipelines, surface structures,...

3

Au DDT 127 Au DDT  

E-Print Network [OSTI]

Au DDT 127 Au DDT 59-1-23 Electrical Property and Application of Au Electrodes Passivated with DDT Molecules ** ** * (Min-Su ChoiDong-Jin LeeTae-Gun KimSung-Woo Hwang) Abstract - We report the passivation characteristics of dodecanethiol (DDT) molecules on gold electrodes

Hwang, Sung Woo

4

Green Valley Galaxies  

E-Print Network [OSTI]

The "green valley" is a wide region separating the blue and the red peaks in the ultraviolet-optical color magnitude diagram, first revealed using GALEX UV photometry. The term was coined by Christopher Martin in 2005. Green valley highlights the discriminating power of UV to very low relative levels of ongoing star formation, to which the optical colors, including u-r, are insensitive. It corresponds to massive galaxies below the star-forming "main" sequence, and therefore represents a critical tool for the study of the quenching of star formation and its possible resurgence in otherwise quiescent galaxies. This article reviews the results pertaining to morphology, structure, environment, dust content and gas properties of green valley galaxies in the local universe. Their relationship to AGN is also discussed. Attention is given to biases emerging from defining the "green valley" using optical colors. We review various evolutionary scenarios and we present evidence for a new, quasi-static view of the green ...

Salim, Samir

2015-01-01T23:59:59.000Z

5

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

6

Case Study - Sioux Valley Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley...

7

Songs From Happy Valley and Other Stories  

E-Print Network [OSTI]

RIVERSIDE Songs From Happy Valley and Other Stories A Thesisv TABLE OF CONTENTS Songs From Happy Valley The X-Ray SpecsMatch Game vi Songs From Happy Valley Thursday, October 13,

Nagel, Lisa W.

2013-01-01T23:59:59.000Z

8

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides...

9

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

10

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge

11

Valley Forge Corporate Center  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave. Valley Forge April

12

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

13

Valley Electric Association- Net Metering  

Broader source: Energy.gov [DOE]

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

14

Retrofitting the Tennessee Valley Authority  

E-Print Network [OSTI]

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

15

Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 5.5% 4.1% 6.0% All Sites Cancer 472.3 455.5 543.2 1 Community Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Diabetes 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Valley County Secondary Data Analysis July 23, 2012 2

Maxwell, Bruce D.

16

Mechanically and optically controlled graphene valley filter  

SciTech Connect (OSTI)

We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

2014-05-07T23:59:59.000Z

17

Innovation and Social Capital in Silicon Valley  

E-Print Network [OSTI]

Innovation and Social Capital in Silicon Valley * BRIEpath from social capital to innovation has been identified.social capital has for economic development and innovation.

Kenney, Martin; Patton, Donald

2003-01-01T23:59:59.000Z

18

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

19

Enterprise Assessments Review, West Valley Demonstration Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was...

20

Independent Oversight Review, West Valley Demonstration Project...  

Office of Environmental Management (EM)

West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Roaring Fork Valley- Energy Efficient Appliance Program  

Broader source: Energy.gov [DOE]

The Aspen Community Office for Resource Efficiency (CORE) promotes renewable energy, energy efficiency and green building techniques in western Colorado's Roaring Fork Valley. For customers who...

22

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

23

Collective flow in Au + Au collisions  

SciTech Connect (OSTI)

Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

Ritter, H.G.; EOS Collaboration

1994-05-01T23:59:59.000Z

24

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

25

azapa valley northern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Valley lakes, Antarctica Environmental Sciences and Ecology Websites Summary: evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was...

26

Geothermometry At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal...

27

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Conceptual Model At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

28

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Abstract Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble...

29

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

30

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

31

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

32

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

33

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

34

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

35

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

36

Deformation of the Long Valley Caldera, California: Inferences...  

Open Energy Info (EERE)

Activities (2) Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003) Modeling-Computer Simulations At Long Valley Caldera Geothermal Area...

37

AMF Deployment, Ganges Valley, India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia Ganges Valley

38

Union Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy 1n n d d e eUnion Valley

39

Town of Portola Valley 765 Portola Roac  

E-Print Network [OSTI]

, Ca 95814-5514 Re: Town of Portola Valley Green Building Ordinance No. 2010-386 and the Building Efficiency Standards as part of the implementation of our local green building energy ordinance. As the town to the Portola Valley Town Council, the Green Building Ordinance and the Energy Cost Effective Study as explained

40

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

42

A review of "Women and Race in Early Modern Texts." by Joyce Green MacDonald  

E-Print Network [OSTI]

of the second part of the book is MacDonald?s syn- thesis of historical issues regarding race in the colonies in America and Surinam as she explores the links between ?whites? racial au- thority, black women?s sexuality, and white women?s social repres- sion...

Julie D. Campbell

2003-01-01T23:59:59.000Z

43

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

44

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

45

The Peachtree Valley and Valley Town mission : a baptist recategorization of a Cherokee landscape.  

E-Print Network [OSTI]

??Peachtree Valley in Clay county, North Carolina has a long history of diversity in plant, animal, and human habitation. The Cherokee, who have inhabited the… (more)

Owen, James Anthony

2012-01-01T23:59:59.000Z

46

VALMET-A valley air pollution model  

SciTech Connect (OSTI)

Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

Whiteman, C.D.; Allwine, K.J.

1983-09-01T23:59:59.000Z

47

SAVE THE DATE!!! The Silicon Valley  

E-Print Network [OSTI]

SAVE THE DATE!!! The Silicon Valley 3rd Annual Social Innovation Leadership Forum 2014 (SILF 2014 towards a better tomorrow... Register for the event today! The Social Innovation Leadership Forum (SILF

Su, Xiao

48

25055 W. Valley Parkway Olathe, Kansas 66061  

E-Print Network [OSTI]

25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

Dyer, Bill

49

Poudre Valley REA- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Poudre Valley REC is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. This rebate program was timed to coincide with the Colorado Governor's...

50

City of Sunset Valley- PV Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

51

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

52

Potatoes Au Gratin Ingredients  

E-Print Network [OSTI]

Potatoes Au Gratin Ingredients: Non stick cooking spray 6 medium russet potatoes, peeled and sliced dish with non stick spray. Set aside. 2. Wash potatoes and place on cutting board. Starting at one end. Place about half of the potatoes in casserole dish. Sprinkle half of chopped onions on top. then half

Liskiewicz, Maciej

53

Tuesday, March 13, 2007 POSTER SESSION I: MARS VALLEY NETWORKS  

E-Print Network [OSTI]

Regions and Multiple Water Release Events in Valley Networks of the Libya Montes Region on Mars [#1729] We investigate a valley network in the western Libya Montes region, which originates in a highland mountain

Rathbun, Julie A.

54

A Home for Everyone San Joaquin Valley Housing  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 C. Kings County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 D. Madera related to growth and development and lead to improved outcomes for California's cities and counties Joaquin Valley . . . . . . . . . . . . . . . . . . . . . 53 APPENDICES: DATA TABLES FOR VALLEY COUNTIES A

Tipple, Brett

55

Valley wins High School Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

56

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th  

E-Print Network [OSTI]

Tesla Demonstration for Happy Valley Elementary Tuesday, November 20th Schedule Load Time: 11: ___________________________________________________________ Contact: Chris McGriff, cmcgriff@santacruz.k12.ca.us Address: Happy Valley Elementary School, Branciforte

California at Santa Cruz, University of

57

Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

58

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

59

The Lower Rio Grande Valley Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

KFH GROUP, INC. THE LOWER RIO GRANDE VALLEY REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: Lower Rio Grande Valley Regional Transportation Coordination Plan Committee By: KFH Group, Incorporated... Page BACKGROUND..............................................................................................................................1 PLAN PROCESS...

Lower Rio Grande Valley Development Council

2006-11-30T23:59:59.000Z

60

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450  

E-Print Network [OSTI]

Global Energy Partners, LLC 500 Ygnacio Valley Road, Suite 450 Walnut Creek, CA 94596 P: 925. This report was prepared by Global Energy Partners, LLC 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

62

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

63

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

64

WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001  

SciTech Connect (OSTI)

THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

NONE

2002-09-30T23:59:59.000Z

65

Silicon Valley Power- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

66

The Valley Fever Corridor Year 2 Fundraising Status  

E-Print Network [OSTI]

Marianne Stephens Ray Thurston Valley of the Sun Boston Terrier Club Mark Whitaker Nickel $500The Valley Fever Corridor Year 2 Fundraising Status Goal = $85,000 Updated: 2/15/2011 *The Valley Fever Clinic Titanium $5,000 or more: Anonymous Shirley and Ken Cole Heller Foundation

Arizona, University of

67

San Joaquin Valley Unified Air Pollution Control District  

E-Print Network [OSTI]

#12;San Joaquin Valley Unified Air Pollution Control District Best Available Control Technology.4.2 #12;San Joaquin Valley Air Pollution Control Distri RECEIVED ~ 2 ED ECEIVED www.valleyalr.org SJVAPCD-2370·(661)326-6900"FAX(661)326-6985 #12;San Joaquin Valley Unified Air Pollution Control District TITLE V MODIFICATION

68

Golden Valley County Secondary Data Analysis  

E-Print Network [OSTI]

Infarction prevalence (Heart Attack) 4.3% 4.1% 6.0% All Sites Cancer 510.8 455.5 543.2 1 Community County1 Montana1,2 Nation2 1. Heart Disease 2. Cancer 3. Unintentional Injuries** 1. Cancer 2. Heart Disease 3.CLRD* 1. Heart Disease 2. Cancer 3. CLRD* #12; Golden Valley County Secondary Data

Maxwell, Bruce D.

69

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect (OSTI)

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

70

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

71

Quantum pumping of valley current in strain engineered graphene  

SciTech Connect (OSTI)

We studied the generation of valley dependent current by adiabatic quantum pumping in monolayer graphene in the presence of electric potential barriers, ferromagnetic field and strain. The pumped currents in the two valleys have same magnitudes and opposite directions; thus, a pure valley current is generated. The oscillation of the pumped pure valley current is determined by the Fabry-Perot resonances formed in the structure. In our calculation, the pumped pure valley current can be as high as 50?nA, which is measurable using present technologies. The proposed device is useful for the development of graphene valleytronic devices.

Wang, Jing [Department of Physics, University of Science and Technology of China, Hefei (China) [Department of Physics, University of Science and Technology of China, Hefei (China); Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, K. S., E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics and Materials Science and Centre for Functional Photonics, City University of Hong Kong, Hong Kong and City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lin, Zijing, E-mail: apkschan@cityu.edu.hk, E-mail: zjlin@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei (China)] [Department of Physics, University of Science and Technology of China, Hefei (China)

2014-01-06T23:59:59.000Z

72

Global polarization measurement in Au plus Au collisions  

E-Print Network [OSTI]

angular momentum. We present the results of Lambda and (Lambda) over bar hyperon global polarization measurements in Au+Au collisions at root s(NN)=62.4 and 200 GeV performed with the STAR detector at the BNL Relativistic Heavy Ion Collider (RHIC...

Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S. -L; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, Calderon de la Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moura, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lehocka, S.; LeVine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.

2007-01-01T23:59:59.000Z

73

Hudson Valley Clean Energy Office and Warehouse  

High Performance Buildings Database

Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

74

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: EnergySecondarySequachee Valley

75

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley Geothermal

76

Melton Valley Watershed | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | DepartmentADVISORYFinalMelton Valley

77

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei Valley

78

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy ResourcesLualualei ValleyJump to:

79

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

80

VALMET: a valley air pollution model. Final report. Revision 1  

SciTech Connect (OSTI)

An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

Whiteman, C.D.; Allwine, K.J.

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Citrus Production in the Lower Rio Grande Valley of Texas.  

E-Print Network [OSTI]

LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

1930-01-01T23:59:59.000Z

82

HYBRIDITES ARCHITECTURALES EN TUNISIE ET AU MAROC AU TEMPS DES PROTECTORATS  

E-Print Network [OSTI]

HYBRIDITES ARCHITECTURALES EN TUNISIE ET AU MAROC AU TEMPS DES PROTECTORATS : ORIENTALISME dans "Architectures au Maroc et en Tunisie à l'époque coloniale, Tunisie (2009)" #12;plus large. Pour

Boyer, Edmond

83

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

84

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

85

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

86

Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

87

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

88

Field Mapping At Long Valley Caldera Geothermal Area (Sorey ...  

Open Energy Info (EERE)

Sorey & Farrar, 1998) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Long Valley Caldera Geothermal Area (Sorey & Farrar, 1998)...

89

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity...

90

Compound and Elemental Analysis At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Geothermal...

91

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

92

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

93

Non-Double-Couple Microearthquakes At Long Valley Caldera, California...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

94

Water geochemistry study of Indian Wells Valley, Inyo and Kern...  

Open Energy Info (EERE)

Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

95

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

96

Poudre Valley REA- Commercial Lighting Rebate Program (Colorado)  

Broader source: Energy.gov [DOE]

Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

97

Magic Valley Electric Cooperative- ENERGY STAR Builders Program (Texas)  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's (MVEC) ENERGY STAR Builders Program offers a variety of incentives to builders of energy efficiency homes within MVEC service territory. Incentives are provided...

98

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Exploration Activity...

99

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Details Location Long Valley Caldera Geothermal Area Exploration Technique Injectivity Test Activity Date 1999 - 1999 Usefulness not useful DOE-funding Unknown Notes A second...

100

Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...  

Open Energy Info (EERE)

Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1999 - 2000 Usefulness not indicated DOE-funding Unknown...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

102

Kennebec Valley Community College's State of the Art Solar Lab  

Broader source: Energy.gov [DOE]

Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

103

Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...  

Open Energy Info (EERE)

McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

104

Lobbyist Disclosure Form - Silicon Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First Solar Interested Parties - Shipp...

105

Wabash Valley Power Association- Residential Energy Efficiency Program (Illinois)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

106

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

107

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

108

Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...  

Open Energy Info (EERE)

Hermance, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et...

109

Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti, Et Al.,...

110

Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

111

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

112

Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

113

Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program  

Broader source: Energy.gov [DOE]

Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

114

Magic Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Magic Valley Electric Cooperative's Value Incentive Program (VIP) offers consumers incentives for the installation of new central heat pump systems, dual fuel heating systems, central air...

115

Lower Valley Energy- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

116

Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)  

Broader source: Energy.gov [DOE]

Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

117

Guadalupe Valley Electric Cooperative- Conservation Plan 7 Loan Program  

Broader source: Energy.gov [DOE]

Guadalupe Valley Electric Cooperative offers an incentive for members to increase the energy efficiency of existing homes and facilities through the Conservation Plan 7 Loan Program. The loan...

118

Geothermometry At Long Valley Caldera Geothermal Area (Mariner...  

Open Energy Info (EERE)

L. Sorey, Robert H. Mariner, Alfred H. Truesdell (1979) Chemical and Isotopic Prediction of Aquifer Temperatures in the Geothermal System at Long Valley, California Michael...

119

Zena conservation easement protects habitat in Willamette Valley...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

central Willamette Valley for fi sh and wildlife habitat mitigation. Located in the Eola Hills about eight miles northwest of Salem (see map), this property provides refuge for...

120

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Battaglia, Et Al., 2003)...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

122

Modeling-Computer Simulations At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Geothermal Area (Tempel, Et Al., 2011) Exploration...

123

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

124

Technical Services Contract Awarded for West Valley Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

- The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley...

125

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

126

Sulphur Springs Valley EC- Residential Energy Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC offers the Member Loan Program to residential customers to improve the energy efficiency of eligible...

127

Sulphur Springs Valley EC- Residential Energy Efficiency Rebate  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

128

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

129

Exploration and Development at Dixie Valley, Nevada- Summary...  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

130

Idaho Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Owyhee Lemhi Custer Valley Elmore Butte Blaine Cassia Boise Clark Bonner Ada Shoshone Bingham Caribou Clearwater Fremont Power Adams Latah Twin Falls Bonneville Lincoln Oneida...

131

Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...  

Open Energy Info (EERE)

Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Micro-Earthquake Activity Date - 2004 Usefulness not indicated...

132

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

133

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeothermalLiteratureReviewAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid510804...

134

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleModeling-ComputerSimulationsAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid387627...

135

Static Temperature Survey At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTemperatureSurveyAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid511143...

136

Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

137

Conservation tillage production systems compared in San Joaquin Valley cotton  

E-Print Network [OSTI]

in San Joaquin Valley cotton by Jeffrey P. Mitchell, Danielfor 25% or more of overall cotton production costs. Thesesuccessfully elsewhere in the Cotton Belt may be a viable

Mitchell, Jeffrey; Munk, Dan; Prys, Bob; Klonsky, Karen; Wroble, Jon; De Moura, Rich

2006-01-01T23:59:59.000Z

138

antarctic dry valley: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

139

antarctic dry valleys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UK b Department of Geological Sciences and Institute.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply...

140

Ground Gravity Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

142

Jules Verne AU XXIXe SICLE  

E-Print Network [OSTI]

puissamment en aide à l'agriculture. En fournissant la force motrice aux appareils extraordinaires James'agriculture. En fournissant la force motrice aux appareils de navigation aérienne, ils ont permis au commerce de

HarÂ?El, Zvi

143

E-Print Network 3.0 - aburra valley caused Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

distribution of air pollutants in an Alpine valley Motivation: High air... pollution in Alpine valleys during wintertime Only sparse routine measurements available...

144

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie...  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Geothermal Area (McKenzie & Truesdell, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique...

145

West Valley Site History, Cleanup Status, and Role of the West...  

Office of Environmental Management (EM)

of the West Valley Citizen Task Force More Documents & Publications EIS-0337: Draft Environmental Impact Statement EIS-0337: Final Environmental Impact Statement West Valley...

146

Structural Analysis of Southern Dixie Valley using LiDAR and...  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

147

E-Print Network 3.0 - antelope valley california Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Antelope Valley Solar Ranch One Maricopa Sun Solar... Complex Project T-Squared Inc. California Valley Solar Ranch Topaz Solar Farm Lost Hills Synapse Solar 2... Kramer...

148

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir with a clustering  

E-Print Network [OSTI]

Petrophysical rock classification in the Cotton Valley tight-gas sandstone reservoir classification method with field data acquired in the Cotton Valley tight-gas sandstone reservoir located

Torres-Verdín, Carlos

149

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect (OSTI)

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

150

Powell Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowder RiverValley

151

Lighthouse Solar Diablo Valley | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to: navigation, searchValley

152

All Valley Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy Focus AreaValley Solar Jump to:

153

Boone Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio JumpVenturesCoral CapitalBoilersBoone Valley

154

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie Valley

155

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,DiscountDiversified EnergyDixieDixie ValleyDixie

156

Valley, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs

157

Antelope Valley Neset | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformation Anson County, NorthAntarisValley

158

Minnesota Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,Grid RenewableMini-GridAgencyValley

159

Valley View Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexVallesValley View

160

Bethel Valley Watershed | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethel Valley Watershed. Topics include: * The

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroup JumpValley

162

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview, Florida:WheatleyWheeler, New York:Whippany, NewValley

163

Valley Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining Company - NJ JumpValley

164

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowattOpen Energy Information 2008)Aire Valley

165

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley Biofuels Jump to: navigation,

166

applique au cas: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

locales dans la mise en place d'aires protges : tudes de cas au Guatemala et au Maroc Environmental Sciences and Ecology Websites Summary: au Guatemala et au Maroc Par...

167

au cas des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

locales dans la mise en place d'aires protges : tudes de cas au Guatemala et au Maroc Environmental Sciences and Ecology Websites Summary: au Guatemala et au Maroc Par...

168

application au cas: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

locales dans la mise en place d'aires protges : tudes de cas au Guatemala et au Maroc Environmental Sciences and Ecology Websites Summary: au Guatemala et au Maroc Par...

169

Surprise Valley Electric Co-Op Trinity Shasta Lake  

E-Print Network [OSTI]

Cove California Electric Utility Service Areas California Energy Commission Systems Assessment-Op PacifiCorp Trinity Shasta Lake Redding PG&E Area served by both Surprise Valley Electric Co-Op & Pacific Vernon Aha MacavAzusa Pasadena Glendale Burbank City and County of S.F. Palo Alto Silicon Valley Power

170

TFC-0004- In the Matter of Tri-Valley CARES  

Broader source: Energy.gov [DOE]

Tri-Valley CARES filed an Appeal from a determination that the National Nuclear Security Administration (NNSA) issued on June 2, 2010. In that determination, NNSA denied in part a request for information that Tri-Valley CARES had submitted on September 8, 2008, pursuant to the Freedom of Information Act (FOIA), 5 U.S.C. § 552.

171

Hoopa Valley Small Scale Hydroelectric Feasibility Project  

SciTech Connect (OSTI)

This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

Curtis Miller

2009-03-22T23:59:59.000Z

172

Rapport sur ma mission au Kurdistan Iraqien effectue du 6 au 13 octobre 2008  

E-Print Network [OSTI]

Rapport sur ma mission au Kurdistan Iraqien effectuée du 6 au 13 octobre 2008 avec Mohammad une mission au Kurdistan Iraqien du lundi 6 au lundi 13 octobre 2008 avec Mohammad Eftekhari'Universitaires de la région autonome du Kurdistan début 2007. J'avais fait à cette occasion la connaissance du Dr

Waldschmidt, Michel

173

Nearly perfect fluid in Au+Au collisions at RHIC  

E-Print Network [OSTI]

In the Israel-Stewart's theory of dissipative hydrodynamics, we have analysed the STAR data on $\\phi$ meson production in Au+Au collisions at $\\sqrt{s}$=200 GeV. From a simultaneous fit to $\\phi$ mesons multiplicity, mean $p_T$ and integrated $v_2$, we obtain a phenomenological estimate of QGP viscosity, $\\eta/s =0.07 \\pm 0.03 \\pm 0.14$, the first error is due to the experimental uncertainty in STAR measurements, the second reflects the uncertainties in initial and final conditions of the fluid.

A. K. Chaudhuri

2009-10-21T23:59:59.000Z

174

Directed and elliptic flow in Au + Au at intermediate energies  

E-Print Network [OSTI]

Directed and elliptic flow for the Au + Au system at incident energies between 40 and 150 MeV per nucleon has been measured using the INDRA 4 pi multi-detector. For semi-central collisions, the elliptic flow of Z <= 2 particles switches from in-plane to out-of-plane enhancement at around 100 MeV per nucleon, in good agreement with the result reported by the FOPI Collaboration. The directed flow changes sign at a bombarding energy between 50 and 60 MeV per nucleon and remains negative at lower energies. The conditions for the appearance and possible origins of negative flow are discussed.

Lukasik, J; Begemann-Blaich, M L; Bellaize, N; Bittiger, R; Bocage, F; Borderie, B; Bougault, R; Bouriquet, B; Charvet, J L; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Gourio, D; Guinet, D; Hudan, S; Lautesse, P; Lavaud, F; Lefèvre, A; Legrain, R; López, O; Lynen, U; Müller, W F J; Nalpas, L; Orth, H; Plagnol, E; Rosato, E; Saija, A; Schwarz, C; Sfienti, C; Tamain, B; Trautmann, W; Trzcinski, A; Turzó, K; Vient, E; Vigilante, M; Volant, C; Zwieglinski, B

2004-01-01T23:59:59.000Z

175

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

176

Airborne particles in the San Joaquin Valley may affect human health  

E-Print Network [OSTI]

graphics for nonreaders, created for the event. The San Joaquin Valley Unified Air Pollution Control

2010-01-01T23:59:59.000Z

177

Passive solar homes in Delaware Valley  

SciTech Connect (OSTI)

This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

1997-12-31T23:59:59.000Z

178

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

179

Silicon Valley Power- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

180

Red River Valley REA- Heat Pump Loan Program  

Broader source: Energy.gov [DOE]

The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LA Rooftop Solar Project Goes Online in San Fernando Valley ...  

Broader source: Energy.gov (indexed) [DOE]

Incentive Programs, Florida SunShot Rooftop Challenge Awardees The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home...

182

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Valley Caldera Michael L. Sorey, B. Mack Kennedy, William C. Evans, Christopher D. Farrar (1990) Increases in 3He4He in Fumarolic Gas Associated with the 1989 Earthquake Swarm...

183

Hydrologic and Geochemical Monitoring in Long Valley Caldera...  

Open Energy Info (EERE)

show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

184

Satellite imagery can support water planning in the Central Valley  

E-Print Network [OSTI]

area, Merced County County Fresno Kings Merced Sutter Timethe study area Merced County. Kings, Merced and Sutter (fig.counties are par- ticularly important to the agricultural economy of the Central Valley: Fresno, Fresno Kings

Zhong, Liheng; Hawkins, Tom; Holland, Kyle; Gong, Peng; Biging, Gregory S

2009-01-01T23:59:59.000Z

185

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

186

Boulder Valley School District (Colorado) Power Purchase Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the...

187

Present State of the Hydrothermal System in Long Valley Caldera...  

Open Energy Info (EERE)

Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the...

188

Quaternary Glaciations in the Lago Pueyrredón Valley, Argentina   

E-Print Network [OSTI]

This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley...

Hein, Andrew S.

189

Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...  

Energy Savers [EERE]

West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank 1 Introduction The U.S. Department of Energy (DOE) is providing responses to the comments...

190

Microsoft Word - Finely_NorthValley_CX.docx  

Broader source: Energy.gov (indexed) [DOE]

Manager - KEWM-4 Proposed Action: Finely Creek and North Valley Creek property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-58888 Categorical Exclusion...

191

Golden Valley Electric Association- Commercial Lighting Retrofit Rebate Program  

Broader source: Energy.gov [DOE]

BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to...

192

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to...

193

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

194

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

195

Moreno Valley Electric Utility- Solar Electric Incentive Program  

Broader source: Energy.gov [DOE]

Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

196

Ohio River Valley Water Sanitation Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

197

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Broader source: Energy.gov [DOE]

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

198

Sulphur Springs Valley EC- SunWatts Loan Program  

Broader source: Energy.gov [DOE]

Sulphur Springs Valley Electric Cooperative (SSVEC) has a loan program that allows its members to finance a portion of a photovoltaic (PV) or small wind system. Loans are available in an amount of...

199

The Owens Valley Fault Zone Eastern California and Surface Faulting...  

Open Energy Info (EERE)

base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

200

City of Sunset Valley- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Structure of The Dixie Valley Geothermal System, a "Typical"...  

Open Energy Info (EERE)

Dixie Valley Geothermal System, a "Typical" Basin and Range Geothermal System, From Thermal and Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

202

Hydrothermal system in Southern Grass Valley, Pershing County, Nevada  

SciTech Connect (OSTI)

Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

1981-01-01T23:59:59.000Z

203

Seismicity related to geothermal development in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

204

Direct photons from Au+Au collisions at RHIC: QGP vs. hot hadronic gas  

E-Print Network [OSTI]

We have analysed the preliminary PHENIX data on the transverse momentum distribution of direct photons in 0-20% centrality Au+Au collisions at $\\sqrt{s_{NN}}$=200 GeV. In ideal hydrodynamics, data are explained if Au+Au collision produces Quark-Gluon-Plasma at the temperature $T_i$=400 MeV, at an initial time $\\tau_i$=0.6 fm. PHENIX data are not explained in the alternate scenario when Au+Au collisions produces hot hadronic gas with initial temperature within physically acceptable limit.

A. K. Chaudhuri

2005-12-10T23:59:59.000Z

205

Synthesis and X-ray structures of silver and gold guanidinate-like complexes. A Au(II) complex with a 2.47 AuAu distance  

E-Print Network [OSTI]

with a 2.47 � Au­Au distance Michael D. Irwin, Hanan E. Abdou, Ahmed A. Mohamed and John P. Fackler, Jr

Abdou, Hanan E.

206

Global polarization measurement in Au+Au collisions  

SciTech Connect (OSTI)

The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

2007-08-02T23:59:59.000Z

207

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

208

Measurement of charged particle multiplicity distribution in Au + Au collisions up to 200 GeV  

E-Print Network [OSTI]

Au+Au collisions in the Relativistic Heavy Ion Collider (RHIC) herald a new era of opportunities for studying hadronic matter under conditions of high energy density and nucleon density. The theory of strong interactions, ...

Sarin, Pradeep, 1975-

2003-01-01T23:59:59.000Z

209

Odd-Even Pattern Observed in Polyaniline/(Au0 – Au8) Composites...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the atomic Au clusters. It also agrees with the earlier experimental work in which the UPS spectra of isolated, mass-selected Au clusters have been reported. Citation: Jonke AP,...

210

Fe/Au Multilayers: Structure and Magnetoresistance  

SciTech Connect (OSTI)

We have measured the magnetoresistance (MR) in two sets of Fe/Au multilayers, with varying (1) Fe layer thickness, t{sub Fe} = 3-10 nm, and (2) Au layer thickness t{sub Au} = 5-15 nm, grown on Si substrates by sputtering. The multilayer interface structure and magnetic properties were studied by polarized neutron reflectometry (PNR). The study was undertaken to understand the correlation between structure of these multilayers and their magneto-transport properties.

Singh, Surendra; Basu, Saibal; Bhattacharya, D. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Prajapat, C. L. [Technical Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Gupta, M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India)

2011-07-15T23:59:59.000Z

211

arXiv:0808.2041v2[nucl-ex]11Apr2009 Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au  

E-Print Network [OSTI]

+Au and Au+Au Collisions from STAR B. I. Abelev,9 M. M. Aggarwal,30 Z. Ahammed,46 B. D. Anderson,19 D

Llope, William J.

212

E-Print Network 3.0 - au bonded structures Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of non-helical Au... induce structural transitions between Au(n, n) and Au(2n, n) nanotubes. The corresponding energy barriers... Au(n, n) and Au(2n, n) decreases ......

213

Effects of valley meteorology on forest pesticide spraying  

SciTech Connect (OSTI)

Pacific Northwest Laboratory conducted this study for the Missoula Technology and Development Center of the US Department of Agriculture's Forest Service. The purpose of the study was to summarize recent research on valley meteorology during the morning transition period and to qualitatively evaluate the effects of the evolution of valley temperature inversions and wind systems on the aerial spraying of pesticides in National Forest areas of the western United States. Aerial spraying of pesticides and herbicides in forests of the western United States is usually accomplished in the morning hour after first light, during the period known to meteorologists as the morning transition period.'' This document describes the key physical processes that occur during the morning transition period on undisturbed days and the qualitative effects of these processes on the conduct of aerial spraying operations. Since the timing of valley meteorological events may be strongly influenced by conditions that are external to the valley, such as strong upper-level winds or the influence of clouds on the receipt of solar energy in the valley, some remarks are made on the qualitative influence of these processes. Section 4 of this report suggests ways to quantify some of the physical processes to provide useful guidance for the planning and conduct of spraying operations. 12 refs., 9 figs.

Whiteman, C.D.

1990-04-01T23:59:59.000Z

214

West Valley facility spent fuel handling, storage, and shipping experience  

SciTech Connect (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

215

Ion Distribution And Electronic Stopping Power For Au ions In...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution And Electronic Stopping Power For Au ions In Silicon Carbide. Ion Distribution And Electronic Stopping Power For Au ions In Silicon Carbide. Abstract: Accurate...

216

Nuclear modification and elliptic flow measurements for $?$ mesons at $\\sqrt{s_{NN}}$ = 200 GeV d+Au and Au+Au collisions by PHENIX  

E-Print Network [OSTI]

We report the first results of the nuclear modification factors and elliptic flow of the phi mesons measured by the PHENIX experiment at RHIC in high luminosity Au+Au collisions at sqrt(sNN) = 200 GeV. The nuclear modification factors R_AA and R_CP of the phi follow the same trend of suppression as pi0's in Au+Au collisions. In d+Au collisions at sqrt(sNN) = 200 GeV, the phi mesons are not suppressed. The elliptic flow of the phi mesons, measured in the minimum bias Au+Au events, is statistically consistent with other identified particles.

Dipali Pal

2005-10-06T23:59:59.000Z

217

Au microstructure and the functional properties of Ni/Au finishes on ceramic IC packages  

SciTech Connect (OSTI)

Ni/Au plated finishes used on thick-film metallized multilayer ceramic packages for integrated circuits must meet functional requirements such as bondability, sealability, and solderability. Their ability to do so is dependent, among other things, on the ability of the Au deposit to inhibit the grain boundary diffusion and subsequent surface oxidation of Ni. In this study, the relation between functional performance, Ni diffusionr ate, and Au microstructure was examined. Extent of Ni diffusion during heating was determined by Auger electron spectroscopy for several electrolytic and electroless Ni/Au finishing processes. Results were correlated with differences in Au microstructures determined by SEM, atomic force microscopy, and XRD.

Winters, E.D.; Baxter, W.K. [Coors Electronic Package Co., Chattanooga, TN (United States); Braski, D.N.; Watkins, T.R. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

218

Au-Pt heteroaggregate dendritic nanostructures and Au-Pt alloy nanoparticles and their use as catalysts  

DOE Patents [OSTI]

Au--Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.

Eichhorn, Bryan W. (University Park, MD); Zhou, Shenghu (Greenbelt, MD); Jackson, Gregory Scott (University Park, MD)

2011-10-18T23:59:59.000Z

219

Results of the Flowmeter-Injection Test in the Long Valley Exploratory...  

Open Energy Info (EERE)

Results of the Flowmeter-Injection Test in the Long Valley Exploratory Well (Phase II), Long Valley, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

220

VWZ-0011 - In the Matter of West Valley Nuclear Services Co....  

Office of Environmental Management (EM)

- In the Matter of West Valley Nuclear Services Co., Inc. VWZ-0012 - In the Matter of Lucy B. Smith VWA-0033 - In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc....

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EM Employees at West Valley Help Beat Goal for Food Banks  

Broader source: Energy.gov [DOE]

WEST VALLEY, N.Y. – EM employees and their contractor counterparts at the West Valley Demonstration Project (WVDP) have supported their local food banks for several years, and this year was no exception.

222

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results  

E-Print Network [OSTI]

After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a ...

Panday, Arnico K.

223

The diurnal cycle of air pollution in the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

This dissertation describes the most comprehensive study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal -- a bowl-shaped mountain valley of two million people with a growing air pollution ...

Panday, Arnico Kumar

2006-01-01T23:59:59.000Z

224

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2005-09-30T23:59:59.000Z

225

EA-1840: California Valley Solar Ranch Project in San Luis Obispo...  

Broader source: Energy.gov (indexed) [DOE]

0: California Valley Solar Ranch Project in San Luis Obispo County, CA EA-1840: California Valley Solar Ranch Project in San Luis Obispo County, CA August 3, 2011 EA-1840: Final...

226

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA  

E-Print Network [OSTI]

DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM IN THE SAN JOAQUIN VALLEY, CALIFORNIA A thesis read Documentation of a Tornadic Supercell Thunderstorm in the San Joaquin Valley, California ___________________________________________ Erwin Seibel Professor of Oceanography #12;iv DOCUMENTATION OF A TORNADIC SUPERCELL THUNDERSTORM

227

Preliminary Open File Report: Geological and Geophysical Studies in Grass Valley, Nevada  

E-Print Network [OSTI]

component. The 3 shaded areas in Figure 51 correspond toValley area that is seismically active (Figure 51). The

Beyer, H.

2010-01-01T23:59:59.000Z

228

West Valley Demonstration Project site environmental report, calendar year 1999  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None Available

2000-06-01T23:59:59.000Z

229

West Valley Demonstration Project site environmental report, calendar year 1997  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None

1998-06-01T23:59:59.000Z

230

West Valley Demonstration Project site environmental report calendar year 1998  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

NONE

1999-06-01T23:59:59.000Z

231

DOE Awards Small Business Contract for West Valley NY Services  

Broader source: Energy.gov [DOE]

CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

232

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

233

File:LongValley Strat.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:LongValley

234

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

235

Valley-Dependent Brewster Angles and Goos-Hanchen Effect in Strained Graphene Zhenhua Wu,1  

E-Print Network [OSTI]

Valley-Dependent Brewster Angles and Goos-Ha¨nchen Effect in Strained Graphene Zhenhua Wu,1 F. Zhai local strains in graphene can be tailored to generate a valley- polarized current. By suitable be used to construct a valley filter in graphene without the need for any external fields. DOI: 10

236

[Having a] Life in the Happy Valley 1.2 Cris Pedregal Martin  

E-Print Network [OSTI]

[Having a] Life in the Happy Valley ­ 1.2 Cris Pedregal Martin Department of Computer Science known as ``The Happy Valley,'' henceforth simply ``the Valley.'' Specifically, we discuss food, cultural will strongly influence your well­being, your happiness, and ultimately your ability to function aca­ demically

Massachusetts at Amherst, University of

237

The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal  

E-Print Network [OSTI]

1 The Diurnal Cycle of Air Pollution In the Kathmandu Valley, Nepal by Arnico K. Panday A OF AIR POLLUTION IN THE KATHMANDU VALLEY, NEPAL by Arnico K. Panday Submitted to the Department of Earth study to date of the diurnal cycle of air pollution in the Kathmandu Valley, Nepal ­ a bowl

238

February 17, 2005 Traffic: See current conditions on all Valley freeways  

E-Print Network [OSTI]

° Flagstaff 34° |Traffic Weather Site search| | | | | |Front Page Valley & State Sports Business Arizona Wheels Yes Ahwatukee Chandler Gilbert Glendale/Peoria Mesa Phoenix Scottsdale Southwest Valley Sun CitiesFebruary 17, 2005 Traffic: See current conditions on all Valley freeways PHOENIX 56° Tucson 53

McGraw, Kevin J.

239

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY  

E-Print Network [OSTI]

STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY BY RICHARD THOMPSON AND ANDREW PEACE: Thompson, R (2005), Stand dynamics in Tilio-Acerion woodlands of the Clyde Valley. Highland Birchwoods, Munlochy #12;STAND DYNAMICS IN TILIO-ACERION WOODLANDS OF THE CLYDE VALLEY by Richard Thompson* and Andrew

240

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

Hernandez, Manuel

2011-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS  

E-Print Network [OSTI]

The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

Garcia, Bianca 1989-

2011-05-06T23:59:59.000Z

242

Kelly Services 1600 Valley River Drive, Suite 170  

E-Print Network [OSTI]

Kelly Services® 1600 Valley River Drive, Suite 170 Eugene, OR 97401 Phone: 541.687.9558 Fax: 541 put them on our payroll Experience 1946 ­ Present Kelly Services, Troy, MI We are a global, single to achieve results. We transform workforce challenges into opportunities. 1957 ­ Present Kelly Services

Oregon, University of

243

Sustainability of irrigated agriculture in the San Joaquin Valley, California  

E-Print Network [OSTI]

productivity and sustainability. Currently, there is a good understanding of the fundamental soil hydrological scale and at the long term, so that the sustainability of alternative management strategies canSustainability of irrigated agriculture in the San Joaquin Valley, California Gerrit Schoups* , Jan

Vrugt, Jasper A.

244

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Storm Water Hidden Valley Ecological Garden Stream and Floodplain Restoration Project Report of 2005 Project Activities to Mecklenburg County Storm Water Services and Water Quality habitat is often inhibited by a lack of organic matter in the soils of restoration project sites, organic

245

West Valley transfer cart control system design description  

SciTech Connect (OSTI)

Detail design of the control system for the West Valley Nuclear Services Vitrification Facility transfer cart has been completed by Oak Ridge National Laboratory. This report documents the requirements and describes the detail design of that equipment and control software. Copies of significant design documents including analysis and testing reports and design drawings are included in the Appendixes.

Bradley, E.C.; Crutcher, R.I.; Halliwell, J.W.; Hileman, M.S.; Moore, M.R.; Nodine, R.N.; Ruppel, F.R.; Vandermolen, R.I.

1993-01-01T23:59:59.000Z

246

Dixie Valley Binary Cycle Production Data 2013 YTD  

SciTech Connect (OSTI)

Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

Lee, Vitaly

2013-10-18T23:59:59.000Z

247

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain)  

E-Print Network [OSTI]

The Ranero Hydrothermal Dolomites (Albian, Karrantza Valley, Northwest Spain): Implications Recherche Développement, Carbonate Sedimentology Group, avenue Larribau s/n, 64018 Pau Cedex - France e'Espagne) sont présentées dans cette étude. Les corps dolomitiques sont encaissés dans des carbonates de

Paris-Sud XI, Université de

248

ASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley ChapterASM Ottawa Valley Chapter  

E-Print Network [OSTI]

Fund awarded a grant for a new Reactor Materials Research Labora- tory (RMTL) at Queen's University electron microscopes, in­ and ex-situ mechanical testing equipment, and a radiation detection researchASM Dinner MeetingASM Dinner MeetingASM Dinner MeetingASM Dinner Meeting ASM Ottawa Valley Chapter

Ellis, Randy

249

Skagit Valley Research Collection / Ian E. Efford (collector)  

E-Print Network [OSTI]

Skagit Valley Research Collection / Ian E. Efford (collector) Compiled by Christopher Hives (1997 of Creation / Physical Description o Collector's Biographical Sketch o Scope and Content o Notes File List-1982. 13 cm of textual records. 35 photographs. Collector's Biographical Sketch Ian Efford was an ecologist

Handy, Todd C.

250

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona  

Broader source: Energy.gov [DOE]

Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

251

Citrus Variety Trends in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

Alderman, D. C. (DeForest Charles)

1951-01-01T23:59:59.000Z

252

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden  

E-Print Network [OSTI]

Charlotte-Mecklenburg Stormwater Hidden Valley Ecological Garden Stream and Floodplain Restoration cells within a stream and floodplain restoration of a segment of Little Sugar Creek in Mecklenburg Assessment of Little Sugar Creek Restoration 2 Stream Ambient Water Quality Monitoring 2 Stream Habitat

253

Viscous fluid dynamics in Au+Au collisions at RHIC  

E-Print Network [OSTI]

We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$ at the initial time $\\tau_i$=0.6 fm, if freeze-out at temperature $T_F$=130 MeV, explains the centrality dependence of $p_T$ spectra of identified particles. Experimental $p_T$ spectra of $\\pi^-$, $K^+$ and protons in 0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50% Au+Au collisions are well reproduced through out the experimental $p_T$ range. This is in contrast to ideal dynamics, where, the spectra are reproduced only up to $p_T\\approx$1.5 GeV. Minimally viscous QGP fluid, also explain the elliptic flow in mid-central (10-20%, 16-23%, 20-30%) collisions. The minimum bias elliptic flow is also explained. However, the model under-predict/over-predict the elliptic flow in very central/peripheral collisions.

A. K. Chaudhuri

2008-06-18T23:59:59.000Z

254

E-Print Network 3.0 - application au calcul Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

As a result, investigations in potential applications of Au... of the different reduction kinetics of Au and Pt ions.7 In addition, theoretical calculations also suggest that Au......

255

Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV  

E-Print Network [OSTI]

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; K. Hill; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Kotchenda; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; L. M. Lima; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. G. Munhoz; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; R. A. N. Oliveira; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; A. Peterson; P. Pile; M. Planinic; J. Pluta; N. Poljak; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; U. G. deSouza; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; G. Wimsatt; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

2015-01-21T23:59:59.000Z

256

DFT study on cysteine adsorption mechanism on Au(111) and Au(110)  

SciTech Connect (OSTI)

Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

257

Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York  

SciTech Connect (OSTI)

The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

N /A

2004-01-16T23:59:59.000Z

258

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR  

SciTech Connect (OSTI)

Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freezeout temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities.

STAR Coll

2009-04-11T23:59:59.000Z

259

A simulation of the Neolithic transition in the Indus valley  

E-Print Network [OSTI]

The Indus Valley Civilization (IVC) was one of the first great civilizations in prehistory. This bronze age civilization flourished from the end of the the fourth millennium BC. It disintegrated during the second millennium BC, this decline is despite much research effort not yet well understood. Less research has been devoted on the becoming of this great civilization which shows continuous cultural precursors at least since the seventh millennium BC. To understand the decline, we believe it is necessary to investigate better the precursors and the rise of the IVC, i.e. the establishment of agriculture, dense populations and technological developments between 8000 and 3000 years BC. We employ a huge dataset of $>10000$ archaeologically typed artifacts, still our capability to investigate the system is hindered by poorly resolved chronology, and by a lack of field work in the intermediate areas between the Indus valley and Mesopotamia. We thus employ a complementary, numerical simulation based approach to dev...

Lemmen, Carsten

2011-01-01T23:59:59.000Z

260

Ambient Radon-222 Monitoring in Amargosa Valley, Nevada  

SciTech Connect (OSTI)

As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

2008-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Case histories of West Valley spent fuel shipments: Final report  

SciTech Connect (OSTI)

In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

Not Available

1987-01-01T23:59:59.000Z

262

Nuclear stopping in Au+Au collisions at root s(NN) = 200 GeV  

E-Print Network [OSTI]

Transverse momentum spectra and rapidity densities, dN/dy, of protons, antiprotons, and net protons (p-(p) over bar) from central (0%-5%) Au+Au collisions at roots(NN)=200 GeV were measured with the BRAHMS experiment within ...

Ito, H.; Kim, E. J.; Murray, Michael J.; Norris, J.; Sanders, Stephen J.

2004-09-01T23:59:59.000Z

263

Azimuthal anisotropy in Au plus Au collisions at root S-NN=200 GeV  

E-Print Network [OSTI]

The results from the STAR Collaboration on directed flow (v(1)), elliptic flow (v(2)), and the fourth harmonic (v(4)) in the anisotropic azimuthal distribution of particles from Au+Au collisions at root s(NN) = 200 GeV are summarized and compared...

Adams, J.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Arkhipkin, D.; Averichev, GS; Badyal, SK; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bharadwaj, S.; Bhasin, A.; Bhati, AK; Bhatia, VS; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, AV; Bravar, A.; Bystersky, M.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; de Moura, MM; Derevschikov, AA; Didenko, L.; Dietel, T.; Dogra, SM; Dong, WJ; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Mazumdar, MRD; Eckardt, V.; Edwards, WR; Efimov, LG; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Gans, J.; Ganti, MS; Gaudichet, L.; Guerts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, JE; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, SM; Guo, Y.; Gupta, A.; Gutierrez, TD; Hallman, TJ; Hamed, A.; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Huang, HZ; Huang, SL; Hughes, EW; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Jiang, H.; Jones, PG; Judd, EG; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, VY; Kiryluk, J.; Kisiel, A.; Kislov, EM; Klay, J.; Klein, SR; Koetke, DD; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, VI; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; LeVine, MJ; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, SJ; Lisa, MA; Liu, F.; Liu, L.; Liu, QJ; Liu, Z.; Ljubicic, T.; Llope, WJ; Long, H.; Langacre, RS; Lopez-Noriega, M.; Love, WA; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, GL; Ma, JG; Ma, YG; Magestro, D.; Mahajan, S.; Mahapatra, DP; Majka, R.; Mangotra, LK; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, JN; Matis, HS; Matulenko, YA; McClain, CJ; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Miller, ML; Minaev, NG; Mironov, C.; Mischke, A.; Mishra, DK; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Morozov, DA; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Netrakanti, PK; Nikitin, VA; Nogach, LV; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, RL; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Savin, I.; Sazhin, PS; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, WQ; Shestermanov, KE; Shimanskiy, SS; Sichtermann, E.; Simon, F.; Singaraju, RN; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, TDS; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, AAP; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Tarnowsky, T.; Thein, D.; Thomas, JH; Timoshenko, S.; Tokarev, M.; Trainor, TA; Trentalange, S.; Tribble, Robert E.; Tsai, OD; Ulery, J.; Ullrich, T.; Underwood, DG; Urkinbaev, A.; van Buren, G.; van Leeuwen, M.; Molen, AMV; Varma, R.; Vasilevski, IM; Vasiliev, AN; Vernet, R.; Vigdor, SE; Viyogi, YP; Vokal, S.; Voloshin, SA; Vznuzdaev, M.; Waggoner, WT; Wang, F.; Wang, G.; Wang, G.; Wang, XL; Wang, Y.; Wang, Y.; Wang, ZM; Ward, H.; Watson, JW; Webb, JC; Wells, R.; Westfall, GD; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yamamoto, E.; Yepes, P.; Yurevich, VI; Zanevsky, YV; Zhang, H.; Zhang, WM; Zhang, ZP; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, AN; Braem, A.; Davenport, M.; Cataldo, GD; Bari, DD; Martinengo, P.; Nappi, E.; Paic, G.; Posa, E.; Puiz, F.; Schyns, E.; Star Collaboration; STAR-RICH Collaboration.

2005-01-01T23:59:59.000Z

264

Radiation safety at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

Hoffman, R.L.

1997-05-06T23:59:59.000Z

265

Citrus Varieties for the Lower Rio Grande Valley.  

E-Print Network [OSTI]

Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

1941-01-01T23:59:59.000Z

266

Guide for Citrus Production in the Lower Rio Grande Valley.  

E-Print Network [OSTI]

8-1002 December 1963 CONTENTS 3 VALLEY CITRUS AND ITS POTENTIAL 4 Comparison to Other Areas 4 General Description of Climate 6 SELECTING A SITE 6 Soil Factors 6 Water Quality 7 Water Availability 7 Topography Factors 8 IRRIGATION..., SALINITY, AND DRAINAGE 8 lrrigation Systems for Citrus Groves 10 Salinity Problems 10 Drainage Problems 12 KINDS OF CITRUS AND THEIR VALUE 12 Grapefruit Varieties 12 Orange Varieties 13 Tangerines and Tangelos 13 Limes, Lemons and Miscellaneous...

Maxwell, Norman P. (Norman Paul); Bailey, Morris A.

1963-01-01T23:59:59.000Z

267

Surprise Valley Electrification Corp. (Oregon) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms |IllinoisCPASurprise Valley

268

North Valley, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley

269

NGEN Partners LLC (Silicon Valley) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA HomeValley)

270

Green Valley, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands RenewableGreatwood,GreenFalls,Group0456097°Valley

271

Yazoo Valley Elec Power Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWoodWildlifeValley Elec

272

Chariton Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalyst RenewablesChad-IAEA CooperationChariton Valley

273

Imperial Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigation District (Redirected fromValley,

274

Odd-Even Pattern Observed in Polyaniline/(Au0 – Au8) Composites  

SciTech Connect (OSTI)

Theoretically predicted effect of odd-even pattern of electron pairing on behavior of gold clusters in polyaniline/AuN (N = 0 to 8) has been confirmed experimentally. In these composites the atomic Au clusters with even number of atoms exhibit higher catalytic activity for electrochemical oxidation of n-propanol in 1 M NaOH than the odd-number atoms clusters. Also, infrared spectroscopy shows that even numbered PANI/AuN composites affect the N-H stretching vibration more strongly than the corresponding odd numbered ones. This behavior matches the theoretically predicted variations of HOMO-LUMO gap energy and the stability of the atomic Au clusters. It also agrees with the earlier experimental work in which the UPS spectra of isolated, mass-selected Au clusters have been reported.

Jonke, Alex P.; Josowicz, Mira A.; Janata, Jiri

2012-01-12T23:59:59.000Z

275

UMTRA project water sampling and analysis plan, Monument Valley, Arizona  

SciTech Connect (OSTI)

The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

Not Available

1994-04-01T23:59:59.000Z

276

Jets and dijets in Au+Au and p+p collisions at RHIC  

SciTech Connect (OSTI)

Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

Hardtke, D.; STAR Collaboration

2002-12-09T23:59:59.000Z

277

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

278

Azimuthal di-hadron correlations in d+Au and Au+Au collisions at $\\sqrt{s_{NN}}=200$ GeV from STAR  

E-Print Network [OSTI]

Yields, correlation shapes, and mean transverse momenta \\pt{} of charged particles associated with intermediate to high-\\pt{} trigger particles ($2.5 < \\pt < 10$ \\GeVc) in d+Au and Au+Au collisions at $\\snn=200$ GeV are presented. For associated particles at higher $\\pt \\gtrsim 2.5$ \\GeVc, narrow correlation peaks are seen in d+Au and Au+Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle $\\pt < 2$ \\GeVc, a large enhancement of the near- ($\\dphi \\sim 0$) and away-side ($\\dphi \\sim \\pi$) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au+Au collisions compared to d+Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at $\\dphi \\sim \\pi$ in central Au+Au collisions.

STAR Collaboration; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; Daniel Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; B. E. Bonner; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderon; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; N. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; T. A. Trainor; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu

2010-08-10T23:59:59.000Z

279

Universal conductance fluctuations as a direct probe to valley coherence and universality class of disordered graphene  

SciTech Connect (OSTI)

We demonstrate that the universal conductance fluctuations (UCF) can be used as a direct probe to study the valley quantum states in disordered graphene. The UCF magnitude in graphene is suppressed by a factor of four at high carrier densities where the short-range disorder essentially breaks the valley degeneracy of the K and K' valleys, leading to a density dependent crossover of symmetry class from symplectic near the Dirac point to orthogonal at high densities.

Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India)

2013-12-04T23:59:59.000Z

280

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

282

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

283

E-Print Network 3.0 - anomaly imperial valley Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commission Collection: Energy Storage, Conversion and Utilization 66 Camp Pendleton Kings Canyon Summary: Valley National Park Fort Irwin Mojave National Preserve Mono County...

284

Golden Valley Electric Association- Residential Energy Efficiency Rebate Program for Builders  

Broader source: Energy.gov [DOE]

Golden Valley Electric Association’s (GVEA) Builder $ense program targets home builders who install electrical energy efficiency measures during construction of residential buildings. Newly...

285

Ohio Valley Gas Corporation- Residential and Small Commercial Natural Gas Incentive Program  

Broader source: Energy.gov [DOE]

Ohio Valley Gas Corporation (OVG) offers rebates to its residential and small commercial customers for the purchase of energy efficient equipment and appliances. The program's rebate offering...

286

Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother' Metropolis Grows Up  

E-Print Network [OSTI]

Edmonton Edmonton skyline along North Saskatchewan River valley Canada's `Little Brother urban vibe, explore life across the North Saskatchewan River. Old Strathcona, Edmon- ton's Brooklyn

Machel, Hans

287

Minnesota Valley Electric Cooperative-Residential Energy Resource Conservation Loan Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative offers low-interest loans to help residential customers finance energy efficiency improvements through the Energy Conservation Loan Program. ERC Loans can be...

288

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

289

Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

290

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalAnd-OrNearInfraredAtFishLakeValleyArea(Deymonaz,EtAl.,2008)&oldid386621...

291

au cern pour: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

292

adaptation au changement: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

293

au fdg pour: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

294

au changement global: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

295

au projet extreme: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

296

adaptatives au changement: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de leur systme : un jeu de rles pour des projets collectifs d'irrigation au Tadla (Maroc) Physics Websites Summary: collectifs d'irrigation au Tadla (Maroc) M. Dionnet1, M....

297

au aerosol nanoparticles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Photovoltaic Properties of the AuTiO2 DSSCs S l ll ti h d b th Park, Byungwoo 14 NANO EXPRESS Open Access AuPd core-shell nanoparticles with varied hollow Energy Storage,...

298

Defect- and Strain-enhanced Cavity Formation and Au Precipitation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Defect- and Strain-enhanced Cavity Formation and Au Precipitation at nano-crystalline ZrO2SiO2Si Interfaces . Defect- and Strain-enhanced Cavity Formation and Au Precipitation at...

299

Identified particle distributions in pp and Au+Au collisions atsqrt sNN=200 GeV  

SciTech Connect (OSTI)

Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antiprotons are reported for {radical}sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was observed in the kaon and antiproton production rates relative to the pion production rate from medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M; Arkhipkin, D.; Averichev, G.S.; Badyal,S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele,S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj,S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar,A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez,M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Cronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris,J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang,S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine,S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger,K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

2003-10-06T23:59:59.000Z

300

Net charge fluctuations in Au+Au collisions at root s(NN)=130 GeV  

E-Print Network [OSTI]

We present the results of charged particle fluctuations measurements in Au+Au collisions at rootS(NN)=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well...

Adams, J.; Adler, C.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Anderson, M.; Arkhipkin, D.; Averichev, GS; Badyal, SK; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bhardwaj, S.; Bhaskar, P.; Bhati, AK; Bichsel, H.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Chernenko, SP; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; Derevschikov, AA; Didenko, L.; Dietel, T.; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Majumdar, MRD; Eckardt, V.; Efimov, LG; Emelianov, V.; Elage, JE; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, KJ; Fu, J.; Gagliardi, Carl A.; Ganti, MS; Gutierrez, TD; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, E.; Ghazikhanian, V.; Ghosh, R.; Gonzalez, JE; Grachov, O.; Grigoriev, V.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, SM; Gupta, A.; Gushin, E.; Hallman, TJ; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Horsley, M.; Huang, HZ; Huang, SL; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Johnson, I.; Jones, PG; Judd, EG; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, SR; Klyachko, A.; Koetke, DD; Kolleger, T.; Konstantmov, AS; Kopytine, M.; Kotchenda, L.; Kovalenko, AD; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kunde, GJ; Kunz, CL; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Lansdell, CP; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, VM; LeVine, MJ; Li, C.; Li, Q.; Lindenbatim, SJ; Lisa, MA; Liu, E.; Liu, L.; Liu, Z.; Liu, QJ; Ljubicic, T.; Llope, WJ; Long, H.; Longacre, RS; Lopez-Noriega, M.; Love, WA; Ludlam, T.; Lynn, D.; Ma, J.; Ma, YG; Maestro, D.; Mahajan, S.; Mangotra, LK; Mahapatra, DP; Majka, R.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, HS; Matulenko, YA; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Messer, M.; Miller, ML; Milosevich, Z.; Minaev, NG; Mironov, C.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Mora-Corral, MJ; Morozov, V.; de Moura, MM; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Nevski, P.; Nikitin, VA; Nogach, LV; Norman, B.; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, SU; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevski, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, LJ; Rykov, V.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schroeder, LS; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shestermanov, KE; Shimanskii, SS; Singaraju, RN; Simon, F.; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, AAP; Sugarbaker, E.; Suite, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Thein, D.; Thomas, JH; Tikhomirov, V.; Tokarev, M.; Tonjes, MB; Trentalange, S.; Tribble, Robert E.; Trivedi, MD; Trofimov, V.; Tsai, O.; Ullrich, T.; Underwood, DG; Van Buren, G.; VanderMolen, AM; Vasiliev, AN; Vasiliev, M.; Vigdor, SE; Viyogi, YP; Voloshin, SA; Waggoner, W.; Wang, F.; Wang, G.; Wang, XL; Wang, ZM; Ward, H.; Watson, JW; Wells, R.; Westfall, GD; Whitten, C.; Wieman, H.; Willson, R.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yakutin, AE; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, VI; Zanevski, YV; Zborovsky, I.; Zhang, H.; Zhang, HY; Zhang, WM; Zhang, ZP; Zolnierczuk, PA; Zoulkarneev, R.; Zoulkarneeva, J.; Zubarev, AN; STAR Collaboration.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Aquaculture in the Imperial Valley -- A geothermal success story  

SciTech Connect (OSTI)

The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

1999-03-01T23:59:59.000Z

302

The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389  

SciTech Connect (OSTI)

As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

2012-07-01T23:59:59.000Z

303

Tomato Varieties and Fertilizers for the Lower Rio Grand Valley.  

E-Print Network [OSTI]

, 1931. **In roopc.ration with U. S. Drpartmcnt of Agriculture. Tomato production is one of the leading truck-gardening enterprises in the Lower Rio Grande VaIley. The annual pro- duction of tomatoes has increased from 946 cars in 1926-27 to 2..., 1931 TOMATO VARIETIES AND FERTILIZERS FOR THE LOWER RIO GRANDE VALLEY W. H. FRIEND The production of tomatoes during the late spring and early summer is one of the most important trucking enterprises of the irrigated por- tions of the counties...

Friend, W. H. (William Heartsill)

1931-01-01T23:59:59.000Z

304

Superior Valley photovoltaic power processing and system controller evaluation  

SciTech Connect (OSTI)

Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

1995-11-01T23:59:59.000Z

305

Silicon Valley Clean Tech Alliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBus asShirley,Valley Clean

306

Sioux Valley SW Elec Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:up DataBusSimply Efficient JumpValley

307

Suwannee Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentral AsiaLand-useSuwannee Valley

308

Concho Valley Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information1988) |Concho Valley Elec

309

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudgetFurnacesLES'Nuclear FacilityWest Valley

310

Valley View, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy Information Valley View Hot Springs Pool

311

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM CommunicationsGDC PowerValley

312

Valley wins 2015 Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015 Science Bowl West Des Moines

313

Moapa Valley, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, search Name:Moapa Valley is a

314

Searles Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville, Texas:Searles Valley,

315

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy Ltd Jump to:Creek Valley

316

DOE - Office of Legacy Management -- South Valley Superfund Site - 021  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannahIllinois SiteSouth Valley

317

DOE - Office of Legacy Management -- Tennessee Valley Authority - AL 01  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site - MO 02SuttonTennessee Valley

318

Yucca Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR Solar JumpPetroleumYucca Valley,

319

West Puente Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine, Florida: EnergyPointValley,

320

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP Waste

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncement | DepartmentofWest ValleyWVDP

322

Canadian Valley Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSI Jump to: navigation,Valley Elec

323

Canton Valley, Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | Open EnergySolar Inc CSICorporation JumpCanton Valley,

324

File:LongValley Regional.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf Jump to:

325

Caney Valley El Coop Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder,Research JumpEnergy InformationForkValley

326

Cherry Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon EnterprisesGrove, Ohio: EnergyValley,

327

NRG Solar (California Valley Solar Ranch) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy Efficiency and|Solar (California Valley

328

Spring Valley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is a

329

Spring Valley, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is aYork:

330

Spring Valley, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSESLogMills isValley is

331

Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley BiofuelsEnergyInformation 6Et

332

Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman, Et Al., 2006) | Open

333

Temperature Data From Wells in Long Valley Caldera, California | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman,Telluric

334

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed, 2007) JumpG,

335

Hybla Valley, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9 Jump to:Hybla Valley,

336

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

337

Indian Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie, Minnesota Zip: 55344ESMAPIndianValley Hot

338

Viscous hydrodynamics description of $?$ meson production in Au+Au and Cu+Cu collisions  

E-Print Network [OSTI]

In the Israel-Stewart's theory of 2nd order dissipative hydrodynamics, we have simulated $\\phi$ production in Au+Au and Cu+Cu collisions at $\\sqrt{s}_{NN}$=200 GeV. Evolution of QGP fluid with viscosity over the entropy ratio $\\eta/s$=0.25, thermalised at $\\tau_i$=0.2 fm, with initial energy density $\\epsilon_i$=5.1 $GeV/fm^3$ explains the experimental data on $\\phi$ multiplicity, integrated $v_2$, mean $p_T$, $p_T$ spectra and elliptic flow in central and mid-central Au+Au collisions. $\\eta/s$=0.25 is also consistent with centrality dependence of $\\phi$ $p_T$ spectra in Cu+Cu collisions. The central energy density in Cu+Cu collisions is $\\epsilon_i$=3.48 $GeV/fm^3$.

A. K. Chaudhuri

2009-01-27T23:59:59.000Z

339

$J/?$ production in Au+Au collisions at RHIC and the nuclear absorption  

E-Print Network [OSTI]

It is shown that a QCD based nuclear absorption model, with few parameters fixed to reproduce experimental $J/\\psi$ yield in 200 GeV pp/pA and 450 GeV pA collisions can explain the preliminary PHENIX data on the centrality dependence of $J/\\psi$ suppression in Cu+Cu collisions at RHIC energy, $\\sqrt{s_{NN}}$=200 GeV. However, the model does not give satisfactory description to the preliminary PHENIX data on the centrality dependence of $J/\\psi$ suppression in Au+Au collisions. The analysis suggest that in Au+Au collisions, $J/\\psi$ are suppressed in a medium unlike the medium produced in SPS energy nuclear collisions or in RHIC energy Cu+Cu collisions.

A. K. Chaudhuri

2006-11-09T23:59:59.000Z

340

Longitudinal Flow of Protons from 2-8 AGeV Central Au+Au Collisions  

E-Print Network [OSTI]

Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, $_{L}$, as a function of the logarithm of beam energy.

E895 Collaboration; J. L. Klay; N. N. Ajitanand; J. M. Alexander; M. Anderson; D. Best; F. P. Brady; T. Case; W. Caskey; D. Cebra; J. L. Chance; P. Chung; B. Cole; K. Crowe; A. C. Das; J. E. Draper; M. L. Gilkes; S. Gushue; M. Heffner; A. S. Hirsch; E. L. Hjort; L. Huo; M. Justice; M. Kaplan; D. Keane; J. C. Kintner; D. Krofcheck; R. A. Lacey; C. Law; J. Lauret; M. A. Lisa; H. Liu; Y. M. Liu; R. McGrath; Z. Milosevich; G. Odyniec; D. L. Olson; S. Y. Panitkin; C. Pinkenburg; N. T. Porile; G. Rai; H. G. Ritter; J. L. Romero; R. Scharenberg; L. Schroeder; B. Srivastava; N. T. B. Stone; T. J. M. Symons; S. Wang; R. Wells; J. Whitfield; T. Wienold; R. Witt; L. Wood; W. N. Zhang

2002-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Anti-flow of K$^0_s$ Mesons in 6 AGeV Au + Au Collisions  

E-Print Network [OSTI]

We have measured the sideward flow of neutral strange ($K^0_s$) mesons in 6 AGeV Au + Au collisions. A prominent anti-flow signal is observed for an impact parameter range (b $\\lesssim 7$ fm) which spans central and mid-central events. Since the $K^0_s$ scattering cross section is relatively small in nuclear matter, this observation suggests that the in-medium kaon vector potential plays an important role in high density nuclear matter.

P. Chung; N. N. Ajitanand; J. M. Alexander; M. Anderson; D. Best; F. P. Brady; T. Case; W. Caskey; D. Cebra; J. L. Chance; B. Cole; K. Crowe; A. Das; J. E. Draper; M. L. Gilkes; S. Gushue; M. Heffner; A. S. Hirsch; E. L. Hjort; L. Huo; M. Justice; M. Kaplan; D. Keane; J. C. Kintner; J. Klay; D. Krofcheck; R. A. Lacey; J. Lauret; M. A. Lisa; H. Liu; Y. M. Liu; R. McGrath; Z. Milosevich; G. Odyniec; D. L. Olson; S. Y. Panitkin; C. Pinkenburg; N. T. Porile; G. Rai; H. G. Ritter; J. L. Romero; R. Scharenberg; L. Schroeder; B. Srivastava; N. T. BStone; T. J. M. Symons; T. Wienold; R. Witt J. Whitfield; L. Wood; W. N. Zhang

2001-01-06T23:59:59.000Z

342

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

343

MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN  

E-Print Network [OSTI]

Although, many countries are utiliszing the geothermal energy for power generation, India is yet to joinMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS.NGRI-2008-EXP-637 MAGNETOTELLURIC INVESTIGATIONS IN GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

Harinarayana, T.

344

Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms  

E-Print Network [OSTI]

different settings. Index Terms--Optimal power flow, electric vehicle charging, valley-filling, onlineForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms, IEEE. Abstract--Electric vehicles (EVs) offer an attractive long-term solution to reduce the dependence

Tan, Chee Wei

345

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley  

E-Print Network [OSTI]

Indra Prasad Paneru Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu Valley Livelihood strategy and occupational vulnerability of street ice cream vendors in Kathmandu-cream vendors of Kathmandu valley, Case study of Jawalakhel, Ratnapark area and Balaju area' explores

Richner, Heinz

346

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL PENNSYLVANIA  

E-Print Network [OSTI]

COMMUNITY AND EDAPHIC ANALYSIS OF MIXED OAK FORESTS IN RIDGE AND VALLEY PROVINCE OF CENTRAL). In this study, mixed oak stands on nine different physiographic units in the Ridge and Valley Province PENNSYLVANIA Gregory J. Nowacki and Marc D. Abrams 1 Abstract: Forty-two relatively undisturbed mixed oak

Abrams, Marc David

347

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPA’s Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA’s Teton Substation near Jackson in Teton County, Wyoming.

348

Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy) Gianluca Filippa a,  

E-Print Network [OSTI]

Centre on Natural Risks in Mountain and Hilly Enviroments) Università degli Studi di Torino, via L. Da. In the Aosta Valley, local biogenic pollution rather than long-range transport may contribute substantially of strong anthropogenic pollution or dust deposition. Due to the fact that inner alpine valleys cover a non

Williams, Mark W.

349

Technical Services Contract Awarded for West Valley Demonstration Project Support Services  

Broader source: Energy.gov [DOE]

Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

350

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge  

E-Print Network [OSTI]

Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

351

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica  

E-Print Network [OSTI]

Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica of katabatic winds largely controls winter (June to August) temperatures, increasing 1°C per 1% increase of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica, J. Geophys. Res., 109, D

Fountain, Andrew G.

352

Basal melting of snow on early Mars: A possible origin of some valley Michael H. Carr  

E-Print Network [OSTI]

that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending in part by basal melting of the south polar cap [Clifford, 1987], this cannot be the only mechanismBasal melting of snow on early Mars: A possible origin of some valley networks Michael H. Carr U. S

Head III, James William

353

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO  

E-Print Network [OSTI]

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

354

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene valley  

E-Print Network [OSTI]

ELSEVIER Geomorphology 14 (1995) 109-121 Hypsometric forcing of stagnant ice margins: Pleistocene December 1994 Abstract Topographic and sedimentological evidence indicates that stagnant ice conditions position for a stagnant ice margin to develop during valley glacier retreat. In the first model, valley

Small, Eric

1995-01-01T23:59:59.000Z

355

Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2  

E-Print Network [OSTI]

TR-326 2008 Seepage Test Loss Results The Main Canal Valley Municipal Utility District No. 2 Eric Leigh Texas AgriLife Extension Associate, Biological and Agricultural Engineering, College Station Guy... Fipps Texas AgriLife Extension Professor and Extension Agricultural Engineer, Biological and Agricultural Engineering, College Station January 21, 2004 SEEPAGE LOSS TEST RESULTS THE MAIN CANAL VALLEY MUNICIPAL UTILITY DISTRICT...

Leigh, E.; Fipps, G.

356

Di-Hadron Correlations with Identified Leading Hadrons in 200 GeV Au+Au and d+Au Collisions at STAR  

E-Print Network [OSTI]

The STAR collaboration presents new two-dimensional di-hadron correlations with leading hadrons in 200 GeV central Au+Au and minimum bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of enhancement for leading non-pions (protons and kaons) are discussed within the context of quark recombination. The correlated yield at large angles, specifically in the \\emph{ridge region}, is significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

STAR Collaboration; N. M. Abdelwahab; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; R. Esha; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamad; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; M. Simko; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

2014-10-13T23:59:59.000Z

357

Quantifying Activated Floodplains on a Lowland Regulated River: Its Application to Floodplain Restoration in the Sacramento Valley  

E-Print Network [OSTI]

by Philip B. Williams, Elizabeth Andrews, Jeff J. Opperman,Valley Philip B. Williams 1 , Elizabeth Andrews 1 , Jeff J.

Williams, Philip B.; Andrews, Elizabeth; Opperman, Jeff J.; Bozkurt, Setenay; Moyle, Peter B.

2009-01-01T23:59:59.000Z

358

Investir au Maroc : opportunits d'investissement  

E-Print Network [OSTI]

Investir au Maroc : opportunités d'investissement Royaume du Maroc MOHAMMED AMRABT Directeur France de valeur 8. Bilan 2011 9. AMDI #12;4 Une image parlante... le Maroc: une plateforme unique pour investir Une image parlante... Europe Maroc Port Tanger Med 14 km #12;5 AGENDA 1. Positionnement 2

359

business.uts.edu.au inistration  

E-Print Network [OSTI]

business models we are creating for the future. We conduct cutting edge research, engage activelybusiness.uts.edu.au UTS: BUSINESS EM BA ExEcutivE M astEr of BusinEss adM inistration 2012 #12;Aspacewherecreativity isencouragedandall ideasarewelcome. UTS Business School will soon be home to Sydney's newest

University of Technology, Sydney

360

swinburne.edu.au DEGREES AND DIPLOMAS  

E-Print Network [OSTI]

.vtac.edu.au to find your fee-type eligibility. #12;3 Choose a career that challenges and rewards The health sciences'll develop specialised skills, as well as a broad understanding of your chosen area of expertise. Our courses kindergarten is designed to add an international experience to your Diploma of Children's Services (Early

Liley, David

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

business.uts.edu.au POSTGRADUATE  

E-Print Network [OSTI]

UTS: BUSINESS business.uts.edu.au POSTGRADUATE COURSES 2013 #12;Aspacewherecreativity is encouraged and all ideasarewelcome. UTS Business School will soon be home to Sydney's newest iconic building. The Dr 11331 postgraduate coursework students 1245 higher degree research students 2797 staff UTS Business

University of Technology, Sydney

362

w.it.uts.edu.au INTERNATIONAL  

E-Print Network [OSTI]

of research into subject design and integration into the curricula. Leaders in Artificial Intelligence\\ 2 COURSE GUIDE 2013 w w w.it.uts.edu.au UTS: INFORM ATION TECHNOLOGY INTERNATIONAL UNDERGRADUATE with strong links to the IT industry our courses are current, relevant and are designed to meet

University of Technology, Sydney

363

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

364

Synthesis, structure, and bonding in K12Au21Sn4. A polar intermetallic compound with dense Au20 and open AuSn4 layers  

SciTech Connect (OSTI)

The new phase K{sub 12}Au{sub 21}Sn{sub 4} has been synthesized by direct reaction of the elements at elevated temperatures. Single crystal X-ray diffraction established its orthorhombic structure, space group Pmmn (No. 59), a = 12.162(2); b = 18.058(4); c = 8.657(2) {angstrom}, V = 1901.3(7) {angstrom}{sup 3}, and Z = 2. The structure consists of infinite puckered sheets of vertex-sharing gold tetrahedra (Au{sub 20}) that are tied together by thin layers of alternating four-bonded-Sn and -Au atoms (AuSn{sub 4}). Remarkably, the dense but electron-poorer blocks of Au tetrahedra coexist with more open and saturated Au-Sn layers, which are fragments of a zinc blende type structure that maximize tetrahedral heteroatomic bonding outside of the network of gold tetrahedra. LMTO band structure calculations reveal metallic properties and a pseudogap at 256 valence electrons per formula unit, only three electrons fewer than in the title compound and at a point at which strong Au-Sn bonding is optimized. Additionally, the tight coordination of the Au framework atoms by K plays an important bonding role: each Au tetrahedra has 10 K neighbors and each K atom has 8-12 Au contacts. The appreciably different role of the p element Sn in this structure from that in the triel members in K{sub 3}Au{sub 5}In and Rb{sub 2}Au{sub 3}Tl appears to arise from its higher electron count which leads to better p-bonding (valence electron concentrations = 1.32 versus 1.22).

Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; and Corbett, John D.

2009-10-29T23:59:59.000Z

365

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

366

Growth of Au Nanowires at the Interface of Air/Water Zhichuan Xu,,  

E-Print Network [OSTI]

produced at the interface of air/water by immersing a Au coated platinum tip into the growth solutionGrowth of Au Nanowires at the Interface of Air/Water Zhichuan Xu,, Chengmin Shen, Shouheng Sun and these Au islands initiated the growth of Au crystals, which further produced Au nanowires via the template

Gao, Hongjun

367

NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

Julianne J Miller, Steve A. Mizell, George Nikolich, Greg McCurdy, and Scott Campbell

2013-01-01T23:59:59.000Z

368

Geologic Results from the Long Valley Exploratory Well  

SciTech Connect (OSTI)

As a deep well in the center of a major Quaternary caldera, the Long Valley Exploratory Well (LVEW) provides a new perspective on the relationship between hydrothermal circulation and a large crustal magma chamber. It also provides an important test of models for the subsurface structure of active continental calderas. Results will impact geothermal exploration, assessment, and management of the Long Valley resource and should be applicable to other igneous-related geothermal systems. Our task is to use the cuttings and core from LVEW to interpret the evolution of the central caldera region, with emphasis on evidence of current hydrothermal conditions and circulation. LVEW has reached a depth of 2313 m, passing through post-caldera extrusives and the intracaldera Bishop Tuff to bottom in the Mt. Morrison roof pendant of the Sierran basement. The base of the section of Quaternary volcanic rocks related to Long Valley Caldera was encountered at 1800 m of which 1178 m is Bishop Tuff. The lithologies sampled generally support the classic view of large intercontinental calderas as piston-cylinder-like structures. In this model, the roof of the huge magma chamber, like an ill-fitting piston, broke and sank 2 km along a ring fracture system that simultaneously and explosively leaked magma as Bishop Tuff. Results from LVEW which support this model are the presence of intact basement at depth at the center of the caldera, the presence of a thick Bishop Tuff section, and textural evidence that the tuff encountered is not near-vent despite its central caldera location. An unexpected observation was the presence of rhyolite intrusions within the tuff with a cumulative apparent thickness in excess of 300 m. Chemical analyses indicate that these are high-silica, high-barium rhyolites. Preliminary {sup 40}Ar/{sup 39}Ar analyses determined an age of 626 {+-} 38 ka (this paper). These observations would indicate that the intrusions belong to the early post-collapse episode of volcanism and are contemporaneous with resurgence of the caldera floor. If they are extensive sills rather than dikes, a possibility being investigated through relogging of core from neighboring wells, they were responsible for resurgence. A {sup 40}Ar/{sup 39}Ar age of 769 {+-} 14 ka from Bishop Tuff at 820 m depth conforms with tuff ages from outside the caldera and indicates an absence of shallow hydrothermal activity (>300 C) persisting after emplacement. Work is proceeding on investigating hydrothermal alteration deeper in the well. This alteration includes sulfide+quartz fracture fillings, calcite+quartz replacement of feldspars, and disseminated pyrite in both the tuff and basement. Electron microprobe analysis of phases are being conducted to determine initial magmatic and subsequent hydrothermal conditions.

McConnell, Vicki S.; Eichelberger, John C.; Keskinen, Mary J.; Layer, Paul W.

1992-03-24T23:59:59.000Z

369

VALDRIFT 1.0: A valley atmospheric dispersion model with deposition  

SciTech Connect (OSTI)

VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

Allwine, K.J.; Bian, X.; Whiteman, C.D.

1995-05-01T23:59:59.000Z

370

Exploration ofr geothermal resources in Dixie Valley, Nevada  

SciTech Connect (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

371

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

372

Tennessee Valley and Eastern Kentucky Wind Working Group  

SciTech Connect (OSTI)

In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

Katie Stokes

2012-05-03T23:59:59.000Z

373

Valley pair qubits in double quantum dots of gapped graphene  

E-Print Network [OSTI]

The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

G. Y. Wu; N. -Y. Lue; L. Chang

2011-07-03T23:59:59.000Z

374

agir au Sud avec le Sud et  

E-Print Network [OSTI]

moyen et long termes. Les zones littorales subissent une pollution accrue et font l'objet d sciences de Ho Chi Minh Ville ont lancé un programme financé par la Fondation Air liquide sur la capacité, du terrain vers le marché » au Kenya, a rassemblé, sous l'égide du ministère des Mines et de l

375

AU Organization Chart | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014EnergyAdvanced Technology Vehicles ManufacturingAU

376

science.uts.edu.au think.change.do  

E-Print Network [OSTI]

science.uts.edu.au think.change.do UTS: Science UndeRgRadUatecoURSeSgUide2014 #12;contactUS Tel: 1300 ASK UTS (1300 275 887) Email: science@uts.edu.au science.uts.edu.au contentS Why Science at UTS? 01 World Class Facilities 02 Careers in Science and Mathematics 04 UTS: Science Courses 05 Bache

University of Technology, Sydney

377

Evaluation of the Au Size Effect: CO Oxidation Catalyzed by Au/TiO2  

SciTech Connect (OSTI)

The size dependence of activity in gold catalysts was examined. Extended X-ray absorption fine structure was used to determine mean particle size, and a flow reactor was used to assess activity of the catalysts for CO oxidation as a function of temperature. A sequence of calcination steps was used to systematically increase the mean Au particle size while repeated measurements of the activity were conducted. In this way the size dependence could be obtained in a single catalyst to avoid differences due to variations in support, synthesis conditions, Au loading, or incidental impurities. Two Au catalysts with different Au loadings were prepared on TiO{sub 2} by deposition precipitation and used for the measurements. For Au particles with mean particle size, d, in the range of 2-10 nm, the measured TOF at 298 K varies as d{sup -1.7{+-}0.2} and d{sup -0.9{+-}0.2} for the 7.2 and 4.5 wt% Au/TiO{sub 2} (P25) catalysts, respectively. Variation between samples emphasizes the conclusion that the activity is sensitive to many factors that may mask the true structure dependence. It is concluded that the observed decrease in activity with increasing particle size beyond 2 nm is controlled by the population of low-coordinate sites, rather than by size-dependent changes in overall electronic structure of the nanoparticle. No evidence was found for maximum activity for small particle sizes, although arguments are offered for why such a maximum was expected but was not observed.

Overbury,S.; Schwartz, V.; Mullins, D.; Yan, W.; Dai, S.

2006-01-01T23:59:59.000Z

378

Enhanced strange baryon production in Au+Au collisions compared to p+p at root s(NN)=200 GeV  

E-Print Network [OSTI]

We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at s(NN)=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down...

Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S. -L; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Chernev, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moura, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. G.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; LeVine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.

2008-01-01T23:59:59.000Z

379

au seisme des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 69 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

380

au 18fdg du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

le Aubertin, Michel 128 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

au developpement des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 96 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

382

au traitement des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 165 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

383

au cas du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

en Systmes IRrigus au Maghreb. Deuxime atelier rgional du projet Sirma, Marrakech, Maroc, 29-31 mai Physics Websites Summary: , Marrakech, Maroc, 29-31 mai 2006....

384

au sud du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

en Systmes IRrigus au Maghreb. Deuxime atelier rgional du projet Sirma, Marrakech, Maroc, 29-31 mai Physics Websites Summary: , Marrakech, Maroc, 29-31 mai 2006....

385

au christianisme des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 73 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

386

au sujet du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

la prolifration, une meilleur Paris-Sud XI, Universit de 34 Le surf au Maroc. Les dterminants d'une ressource politique incertaine Physics Websites Summary: 1 Le...

387

au stockage des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 82 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

388

au respect des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 71 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

389

au confinement du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

le Aubertin, Michel 133 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

390

au suivi des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MYCOPLASMA BOVIS : SUIVI PIDMIOLOGIQUE ET CLINIQUE DANS DES LEVAGES BOVINS LAITIERS AU MAROC Physics Websites Summary: INFECTION ? MYCOPLASMA BOVIS : SUIVI ?PID?MIOLOGIQUE...

391

au point des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 99 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

392

au sein du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

en Systmes IRrigus au Maghreb. Deuxime atelier rgional du projet Sirma, Marrakech, Maroc, 29-31 mai Physics Websites Summary: , Marrakech, Maroc, 29-31 mai 2006....

393

au dfi du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

le Aubertin, Michel 133 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

394

au niveau des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 170 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

395

au moyen des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 183 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

396

apprises au sujet: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

des applications Resolvant des MIPs 1 Introduction Miller, Andrew J. 34 Le surf au Maroc. Les dterminants d'une ressource politique incertaine Physics Websites Summary: 1 Le...

397

au sein des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 163 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

398

au probleme du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

le Aubertin, Michel 130 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

399

au suivi sanitaire: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MYCOPLASMA BOVIS : SUIVI PIDMIOLOGIQUE ET CLINIQUE DANS DES LEVAGES BOVINS LAITIERS AU MAROC Physics Websites Summary: INFECTION ? MYCOPLASMA BOVIS : SUIVI ?PID?MIOLOGIQUE...

400

au diagnostic des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 72 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

au debut du: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

le Aubertin, Michel 128 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

402

au titre des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 142 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

403

au service des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 116 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

404

au voisinage des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 103 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

405

au conditionnement des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XI, Universit de 74 L'intgration des Supply chains Internationales impliques au Maroc : Le rle du contexte culturel. Physics Websites Summary: -organisationnelle occupe une...

406

Priser til forskning ti forskere med AU-tilknytning blev  

E-Print Network [OSTI]

, meget mere ... Af helge hollesen hho@adm.au.dk NÃ¥r unge forskere kommer til Danmark med et skattefrit

407

au risque sismique: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

paramtriques imprcises The evidence theory for a proper synthesis of probabilistic Paris-Sud XI, Universit de 4 Au-del du risque la rsilience ? Geosciences...

408

au ag pd: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and theoretical approaches agreed well, demonstrating the potential use Wang, Lihong 19 NANO EXPRESS Open Access AuPd core-shell nanoparticles with varied hollow Energy Storage,...

409

Graphene decorated with PtAu alloy nanoparticles: facile synthesis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticles: facile synthesis and promising application for formic acid oxidation. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application...

410

Measurements of direct photons in Au+Au collisions with PHENIX  

E-Print Network [OSTI]

The PHENIX experiment has published direct photon yields and elliptic flow coefficients $v_2$ from Au+Au collisions at RHIC energies. These results have sparked much theoretical discussion. The measured yields and flow parameters are difficult to reconcile in current model calculations of thermal radiation based on hydrodynamic time evolution of the collision volume. Our latest analyses which use high statistics data from the 2007 and 2010 runs allow the determination of direct photon yields with finer granularity in centrality and photon momentum and down to $p_T$ as low as 0.4 GeV/$c$. We will summarize the current status and present new results from PHENIX.

Benjamin Bannier

2014-04-11T23:59:59.000Z

411

Transverse energy dependence of J/Psi suppression in Au+Au collisions at RHIC energy  

E-Print Network [OSTI]

Prediction for transverse energy dependence of $J/\\psi$ to Drell-Yan ratio in Au+Au collisions at RHIC energy was obtained in a model which assume 100% absorption of $J/\\psi$ above a threshold density. The threshold density was obtained by fitting the NA50 data on $J/\\psi$ suppression in Pb+Pb collisions at SPS energy. At RHIC energy, hard processes may be important. Prediction of $J/\\psi$ suppression with and without hard processes were obtained. With hard processes included, $J/\\psi$'s are strongly suppressed.

A. K. Chaudhuri

2001-12-18T23:59:59.000Z

412

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

413

CO Oxidation mechanism on CeO2-supported Au nanoclusters  

SciTech Connect (OSTI)

To reveal the richer chemistry of CO oxidation by CeO2 supported Au Nanoclusters(NCs)/Nanoparticles, we design Au13 and Au12 supported on a flat and a stepped-CeO2 model (Au/CeO2) and study various kinds of CO oxidation mechanisms at the Au-CeO2 interface and the Au NC as well.

Kim H. Y.; Henkelman, G.

2013-09-08T23:59:59.000Z

414

CORONARY HEART DISEASE RISK STRATIFICATION IN FULL-TIME MIAMI VALLEY HOSPITAL EMPLOYEES.  

E-Print Network [OSTI]

??Streng, Vicki. M.S. College of Science and Mathematics, Department of Biological Sciences, Wright State University, 2006. Coronary Heart Disease Risk Stratification in Full-time Miami Valley… (more)

Streng, Vicki K.

2006-01-01T23:59:59.000Z

415

Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility  

SciTech Connect (OSTI)

The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

Jackson, J. G.

2010-03-01T23:59:59.000Z

416

The sprawl of the wild : a new infrastructural landscape in Silicon Valley  

E-Print Network [OSTI]

California faces an immediate and dire water shortage. The San Joaquin River Delta water supply system - which provides Silicon Valley with most of its fresh water - periodically draws down water delivery due to drought ...

Flynn, Kathleen M. (Kathleen Michele)

2008-01-01T23:59:59.000Z

417

PROFESSIONAL SERVICE Chair Technical and Economic Committee, CVSALTS Central Valley Salinity Coalition, (2008  

E-Print Network [OSTI]

-2008 Berkeley Laboratory Delegate, White House Conference on Industrial Ecology Department of Energy, Water-Energy, Central Valley Salinity Coalition, CVSALTS SOCIAL/CIVIC Yolo Polo Club Sutter Buttes Polo Club Wine

Quinn, Nigel

418

E-Print Network 3.0 - ancient buried valleys Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marvel at the Step Pyramid of Zozer. Admire the iconic Pyramids... endless Valley of the Kings and Queens before embarking on a cruise of the Nile River. Continue... 's tomb and...

419

Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area  

E-Print Network [OSTI]

i Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area: an Engineering in Water Resource Management ............. 3 CALVIN Model Overview ...................................................... 26 Changes in Delivery and Scarcity Costs .................................. 35 Environmental Water

Lund, Jay R.

420

Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)  

SciTech Connect (OSTI)

This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

Not Available

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

SciTech Connect (OSTI)

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

2013-09-10T23:59:59.000Z

422

Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: Observations  

E-Print Network [OSTI]

During the dry season of 2004–2005 we carried out field measurements of air pollution and meteorology in the Kathmandu Valley, Nepal, a bowl-shaped urban basin in the Himalayan foothills of Nepal. We measured the trace ...

Panday, Arnico K.

423

Microsoft Word - Swan%20Valley%20-%20Palisades%20Communication...  

Broader source: Energy.gov (indexed) [DOE]

Swan Valley - Palisades Communication Upgrade Budget Information: Work Order 00253530 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

424

Control on (234 U) in lake water: A study in the Dry Valleys  

E-Print Network [OSTI]

.V. All rights reserved. Keywords: Uranium isotopes; Dry Valleys; Antarctica; Weathering; Lake chemistry 1 isotopes. The supply of 234 U is therefore limited by decay of 238 U, suggesting that the two uranium

Henderson, Gideon

425

A Transient Model of the Geothermal System of the Long Valley...  

Open Energy Info (EERE)

Transient Model of the Geothermal System of the Long Valley Caldera, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Transient...

426

Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

Chelsea Lancelle

427

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

SciTech Connect (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

428

E-Print Network 3.0 - au system temperature Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copyright 2008 American Scientific Publishers Summary: conditions. The effect of the growth temperature on the formation of SiAu nanostructures has been... between Au...

429

E-Print Network 3.0 - au radon gaz Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

est gal au rapport des intensits du tube de radon... place au milieu d'un tube Fis. 2. Une enveloppe ... Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

430

E-Print Network 3.0 - au xvie sicle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Au XVIe sicle, Gesner... tourn vers la petite mtallurgie41. La distillation et la sublimation pratiques Strasbourg au XVIe... mentionne galement un, mais plac dans...

431

E-Print Network 3.0 - accumulateurs au lithium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

au lithium Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulateurs au lithium Page: << < 1 2 3 4 5 > >> 1 ACCUMULATEUR LECTRIQUE...

432

E-Print Network 3.0 - au flux diffus Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chauffage (Fig. l), le flux... lumineux diffus diminue au lieu d'augmenter. Temperature (OC) FIG. 1. -Etude du flux lumineux diffus par... ternaire perpendiculaire au...

433

E-Print Network 3.0 - au milieu larvaire Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: M. Jean Summary: travaux en cours sur l'cologie et la gestion du roseau commun (Phragmites australis) au Qubec No 21... (Phragmites australis) envahisseur au Qubec....

434

Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee  

SciTech Connect (OSTI)

This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

Birdwell, Kevin R [ORNL

2011-05-01T23:59:59.000Z

435

Study of the moisture-fertility requirements of cotton in the Brazos River Valley, 1957  

E-Print Network [OSTI]

LIBRARY II a III COLLEI:. e& 7EXAs STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAZOS RIVER VALLEY - 1957 A Thesis by CARROLL VIAYNE KEESE Submitted to the Graduate School of the Agricultural and Mechanical College... of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1958 Major Sub]ect: Agricultural Engineering STUDY OF THE MOISTURE-FERTILITY REQUIREMENTS OF COTTON IN THE BRAVOS RIVER VALLEY - 1957 A Thesis by CARROLL...

Keese, Carroll Wayne

1958-01-01T23:59:59.000Z

436

Analysis of consumer lending problems of the banks in the central Texas Brazos Valley area  

E-Print Network [OSTI]

to significant new profits for RVA bankers. A oonsuner loan of $1, 000 at seven poroont interest, repaid in twelve nonthly inetallnonto, aotuallr earns interest of 12. 9 yeroont for the lender. Therefore& surplus lendable funds now held hF BVA 1 banks... eonsuaor loanso %hat nininun siss (dollar anount) oonsunor loan Sraaos Vallqf Area bankers oonsider to bo profitable. $. Tho nethods and prooeduros used hf Breaos Valley Area bankers in asking oonsunor loansi 6. Vhat steps Sraaos Valley Area banks oan...

Old, William Donald

1963-01-01T23:59:59.000Z

437

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network [OSTI]

ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Agricultural Economics ECONOMIES OF SIZE IN MUNICIPAL WATER TREATMENT TECHNOLOGIES: TEXAS LOWER RIO GRANDE VALLEY A Thesis by CHRISTOPHER NEIL BOYER Submitted to the Office of Graduate Studies...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

438

Greenhouse space allocation in the ornamental foliage industry in the Rio Grande Valley of Texas  

E-Print Network [OSTI]

GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1986 Major Subject: Agricultural Economics GREENHOUSE SPACE ALLOCATION IN THE ORNAMENTAL FOLIAGE INDUSTRY IN THE RIO GRANDE VALLEY OF TEXAS A Thesis by BRENDA DEA LANG KRAFKA Approved as to style and content by...

Krafka, Brenda Dea Lang

1986-01-01T23:59:59.000Z

439

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

SciTech Connect (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

440

The geology of the basal sandstone-mudstone unit of the Blackhawk Landslide, Lucerne Valley, California  

E-Print Network [OSTI]

THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHAWK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology THE GEOLOGY OF THE BASAL SANDSTONE-MUDSTONE UNIT OF THE BLACKHANK LANDSLIDE, LUCERNE VALLEY, CALIFORNIA A Thesis by JERRY LINN KUZIOR Approved as to style and content by: Brann Jo...

Kuzior, Jerry Linn

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Full jet reconstruction in 200 GeV p+p, d+Au and Au+Au collisions by STAR  

E-Print Network [OSTI]

Measurements of inclusive hadron suppression and di-hadron azimuthal correlations have provided important insights into jet quenching in hot QCD matter. However, they do not provide access to the energy of the hard scattering and are limited in their sensitivity since they can be affected by biases toward hard fragmentation and small energy loss. Full jet reconstruction in heavy-ion collisions enables a complete study of the modification of jet structure due to energy loss, but is challenging due to the high multiplicity environment. Study of jet production and properties in d+Au and p+p collisions provides important baseline measurement for jet studies in heavy-ion collisions. We report measurements of fully reconstructed jets in p+p, d+Au and Au+Au collisions at $\\sqrt{s_\\mathrm{NN}} = 200 \\mathrm{GeV}$ from the STAR experiment at RHIC. Measurement of initial state nuclear effects in d+Au collisions utilizing di-jet azimuthal correlations is presented together with similar measurement in p+p collisions. Inclusive jet $\\pt$ spectra and fragmentation functions in p+p and central Au+Au collisions are reported, with subsequent studies of jet nuclear modification factor, jet energy profile and modifications in the fragmentation function due to jet quenching.

Jan Kapitan; for the STAR Collaboration

2009-09-16T23:59:59.000Z

442

CO oxidation on h-BN supported Au atom  

SciTech Connect (OSTI)

The mechanism of CO oxidation by O{sub 2} on Au atoms supported on the pristine and defected hexagonal boron nitride (h-BN) surface has been studied theoretically using density functional theory. It is found that O{sub 2} binds stronger than CO on an Au atom supported on the defect free h-BN surface and h-BN surface with nitrogen vacancy (V{sub N}-h-BN), but weaker than CO on a free Au atom or Au trapped by a boron vacancy (V{sub B}-h-BN). The excess of the positive or negative charge on Au can considerably change its catalytic properties and enhance activation of the adsorbed O{sub 2}. Coadsorption of CO and O{sub 2} on Au, Au/V{sub N}-h-BN, and Au/V{sub B}-h-BN results in additional charge transfer to O{sub 2}. Various pathways of the CO oxidation reaction by molecular oxygen are studied. We found two different pathways for CO oxidation: a two-step pathway where two CO{sub 2} molecules are formed independently, and a self-promotion pathway where oxidation of the first CO molecule is promoted by the second CO molecule. Interaction of Au with the defect-free and defected h-BN surface considerably affects the CO oxidation reaction pathways and barriers. Therefore, Au supported on the h-BN surface (pristine or defected) cannot be considered as pseudo-free atom and support effects have to be taken into account, even when the interaction of Au with the support is weak.

Gao Min [Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Lyalin, Andrey; Taketsugu, Tetsuya [Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Center for Strategic Utilization of Elements, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

2013-01-21T23:59:59.000Z

443

Graphene quantum dots for valley-based quantum computing: A feasibility study  

E-Print Network [OSTI]

At the center of quantum computing1 realization is the physical implementation of qubits - two-state quantum information units. The rise of graphene2 has opened a new door to the implementation. Because graphene electrons simulate two-dimensional relativistic particles with two degenerate and independent energy valleys,3 a novel degree of freedom (d.o.f.), namely, the valley state of an electron, emerges as a new information carrier.4 Here, we expand the Loss-DiVincenzo quantum dot (QD) approach in electron spin qubits,5,6 and investigate the feasibility of double QD (DQD) structures in gapful graphene as "valley qubits", with the logic 0 / 1 states represented by the "valley" singlet / triplet pair. This generalization is characterized by 1) valley relaxation time ~ O(ms), and 2) electric qubit manipulation on the time scale ~ ns, based on the 1st-order "relativistic effect" unique in graphene. A potential for valley-based quantum computing is present.

G. Y. Wu; N. -Y. Lue; L. Chang

2011-04-21T23:59:59.000Z

444

Jet quenching and neutral pion production in Au+Au collisions at RHIC  

E-Print Network [OSTI]

In the jet quenching model, we have analysed the PHENIX data on nuclear modification factor of $\\pi^0$, in Au+Au collisions at $\\sqrt{s}$=200 GeV, and extracted the initial gluon density of the medium produced. In jet quenching, partons lose energy in the medium, depending on the medium density as well as on the in-medium path length. Systematic analysis indicate that in most central (0-10% centrality) collisions, medium density is very large $dN_g/dy \\sim$ 2150. Medium density decreases exponentially as the collision centrality decreases and in very peripheral (70-92% centrality) collisions, $dN_g/dy \\sim$ 3. Initial energy density of the medium also decreases smoothly from $\\epsilon_0 \\sim$ 20 $GeV/fm^3$ in most central collisions to $\\epsilon_0 \\sim$ 3 $GeV/fm^3$ in most peripheral collisions. Very large $dN_g/dy$ or $\\epsilon_0$ indicate very dense matter formation in central Au+Au collisions.

A. K. Chaudhuri

2005-06-01T23:59:59.000Z

445

Microstructural evolution of eutectic Au-Sn solder joints  

SciTech Connect (OSTI)

Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

Song, Ho Geon

2002-05-31T23:59:59.000Z

446

Asservissement par PID Application du PWM au pont en H  

E-Print Network [OSTI]

Plan Asservissement par PID PWM Ponts en H Application du PWM au pont en H Bibliographie Asservissement par PID, PWM et Ponts en H Siwar, Cédric, Samuel Télécom Paristech 4 mars 2011 Siwar, Cédric, Samuel ROSE 1 / 33 4 mars 2011 #12;Plan Asservissement par PID PWM Ponts en H Application du PWM au pont

Tardieu, Samuel

447

appliques au test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appliques au test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Le Processus Unifi appliqu au projet...

448

business.uts.edu.au THINK.CHANGE.DO  

E-Print Network [OSTI]

business.uts.edu.au THINK.CHANGE.DO UTS: BUSINESS UNDERGRADUATE COURSES GUIDE 2014 #12;Why UTS Business School? 1 Careers in Business and Management 4 COURSES Bachelor of Business 7 Bachelor of Business 33 CONTACT US Tel: 1300 ASK UTS (1300 275 887) Email: business@uts.edu.au business

University of Technology, Sydney

449

[SiAu4]: Aurosilane. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung InventorNothing About ItZihua[SiAu4]:

450

New fission valley for /sup 258/Fm and nuclei beyond  

SciTech Connect (OSTI)

Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

Moeller, P.; Nix, J.R.; Swiatecki, W.J.

1986-01-01T23:59:59.000Z

451

Gravity and fault structures, Long Valley caldera, California  

SciTech Connect (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

452

Identified particle transverse momentum distributions from AU + AU collisions at 62.4 GeV per nucleon pair  

E-Print Network [OSTI]

Transverse momentum (PT) distributions for pions, kaons, protons and antiprotons have been measured near mid-rapidity for Au+Au collisions at sNN = 62.4 GeV using the PHOBOS detector at the Relativistic Heavy-Ion Collider ...

Henderson, Conor, 1977-

2005-01-01T23:59:59.000Z

453

Neutral pion production in Au plus Au collisions at root s(NN)=200 GeV  

E-Print Network [OSTI]

The results of midrapidity (0 < y < 0.8) neutral pion spectra over an extended transverse momentum range (1 < p(T) < 12 GeV/c) in root s(NN) = 200 GeV Au + Au collisions, measured by the STAR experiment, are presented. The neutral pions...

Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; de la Barca Sanchez, M. Calderon; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L. C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; De Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; De Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.

2009-01-01T23:59:59.000Z

454

{phi} meson production in Au + Au and p + p collisions at {radical}s{sub NN}=200 GeV  

SciTech Connect (OSTI)

We report the STAR measurement of {psi} meson production in Au + Au and p + p collisions at {radical}s{sub NN} = 200 GeV. Using the event mixing technique, the {psi} spectra and yields are obtained at midrapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the {psi} transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that {psi} production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions (). The systematics of versus centrality and the constant {psi}/K{sup -} ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for {psi} production.

Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Hughes, E.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaplan, M.; Keane, D.; Khodyrev; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Kravstov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; et al.

2004-06-01T23:59:59.000Z

455

Proton-Lambda correlations in central Au+Au collisions at root s(NN)=200 GeV  

E-Print Network [OSTI]

We report on p-Lambda, p-(Lambda) over bar, (p) over bar-Lambda, and (p) over bar-(Lambda) over bar correlation functions constructed in central Au-Au collisions at root s(NN) = 200 GeV by the STAR experiment at RHIC. The proton and lambda source...

Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Berger, J.; Bezverkhny, B. I.; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bhatia, V. S.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Blyth, S. -L; Bonner, B. E.; Botje, M.; Boucham, A.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, H. A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fornazier, K. S. F.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gos, H.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gupta, N.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Jedynak, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kutuev, R. Kh; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lehocka, S.; LeVine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Q. J.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahajan, S.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J. N.; Matis, H. S.; Matulenko, Yu A.; McClain, C. J.; McShane, T. S.; Meissner, F.; Melnick, Yu; Meschanin, A.; Miller, M. L.; Minaev, N. G.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nayak, S. K.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nikitin, V. A.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, V. A.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J. G.; Reinnarth, J.; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Savin, I.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, W. Q.; Shestermanov, K. E.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Surrow, B.; Swanger, M.; Symons, T. J. M.; de Toledo, A. Szanto; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.

2006-01-01T23:59:59.000Z

456

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

457

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

458

Lead (Pb) adsorption study by batch equilibrium tests with unconsolidated material: Eldorado Paulista city (Ribeira Valley - SP).  

E-Print Network [OSTI]

??The known history of contamination by galena (PbS) mining liabilities from Ribeira Valley region (SP) provides importance to the Pb adsorption study in order to… (more)

Bianca de Carvalho Munhoz Silva

2013-01-01T23:59:59.000Z

459

NANO EXPRESS Open Access Au/Pd core-shell nanoparticles with varied hollow  

E-Print Network [OSTI]

NANO EXPRESS Open Access Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell

Liu, Fuqiang

460

La prise en compte des populations locales dans la mise en place d'aires protges : tudes de cas au Guatemala et au Maroc  

E-Print Network [OSTI]

au Guatemala et au Maroc Par Vincens Côté essai présenté au Département de biologie pour l la gestion de deux aires protégées, l'une au Guatemala et l'autre au Maroc, et tente d'en dégager des scientifiques ont été utilisés pour déterminer la nature de la protection. Au Maroc, les premières lois sur les

Vellend, Mark

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Discovery of a large dust disk around the nearby star AU Microscopium  

E-Print Network [OSTI]

We present the discovery of a circumstellar dust disk surrounding AU Microscopium (AU Mic, GJ 803, HD 197481). This young M star at 10 parsec has the same age and origin as beta Pictoris, another nearby star surrounded by a dust disk. The AU Mic disk is detected between 50 AU and 210 AU radius, a region where dust lifetimes exceed the present stellar age. Thus, AU Mic is the nearest star where we directly observe the solid material required for planet formation. Since 85% of stars are M-type, the AU Mic disk provides new clues on how the majority of planetary systems might form and evolve.

Paul Kalas; Michael C. Liu; Brenda C. Matthews

2004-03-05T23:59:59.000Z

462

Predictions for {radical} (s) =200A; GeV Au+Au collisions from relativistic hydrodynamics  

SciTech Connect (OSTI)

The relativistic hydrodynamical model HYLANDER-C is used to give estimates for single inclusive particle momentum spectra in {radical} (s) =200 GeV/nucleon Au+Au collisions that will be investigated experimentally in the near future. The predictions are based on initial conditions that the initial fireball has a longitudinal extension of 1.6 fm and an initial energy density of 30.8 GeV/fm{sup 3} as obtained from a cascade model. For the collision energy considered here, different stopping scenarios are explored for the first time. Our calculations give particle yields of the order of 10thinsp000 to 20thinsp000 charged particles per event. {copyright} {ital 1999} {ital The American Physical Society}

Schlei, B.R. [Physics Division, P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Physics Division, P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schlei, B.R.; Strottman, D. [Theoretical Division, DDT-DO, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, DDT-DO, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1999-01-01T23:59:59.000Z

463

Conical flow due to partonic jets in central Au+Au collisions  

E-Print Network [OSTI]

In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-$p_T$ hadrons. The process can generate shock waves. We study the distortion of Mach shock waves due to jet quenching in central Au+Au collisions and its effect on particle production. Finite fluid velocity and inhomogeneity of the medium can distort the Mach shock front significantly such that the inside shock front disappear and the outside shock front is opened up. We also show that the STAR data on azimuthal distribution of background subtracted secondaries, associated with high $p_T$ trigger, are reasonably well explained by the excess pions produced due to partonic energy loss.

A. K. Chaudhuri

2006-11-06T23:59:59.000Z

464

Elliptic flow: transition from out-of-plane to in-plane emissionin Au + Au collisions  

SciTech Connect (OSTI)

We have measured the proton elliptic flow excitation function for the Au+Au system spanning the beam energy range (2-8)A GeV. The excitation function shows a transition from negative to positive elliptic flow at a beam energy, Etr {approx} 4A GeV. Detailed comparisons with calculations from a relativistic Boltzmann equation are presented. The comparisons suggest a softening of the nuclear equation of state from a stiff form (K {approx} 380 MeV) at low beam energies (Ebeam < 2A GeV) to a softer form (K {approx} 210 MeV) at higher energies ( Ebeam < 4A GeV) where the calculated baryon density rho {approx} 4 rho 0.

Pinkenburg, C.; Ajitanand, N.N.; Alexander, J.M.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.L.; Chung, P.; Cole, B.; Crowe, K.; Das, A.C.; Draper, J.E.; Elmaani, A.; Gilkes, M.L.; Gushue, S.; Heffner, M.; Hirsch, A.S.; Hjort, E.L.; Huo,L.; Justice, M.; Kaplan, M.; Keane, D.; Kintner, J.C.; Klay, J.; Krofcheck, D.; Lacey, R.A.; Lauret, J.; Law, C.; Lisa, M.A.; Liu, H.; Liu, Y.M.; McGrath, R.; Milosevich, Z.; Odyniec, G.; Olson, D.L.; Panitkin, S.Y.; Porile, N.T.; Rai, G.; Ritter, H.G.; Romero, J.L.; Scharenberg, R.P.; Schroeder, L.; Srivastava, B.; Stone, N.T.B.; Symons,T.J.M.; Whitfield, J.; Wienold, T.; Witt, R.; Wood, L.; Zhang, W.N.; E895Collaboration; Danielewicz, P.; Gossiaux, P.B.

1999-07-31T23:59:59.000Z

465

Directed Flow of $?$-Hyperons in 2-6 AGeV Au+Au Collisions  

E-Print Network [OSTI]

Directed flow measurements for $\\Lambda$-hyperons are presented and compared to those for protons produced in the same Au+Au collisions (2, 4, and 6 AGeV; $b < 5 - 6$ fm). The measurements indicate that $\\Lambda$-hyperons flow consistently in the same direction and with smaller magnitudes than those of protons. Such a strong positive flow [for $\\Lambda$s] has been predicted in calculations which include the influence of the $\\Lambda$-nucleon potential. The experimental flow ratio $\\Lambda$/p is in qualitative agreement with expectations ($\\sim 2/3$) from the quark counting rule at 2 AGeV but is found to decrease with increasing beam energy.

P. Chung; N. N. Ajitanand; J. M. Alexander; M. Anderson; D. Best; F. P. Brady; T. Case; W. Caskey; D. Cebra; J. L. Chance; B. Cole; K. Crowe; A. Das; J. E. Draper; M. L. Gilkes; S. Gushue; M. Heffner; A. S. Hirsch; E. L. Hjort; L. Huo; M. Justice; M. Kaplan; D. Keane; J. C. Kintner; J. Klay; D. Krofcheck; R. A. Lacey; J. Lauret; M. A. Lisa; H. Liu; Y. M. Liu; R. McGrath; Z. Milosevich; G. Odyniec; D. L. Olson; S. Y. Panitkin; C. Pinkenburg; N. T. Porile; G. Rai; H. G. Ritter; J. L. Romero; R. Scharenberg; L. Schroeder; B. Srivastava; N. T. BStone; T. J. M. Symons; T. Wienold; R. Witt J. Whitfield; L. Wood; W. N. Zhang

2001-01-06T23:59:59.000Z

466

The 198Au beta-half-life in the metal Au revisited  

E-Print Network [OSTI]

The half-life of the beta-decay of 198Au has been measured for room temperature and 12 K. The resulting values of T(RT) = 2.684 +- 0.004 d and T(12 K) = 2.687 +- 0.005 d agree well within statistical uncertainties. An evidence for a temperature dependence of the half-life was not observed.

K. Fortak; R. Kunz; L. Gialanella; H. -W. Becker; J. Meijer; F. Strieder

2010-09-10T23:59:59.000Z

467

Transverse-momentum spectra in Au plus Au and d plus Au collisions at root s(NN)=200 GeV and the pseudorapidity dependence of high-p(T) suppression  

E-Print Network [OSTI]

We present spectra of charged hadrons from Au+Au and d+Au collisions at roots(NN)=200 GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from p+(p) ...

Ito, H.; Murray, Michael J.; Neumann, B.; Norris, J.; Sanders, Stephen J.

2003-08-01T23:59:59.000Z

468

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process that engaged the members of  

E-Print Network [OSTI]

Dr. Brian White is the Superintendent of Schools for the Chartiers Valley School District. Shortly after beginning at Chartiers Valley in August 2010, Dr. White implemented a strategic planning process, Dr. White held several positions at the Beaver Area School District. He began as an assistant

Sibille, Etienne

469

Rapidity dependence of antiproton-to-proton ratios in Au+Au collisions at root s(NN)=130 GeV  

E-Print Network [OSTI]

Measurements, with the BRAHMS detector, of the antiproton-to-proton ratio at midrapidities and forward rapidities, are presented for Au + Au reactions at roots(NN) = 130 GeV, and for three different collision centralities. ...

Sanders, Stephen J.

2001-09-10T23:59:59.000Z

470

Jet-Hadron Correlations in sqrt{s_{NN}} = 200 GeV p+p and Central Au+Au Collisions  

E-Print Network [OSTI]

Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at $\\sqrt{s_{\\text{NN}}} = 200 \\text{GeV}$ in STAR are presented. The trigger jet population in Au+Au collisions is biased towards jets that have not interacted with the medium, allowing easier matching of jet energies between Au+Au and p+p collisions while enhancing medium effects on the recoil jet. The associated hadron yield of the recoil jet is significantly suppressed at high transverse momentum ($p_{\\text{T}}^{\\text{assoc}}$) and enhanced at low $p_{\\text{T}}^{\\text{assoc}}$ in 0-20% central Au+Au collisions compared to p+p collisions, which is indicative of medium-induced parton energy loss in ultrarelativistic heavy-ion collisions.

STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

2014-05-12T23:59:59.000Z

471

Investigation of high temperature gaseous species by Knudsen cell mass spectrometry above the condensed systems Au-Ge-Cu and Au-Si / by Joseph Edward Kingcade  

E-Print Network [OSTI]

0), in kJ mol for the Gaseous Molecules AuSi, Ie 24 27 3l 34 TABLE 12. 13. 14. 15. 1 6. 17a 18. 19. 20. 21. 22. 23. Au2Si, AuSi2, CuGe and CuGe2 . . . . . . . . . . . . . . . Summary of Enthalpy Changes: for the Molecule Au..., (HT-H ), in kJ mol for the Gaseous T o Molecules Au2Ge2, AuGe3 and AuGe4 MOLECULE AND STRUCTURE 298 1200 1400 1600 TEMPERATURE ( K) 1800 2000 2200 hu2 Ge2 (Linear) Au2 Gep (Square Planar) FEF HCF FEF HCF 297. 7 18. 69 317. 1 18. 83...

Kingcade, Joseph Edward

2012-06-07T23:59:59.000Z

472

Front-end planning and evaluation for West Valley Demonstration Project completion  

SciTech Connect (OSTI)

In December 1988, the U.S. Department of Energy and the New York State Energy Research and Development Authority announced their intent to prepare a joint environmental impact statement (EIS) to evaluate alternatives for West Valley Demonstration Project (WVDP) completion and closure and/or long-term maintenance of the Western New York Nuclear Service Center (WNYNSC) in West Valley, New York. Planning was initiated for the eventual closure of the site, even though vitrification of the high-level waste (HLW) stored at the site was, at that time, a number of years in the future. West Valley Nuclear Services Company (WVNSC), the WVDP management and operations contractor, and their architect/engineer, Raytheon Nuclear Incorporated, were authorized to develop characterization studies and engineering evaluations of closure alternatives for the various facilities of the WNYNSC. This paper presents a summary of the status of that effort, including the resolution of unique problems.

Gramling, J.; Sharma, V. [West Valley Nuclear Services Company, West Valley, NY (United States); Marschke, S. [Raytheon Nuclear, Inc., New York, NY (United States)

1995-12-31T23:59:59.000Z

473

A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada  

SciTech Connect (OSTI)

Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

2002-09-01T23:59:59.000Z

474

Soil Biology & Biochemistry 38 (2006) 30653082 Soil carbon turnover in the McMurdo Dry Valleys, Antarctica  

E-Print Network [OSTI]

Soil Biology & Biochemistry 38 (2006) 3065­3082 Soil carbon turnover in the McMurdo Dry Valleys Valleys are among the most inhospitable soil environments on Earth due to climate and substrate because likely sources of organic matter are 102 ­104 yrs old and in situ soil respiration is typically

Wall, Diana

2006-01-01T23:59:59.000Z

475

A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation  

SciTech Connect (OSTI)

A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

2005-06-30T23:59:59.000Z

476

ATOC/CHEM 5151 Fall 2014 The San Joaquin Valley, acid rain, and a simple "box" model  

E-Print Network [OSTI]

ATOC/CHEM 5151 ­ Fall 2014 Problem 26 The San Joaquin Valley, acid rain, and a simple "box" model. In this problem, use a simple box model to estimate the formation of so-called "acid fogs" in this valley. Assume the steady-state SO2 concentration (in units of molecules cm-3 ). (2) Sulfuric acid is produced from

Toohey, Darin W.

477

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

SciTech Connect (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

478

Don Quichotte au fminin : Charlotte Lennox, The Female Marianne CAMUS  

E-Print Network [OSTI]

Don Quichotte au féminin : Charlotte Lennox, The Female Quixote Marianne CAMUS Professeur DIJON, Marianne.Camus [at]u-bourgogne.fr Cette lecture de The Female Quixote (1752) de Charlotte Lennox

Paris-Sud XI, Université de

479

au bois dans: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et l Paris-Sud XI, Universit de 56 Communiqu de presse 08 aot 2013 Dcouverte au Maroc d'une tortue marine gante dans les dpts Biology and Medicine Websites Summary:...

480

au 18fdg dans: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

s Paris-Sud XI, Universit de 37 Communiqu de presse 08 aot 2013 Dcouverte au Maroc d'une tortue marine gante dans les dpts Biology and Medicine Websites Summary:...

Note: This page contains sample records for the topic "valley au thority" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

au travail dans: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bjar-Alonso, Isabel 2000-01-01 125 Communiqu de presse 08 aot 2013 Dcouverte au Maroc d'une tortue marine gante dans les dpts Biology and Medicine Websites Summary:...

482

au cours dune: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vapeurs, ou per ascensum, ncessite l Paris-Sud XI, Universit de 42 Le surf au Maroc. Les dterminants d'une ressource politique incertaine Physics Websites Summary: 1 Le...

483

au point sur: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agadir : Editions Sud Contact. pp.307-338. (Mobilits et dynamiques spatiales au Maroc) Physics Websites Summary: gestion de la migration entre l'Afrique et l'Europe et la...

484

au fdg dans: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

s Paris-Sud XI, Universit de 36 Communiqu de presse 08 aot 2013 Dcouverte au Maroc d'une tortue marine gante dans les dpts Biology and Medicine Websites Summary:...

485

au test des: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

au test des First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 INSTITUTNATIONALDESSCIENCESAPPLIQUESDELYON...

486

application au centre: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de l'innovation, MINES-ParisTech-ArminesCNRS UMR 7185 Cerpe, associ au Centre Max Weber, Lyon Physics Websites Summary: (CSI, MINES-ParisTech) et Pierre VIDAL-NAQUET (Cerpe,...

487

Life on Earth. I. 1 AU from the Sun  

E-Print Network [OSTI]

Life on Earth. I. #12;Earth 1 AU from the Sun Equilibrium temperature: 247 K (-26C) Actual mean through dynamo action (much like the Sun). Magnetic Fields divert charged particles. #12;The Crust Low

Walter, Frederick M.

488

au nanoparticles prepared: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

washed with EtOH to remove excess surfactant 4 x 250 ml capacity Anderson, Scott L. 17 NANO EXPRESS Open Access AuPd core-shell nanoparticles with varied hollow Energy Storage,...

489

Catalytic studies of supported Pd-Au catalysts  

E-Print Network [OSTI]

reaction conditions is the ultimate goal. This thesis is mainly focused on the application of Pd-Au supported catalysts for vinyl acetate synthesis and CO oxidation reactions using highsurface area catalysts. We have attempted to improve the conventional Pd...

Boopalachandran, Praveenkumar

2006-08-16T23:59:59.000Z

490

Au-free Ohmic Contacts to Gallium Nitride and Graphene  

E-Print Network [OSTI]

This work deals with Au-free contact metallization schemes for gallium nitride (GaN) and graphene semiconductors. Graphene and gallium nitride are promising materials that can potentially be integrated together in the near future for high frequency...

Ravikirthi, Pradhyumna

2014-08-10T23:59:59.000Z

491

Cotton hedging strategies using prices for Texas High Plains and Rio Grande Valley areas  

E-Print Network [OSTI]

COTTON REDGINC STRATEGIES USING PRICES FO=". TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis by JOHN VERNON HOWARD, III Subm tted to the Graduate College of Texas A&M Universi'ty in partial fulfiiiment cf the requirement for the de...-ree o MASTER OP SC'ENCE August 1979 Major Subject: Agricultural Economics COTTON HEDGING STRATEGIES USING PRICES FOR TEXAS HIGH PLAINS AND RIO GRANDE VALLEY AREAS A Thesis JOHN VERNON HOWARD, III Approved as to style and content by: (C irman...

Howard, John V

1979-01-01T23:59:59.000Z

492

Cotton Variety Tests in the El Paso Valley, 1943-48.  

E-Print Network [OSTI]

. COTTON VARIETY TEST IN THE EL PAS0 VALLEY, 1943-48 11 APPENDIX Table 5. Source of seed used in cotton variety tests1 Acala 4-42 (Calif). ...... .U. S. Cotton Field Station, Shafter, California Acala 11. .............. .U. S. Cotton Field Station...B* 719 LIBRARY A. & M. COLLEGE OF TE,,; Cotton Variety Tests in the El Paso Valley, 1943-48 P. J. LYERLY, L. S. STITH, G. F. HENRY and D. T. KILLOUGH :Blank Page in Original Bulletin] BULLETIN 719 MARCH 1950 Cotton Variety Tests in the El...

Killough, D.T.; Henry, G.F.; Stith, L.S.; Lyerly, P. J. (Paul J.)

1950-01-01T23:59:59.000Z

493

Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics  

SciTech Connect (OSTI)

Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

Layton, D. (ed.)

1980-07-01T23:59:59.000Z

494

Rseaux marchands et comptabilit au XVIIIe Cheryl S. Mc  

E-Print Network [OSTI]

Réseaux marchands et comptabilité au XVIIIe siècle Cheryl S. Mc Watters, University of Alberta intéressante de franchir les clivages disciplinaires. Nous nous intéressons en priorité aux réseaux marchands processus de croissance du capitalisme marchand au XVIIIe siècle. Dans ces travaux, les réseaux constituent

Paris-Sud XI, Université de

495

Le Thorium Molten Salt Reactor : Au del du MSBR  

E-Print Network [OSTI]

Le Thorium Molten Salt Reactor : Au delà du MSBR L. Mathieu, D. Heuer, A. Billebaud, R. Brissot, C réflexion est menée afin de trou- ver des solutions et ainsi d'aboutir au concept du Thorium Mol- ten Salt optimale du minerai d'uranium ou de thorium, une conception résistante à la prolifération, une meilleur

Paris-Sud XI, Université de

496

Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au-Ag)-Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes  

SciTech Connect (OSTI)

The synthesis of double shell (Au-Ag)-Au nanoparticles is accomplished through suppression of the galvanic replacement reaction caused by an electron transfer phenomenon. The resulting nanoparticles are monodisperse with a thin and uniform second Au shell. These particles are ultimately expected to lead to sensitive probes for biomolecular sensing and diagnostics.

Dao Thi Ngoc Anh; Singh, Prerna; Shankar, Cheshta; Mott, Derrick; Maenosono, Shinya [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

2011-08-15T23:59:59.000Z

497

Electric Fields and Chiral Magnetic Effect in Cu + Au Collisions  

E-Print Network [OSTI]

The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator $\\gamma_{q_1q_2}=$ (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if $\\gamma_{q_1q_2}$ is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie $\\gamma_{q_1q_2}$.

Wei-Tian Deng; Xu-Guang Huang

2015-02-16T23:59:59.000Z

498

Centrality dependence of high $p_T$ suppression in Au+Au collisions suggest quark matter formation  

E-Print Network [OSTI]

In a pQCD-based model, we have analyzed the STAR data on the high $p_T$ suppression of charged hadrons, in Au+Au collisions at $\\sqrt{s}$=200 GeV. In the jet quenching or the energy loss picture, $p_T$ spectra of charged hadrons as well as the $p_T$ dependence of nuclear modification factor, in all the centrality ranges, are well explained, with nearly a constant relative energy loss, $\\Delta E/E=0.56\\pm 0.03$. Centrality independence of relative energy loss indicate that the matter produced in central and in peripheral collisions are different, otherwise relative energy loss would have shown strong centrality dependence. Qualitatively, centrality independence of relative energy loss can be understood, if in central Au+Au collisions deconfined matter is produced and the matter remain confined in peripheral collisions.

A. K. Chaudhuri

2004-05-12T23:59:59.000Z

499

Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \\sqrt{s_{NN}} = 200 GeV  

E-Print Network [OSTI]

We report new STAR measurements of mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$, $\\Xi^{-}$, $\\bar{\\Xi}^{+}$, $\\Omega^{-}$, $\\bar{\\Omega}^{+}$ particles in Cu+Cu collisions at \\sNN{200}, and mid-rapidity yields for the $\\Lambda$, $\\bar{\\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \\sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.

STAR Collaboration; H. Agakishiev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; C. D. Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; D. R. Beavis; N. K. Behera; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; S. G. Brovko; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; L. G. Efimov; M. Elnimr; J. Engelage; G. Eppley; M. Estienne; L. Eun; O. Evdokimov; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; A. Geromitsos; F. Geurts; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; W. Guryn; B. Haag; O. Hajkova; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; P. G. Jones; C. Jena; F. Jin; J. Joseph; E. G. Judd; S. Kabana; K. Kang; J. Kapitan; K. Kauder; H. Ke; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; A. G. Knospe; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; M. Naglis; B. K. Nandi; T. K. Nayak; P. K. Netrakanti; J. M. Nelson; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; H. Pei; T. Peitzmann; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; L. Ruan; J. Rusnak; N. R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; S. G. Steadman; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; D. Tlusty; M. Tokarev; V. N. Tram; S. Trentalange; R. E. Tribble; P. Tribedy; O. D. Tsai; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbæk; Y. P. Viyogi; S. Vokal; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; W. Witzke; Y. F. Wu; Z. Xiao; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev; Y. Zoulkarneeva

2012-01-04T23:59:59.000Z

500

Indirect heating of Pt by non-equilibrium electrons in Au in a nanoscale Pt/Au bilayer  

E-Print Network [OSTI]

-line equivalent-circuit. For optical exciation of either the Pt or Au side of the bilayer, the majority of energy excitations which are then driven out of thermal equilibrium with the vibrations of the atomic lattice.1

Cahill, David G.