Powered by Deep Web Technologies
Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...  

Open Energy Info (EERE)

Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Water Sampling Activity Date Usefulness not...

2

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

3

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

4

Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from

5

Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) |  

Open Energy Info (EERE)

Lualualei Valley Area (Thomas, 1986) Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Three Schlumberger resistivity soundings were performed in Lualualei Valley (Mattice and Kauahikaua, 1979). K840 Interpretation of the resistivity soundings suggests that the source of the warm water layer within the valley was the dense dike complex associated with the ancient magma chamber of Waianae volcano. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

6

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Soil mercury and radon emanation surveys were performed over much of the accessible surface of Lualualei Valley (Cox and Thomas, 1979). The results of these surveys (Figs 7 and 8) delineated several areas in which soil mercury concentrations or radon emanation rates were substantially above normal background values. Some of these areas were apparently coincident with the mapped fracture systems associated with the caldera boundaries.

7

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

8

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

9

Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Lahaina-Kaanapali Area (Thomas, 1986) Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater temperature and chemistry surveys were similarly unable to identify any detectable thermal influence on the basal groundwaters. Silica concentrations and water temperatures (Table 4) were within the normal range expected for basal groundwaters receiving a limited amount of irrigation return water; chloride/magnesium ratios ranged downward from normal seawater values. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

10

Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The aeromagnetic data noted above refer to a low-level aeromagnetic survey that was flown over the entire island of Hawaii at an altitude of approximately 300 m. The results of the survey over Kawaihae clearly indicate an anomalously magnetized body between the town of Waimea and Kawaihae Bay to the west. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Kawaihae_Area_(Thomas,_1986)&oldid=402415

11

Geothermometry At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Haleakala Volcano Area (Thomas, 1986) Geothermometry At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

12

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

13

Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Mokapu Penninsula Area (Thomas, Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geological mapping on Mokapu (Cox and Sinton, 1982) identified at least three separate volcanic vents within the study area and several other vents forming small islets around Mokapu. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Mokapu_Penninsula_Area_(Thomas,_1986)&oldid=510748" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

14

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

15

Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Mercury Vapor At Kawaihae Area (Thomas, 1986) Mercury Vapor At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury concentrations toward both the north and south. There is no correlation apparent between the mercury patterns and either the resistivity sounding data or the surface geology in the area. The radon emanometry data (Fig.

16

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

17

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the

18

Geothermometry At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Kawaihae Area (Thomas, 1986) Geothermometry At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Groundwater chemical data are limited due to the small number of wells near Kawaihae; however, the data that are available strongly substantiate the presence of a thermal resource. A measured water temperature of 31 degrees C in one well is clearly above normal ambient temperatures, and the chloride/magnesium ion ratio in the same well is elevated substantially above the normal range (Table 8). Both of these data provide strong evidence that at least a low-level thermal anomaly is present in the area.

19

Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mokapu Penninsula Area (Thomas, 1986) Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Mercury Vapor Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

20

Static Temperature Survey At Molokai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Molokai Area (Thomas, 1986) Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Soil Sampling At Molokai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling At Molokai Area (Thomas, 1986) Soil Sampling At Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

22

Self Potential At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Mokapu Penninsula Area (Thomas, Self Potential At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

23

Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Mokapu Penninsula Area (Thomas, Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Chemical analysis of groundwater from Mokapu was severely restricted by the absence of drilled wells; the only groundwater sources present were five shallow, brackish ponds, Chemical data indicated that all of the ponds consisted of seawater diluted by varying amounts of fresh surface water; no thermal alteration was revealed by the water chemistry (Table 2). Available temperature and water chemistry data on the Koolau caldera area were also assessed as part of the Mokapu study. The results of this analysis (Table

24

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

25

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

26

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

27

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

28

Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Mokapu Penninsula Area Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

29

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

30

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

31

Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Haleakala Volcano Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Controlled-source electromagnetic soundings were found to be substantially more successful in the southwest rift than either the Schlumberger or the self-potential studies. This was largely due to the ability of time-domain methods to penetrate high-resistivity surface layers and thus to define lower-resistivity sections at depth. The results of this sounding study, which was conducted at elevations ranging from 75 to 497 m a.s.l., generally indicated moderate- to lowresistivity (6 - 7 ohm.m) sections to depths of 1 km on the lower rift zone and higher resistivities (12-16

32

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

33

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

34

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique...

35

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

36

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

37

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Gabbs Valley Area (DOE GTP) Exploration...

38

Geothermometry At Olowalu-Ukumehame Canyon Area (Thomas, 1986...  

Open Energy Info (EERE)

of the water produced by this aquifer indicates that the chloridemagnesium ion ratio has been significantly altered by thermal processes. References Donald M. Thomas (1...

39

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

40

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

42

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

43

Sierra Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sierra Valley Geothermal Area Sierra Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Sierra Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.71166667,"lon":-120.3216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

45

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

46

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

47

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

48

Direct-Current Resistivity At Dixie Valley Geothermal Field Area...  

Open Energy Info (EERE)

Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field...

49

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

50

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

51

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area (Redirected from Dixie Valley Geothermal Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area (Redirected from Grass Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

54

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

55

Direct-Current Resistivity At Honokowai Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

56

Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Honokowai Area (Thomas, 1986) Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not useful DOE-funding Unknown Notes Three Schlumberger resistivity surveys were attempted on the alluvial plain around Honokowai (Fig. 22). Two of the soundings penetrated to a moderate-resistivity basement, interpreted to be seawater-saturated basalt, whereas the other sounding encountered a high-resistivity intermediate layer which could not be adequately penetrated to allow resolution of the basement resistivity (Mattice, 1981). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

57

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

58

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Little Valley Geothermal Area (Redirected from Little Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Little Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Little Valley Geothermal Area Little Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Little Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.89166667,"lon":-117.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Dixie Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Area Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (25) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.967665,"lon":-117.855074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Grass Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Grass Valley Geothermal Area Grass Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Grass Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.60333333,"lon":-117.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

63

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

64

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

65

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The high degree of cultural activity (e.g. residential areas, streets, jet runways, etc.) on Mokapu both limited the extent of the soil geochemical surveys performed and rendered their interpretation much more difficult. Soil mercury concentrations and radon emanometry data on the peninsula showed a few localized high values (Figs 13, 14), but no consistent correlation between the anomalous zones and geologic features could be

66

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

67

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

68

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to those found in Olowalu. Several localized zones of high mercury concentration or enhanced radon emanation were observed, but showed little relationship to each other or to the recognized geologic structure in the area. The data were interpreted to suggest that there might be a small thermal anomaly to the northeast of the

69

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Railroad Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Railroad Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.434,"lon":-115.529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

71

Compound and Elemental Analysis At Little Valley Area (Wood,...  

Open Energy Info (EERE)

Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Little Valley Area (Wood, 2002) Exploration...

72

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

73

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

74

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

75

Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35) detected apparent resistivity differences in the surface rock depending on whether the soundings were done on Kohala or Mauna Kea lavas (Figs 36, 37), whereas uniform resistivities of 650- 850 ohm.m were found at depths of

76

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

77

Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open  

Open Energy Info (EERE)

Grass Valley Area (Morrison, Et Al., 1979) Grass Valley Area (Morrison, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) Exploration Activity Details Location Grass Valley Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes The attempt to carry out a detailed interpretation of a magnetotelluric survey has demonstrated some fundamental problems that must be addressed in future surveys and in future research. (see paper conclusions) References H. Frank Morrison, K i Ha Lee, Gary Oppliger, Abhi jit De (1979) Magnetotelluric Studies In Grass Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Grass_Valley_Area_(Morrison,_Et_Al.,_1979)&oldid=387832"

78

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

79

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

80

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity...

82

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are...

83

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et Al., 2010) Exploration Activity...

84

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details...

85

Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

86

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

87

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search...

88

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity...

89

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation,...

90

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity...

91

Modeling-Computer Simulations At Long Valley Caldera Area (Newman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity...

92

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

93

Water Sampling At Little Valley Area (Wood, 2002) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Little Valley Area (Wood, 2002) Exploration Activity Details Location...

94

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration...

95

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution...

96

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

97

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

98

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

99

Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Kilauea East Rift Area (Thomas, Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Microseismic and ground noise studies were performed along the East Rift Zone in an effort to identify areas in which earthquake activity might suggest rock fracturing as a result of cold water coming into contact with heated reservoir rocks (Furumoto, 1978a). One of the microseismic surveys utilized an array of seven seismometers to monitor earthquake activity in the vicinity of the then proposed site of the HGP-A well (Fig. 53) (Suyenaga and Furumoto, 1978). The second microearthquake study utilized only two seismometers located near the junction of the Pahoa-Kalapana and

100

Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

At Lahaina-Kaanapali Area At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes The soil geochemistry yielded quite complex patterns of mercury concentrations and radonemanation rates within the survey area (Cox and Cuff, 1981c). Mercury concentrations (Fig. 38) showed a general minimum along the Kawaihae-Waimea roads and a broad trend of increasing mercury

102

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

103

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

104

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

105

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

106

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

107

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

108

Direct-Current Resistivity Survey At Lahaina-Kaanapali Area (Thomas, 1986)  

Open Energy Info (EERE)

Survey At Survey At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Four Schlumberger soundings were performed along the coastal strip adjacent to Lahaina town (Fig. 22). Three of the four soundings were able to detect a moderate to low-resistivity basement that was interpreted to be basalt saturated with seawater at 20degrees C (Mattice, 1981). None of the resistivity sounding data in this area indicated subsurface resistivities lower than could be accounted for by local ambient temperatures (Mattice and Lienert, 1980). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

109

Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes In addition to the aeromagnetic data, the field survey program in Kawaihae included six Schlumberger resistivity soundings between Kawaihae and Waimea (Kauahikaua and Mattice, 1981). The results of these sounding (Fig. 35)

110

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

111

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

112

Field Mapping At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Kilauea East Rift Area (Thomas, Field Mapping At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping on the East Rift Zone (ERZ) conducted by Peterson (1967), J. Moore (1971), and Wright and Fiske (1971) detailed historic lava flows originating in the ERZ and developed structural models of the rift based on the locations and progressions of recorded eruptive cycles. These studies have more recently been expanded by Holcomb (1980, 1981) and R. Moore (1982, 1983) who have presented more detailed mapping of all surface flows (historic and prehistoric), fissures and faulting on the eastern flank of the Kilauea shield. The model developed from these studies is of a rift

113

Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles.

114

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

115

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

116

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

117

Resistivity studies of the Imperial Valley geothermal area, California |  

Open Energy Info (EERE)

Resistivity studies of the Imperial Valley geothermal area, California Resistivity studies of the Imperial Valley geothermal area, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Resistivity studies of the Imperial Valley geothermal area, California Abstract Electrical resistivity has been employed for mapping thehnperial Valley of California as part of a multi-disciplinaryapproach to assess its geothermal potential. Vertical and lateralresistivity changes were determined from Schlumherger deptilsoundings with effective probing depths up to 8000 ft.Chie/ conclusions were: (1) Known geothermal anomaliesappear as residual resistivity lows superimposed on the regionalgradient which decreases northwest.ward from the southeastcorner of the Imperial Valley, near the Colorado River, tovalues about two orders of magnitude lower at the Salton

118

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Exploration Activity Details Location Rose Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

119

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

120

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

122

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

123

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

124

Core Analysis At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fish Lake Valley Area (DOE GTP) Exploration...

125

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

126

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

127

Field Mapping At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (DOE GTP) Exploration...

128

Over Core Stress At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Over Core Stress At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Over Core Stress At Gabbs Valley Area (DOE GTP)...

129

Field Mapping At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Gabbs Valley Area (DOE GTP) Exploration Activity...

130

Density Log at Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Gabbs Valley Area (DOE GTP) Exploration Activity...

131

LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area...

132

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

133

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

134

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

135

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

136

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

137

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

138

Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mokapu Direct-Current Resistivity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys on Mokapu were restricted to three Schlumberger soundings (Fig. 17). The results of these soundings appeared to indicate a highly resistive surface section underlain by one or more layers of intermediate to low resistivity (Fig. 18). Basement resistivities in all cases were less than 3 ohm.m and were interpreted to correspond to alluvial layers saturated with cold seawater (Lienert, 1982). --- A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic

139

Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Imperial Valley Geothermal Area (1982) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components

140

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Aeromagnetic Survey At Dixie Valley Geothermal Field Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution aeromagnetic survey was conducted over a 940 km2 area extending from Dixie Meadows northeastward to the Sou Hills, and from the eastern front of the Stillwater Range to the western edge of the Clan Alpine Range (Grauch, 2002). The resulting aeromagnetic map is described and discussed by Smith et al. (2002). Many of the shallow faults revealed by the aeromagnetic data (Figure 3) coincide with faults mapped based on surface expression on aerial photographs (Smith et al., 2001). However, in

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Buffalo Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Geothermal Area Buffalo Valley Hot Springs Geothermal Area (Redirected from Buffalo Valley Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Buffalo Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.368333,"lon":-117.325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area (Redirected from Long Valley Caldera Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

144

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Hualalai Northwest Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three time-domain electromagnetic soundings were conducted on the middle northwest rift at elevations of 280-320 m (Fig. 40) (Kauahikaua and Mattice, 1981). These soundings penetrated to a greater depth than the Schlumberger soundings and two of them were able to resolve basement resistivities ranging from 9 to 12 ohm-m at depths of 1500 to 1800 m. One sounding detected a 9 ohm.m layer at 600 m depth that was underlain by a more resistive basement. These results suggest that thermal fluids may be responsible for the low-resistivity basement, whereas the high-resistivity

145

Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986)  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Haleakala Direct-Current Resistivity Survey At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one self-potential profile and one controlled-source electromagnetic sounding. The geochemical data collected included a reconnaissance soil mercury and

146

Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Kilauea East Rift Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes A series of time-domain electromagnetic (TDEM) soundings were also performed in the lower East Rift Zone as part of the HGP exploration program (Klein and Kauahikaua, 1975; Kauahikaua and Klein, 1977); this work was recently expanded to include additional TDEM and vertical electrical soundings, and the entire data set was reinterpreted (Kauahikaua, 1981b; Kauahikaua and Mattice, 1981). The resistivity model presented by Kauahikaua (1981b) suggests that moderate to high basement resistivities, corresponding to cold freshwater saturated basalts, are present north of

147

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

148

Indian Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Hot Springs Geothermal Area Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Indian Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.14139,"lon":-120.93389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Smith Creek Valley Geothermal Area Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3128,"lon":-117.5493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Buffalo Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Geothermal Area Buffalo Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Buffalo Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.368333,"lon":-117.325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Geothermal Area Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Long Valley Caldera Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (3) 10 Exploration Activities (50) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Reservoir Geothermal Area Valley Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: West Valley Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.19166667,"lon":-120.385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Surprise Valley Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Surprise Valley Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Surprise Valley Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.53333,"lon":-120.07667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Climatology of air quality of Long Valley Geothermal Resource Area  

DOE Green Energy (OSTI)

The Long Valley Known Geothermal Resource Area is one of the more promising regions for development of a large-scale geothermal energy center. This report discusses the climatology and air quality of the area. Details are given on the temperatures, temperature inversions, and winds. Estimates are presented for the present air quality and future air quality during and following development of the resource area. Also discussed are project impact from added pollutants, noise, and precipitation augmentation. The major deleterious effects from development of the Long Valley Geothermal Resource Area appear to be due to increased dust loading during and following construction, and noise from production testing and potential well blowouts. Increased pollution from release of hydrogen sulfide and other pollutants associated with hot water geothermal wells seems to present no problems with regard to surrounding vegetation, potential contamination of Lake Crowley, and odor problems in nearby communities. Precipitation augmentation will probably increase the water level of Lake Crowley, at the expense of possible additional fogging and icing of nearby highways.

Peterson, K.R.; Palmer, T.Y.

1977-06-01T23:59:59.000Z

157

Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) |  

Open Energy Info (EERE)

Martin, Et Al., 2004) Martin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Martin, Et Al., 2004) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References B. Martin, E. Silver, W. Pickles, P. Cocks (Unknown) Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Long_Valley_Caldera_Area_(Martin,_Et_Al.,_2004)&oldid=511009" Categories: Exploration Activities DOE Funded

158

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the

159

Thomas H. Smouse Memorial Fellowship  

Science Conference Proceedings (OSTI)

Awarded to a graduate student doing research in areas of interest to AOCS. Thomas H. Smouse Memorial Fellowship Thomas H. Smouse Memorial Fellowship graduate research scholastically outstanding Smouse Award Student Award Student Awards achievemen

160

Steven Thomas  

Energy.gov (U.S. Department of Energy (DOE))

Dr.Steven R. Thomas serves as theFeedstock Supply and Logistics Team Lead for the Bioenergy Technologies Office.

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) |  

Open Energy Info (EERE)

Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=386973

162

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

163

Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Hurwitz, Et Al., Long Valley Caldera Area (Hurwitz, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Hurwitz, Et Al., 2010) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References Shaul Hurwitz, Christopher D. Farrar, Colin F. Williams (2010) The Thermal Regime In The Resurgent Dome Of Long Valley Caldera, California- Inferences From Precision Temperature Logs In Deep Wells Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Long_Valley_Caldera_Area_(Hurwitz,_Et_Al.,_2010)&oldid=511152"

164

Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al.,  

Open Energy Info (EERE)

Long Valley Caldera Area (Newman, Et Al., Long Valley Caldera Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Andrew V. Newman, Timothy H. Dixon, Noel Gourmelen (2006) A Four-Dimensional Viscoelastic Deformation Model For Long Valley Caldera, California, Between 1995 And 2000 Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Long_Valley_Caldera_Area_(Newman,_Et_Al.,_2006)&oldid=425656"

165

Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Gas Sampling At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Gas_Sampling_At_Gabbs_Valley_Area_(DOE_GTP)&oldid=689423" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

166

Density Log at Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Density Log at Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

167

Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991...  

Open Energy Info (EERE)

91) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details...

168

Water-Gas Samples At Gabbs Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs...

169

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

170

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Steven Wesnousky, S. John Caskey, John W. Bell (2003) Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Wesnousky,_Et_Al.,_2003)&oldid=510736" Categories: Exploration Activities DOE Funded Activities What links here

171

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from...

172

Static Temperature Survey At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Retrieved from...

173

Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open  

Open Energy Info (EERE)

Fish Lake Valley Area (Deymonaz, Et Al., 2008) Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes (2) detailed geologic mapping of the Emigrant Miocene sedimentary basin and surrounding Paleozoic basement rocks; References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January 2008, Emigrant Slimhole Drilling Project, Doe Gred Iii (De-Fc36-04Go14339) Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Fish_Lake_Valley_Area_(Deymonaz,_Et_Al.,_2008)&oldid=510737"

174

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

175

Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Our preferred model for the unusual events is that of multiple ordinary earthquakes being triggered or forced by a fluid injection into a thin volcanic conduit. An example of such a structure would be a dike connected to one or more shear or wing fractures. In this model, resonant increases in pressure in the conduit would cause the shear fractures to fail seismically at fixed time delays. For the time delays seen at Long Valley,

176

Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Klusman & Landress, 1979) Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

177

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) |  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Fraser Goff, Harold A. Wollenberg, D. C. Brookins, Ronald W. Kistler (1991) A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff,_Et_Al.,_1991)&oldid=692527"

178

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

179

Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Al., 1991) Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Discusses temperature and lithologic data from a dozen or so wells drilled, both by industry and the scientific community. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits

180

Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Esmeralda Energy Company (EEC) intends to drill a core hole to a maximum depth of 4,000 feet on its Emigrant Project in Fish Lake Valley, Esmeralda County, Nevada. The drilling project is the key component in phased program of resource evaluation by EEC References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermal And-Or Near Infrared At Railroad Valley Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Railroad Valley Area (Laney, 2005) Railroad Valley Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Railroad Valley Area (Laney, 2005) Exploration Activity Details Location Railroad Valley Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Objectives for FY 2004 were to map mineralogy in Dixie Meadows, NV and thermal anomalies in Railroad Valley, NV. The first objective relates to the project goal of testing hyperspectral imagery for applications in soil-mineralogy mapping to detect hidden faults and buried geothermal phenomena. The second objective relates to testing satellite thermal

182

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

183

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) | Open  

Open Energy Info (EERE)

Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

184

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010)  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes "The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument acquired hyperspectral data over northern Fish Lake Valley in March 2003. The AVIRIS sensor is maintained by the Jet Propulsion Laboratory and collects data in 224 wavelengths from the visible to shortwave infrared (0.4 to 2.5 micro-m) at 2 m spatial resolution. The data set covers the

185

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

186

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

187

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

188

Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report  

DOE Green Energy (OSTI)

Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identify the source of the water in the Mesa geothermal system. (JGB)

Coplen, T.B.

1973-10-01T23:59:59.000Z

189

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes (4) synthesis of geologic mapping results and lithologic logs for 3_D geologic characterization of the prospect area; (5) compilation of relevant data from the foregoing sub_activities into a Geographic Information Systems (GIS) database for visualization and mapping, and to facilitate the development of an exploration model; and (6) development of a refined

190

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Useful for a whole variety of particular reservoir characterization goals, i.e.: "Isotopic values for the thermal waters become lighter with distance eastward from Casa Diablo, suggesting dilution with nonthermal ground waters from more easterly sources. In the Casa Diablo area, the effects of near-surface boiling cause the observed isotopic shift (along the line

191

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open  

Open Energy Info (EERE)

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes There are no thermal springs within the Emigrant prospect area, but unambiguously indigenous hotwater samples were collected from boreholes 211 (see above) and 112 (Fig. 3). These samples were analyzed for major and selected minor chemical components (Table 1; Pilkington, 1984). Hot water at 96degrees C from borehole 211 was collected by airlifting from a depth of 123 m (water level) at a rate of 240 liters per minute. The

192

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area  

Open Energy Info (EERE)

Ten Thousand Smokes Region Area Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes Statistical analyses of geochemical data. References Lawrence G. Kodosky, Terry E. C. Keith (1993) Factors Controlling The Geochemical Evolution Of Fumarolic Encrustations, Valley Of Ten Thousand Smokes, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Kodosky_%26_Keith,_1993)&oldid=389784"

193

Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,  

Open Energy Info (EERE)

Of Ten Thousand Smokes Region Area (Keith, Et Al., Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Keith,_Et_Al.,_1992)&oldid=386869" Categories: Exploration Activities DOE Funded Activities

194

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

195

Resistivity Log At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Resistivity_Log_At_Fish_Lake_Valley_Area_(DOE_GTP)&oldid=689876" Categories:

196

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

197

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

198

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

199

Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Fish_Lake_Valley_Area_(DOE_GTP)&oldid=511222" Categories:

200

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky &  

Open Energy Info (EERE)

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The purpose of this paper is to examine whether statistical analysis of encrustation chemistries, when supplemented with petrologic data, can identify the individual processes that generate and degrade fumarolic encrustations. Knowledge of these specific processes broadens the applications of fumarolic alteration studies. Geochemical data for a

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) (Redirected from Water-Gas Samples At Long Valley Caldera Area (Goff & Janik, 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera

202

Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) |  

Open Energy Info (EERE)

Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Multispectral Imaging Activity Date Spectral Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes For this project, fused imagery was created using ASTER data and USGS Digital Orthophoto Quandrangles (DOQs). The ASTER data have a spatial resolution of 15 m for the visible to infrared and near_infrared bands, and 30 m for shortwave_infrared bands; with a cost of $85.00 per 60 x 60 km image. Thermal anomalies were mapped using ASTER kinetic temperature data

203

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness not indicated DOE-funding Unknown Notes For this project, fused imagery was created using ASTER data and USGS Digital Orthophoto Quandrangles (DOQs). The ASTER data have a spatial resolution of 15 m for the visible to infrared and near_infrared bands, and 30 m for shortwave_infrared bands; with a cost of $85.00 per 60 x 60 km image. Thermal anomalies were mapped using ASTER kinetic temperature data

204

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

205

Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008)  

Open Energy Info (EERE)

Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes While drilling, maximum reading thermometers will be used to monitor formation temperatures as discussed above. Upon completion of the drilling a temperature log will be run inside the drill rods to K943TD. References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January

206

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Several datasets have been incorporated into a GIS database for map production, data archiving, data visualization, and modeling. These include (1) geology map layers produced from field work done on this project; (2) previously drilled U.S. Borax exploration bore holes and ancillary data; (3) temperature gradients; (4) thermal anomalies; and (5) gravity data.

207

Slim Holes At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Slim Holes At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 slim holes References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Slim_Holes_At_Gabbs_Valley_Area_(DOE_GTP)&oldid=402645" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities

208

Thomas Durkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Durkin Sr. Partner LEED, AP tdurkin@dvpe.net This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not...

209

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

210

Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik,  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=510433

211

Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et  

Open Energy Info (EERE)

Bergfeld, Et Bergfeld, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Bergfeld, Et Al., 2006) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Deborah Bergfeld, William C. Evans, James F. Howle, Christopher D. Farrar (2006) Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Long_Valley_Caldera_Area_(Bergfeld,_Et_Al.,_2006)&oldid=510430"

212

Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies

213

Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Laney, 2005) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is ongoing. In particular, we have InSAR stacks for over twenty pairs of

214

Magnetotellurics At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley

215

Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) |  

Open Energy Info (EERE)

Et Al., 2001) Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Richard P. Smith, Kenneth W. Wisianz, David D. BlackweIl (2001) Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Smith,_Et_Al.,_2001)&oldid=510735" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

216

Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes DC electrical sounding measurements provide a 2-D image of the resistivity distribution beneath Long Valley Caldera. Conductive zones and SP anomalies correlate with the location of known faults in agreement with previous

217

Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

Ground Gravity Survey At Long Valley Caldera Area Ground Gravity Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ~15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L. Galloway, James F. Howle, Ronald Jacobson (2003) Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera,

218

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

219

Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Several newer wells were cored, and the core analyses seemed to prove useful in most cases. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Long_Valley_Caldera_Area_(Sorey,_Et_Al.,_1991)&oldid=386930

220

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Resistivity Log At Long Valley Caldera Area (Sorey, Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Resistivity Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Lithologic and resistivity logs from wells drilled into areas of less than 20 ohm-m resistivity show clay mineralization resulting from hydrothermal alteration within the volcanic fill (Nordquist, 1987). Low resistivity in the vicinity of well 44-16, identified in wellbore geophysical logs and two dimensional MT modeling is restricted to the thermal-fluid reservoirs in the early rhyolite and Bishop Tuff (Nordquist, 1987; Suemnicht, 1987). The MT data suggest that the resistivity structure near Mammoth Mountain is

222

Thomas W. Vetter  

Science Conference Proceedings (OSTI)

Thomas W. Vetter. Thomas is an inorganic analytical chemist. During his first few years at NIST he determined gases in ...

2012-11-15T23:59:59.000Z

223

Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may

224

Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

225

Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) |  

Open Energy Info (EERE)

Lewicki, Et Al., 2008) Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Area (Lewicki, Et Al., 2008) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Gas Flux Sampling Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References J. L. Lewicki, M. L. Fischer, G. E. Hilley (2008) Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Long_Valley_Caldera_Area_(Lewicki,_Et_Al.,_2008)&oldid=508150" Categories: Exploration Activities DOE Funded

226

Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Buffalo Valley Hot Isotopic Analysis- Fluid At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

227

Core Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith & Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

228

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Deymonaz, Et Al., Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes (1) Assembly and review of relevant published and proprietary literature and previous geothermal investigations in the region; References John Deymonaz, Jeffrey G. Hulen, Gregory D. Nash, Alex Schriener (2008) Esmeralda Energy Company Final Scientific Technical Report, January 2008, Emigrant Slimhole Drilling Project, Doe Gred Iii (De-Fc36-04Go14339) Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fish_Lake_Valley_Area_(Deymonaz,_Et_Al.,_2008)&oldid=510804"

229

Compound and Elemental Analysis At Buffalo Valley Hot Springs Area (Laney,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Buffalo Valley Hot Compound and Elemental Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

230

Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes The temperature profile in LVEW consists of an upper part (within the volcanic fill) with generally conductive gradients averaging about 35degrees C/km. Within the underlying metamorphic basement, however,

231

Cuttings Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

232

Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Long Valley Caldera Area (Pickles, Et Al., 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes At shallow depths in the caldera References W. L. Pickles, P. W. Kasamayer, B. A. Martini, D. C. Potts, E. A. Silver (2001) Geobotanical Remote Sensing For Geothermal Exploration

233

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

234

An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York  

SciTech Connect

An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

Berry, H.A.

1991-09-01T23:59:59.000Z

235

Thomas Kirchstetter  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Kirchstetter Thomas Kirchstetter Sustainable Energy Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 90-2024J (Office), 70-215 (Lab) (510) 486-7071 TWKirchstetter@lbl.gov Dr. Kirchstetter is a Staff Scientist at Lawrence Berkeley National Laboratory, where he is a Deputy Leader in the Sustainable Energy Systems Group and a member of the Heat Island Group. He studies the role of particulate matter in the environment as it relates to energy use, climate, and air quality. He has more than 50 refereed archival journal papers and holds a concurrent appointment at the University of California, Berkeley as an Associate Adjunct Professor in the Civil and Environmental Engineering Department. Tom's current research interests include:

236

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell...  

Open Energy Info (EERE)

correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than...

237

InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is

238

Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress,  

Open Energy Info (EERE)

Klusman & Landress, Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Long Valley Caldera Area (Klusman & Landress, 1979) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes This study involved the field collection and laboratory analysis of Al-horizon soil samples in the vicinity of a known geothermal source at Long Valley, California. The samples were analyzed for several constituents known to have influence on Hg retention by soils, including pH, hydrous Fe and Mn, and organic carbon, as well as Hg. The data compiled for these secondary parameters and the field-determined parameters of geology, soil

239

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

240

NREL: Energy Analysis - Thomas Jenkin  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jenkin Thomas Jenkin Photo of Thomas Jenkin. Thomas Jenkin is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Senior Energy Analyst On staff since August 2004 Phone number: 202-488-2219 E-mail: thomas.jenkin@nrel.gov Areas of expertise Valuation and risk management Market structure and operation of natural gas and power markets Economic analysis of storage technologies Research and development (R&D) Primary research interests R&D and commercialization of energy technologies Risk and uncertainty The value of storage Economic and market analysis of renewable energy technologies Education and background training MPPM, Yale School of Management D.Phil. in physics, University of Oxford B.Sc. in physics, University of Bristol Teaching experience

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Seismic refraction investigation of the Salton Sea geothermal area, Imperial Valley, California  

DOE Green Energy (OSTI)

Seven seismic refraction profiles and four long-distance refraction shots have been used to investigate the Salton Sea geothermal area. From these data, two models of the geothermal and adjacent area are proposed. Model 1 proposes a basement high within the geothermal area trending parallel to the axis of the Imperial Valley. Model 2 assumes a horizontal basement in the E-W direction, and proposes a seismic velocity gradient that increases the apparent basement velocity from east to west approximately 15% within the geothermal area. Both models propose basement dip of 3 degrees to the south, yielding a thickness of sediments of 6.6 km near Brawley, California, in the center of the Imperial Valley. Based on offsets inferred in the sedimentary seismic layers of the geothermal area, two NW-SE trending fault zones are proposed.

Frith, R.B.

1978-12-01T23:59:59.000Z

242

Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California  

DOE Green Energy (OSTI)

The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

1983-01-01T23:59:59.000Z

243

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Deymonaz, Et Al., Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes There are no thermal springs within the Emigrant prospect area, but unambiguously indigenous hotwater samples were collected from boreholes 211 (see above) and 112 (Fig. 3). These samples were analyzed for major and selected minor chemical components (Table 1; Pilkington, 1984). Hot water at 96degrees C from borehole 211 was collected by airlifting from a depth of 123 m (water level) at a rate of 240 liters per minute. The

244

Thomas Richardson  

NLE Websites -- All DOE Office Websites (Extended Search)

Richardson Richardson Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62-0203 Berkeley CA 94720 Office Location: 62-0321 (510) 486-8619 TJRichardson@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2012 Liu, Xiaosong, Jun Liu, Ruimin Qiao, Yan Yu, Hong Li, Liumin Suo, Yong-sheng Hu, Yi-De Chuang, Guojiun Shu, Fangcheng Chou et al. "Phase Transformation and Lithiation Effect on Electronic Structure of LixFePO4: An In-Depth Study by Soft X-ray and Simulations." Journal of the American Chemical Society 134, no. 33 (2012): 13708-13715. 2011 Chen, Guoying, Alpesh K. Shukla, Xiangyun Song, and Thomas J. Richardson. "Improved Kinetics and Stabilities in Mg-Sybstained Li-MnPO4." J. of

245

Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

Sorey, Et Al., Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed XRD studies of alteration mineralogy in west-moat drill holes (Flexser, 1989, 1991-this volume) show that the present temperatures in RDO-8, PLV-1, and INYO-4 are well below (65degrees C or more) alteration temperatures, except in the lower part of RDO-8 (below about 300 m). No XRD evidence of epidote or other relatively high-temperature ( > 230 degrees C) alteration products was found in any of the core. At shallow depths in the

246

Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) |  

Open Energy Info (EERE)

2003) 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long

247

Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al.,  

Open Energy Info (EERE)

1991) 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes In 1986, Unocal Geothermal Division released results from 158 time-domain electromagnetic (TDEM) soundings and, with Chevron Resources, a total of 77 magnetotelluric (MT) stations. Reinterpretations of the Unocal and Chevron data (Park and Torres-Verdin, 1988 ) and the recent public-domain MT studies (e.g. Hermance et al., 1988) outline similar shallow low-resistivity regions. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A.

248

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7^10 km beneath the resurgent dome and a deeper source V15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

249

Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) | Open  

Open Energy Info (EERE)

Pribnow, Et Al., 2003) Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Here we present a detailed thermal conductivity profile for LVEW (Fig. 5a). Measurements were performed at the geothermal laboratory of the USGS on chips and core samples using divided bar and needle probe instruments. Detailed descriptions of these instruments and measurement procedures are given in Sass et al. (1971a,b). At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina

250

Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemical and isotopic characteristics of fluid sampled from the principal fracture zone in LVEW indicate that this fluid is not directly connected with or simply supplied by thermal water from the present-day hydrothermal system that flows around the southern edge of the resurgent dome from sources in the west moat. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

251

Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al.,  

Open Energy Info (EERE)

Et Al., Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano contains a pressurized gas cap. Shallow depths. References William C. Evans, Michael L. Sorey, Andrea C. Cook, B. Mack Kennedy, David L. Shuster, Elizabeth M. Colvard, Lloyd D. White, Mark A. Huebner

252

Tennessee Valley Authority Smart Modal Area Recharge Terminal (SMART) Station Project  

Science Conference Proceedings (OSTI)

EPRI and the Tennessee Valley Authority (TVA) collaborated to design and build solar-assisted electric vehicle (EV) charging stations, referred to as a TVA Smart Modal Area Recharge Terminal, or TVA SMART Station. These stationswhich combine photovoltaic generation, EV charging, and stationary battery storagehave been deployed across the State of Tennessee. In specific, the five deployed stations provide a total of 72 kW of solar generation capacity, 36 parking spaces equipped for ...

2012-11-12T23:59:59.000Z

253

Relationships between Cloud Type and Amount, Precipitation, and Surface Temperature in the Mackenzie River Valley-Beaufort Sea Area  

Science Conference Proceedings (OSTI)

Hourly data from climatological stations in the Mackenzie River valley-Beaufort Sea area of northern Canada have been examined to determine the relationships between cloud type and amount, precipitation, and surface temperatures. During all ...

G. A. Isaac; R. A. Stuart

1996-08-01T23:59:59.000Z

254

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes The seismic reflection data are very useful and can be site specific when a profile is in the right place, but are sparse, very difficult to interpret correctly, and expensive to collect. The velocity values used are uncertain even though there are several sonic logs for the wells. A VSP, Vertical Seismic Profile, survey would significantly improve the precision of the interpretation References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

255

Geology of the Desert Hot Springs-Upper Coachella Valley Area, California (with a selected bibliography of the Coachella Valley, Salton Sea, and vicinity)  

DOE Green Energy (OSTI)

The Desert Hot Springs area is in the upper Coachella Valley at the junction of three natural geomorphic provinces of California--the Transverse Ranges, the Peninsular Ranges, and the Colorado Desert. The mapped area is about 100 miles east of Los Angeles and lies principally in north central Riverside County. The oldest rocks in the area are Precambrian(?) amphibolitic and migmatized paragneisses of the San Gorgonio igneous-metamorphic (Chuckwalla) complex. They are intruded by Cretaceous diorite porphyry, Cactus Granite, quartz monzonite, intrusive breccia, and basic plutonic rocks. Of probable late Paleozoic age are the metamorphic rocks of the San Jacinto Mountains which form spurs projecting into San Gorgonio Pass and Coachella Valley.

Proctor, Richard J.

1968-01-01T23:59:59.000Z

256

A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada  

SciTech Connect

A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

2001-12-01T23:59:59.000Z

257

An aerial radiological survey of Project Rulison and surrounding area, Battlement Creek Valley, Colorado  

SciTech Connect

An aerial radiological survey was conducted over the Project Rulison site, 40 miles (64 kilometers) northeast of Grand Junction, Colorado, from July 6 through July 12, 1993. Parallel lines were flown at intervals of 250 feet (76 meters) over a 6.5-square-mile (17-square-kilometer) area at a 200-foot (61-meter) altitude surrounding Battlement Creek Valley. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 3.5 to 12.5 {mu}R/h (excluding cosmic) at 1 meter above ground level. No anomalous or man-made isotopes were found.

NONE

1995-08-01T23:59:59.000Z

258

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "The seismic reflection profiles of the range front structures are difficult to interpret because of he steep dips and 3-d fault zone geometry, in the-classical paper by Okaya and Thompson (1985) the range-bounding fault is not imaged as they proposed. The reflection seismic studies are the most useful of the geophysical techniques also the most expensive. The reflection data are two-dimensional making structural interpretation complicated for the three-dimensional geometry of the basin so that the other structural studied have been critical in correctly interpreting the seismic profiles. There are many

259

NREL: Energy Analysis - Thomas R. Schneider  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Schneider Thomas R. Schneider Photo of Thomas R. Schneider Thomas R. Schneider is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Principal Analyst - Strategic Energy Analysis On staff since March 2009 Phone number: 202-488-2206 E-mail: thomas.schneider@nrel.gov Areas of expertise Distributed generation and storage Advanced power generation and transmission technologies Technology assessment Strategic and scenario planning R&D policy and management Primary research interests Variable renewable resources and the grid Role of electrification in society Energy efficiency and demand response Energy storage Education and background training Ph.D. in physics, University of Pennsylvania B.S., Stevens Institute of Technology (High Honors) Prior work experience

260

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2012 4:00 pm Iran Thomas Auditorium, 8600 Systematic theory-guided nano-engineering of molecular order, lattice dimensionality, and viscoelastic properties of organic...

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, December 6, 2012 11:00 am Iran Thomas Auditorium, 8600 1000 Shapes and 1000 Uses of Designer Carbon Nanostructures David Tomnek Physics and Astronomy Department,...

262

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

October 8, 2010 11:00am Iran Thomas Auditorium, 8600 Growth and interface properties of oxide heterostructures Guus Rijnders MESA+ Institute for Nanotechnology University of...

263

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

February 17, 2011 2:00 pm Iran Thomas Auditorium, 8600 Field-Based Simulations for the Design of Polymer Nanostructures Glenn H. Fredrickson Mitsubishi Professor of Chemical...

264

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, March 5, 2013 2:00 pm Iran Thomas Auditorium, 8600 Materials-related aspects of photocatalysis: Insights from first principles simulations Annabella Selloni Princeton...

265

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

April 19, 2013 11:00 am Iran Thomas Auditorium, 8600 New Methods for Controlling the Structures and Functions of Synthetic Polymers Christopher Bielawski University of Texas at...

266

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

August 27, 2010 11:00 am Iran Thomas Auditorium, 8600 Theory of dielectric and ferroelectric properties of ultrathin films and superlattices David Vanderbilt Department of Physics...

267

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

December 10, 2010 11:00am Iran Thomas Auditorium, 8600 Viscoelastic effect on formation of mesoglobular phase (nanoparticles) in dilute solutions: A point of view different from...

268

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2013 11:00 am Iran Thomas Auditorium, 8600 Dynamics of Polymers in Polymer Nanocomposites Dieter Richter Jlich Centre for Neutron Science, Institute for Complex...

269

Thomas G. Cleary  

Science Conference Proceedings (OSTI)

... Thomas G. Cleary is a chemical engineer in the Engineered Fire Safety Group of the Fire Research Division (FRD) of the Engineering Laboratory ...

2010-10-05T23:59:59.000Z

270

Micro-Earthquake At Long Valley Caldera Area (Foulger, Et Al...  

Open Energy Info (EERE)

Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Retrieved from "http:en.openei.orgwindex.php?titleMicro-EarthquakeAtLongVall...

271

Field Mapping At Walker Lake Valley Area (Shoffner, Et Al., 2010...  

Open Energy Info (EERE)

Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Retrieved from "http:en.openei.orgw...

272

Thomas Edison | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical...

273

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey  

DOE Green Energy (OSTI)

During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

Davis, D.A.; Cook, K.L.

1983-04-01T23:59:59.000Z

274

Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

1977-01-01T23:59:59.000Z

275

Dixie Valley, Nevada: A promising geothermal area under development by industry  

Science Conference Proceedings (OSTI)

Selected subsurface reservoirs located in the Western United States may contain significant geothermal energy, and if development continues, this energy source may provide substantial electrical power or related energy by the year 2,000. Utility management must be convinced of the reliability and cost attractiveness of this energy source. A number of exploration programs are in progress to evaluate the potential of geothermal energy in the United States. For example, numerous exploration methods have been employed in Dixie Valley, Nevada, since 1967 with mixed results. However, with DOE support, additional data have recently become available. The authors have revised earlier structural models of the basin and have made recommendations for additional investigations that should assist in clarifying the geologic relationships within the reservoir. The principal geologic characteristics of the reservoir that may place limits on project economics appear to be the depth and trend area of producing zones, fluid quality and the amenability of the upper zones to accept large volumes of spent fluids. However, reservoir temperature, flow rates, recharge characteristics, and other factors appear to be acceptable either for electrical power production of more than 1,000 MWe, or for direct applications such as on-site agricultural processing.

Campbell, M.D.

1983-08-01T23:59:59.000Z

276

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

277

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

May 3, 2012 4:00 pm Iran Thomas Auditorium, 8600 Understanding the Behavior of Nanoscale Magnetic Heterostructures: How Microscopy Can Help Amanda K. Petford-Long Center for...

278

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

September 27, 2012 2:00 pm Iran Thomas Auditorium, 8600 Exploring the Physics of Graphene with Local Probes Joseph A. Stroscio Center for Nanoscale Science and Technology, NIST...

279

Pilar Thomas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilar Thomas Pilar Thomas About Us Pilar Thomas - Deputy Director, Office of Indian Energy Policy and Programs Pilar Thomas Pilar Thomas (Pascua Yaqui) is the Deputy Director in the Office of Indian Energy Policy and Programs. As Deputy Director, Ms. Thomas assists the Director in developing national energy policy and programs related to Indian energy development. Ms. Thomas is also responsible for developing and implementing policy efforts within the Department and federal government to achieve the Office's Indian Energy policy objectives. Prior to joining the Department, Ms. Thomas served as the Deputy Solicitor for Indian Affairs in the U.S. Department of the Interior. Appointed as Deputy Solicitor in September 2009, Ms. Thomas was responsible for providing day to day legal advice and counsel to the Secretary, the

280

Timing of late Quaternary faulting in the 1954 Dixie Valley earthquake area, central Nevada  

Science Conference Proceedings (OSTI)

The 1954 Dixie Valley earthquake (M 6.9) in central Nevada produced about 3 m of total vertical displacement distributed across two principal fault zones along the east flank of the Stillwater Range. Most of the 1954 displacement was along the range-front fault with minor amounts on the piedmont fault zone, in contrast to an earlier Holocene displacement that was restricted to the piedmont fault. Detailed chronostratigraphic, exploratory drilling, and trenching studies indicate that faulting events have migrated back and forth between the range-front and piedmont fault zones in the late Quaternary. Prior to the 1954 earthquake, the range-front fault last ruptured in the late Pleistocene, during a large-magnitude event here called the IXL event. The northern half of the piedmont fault zone last ruptured between 1.5 and 6.8 ka during a large-magnitude event here called the Bend event. On the basis of 6 m total slip since the deposition of shoreline gravels at {approximately} 12 ka, the estimated Holocene vertical-slip rate is 0.5 mm/yr for the Dixie Valley rupture zone. Overlapping and migratory patterns of late Quaternary faulting indicate that the Dixie Valley zone does not fit a simple segmentation model.

Bell, J.W. (Univ. of Nevada, Reno (USA)); Katzer, T. (Las Vegas Valley Water District, NV (USA))

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

282

Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part II. Water temperature and chemistry  

DOE Green Energy (OSTI)

Geothermal reconnaissance techniques have identified five areas in Utah County warranting further investigation for low-temperature geothermal resources. One area in northern Utah Valley is along Utah Lake fault zone and includes Saratoga Hot Springs. Water temperatures within this area range from 21 to 43/sup 0/C. Common ion analyses as well as B and Li concentrations indicate waters sampled in this area are anomalous when compared to other samples from the same aquifer. Two other areas in southern Utah Valley also coincide with the Utah Lake fault zone. Common ion analyses, trace element concentrations, and C1/HCO/sub 3/ ratios distinguish these areas from all other waters in this valley. Temperatures within these southern areas range from 21 to 32/sup 0/C. All three thermal areas are possibly the result of deep circulation of meteoric water being warmed and subsequently migrating upward within the Utah Lake fault zone. The Castilla Hot Springs area has been expanded by this study to include a spring located 3 mi further up Spanish Fork Canyon near the Thistle earthflow. A temperature of 50/sup 0/C was recorded for this spring and chemistry is similar to Castilla. In Goshen Valley, the fifth geothermal area identified, measured temperatures range from 20 to 27/sup 0/C for some wells and springs. Chemical analyses, however, do not discern the location of low-temperature geothermal reservoirs. 18 refs., 7 figs., 5 tabs.

Klauk, R.H.; Davis, D.A.

1984-12-01T23:59:59.000Z

283

BNL | Thomas Roser  

NLE Websites -- All DOE Office Websites (Extended Search)

Roser Roser Thomas Roser Chair of the Collider-Accelerator Department photo of Thomas Roser With about 400 employees and an annual budget of $140 million, C-AD develops, improves and operates a suite of accelerators used for experiments by an international community of about 1,500 scientists. The department also designs and constructs new accelerators in support of the Laboratory's and national missions. Roser earned a Ph.D. in physics from the Swiss Federal Institute of Technology in Zurich in 1984. He became a research fellow at the University of Michigan in the same year and was appointed assistant professor of physics at the university in 1990. He joined Brookhaven Lab as an associate physicist in 1991, and, in 1994, he became the head of the Accelerator Division for Brookhaven's Alternating Gradient Synchrotron Department,

284

Mr. Thomas Dwyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Dwyer Thomas Dwyer 5007 Clarevalley Drive Cincinnati, OH 45238 Dear Mr. Dwyer: Department of Energy Washington, DC 20585 OCT -4 2000 Re: OHA Case No. VBB-0005 This letter concerns the complaint of reprisal that you submitted to the Department of Energy under 10 C.F.R. Part 708. You have filed a petition for Secretarial review of the appeal decision issued to you on July 24, 2000. The Part 708 regulations applicable to the petition provide that the Secretary will reverse or revise an appeal decision by the Director of the Office of Hearings and Appeals only under extraordinary circumstances. 10 C.F.R. § 708.35(d). After fully evaluating all the issues that you raised in your filing dated September 8, 2000, I have determined that you have not shown that

285

Thomas B. Watson | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas B. Watson Thomas B. Watson Chemist Watson is a Chemist and has been the leader of the Tracer Technology Group for 7 years. He has more than 21 years experience in atmospheric transport and dispersion research using intentionally released tracer compounds. His research has been focused on the processes of short- and long-range atmospheric diffusion, dispersion, and transport, and on the chemical transformation of natural and anthropogenic compounds in the atmosphere. Most of his work has been in the design, execution, and interpretation of field measurement programs and has been used in the development of predictive tools for the national security and emergency response communities. He has supervised tracer, release, sampling, and analysis for two field campaigns for Urban Dispersion Program and four programs for the

286

Electromagnetic (EM-60) survey in the Panther Canyon Area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

Eight frequency domain electromagnetic soundings were measured over the Panther Canyon thermal anomaly in Grass Valley, Nevada. The data were collected with Lawrence Berkeley Laboratory's large moment horizontal loop system (EM-60). At the transmitter site located near the center of the thermal anomaly, square wave currents of up to 70 A were impressed into a fourturn 50 m radius coil at frequencies from 0.033 to 500 Hz. At the eight receiver sites, 0.5 to 1.5 km from the loop, magnetic fields were detected with a three-component SQUID magnetometer and vertical and radial magnetic field spectra were calculated. Data were interpreted with a computer program which fit filled spectra and associated ellipse polarization data to one-dimensional resistivity models and results were compared to interpretations from earlier dipole-dipole resistivity measurements. Comparison of these interpretations indicates fairly close agreement between the two, with both models clearly indicating the presence and dimensions of the conductivity anomaly associated with the thermal zone. Although the dc data was better able to resolve the high resistivity bedrock, the EM-data were able to resolve all major features without distortion at shorter transmitter receiver separations and in about one-third of the field time.

Wilt, M.; Goldstein, N.; Stark, M.; Haught, R.

1980-05-01T23:59:59.000Z

287

Thomas Edison | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Edison Thomas Edison Tesla vs. Edison 62 likes Thomas Edison Inventor Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical incandescent light bulb. A savvy businessman, he invented a number of other technologies that are still in use today -- including the an early stock ticker, a sound-recording phonograph and a two-way telegraph -- and holds the record for the most patents, ever. Learn more interesting facts about Edison in our Top 8 Things You Didn't Know About Thomas Alva Edison. Innovators Sort by: Random | Alphabetical | Rating (High to Low) | Rating (Low to High) Nikola Tesla Inventor 435 likes Nikola Tesla was born in the Austrian Empire (now Croatia) but moved to the United States to work for Thomas Edison

288

NREL: Energy Sciences - Thomas Gennett  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Gennett Thomas Gennett Senior Scientist Photo of Thomas Gennett Phone: (303) 384-6628 Email: thomas.gennett@nrel.gov Thomas Gennett is currently a senior scientist at NREL and holds Professor Emeritus of Chemistry and Materials Science status with the Rochester Institute of Technology (RIT). At NREL, Dr. Gennett leads three distinct projects. One focuses on the mechanism of room temperature hydrogen adsorption for carbon based sorbents, the second on the development of advanced materials for direct methanol fuel cell anode catalysts, and the third on development of next generation transparent conductive oxides (TCOs) for photovoltaic applications. Previously, while a Professor at RIT, he was co-founder and director (2001-2003) of the highly successful NanoPower Research Laboratory. Dr. Gennett has had a strong collaboration

289

Iran Thomas Auditorium, 8600  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2012 1, 2012 4:00 pm Iran Thomas Auditorium, 8600 Simulating the Formation of Carbonate Minerals: The Role of Nanoscale Phenomena in Non-Classical Nucleation Julian Gale Nanochemistry Research Institute Department of Chemistry, Curtin University, Australia CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: Calcium carbonate is an abundant mineral that exhibits three crystalline polymorphs, as well as an amorphous form, and represents a natural form of sequestered carbon. While the most stable calcite polymorph can grow as macroscopic single crystals, the process of biomineralisation can alternatively lead to complex polycrystalline assembles that serve as functional materials in nature. As such, the

290

Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: CAS 11-08-01, Contaminated Waste Dump #1 CAS 11-08-02, Contaminated Waste Dump #2 CAS 11-23-01, Radioactively Contaminated Area A CAS 11-23-02, Radioactively Contaminated Area B CAS 11-23-03, Radioactively Contaminated Area C CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: No further action for CAS 11-23-01 Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

none,

2013-04-30T23:59:59.000Z

291

Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada  

SciTech Connect

This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: CAS 11-08-01, Contaminated Waste Dump #1 CAS 11-08-02, Contaminated Waste Dump #2 CAS 11-23-01, Radioactively Contaminated Area A CAS 11-23-02, Radioactively Contaminated Area B CAS 11-23-03, Radioactively Contaminated Area C CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: No further action for CAS 11-23-01 Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

none,

2013-04-30T23:59:59.000Z

292

Tennessee Valley Authority Smart Modal Area Recharge Terminal (SMART) Station Project  

Science Conference Proceedings (OSTI)

This report documents the base design for a Smart Modal Area Recharge Terminal (SMART) station. The base design is for a 10-space public vehicle charging facility, incorporating a solar photo-voltaic array/canopy with battery storage. Many of the design recommendations are based on the system design experience of Eaton Corporation in related energy applications and cover safety compliance and field integration. The design effort was conducted not only to develop a base design that can be used by other en...

2010-06-14T23:59:59.000Z

293

Thomas D. Williams Assistant Administrator  

Gasoline and Diesel Fuel Update (EIA)

Thomas D. Williams Thomas D. Williams Assistant Administrator for Resource and Tecnology Management Duties Thomas D. Williams is the Assistant Administrator for Resource & Technology Management. He provides leadership and direction to oversee the management and operation of EIA's employee services, information technology policy and operations, and integrated planning, budget, procurement, evaluation and project management activity. Biography Thom is a career member of the Senior Executive Service with more than 27 years of professional experience in developing, linking, and implementing successful strategic, financial, human capital, operational, technology, and administrative policies and plans for federal research, science, engineering, and regulatory programs.

294

Map showing geothermal resources of The Lake City-Surprise Valley Known Geothermal Resource Area, Modoc County, California  

DOE Green Energy (OSTI)

Geothermal data are summarized from published and unpublished geophysical, geochemical, and geologic reports on Surprise Valley prepared during the past 26 years. Particular emphasis is placed on a comprehensive structural interpretation of the west half of the valley that is based on map compilation of concealed faults that have been inferred from geophysical methods and exposed faults that can be seen in the field and/or on aerial photographs. The faults apparently control the location of modern geothermal activity.

Not Available

1981-01-01T23:59:59.000Z

295

Tennessee Valley Smart Grid Roadmap  

Science Conference Proceedings (OSTI)

This document is the final report resulting from a Smart Grid road-mapping process conducted collaboratively by the power distributors of the Tennessee Valley in coordination with the Tennessee Valley Authority. The project spanned twelve months and was facilitated through a series of topical workshops in which domain experts from throughout the Valley met to develop the plan. The roadmap takes a ten-year look at Smart Grid developments and plans for the Valley, identifying key focus areas, specific goal...

2011-12-05T23:59:59.000Z

296

2013 Annual Planning Summary for the Thomas Jefferson Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and...

297

Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

CAU 366 comprises six corrective action sites (CASs): 11-08-01, Contaminated Waste Dump #1 11-08-02, Contaminated Waste Dump #2 11-23-01, Radioactively Contaminated Area A 11-23-02, Radioactively Contaminated Area B 11-23-03, Radioactively Contaminated Area C 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

Patrick Matthews

2012-09-01T23:59:59.000Z

298

White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C  

SciTech Connect

This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

NONE

1996-11-01T23:59:59.000Z

299

Multiple Ruptures For Long Valley Microearthquakes- A Link To...  

Open Energy Info (EERE)

Number: Unavailable DOI: Unavailable Source: View Original Journal Article Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera...

300

Network Worms Thomas M. Chen*  

E-Print Network (OSTI)

Network Worms Thomas M. Chen* Dept. of Electrical Engineering Southern Methodist University PO Box is the possible rate of infection. Since worms are automated programs, they can spread without any human action. Historical examples of worms have included: · Trojan horses: software with a hidden malicious function, e

Chen, Thomas M.

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

1982-01-01T23:59:59.000Z

302

John Thomas - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

John Thomas John Thomas R&D Staff Member Specialty: Automotive Fuel Economy, Emissions, and Aftertreatment John began his career at Oak Ridge National Laboratory in 1978 and has broad experience in fossil energy technology, fuels, combustion, energy conversion, combined heat and power and power generation systems. His most recent R&D efforts include the effects of intermediate ethanol fuel blends on the legacy vehicle fleet and non-road engines, ethanol/gasoline blend engine and vehicle performance and exploring emerging fuel and/or petroleum saving technologies on vehicles. Other recent work includes R&D involving a range of diesel exhaust emissions aftertreatment technologies including soot filters, NOx adsorber catalysts, hydrocarbon SCR, and urea

303

Jim Thomas, 1946-2010  

Science Conference Proceedings (OSTI)

Jim Thomas, a visionary scientist and inspirational leader, died on 6 August 2010 in Richland, Washington. His impact on the fields of computer graphics, user interface software, and visualization was extraordinary, his ability to personally change peoples lives even more so. He is remembered for his enthusiasm, his mentorship, his generosity, and, most of all, his laughter. This collection of remembrances images him through the eyes of his many friends.

Stone, Maureen; Kasik, David; Bailey, Mike; van Dam, Andy; Dill, John; Rhyne, Theresa-Marie; Foley, Jim; Encarnacao, L. M.; Rosenblum, Larry; Earnshaw, Rae; Ma, Kwan-Liu; Wong, Pak C.; Encarnacao, Jose; Fellner, Dieter; Urban, Bodo

2010-11-01T23:59:59.000Z

304

Independent Oversight Inspection, Thomas Jefferson National Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson National Thomas Jefferson National Accelerator Facility - August 2008 Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Thomas Jefferson Site Office (TJSO) and the Thomas Jefferson National Accelerator Facility (TJNAF) during May through July 2008. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. In coordination with TJSO, TJNAF has taken a number of actions to develop a

305

Mr. Thomas Mahl Granite City Steel Company  

Office of Legacy Management (LM)

8&v/ 8&v/ Mr. Thomas Mahl Granite City Steel Company 20th and State Streets Granite City, IL 62040 Dear Mr. Mahl: This is to notify you that the U.S. Department of Energy (DOE) has designated your company's facility for remedial action as a part of the Formerly Utilized Sites Remedial Action Program. Remedial activities are managed by the DOE Oak Ridge Field Office, and Ms. Teresa Perry (615-576-8956) will be the site manager. As a result of the designation decision, Ms. Perry will be the appropriate point of contact in the future. If you have any questions, please call me at 301-903-8149. W. Alexander Williams, PhD Designation and Certification Manager Division of Off-Site Programs Office of Eastern Area Programs Office of Environmental Restoration

306

Iran Thomas Auditorium, 8600 Environmental Transmission Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 26, 2012 11:00 am Iran Thomas Auditorium, 8600 Environmental Transmission Electron Microscopy for Catalysis Research: The Example of Carbon Nanotubes Eric A. Stach Center for...

307

Info-Exch 2012- Thomas Johnson Presentation  

Energy.gov (U.S. Department of Energy (DOE))

EM Recovery Act Program Director Thomas Johnson gave a presentation on Recovery Act lessons learned at the 2012 Recovery Act Information Exchange.

308

Dr. Thomas W. LeBrun  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Dr. Thomas W. LeBrun. Dr. LeBrun is a research physicist in the Nanoscale Metrology Group (683.03 ...

2011-10-06T23:59:59.000Z

309

VEE-0032- In the Matter of Thomas Oil Company  

Energy.gov (U.S. Department of Energy (DOE))

On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

310

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

311

Thomas Edison vs. Nikola Tesla | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Edison vs. Nikola Tesla Thomas Edison vs. Nikola Tesla Addthis Duration 46:00 Topic Alternative Fuel Vehicles Renewables Smart Grid Transmission Innovation Washington, DC...

312

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004  

Science Conference Proceedings (OSTI)

This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

2005-04-01T23:59:59.000Z

313

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

314

Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

None

2007-06-01T23:59:59.000Z

315

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

316

ORISE: Faculty Research Experiences - Dr. Thomas Liu  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Liu Thomas Liu Professor and student team develops flexible, free alternative to proprietary data analytics software Dr. Thomas Liu and Monty Bains Dr. Thomas Liu and Monty Bains research free web-based data analysis and visualization application as an alternative to common fee-based software. They are participating in the U.S. Department of Homeland Security's Summer Research Team Program for Minority Serving Institutions. The program is administered by the Oak Ridge Institute for Science and Education. Photo courtesy of Tamra Carpenter, Rutgers University. Click image to enlarge. Fifteen years ago people could not imagine the capabilities they would soon have through the Internet and supporting programs. The evolution of web technology moves at such a fast pace that most people focus on keeping pace

317

Geothermal investigations in Idaho. Part 5. Geochemistry and geologic setting of the thermal waters of the northern Cache Valley area, Franklin County, Idaho  

DOE Green Energy (OSTI)

The thermal waters of the north-south trending graben structure known as northern Cache Valley in southeastern Idaho were sampled during the summer and fall of 1973. Geologic and gravity data for the area indicate fault control for nearly all thermal water occurrences. Thermal-water discharges are generally restricted to the course of the Bear River with few known in areas away from the river. Spring deposits in the form of travertine may not be indications of low temperature thermal waters because abundant limestone and dolomite make up the geologic framework. Much gas, believed to consist mostly of carbon dioxide, is being evolved from many of the springs. The hottest water is found near Battle Creek and Squaw hot springs approximately 4 kilometers northwest of the town of Preston. Metoric waters descend along fault planes, fractures, and fissures to depths at which they are heated by increasing rock temperatures (geothermal gradient of 5/sup 0/C per 100 meters). Due to decreased density, the heated waters rise along the same or adjacent fault planes to the surface. The quartz equilibrium geochemical thermometer applied to the thermal water discharges indicates temperatures approaching 150/sup 0/C may be encountered by deep drilling. Mixing models, based on quartz solubility, indicate higher aquifer temperatures than the quartz equilibrium thermometer, but chloride concentration vs. temperature plots are not linear. The sodium-potassium-calcium geochemical thermometer indicates higher temperatures than quartz equilibrium and mixing models. The thermal waters are higher in total dissolved solids (12,000 to 13,000 milligrams per liter) than are known elsewhere in Idaho and represent potential pollution hazards should large scale withdrawal be attempted.

Mitchell, J.C.

1976-07-01T23:59:59.000Z

318

Summer Wind Flow Regimes over the Sacramento Valley  

Science Conference Proceedings (OSTI)

This study utilized conditional sampling to identify three frequent wind regimes in the lower Sacramento Valley. The major flow features of the mean diurnal wind patterns in the southern Sacramento Valley and surrounding areas were analyzed for ...

Laura L. Zaremba; John J. Carroll

1999-10-01T23:59:59.000Z

319

Thomas R. Cech, RNA, and Ribozymes  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas R. Cech, RNA, and Ribozymes Resources with Additional Information · Videos Thomas Cech Courtesy of Glenn Asakawa/ University of Colorado Thomas R. Cech conducted ground-breaking research that ‘established that RNA, like a protein, can act as a catalyst in living cells.'1 'Prior to Cech's research, most scientists believed that proteins were the only catalysts in living cells. In 1982, his research group showed that an RNA molecule from Tetrahymena, a single-celled pond organism, cut and rejoined chemical bonds in the complete absence of proteins. This discovery of self-splicing RNA provided the first exception to the long-held belief that biological reactions are always catalyzed by proteins. In 1989, Cech was awarded the Nobel Prize in Chemistry.'2

320

Reconnaissance for mercury over geothermal areas of the Imperial Valley, California. [Analysis of samples of soil gas and gas from drill holes  

DOE Green Energy (OSTI)

Nine samples of soil gas and gas from drill holes were collected over and near two geothermal anomalies in the Imperial Valley, California, to measure the possible presence of mercury. With the instrumentation used, the smallest quantity of mercury that could be detected was 2 nanograms. No mercury was detected in any sample.

Hinkle, M.E.; Vaughn, W.W.

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined achievements/challenges Course goals Why study light 9/10/12 Lecture 2: Edison's light bulb, light and color bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science Light exhibits

Guenther, Frank

322

Engineering Light Course instructor: Dr. Thomas Bifano  

E-Print Network (OSTI)

from a laser pointer, to make a light bulb like Thomas Edison's, to discover how engineers ruined · Smart lighting 9/10/12 Lecture 2: Edison's light bulb, light and color · What engineers do, engineering bulbs o Observing blackbody radiation color 9/12/12 Field Trip: Museum of Science · Light exhibits

Bifano, Thomas

323

2012 Annual Planning Summary for Thomas Jefferson Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

324

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

325

West Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Facility Nuclear Facility Coalition on West Valley Nuclear Wastes PO Box 603 Springville NY 14141 WV-DigItUp@roadrunner.com Joanne Hameister CFMT (Concentrator Feed Make-up Tank) Packaged 13'x14'x19' 177.5 tons MFHT (Melter Feed Hold Tank) Packaged 13'x14'x16' 152.5 tons WIR Shipments pending to LLW facility MELTER 10'x10'x10' Packaged: 14'x13'x13' 159 tons 4,570 Curies Waste Categories High-Level Waste Based on source * Nuclear Fuel * Reprocessing * TRU Low-Level Waste Not Low Risk Complex classification based on * Nuclide inventory * Half-life(s) * Quantity * Decay products Background Radiation 1978 - average was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out,

326

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

327

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005  

SciTech Connect

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with bentonite during the first quarter of 2006 and monitored during subsequent inspections. The cover vegetation was healthy and well established. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The inspections at UC-3 indicated that the sites are in excellent condition. All monuments and signs showed no displacement, damage, or removal. A small erosion gully from spring rain runoff was observed during the June inspection, but it did not grow to an actionable level during 2005. No other issues or concerns were identified. Inspections performed at UC-4 Mud Pit C cover revealed that erosion rills were formed during March and September exposing the geosynthetic clay liner. Both erosion rills were repaired within 90 days of reporting. Sparse vegetation is present on the cover. The overall condition of the monuments, fence, and gate are in good condition. No issues were identified with the warning signs and monuments at the other four UC-4 locations. Subsidence surveys were conducted at UC-1 CMP and UC-4 Mud Pit C in March and September of 2005. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. The June vegetation survey of the UC-1 CMP cover and adjacent areas indicated that the revegetation has been very successful. The vegetation should continue to be monitored to document any changes in the plant community and identify conditions that could potentially require remedial action in order to maintain a viable vegetative cover on the site. Vegetation surveys should be conducted only as required. Precipitation during 2005 was above average, with an annual rainfall total of 21.79 centimeters (8.58 inches). Soil moisture content data show that the UC-1 CMP cover is performing as designed, with evapotranspiration effectively removing water from the cover. It is recommended to continue quarterly site inspections and the collection of soil moisture data for the UC-1 CMP cove

NONE

2006-04-01T23:59:59.000Z

328

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

329

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

330

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

331

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009)...

332

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

333

CHESTNUT RIDGE RD VALLEY ROAD  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

334

10 Questions for an Automotive Engineer: Thomas Wallner | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner June 17, 2011 - 3:30pm Addthis Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Thomas Wallner - automotive engineer extraordinaire, who hails from

335

MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

,2008 ,2008 MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Contract Change Order Administration of Department of Energy Prime Contracts The purpose of this memorandum is to highlight the need for good contract administration of Department of Energy (DOE) contracts (non management and operating contracts) including those covered by DOE Order 413.3A, Program and Project Management for the Acquisition of Capital Assets. One of the focus areas of the DOE's efforts to improve contract and project management is the recopition that effectrve contract change order administration is critical to ensuring that contract and project requirements are met. Fundamentally, the award of an appropriate contract type that best

336

Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, February 4, 2013 11:00 am Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics Alexander K. Tagantsev Ceramics Laboratory, Swiss Federal Institute of...

337

MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

16,20 10 MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR SECURITY ADMINISTRATION WILLIAM F. BRINKMAN DIRECTOR OFFICE OF SCIENCE INES TRIAY ASSISTANT SECRETARY...

338

Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text  

Science Conference Proceedings (OSTI)

This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

NONE

1995-04-01T23:59:59.000Z

339

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley  

Open Energy Info (EERE)

Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Initial Results of Magnetotelluric Array Surveying at the Dixie Valley Geothermal Area, with Implications for Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal area. Basic goals of the survey area are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single range front fault versus shallower, stepped pediment; 2) delineate fault zones which have experienced fluid flux as

340

Thomas P. D'Agostino | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas P. D'Agostino Thomas P. D'Agostino About Us Thomas P. D'Agostino - Under Secretary for Nuclear Security & Administrator, National Nuclear Security Administration Photo of Thomas D’Agostino Mr. Thomas Paul D'Agostino was sworn in on August 30, 2007, as the Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration (NNSA). On September 3, 2009, President Obama announced that Mr. D'Agostino was his choice to continue serving as the Under Secretary for Nuclear Security and NNSA Administrator. The NNSA plays a critical role in ensuring the security of our Nation by maintaining the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear testing; reducing the global danger from the proliferation of nuclear weapons and materials; providing the U.S. Navy

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

342

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

343

Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

Not Available

1993-05-01T23:59:59.000Z

344

Ganges valley aerosol experiment.  

Science Conference Proceedings (OSTI)

In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

2011-08-01T23:59:59.000Z

345

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

346

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

347

The Nuclear Thomas-Fermi Model  

DOE R&D Accomplishments (OSTI)

The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

Myers, W. D.; Swiatecki, W. J.

1994-08-01T23:59:59.000Z

348

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

349

Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

350

Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

Thomas D'Agostino, National Nuclear Security Thomas D'Agostino, National Nuclear Security Administration, Addresses United Nations on Nuclear Disarmament | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator Thomas D'Agostino, National Nuclear Security Administration, ... Speech Administrator Thomas D'Agostino, National Nuclear Security

351

Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2011 4:00 pm Iran Thomas Auditorium, 8600 Nano Carbon: From Solar Cells to Atomic Drums Paul McEuen Goldwin Smith Professor of Physics, Cornell University and Kavli...

352

Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 13, 2011 4:00 pm Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle Medicines Mark E. Davis Chemical Engineering California Institute of Technology CNMS D D I I...

353

Iran Thomas Auditorium, 8600 Determination of CO, H  

NLE Websites -- All DOE Office Websites (Extended Search)

February 9, 2012 4:00 pm Iran Thomas Auditorium, 8600 Determination of CO, H 2 and H 2 O Coverage by XANES on Pt and Au During Water Gas Shift Reaction: Experiment and DFT Modeling...

354

Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2011 4:00 pm Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy...

355

Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 25, 2013 10:00 am Iran Thomas Auditorium, 8600 Shape-Controlled Synthesis of Metal Nanocrystals Younan Xia Georgia Institute of Technology CNMS D D I I S S C C O O V V E E...

356

TBU-0082- In the Matter of Thomas L. Townsend  

Energy.gov (U.S. Department of Energy (DOE))

Thomas L. Townsend (Townsend) appeals the dismissal of his complaint of retaliation and request for investigation filed under 10 C.F.R. Part 7081 by the Oak Ridge Operations Office (OR) of the...

357

DEL 1 T' I991 Mr. Thomas Jorling Commissioner  

Office of Legacy Management (LM)

I991 Mr. Thomas Jorling Commissioner State of New York Department of Environmental Conservation Albany, New York 12233-1010 Dear Mr. Jorling: I am responding to your November 25,...

358

Manhattan Project: Generals Leslie Groves and Thomas Farrell  

Office of Scientific and Technical Information (OSTI)

Generals Leslie Groves and Thomas Farrell Events > Dawn of the Atomic Era, 1945 > Debate Over How to Use the Bomb, Washington, D.C., Late Spring 1945 Generals Leslie Groves and...

359

Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases associated with the nuclear tests, it was determined that CASs 11-23-02, 11-23-03, and 11-23-04 will be investigated as one release site. The three test areas associated with these CASs are in close proximity; the devices tested were all composed of plutonium and enriched uranium; and the ground zeroes are all posted high contamination areas (HCAs). Because the device tested at CAS 11-23-01 was composed primarily of enriched uranium and the ground zero is not a posted HCA, the CAS will be investigated as a separate release. The DQO process also resulted in an assumption that TED within the HCAs and contaminated waste dumps exceeds the FAL and requires corrective action. A field investigation will be performed to define where TED exceeds the FAL and to determine whether other contaminants of concern are present at the site associated with other activities that took place at the site or from spills or waste discovered during the investigation. The presence and nature of contamination from other types of releases (such as migration and any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

Patrick Matthews

2011-09-01T23:59:59.000Z

360

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hudson Valley Fog Environments  

Science Conference Proceedings (OSTI)

Observations of 14 cases of radiation fog in the Hudson River valley in New York State are presented. Our emphasis is to connect the fog prediction problem to mechanisms in the nocturnal boundary layer that influence heat and moisture balances. ...

David R. Fitzjarrald; G. Garland Lala

1989-12-01T23:59:59.000Z

362

Nighttime Valley Waves  

Science Conference Proceedings (OSTI)

This paper describes a regular oscillation observed in nighttime drainage airflow in a valley under relatively light upper-level wind conditions. The period of these oscillations is about 20 minutes with at least one harmonic at about 10 minutes. ...

William M. Porch; William E. Clements; Richard L. Coulter

1991-02-01T23:59:59.000Z

363

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

364

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Silicon Valley Clean Cities (San Jose) Coalition Silicon Valley Clean Cities (San Jose) Coalition The Silicon Valley Clean Cities (San Jose) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Silicon Valley Clean Cities (San Jose) coalition Contact Information Margo Sidener 408-998-5865 margo@lungsrus.org Patricia Tind 408-998-5865 patricia@lungsrus.org Coalition Website Clean Cities Coordinators Coord Margo Sidener Coord Coord Patricia Tind Coord Photo of Margo Sidener Margo Sidener has been the coordinator of the Silicon Valley (San Jose) Clean Cities coalition since 2006. She also serves as the president and CEO of Breathe California of the Bay Area, the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight

365

Independent Oversight Review, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

366

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

367

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

on NRC International Regulators Conference on Nuclear on NRC International Regulators Conference on Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security

368

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley  

Open Energy Info (EERE)

Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie Valley Geothermal Area- A Reactive Transport Modeling Approach Abstract A 2D reactive transport model of the Dixie Valley,Nevada, geothermal area was developed to assessfluid flow pathways and fluid rock interactionprocesses. Setting up the model includedspecification of the mineralogy of the different rockunits, the formulation of the corresponding mineraldissolution and precipitation reactions, the explicitdefinition of two major normal faults and thespecification of a dual continuum domain

369

Session: Long Valley Exploratory Well  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

1992-01-01T23:59:59.000Z

370

Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

Science Conference Proceedings (OSTI)

This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

NONE

1995-01-01T23:59:59.000Z

371

Magic Valley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Electric Coop Inc Valley Electric Coop Inc Jump to: navigation, search Name Magic Valley Electric Coop Inc Place Texas Utility Id 11501 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Area 100 W HPS Lighting Commercial Area 150 W HPS Lighting Commercial Area 175 W MV Lighting Commercial Area 250 W HPS Lighting Commercial Area 400 W HPS Lighting Commercial Area 400 W MV Lighting Commercial Flood 1000 W HPS Lighting Commercial Flood 1000 W MH Lighting Commercial Flood 250 W HPS Lighting

372

Copyright Notice Copyright 2003 Jeffrey Thomas Hein, P.E.  

E-Print Network (OSTI)

V System Willamette Falls-Portland, Maine for Street Lighting - Westinghouse - 1890 1886 1st Multiple lamp lighting system for street lighting, which he put to use in Cleveland, Ohio. That same year Thomas Alva Edison (Figure 2-2) and his team of researchers invented the incandescent light bulb for home

373

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences  

E-Print Network (OSTI)

Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences Plasmas Near Mercury: Solar Wind Driving and Surface Interac>ons #12;#12;Mercury Venus.4 kg Power: 2.0 W! 8! #12;9! #12;#12;11! MESSENGER ORBIT! Local Time Definition! 12! 0! 6! 18! Study

374

High Speed Rail in America Thomas Ducharme, Matt Schena,  

E-Print Network (OSTI)

://m.wikitravel.org/en/Frankfurt #12;Possible effects on Freight Rail · High speed rail usually hauls passengers, though new Resulting in improvement to those lines o Reducing operating costs due to sharing rail · Increase in freightHigh Speed Rail in America Thomas Ducharme, Matt Schena, and Dan Bellis #12;The US Current

Nagurney, Anna

375

Matrix models and stochastic growth in Donaldson-Thomas theory  

SciTech Connect

We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

2012-10-15T23:59:59.000Z

376

Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study  

DOE Green Energy (OSTI)

Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

Sammel, E.A.; Craig, R.W.

1981-01-01T23:59:59.000Z

377

The investigation of anomalous magnetization in the Raft River valley,  

Open Energy Info (EERE)

investigation of anomalous magnetization in the Raft River valley, investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: The investigation of anomalous magnetization in the Raft River valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; clastic sediments; economic geology; exploration; geophysical methods; geophysical surveys; geothermal energy; gravel; ground methods; Idaho; isothermal remanent magnetization; magnetic anomalies; magnetic methods; magnetic properties; magnetic susceptibility; magnetization; paleomagnetism; Raft River basin; remanent magnetization; sediments; surveys; United States Author(s): Anderson, L.A.; Mabey, D.R. Published: Abstracts - Society of Exploration Geophysicists International

378

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic  

Open Energy Info (EERE)

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station

379

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

380

Seismicity related to geothermal development in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Los Alamos honored by Española Valley Chamber of Commerce  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL Honored By Española Valley Chamber of Commerce LANL Honored By Española Valley Chamber of Commerce Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Los Alamos honored by Española Valley Chamber of Commerce The Espanola Valley Chamber of Commerce recognized the Lab for its support to the chamber and the entire Espanola Valley with a President's Choice Award. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The Lab received the award for efforts in a variety of areas. In late January, the Espanola Valley Chamber of Commerce recognized the Lab for its support to the chamber and the entire Espanola Valley with a President's Choice Award. Kurt Steinhaus with the Lab's Community

382

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

383

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

384

MONUMENT VALLEY, ARIZONA  

Office of Legacy Management (LM)

VALLEY, ARIZONA VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems identified in the data validation process and summarizes the validator's findings. Suspected Anomalies Reports generated by the UMTRA database system. This report compares the new data $et with historical data and designates "suspected anomalies" based on the many criteria listed as footnotes on each page. In

385

monument valley.cdr  

Office of Legacy Management (LM)

The Monument Valley processing site is located on the The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore-processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site.

386

Thomas County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thomas County, Georgia: Energy Resources Thomas County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.8417409°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.8417409,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Remarks by Administrator Thomas D'Agostino, National Nuclear Security  

National Nuclear Security Administration (NNSA)

to the Energy Facility Contractors Group | National Nuclear to the Energy Facility Contractors Group | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by Administrator Thomas D'Agostino, National Nuclear ... Speech Remarks by Administrator Thomas D'Agostino, National Nuclear Security Administration, to the Energy Facility Contractors Group

388

Mr. Richard T. Thomas General Counsel for Petroleum Operations  

Office of Legacy Management (LM)

j&,J"[Di-' JAQ--- j&,J"[Di-' JAQ--- hl 3. ) :j .I Y ' ! <' Department of Energy Washington, D.C. 20545 NOV 1 1984 Mr. Richard T. Thomas General Counsel for Petroleum Operations P.O. Box 391 Ashland, Kentucky 41114 Dear Mr. Thomas: I am enclosing a copy of the radiological survey report for the Ashland Oil Company (former Haist property), Tonawanda, New York (Enclosure l), which was conducted in July 1976 (copies were sent to your Buffalo, New York, office on August 17, 1978). The results of the survey indicate levels of radioactive contamination above current guidelines. As noted in the report, the radioactive residues on the site do not pose a health hazard provided they (the residues) were not disturbed in the past or will not be disturbed in the future; i.e.,

389

LVOC - Livermore Valley Open Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

LVOC - Livermore Valley Open Campus LVOC - Livermore Valley Open Campus ↓ Case Studies | ↓ About LVOC Get to market faster Making the impossible possible Lawrence Livermore and Sandia National Laboratories are home to some of the world's most unique state-of-the art facilities and resources. For decades, we have been using our combined capabilities, including a workforce of over 7000 employees to solve complex problems for the nation. Visit the science and technology epicenter - the Livermore Valley Open Campus - just east of San Francisco in the Tri-Valley's innovation ecosystem to find out what problems we can solve for you. LVOC Flyer We Keep Industry on the Cutting Edge of Innovative Technology About the Livermore Valley Open Campus LVOC Rendering Open for Business: The Livermore Valley Open Campus is located at the

390

Time Series Dependent Analysis of Unparametrized Thomas Networks  

Science Conference Proceedings (OSTI)

This paper is concerned with the analysis of labeled Thomas networks using discrete time series. It focuses on refining the given edge labels and on assessing the data quality. The results are aimed at being exploitable for experimental design and include ... Keywords: Time series analysis,Regulators,Computational modeling,Time measurement,Bioinformatics,Computational biology,Labeling,constraint satisfaction.,Time series analysis,model checking,temporal logic,biology and genetics

Hannes Klarner; Heike Siebert; Alexander Bockmayr

2012-09-01T23:59:59.000Z

391

Schlumberger soundings in the Upper Raft River and Raft River Valleys,  

Open Energy Info (EERE)

soundings in the Upper Raft River and Raft River Valleys, soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Details Activities (1) Areas (1) Regions (0) Abstract: In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity soundings in the Upper Raft River Valley and in parts of the Raft River Valley. These soundings complement the seventy-nine soundings made previously in the Raft River Valley (Zohdy and others, 1975) and bring the total number of soundings to 149. This work was done as part of a hydrogeologic study of the area. The location, number, and azimuth of all 149 Schlumberger sounding stations are presented. The location of the new

392

Pennsylvania Nuclear Profile - Beaver Valley  

U.S. Energy Information Administration (EIA) Indexed Site

Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

393

EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Chariton Valley Biomass Project, Chillicothe, Iowa 75: Chariton Valley Biomass Project, Chillicothe, Iowa EA-1475: Chariton Valley Biomass Project, Chillicothe, Iowa SUMMARY This EA evaluates the environmental impacts for the proposal to provide partial funding for (1) the design and construction of a biomass storage, handling, and conveying system into the boiler at the Ottumwa Generating Station near Chillicothe, Iowa; (2) operational testing of switchgrass as a biomass co-fire feedstock at OGS; and (3) ancillary activities related to growing, harvesting, storing, and transporting switchgrass in areas of the Rathbun Lake watershed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2003 EA-1475: Final Environmental Assessment Chariton Valley Biomass Project

394

Recency Of Faulting And Neotechtonic Framework In The Dixie Valley  

Open Energy Info (EERE)

Of Faulting And Neotechtonic Framework In The Dixie Valley Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Details Activities (6) Areas (3) Regions (0) Abstract: We studied the role that earthquake faults play in redistributing stresses within in the earths crust near geothermal fields. The geographic foci of our study were the sites of geothermal plants in Dixie Valley, Beowawe, and Bradys Hot Springs, Nevada. Our initial results show that the past history of earthquakes has redistributed stresses at these 3 sites in a manner to open and maintain fluid pathways critical for geothermal

395

Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information  

Open Energy Info (EERE)

Studies In Grass Valley, Nevada Studies In Grass Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Magnetotelluric Studies In Grass Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A program of detail magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques ; and the evaluation of the SQUID or Josephson effect magnetometer i n practical

396

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project |  

Open Energy Info (EERE)

Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Jump to: navigation, search Project Lead Sioux Valley Southwestern Electric Cooperative, Inc. Country United States Headquarters Location Colman, South Dakota Additional Benefit Places Minnesota Recovery Act Funding $4,016,368.00 Total Project Value $8,032,736.00 Coverage Area Coverage Map: Sioux Valley Southwestern Electric Cooperative, Inc. Smart Grid Project Coordinates 43.9824719°, -96.8144973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

397

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

398

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

34: Hualapai Valley Solar Interconnection Project, Arizona 34: Hualapai Valley Solar Interconnection Project, Arizona EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona Overview Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator. Proposed infrastructure would consist of a solar field, power block, thermal energy storage system, substation site, transmission line, temporary laydown areas and other ancillary facilities. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

399

Non-Double-Couple Microearthquakes At Long Valley Caldera, California,  

Open Energy Info (EERE)

Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Non-Double-Couple Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Details Activities (1) Areas (1) Regions (0) Abstract: Most of 26 small (0.4<~M<~3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and

400

VALDRIFTA Valley Atmospheric Dispersion Model  

Science Conference Proceedings (OSTI)

VALDRIFT (valley drift) is a valley atmospheric transport, diffusion, and deposition model. The model is phenomenologicalthat is, the dominant meteorological processes governing the behavior of the valley atmosphere are formulated explicitly in ...

K. Jerry Allwine; Xindi Bian; C. David Whiteman; Harold W. Thistle

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mercury In Soils Of The Long Valley, California, Geothermal System | Open  

Open Energy Info (EERE)

In Soils Of The Long Valley, California, Geothermal System In Soils Of The Long Valley, California, Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mercury In Soils Of The Long Valley, California, Geothermal System Details Activities (3) Areas (1) Regions (0) Abstract: An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance. The primary objectives of this

402

Imperial Valley environmental project: air quality assessment  

DOE Green Energy (OSTI)

The potential impact on air quality of geothermal development in California's Imperial Valley is assessed. The assessment is based on the predictions of numerical atmospheric transport models. Emission rates derived from analyses of the composition of geothermal fluids in the region and meteorological data taken at six locations in the valley over a 1-yr period were used as input to the models. Scenarios based on 3000 MW, 2000 MW, 500 MW, and 100 MW of power production are considered. Hydrogen sulfide is the emission of major concern. Our calculations predict that at the 3000-MW level (with no abatement), the California 1-h standard for H{sub 2}S(42 {mu}g/m{sup 3}) would be violated at least 1% of the time over an area of approximately 1500 km{sup 2} (about 1/3 of the valley area). The calculations indicate that an H{sub 2}S emission rate below 0.8 g/s per 100-MW unit is needed to avoid violations of the standard beyond a distance of 1 km from the source. Emissions of ammonia, carbon dioxide, mercury, and radon are not expected to produce significant ground level concentrations, nor is the atmospheric conversion of hydrogen sulfide to sulfur dioxide expected to result in significant SO{sub 2} levels.

Ermak, D.L.; Nyholm, R.A.; Gudiksen, P.H.

1979-04-04T23:59:59.000Z

403

Valley Rural Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Rural Electric Coop Inc Valley Rural Electric Coop Inc Place Pennsylvania Utility Id 40222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights 100w HPS Lighting Area Lights 100w Mercury Vapor Lighting Area Lights 150w HPS Lighting Area Lights 175w Mercury Vapor Lighting Area Lights 250w HPS Lighting Area Lights 250w Mercury Vapor Lighting Area Lights 400w HPS Lighting Area Lights 400w Mercury Vapor Lighting Residential Residential Average Rates Residential: $0.1080/kWh Commercial: $0.1020/kWh

404

Chuckawalla Valley State Prison | Open Energy Information  

Open Energy Info (EERE)

Prison Jump to: navigation, search Name Chuckawalla Valley State Prison Place Blythe, California Zip 92226 Sector Solar Product Prison located in Chuckawalla Valley,...

405

Aire Valley Environmental | Open Energy Information  

Open Energy Info (EERE)

search Name Aire Valley Environmental Place United Kingdom Product Leeds-based waste-to-energy project developer. References Aire Valley Environmental1 LinkedIn...

406

Tees Valley Biofuels | Open Energy Information  

Open Energy Info (EERE)

Tees Valley Biofuels Jump to: navigation, search Name Tees Valley Biofuels Place United Kingdom Sector Biofuels Product Company set up by North East Biofuels to establish an...

407

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

408

"Investing in NNSA is an Investment in the Tennessee Valley," Keynote  

National Nuclear Security Administration (NNSA)

"Investing in NNSA is an Investment in the Tennessee Valley," Keynote "Investing in NNSA is an Investment in the Tennessee Valley," Keynote Address to the 2011 TVC National Technology Summit by Administrator Thomas P. D'Agostino | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > "Investing in NNSA is an Investment in ...

409

Thomas Jefferson Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Thomas Jefferson Site Office Pictured Right: Thomas Jefferson Site Office Staff TJSO Staff Photo 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Thomas Jefferson Site Office (TJSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, Virginia. TJNAF is one of ten Office of Science Laboratories and is a single program

410

Solar-cooling-system performance, Frenchman's Reef Hotel, St. Thomas, US Virgin Islands. Final report  

DOE Green Energy (OSTI)

The Solar Cooling System installed in the Frenchman's Reef Resort Hotel Test Site, St. Thomas, US Virgin Islands, used 956 Sunmaster Corporation evacuated glass tube collector modules which provide an effective solar collector aperture of 13,384 square feet. The system consists of the collectors, two 2500 gallon tanks, pumps, an Andover Controls Corporation computerized controller, a large solar optimized Carrier Corporation industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat. The system, its operation sequence, and performance are described.

Harber, H.

1981-09-25T23:59:59.000Z

411

Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona  

Science Conference Proceedings (OSTI)

Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

Not Available

1981-10-01T23:59:59.000Z

412

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle  

Open Energy Info (EERE)

Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Abstract The goal of this study is to map and characterize Quaternary faults in southern Dixie Valley for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. We will use this information to better characterize the regional structure and geothermal resource potential of the area,with a focus on determining the structural

413

SBOT VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIRGINIA VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone (757) 269-7121 Email lloyd@jlab.org ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

414

Valley Forge Corporate Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 Jefferson Ave. 55 Jefferson Ave. Valley Forge Corporate Center Norristown, PA 19403-2497 Pauline Foley Assistant General Counsel 610.666.8248 | Fax - 610.666.8211 foleyp@pjm.com October 30, 2013 Via Electronic Mail: juliea.smith@hq.doe.gov Christopher.lawrence@hq.doe.gov Julie A. Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Re: Department of Energy - Improving Performance of Federal Permitting and Review of Infrastructure Projects. Request for Information ("RFI") 78 Fed. Reg. 53436 (August 29, 2013) Dear Ms. Smith: Please accept the following comments submitted on behalf of PJM Interconnection, L.L.C. ("PJM") in response to the RFI issued in the above captioned matter. This letter responds

415

monument valley.cdr  

Office of Legacy Management (LM)

The The Monument Valley Processing Site is located on the Navajo Nation in northeastern Arizona, about 15 miles south of Mexican Hat, Utah. A uranium-ore processing mill operated at the site from 1955 to 1968 on property leased from the Navajo Nation. The mill closed in 1968, and control of the site reverted to the Navajo Nation. Most of the mill buildings were removed shortly thereafter. The milling process produced radioactive mill tailings, a predominantly sandy material. From 1955 until 1964, ore at the site was processed by mechanical milling using an upgrader, which crushed the ore and separated it by grain size. The finer-grained material, which was higher in uranium content, was shipped to other mills for chemical processing. Coarser-grained material was stored on site. These source materials and other site-related contamination were removed during surface remediation at the

416

Oak Ridge Environmental Management Program Completes Work at Bethel Valley  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge Environmental Management Program Completes Work at Bethel Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds Oak Ridge Environmental Management Program Completes Work at Bethel Valley Burial Grounds September 1, 2011 - 12:00pm Addthis Media Contact Ben Williams http://www.oakridge.doe.gov 865-576-0885 OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Oak Ridge Environmental Management (EM) program recently completed upgrades and soil remediation work at the Bethel Valley Burial Grounds, using approximately $17.5 million in American Recovery and Reinvestment Act funds. Oak Ridge's EM program was able to use Recovery Act funds to address five areas needing improvement, including Solid Waste Storage Areas 1 and 3. This included removing contaminated soil ("hot spots"), diverting clean

417

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

418

Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska  

Open Energy Info (EERE)

Waters In The Valley Of Ten Thousand Smokes Region, Alaska Waters In The Valley Of Ten Thousand Smokes Region, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Details Activities (3) Areas (1) Regions (0) Abstract: Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the

419

Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties,  

Open Energy Info (EERE)

geochemistry study of Indian Wells Valley, Inyo and Kern Counties, geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Details Activities (4) Areas (4) Regions (0) Abstract: Hydrogen and oxygen isotope data on waters of Indian Wells Valley, the Sierra, Rose Valley, and Coso thermal and nonthermal waters were studied. The isotope ratios of Sierran waters are a function of latitude with both ratios becoming depleted in the heavier isotopes from south to north. Assuming that groundwater recharge is from the Sierra, recharge areas for the various groundwater types can be designated.

420

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Commercial production of ethanol in the San Luis Valley, Colorado. Final Report  

DOE Green Energy (OSTI)

The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

1983-07-01T23:59:59.000Z

422

Swauk Valley | Open Energy Information  

Open Energy Info (EERE)

Swauk Valley Swauk Valley Jump to: navigation, search Name Swauk Valley Facility Swauk Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner McKinstry Developer McKinstry Location Ellensburg WA Coordinates 47.14163°, -120.754376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.14163,"lon":-120.754376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

South Valley Compliance Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Valley South Valley Agreement Name South Valley Superfund Site Interagency Agreement State New Mexico Agreement Type Compliance Agreement Legal Driver(s) CERCLA Scope Summary Interagency Agreement with the U.S. Air Force for payment of costs associated with the remediation of two operable units (the facility and San Jose 6) at the South Valley Superfund Site. Parties DOE; U.S. Air Force Date 9/26/1990 SCOPE * Set forth the actions required of the USAF and DOE to fulfill their respective responsibilities pursuant to the Settlement Agreement between DOE, USAF, and General Electric Company (8/29/1990). * Establish mechanism by which DOE will transfer, to a fund managed by the USAF, its share of the costs set forth in the Settlement Agreement. * Set forth each party's responsibilities and respective share of costs.

424

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Magic Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Magic Valley Facility Magic Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Location Raymondville TX Coordinates 26.46534829°, -97.6725769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.46534829,"lon":-97.6725769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Valley Electric Association- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

The Board of Directors for Valley Electric Association (VEA) approved net metering in April 2008. The rules apply to systems up to 30 kW, though owners of larger systems may be able to negotiate...

427

Retrofitting the Tennessee Valley Authority  

E-Print Network (OSTI)

As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

Zeiber, Kristen (Kristen Ann)

2013-01-01T23:59:59.000Z

428

Along-Valley Structure of Daytime Thermally Driven Flows in the Wipp Valley  

Science Conference Proceedings (OSTI)

High-resolution Doppler lidar observations obtained during the Mesoscale Alpine Program (MAP) 1999 field campaign are used to investigate the along-valley structure of daytime valley flows in the Wipp Valley, Austria. The observations show that ...

Magdalena Rucker; Robert M. Banta; Douw G. Steyn

2008-03-01T23:59:59.000Z

429

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden  

E-Print Network (OSTI)

Studienleiter Chemie und Molekulare Wissenschaften Sekretariat Studienleitung Prof. Thomas Wandlowski Sandra Zbinden Departement für Chemie und Biochemie Departement für Chemie und Biochemie 6318057 e-mail: thomas.wandlowski@dcb.unibe.ch e-mail: sandra.zbinden@dcb.unibe.ch Bachelor in Chemie und

Mühlemann, Oliver

430

Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President  

E-Print Network (OSTI)

reduction goals1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plugin hybrid electric electric vehicle; H2 ICE HEV = hydrogen internal combustion engine hybrid electric vehicle) C.E. Thomas Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H2Gen

431

Wintertime Surface Wind Patterns in the Colorado River Valley  

Science Conference Proceedings (OSTI)

The diurnal variation of regional wind patterns in the complex terrain of the Grand Canyon area was investigated for wintertime fair weather days using a network of wind sensors on 10-m towers. Thermally driven along-slope and along-valley ...

C. David Whiteman; Xindi Bian; Joe L. Sutherland

1999-08-01T23:59:59.000Z

432

VBH-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer VBH-0005 - In the Matter of Thomas Dwyer This Decision involves a whistleblower complaint filed by Thomas Dwyer under the Department of Energy's (DOE) Contractor Employee Protection Program. From January 1996 to October 1997, Mr. Dwyer was employed as a pipefitter by Fluor Daniel Fernald (FDF), a DOE contractor responsible for the cleanup of the Fernald Environmental Management Project, a former DOE uranium production facility located about 18 miles northwest of Cincinnati, Ohio. Mr. Dwyer alleges that FDF first suspended him and then terminated him in retaliation for taking certain actions and making health and safety disclosures. vbh0005.pdf More Documents & Publications VBA-0005 - In the Matter of Thomas Dwyer

433

VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Decision - In the Matter of Thomas T. Deputy Secretary Decision - In the Matter of Thomas T. Tiller VWA-0018 - Deputy Secretary Decision - In the Matter of Thomas T. Tiller This is a request for review by complainant Thomas T. Tiller of an Initial Agency Decision, issued by the Office of Hearings and Appeals (OHA), denying the two reprisal complaints that he filed pursuant to 10 C.F.R. Part 708, the regulation establishing the DOE Contractor Employee Protection Program. Mr. Tiller was employed by Wackenhut Services, Inc. (Wackenhut), a DOE contractor that provides paramilitary security support services at DOE's Savannah River Site in Aiken, South Carolina. Deputy Secretary Decision Affirming VWA-0018 Decision and Order More Documents & Publications OHA Whistleblower Cases Archive File VWA-0018 - In the Matter of Thomas T. Tiller

434

A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A LIMITED LIABILITY PARTNERSHIP A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW Seventh Floor Washington, DC 20007 (202) 298-1800 Phone (202) 338-2416 Fax MEMORANDUM TO: DOE Office of General Counsel FROM: Doug Smith DATE: August 29, 2013 RE: Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits. The communications occurred at a meeting held at 10:30 a.m. on August 20, 2013, following the close of the comment period on the initial framework document for ceiling fans and light kits. The meeting attendees included:

435

Mr. Thomas A. Dickerson Supervisor of Environmental Affairs  

Office of Legacy Management (LM)

3 3 932. . . - ,_ ' ,;. Department of Energy Washinglon.DC 20545 tie c"rT SEP 05 1990 pff, (>-.I Mr. Thomas A. Dickerson Supervisor of Environmental Affairs Carpenter Technology Corporation Engineering and Construction P. 0. Box 14662 Reading, Pennsylvania 19612-4662 Dear Mr. Dickerson: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the surveys of your facility in Reading, Pennsylvania, completed in July and August 1988. We are pleased to inform you that the survey has verified that the radiological condition of your facility is in compliance with applicable DOE Guidelines and that no remedial action or further investigations are necessary. I am enclosing a copy of the survey report prepared by our

436

Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer  

Office of Legacy Management (LM)

9 1986 9 1986 Department of Energy Washington, D .C. 20545 . Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer Romulus, New York 14541 Dear Mr. Stincic: As you are aware, the Department of Energy is evaluating the radiological condition of sites formerly used by Department predecessors during the early years of nuclear energy development , and a portion of the Seneca Army Depot was identified as one such site. While our preliminary inves-tiga- tions did identify residual radioactive material on the site, it is our understanding that the Department of Army assumed responsibility for this residual radioactivity and has completed remedial action. We have not received a final report of this work and would appreciate receiving a copy

437

Observations of Nighttime Winds Using Pilot Balloons in Anderson Creek Valley, Geysers, California  

Science Conference Proceedings (OSTI)

Nighttime drainage or downslope winds along the east-facing slope of Anderson Creek Valley located in the Geysers area of northern California are examined using pilot balloons as air parcel tracers. Observations made over four nights show a ...

Carmen J. Nappo; Howell F. Snodgrass

1981-06-01T23:59:59.000Z

438

Ohio River Valley Winter Moisture Conditions Associated with the PacificNorth American Teleconnection Pattern  

Science Conference Proceedings (OSTI)

The relationship between the PacificNorth American (PNA) teleconnection pattern and Ohio River Valley (ORV) winter precipitation and hydrology is described. The PNA is significantly linked to moisture variability in an area extending from ...

Jill S. M. Coleman; Jeffrey C. Rogers

2003-03-01T23:59:59.000Z

439

Flow and Mixing in the Rift Valley of the Mid-Atlantic Ridge  

Science Conference Proceedings (OSTI)

High levels of diapycnal mixing and geothermal heating near midocean ridges contribute to the buoyancy fluxes that are required to close the global circulation. In topographically confined areas, such as the deep median valleys of slow-spreading ...

A. M. Thurnherr; K. J. Richards; C. R. German; G. F. Lane-Serff; K. G. Speer

2002-06-01T23:59:59.000Z

440

EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Antelope Valley Station to Neset Transmission Project, 8: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND SUMMARY USDA Rural Utilities Service is preparing this EIS to evaluate the environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE's Western Area Power Administration (WAPA), a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western's transmission system. PUBLIC COMMENT OPPORTUNITIES No Public Comment Opportunities at this time

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Update On Geothermal Exploration At Fort Bidwell, Surprise Valley  

Open Energy Info (EERE)

Geothermal Exploration At Fort Bidwell, Surprise Valley Geothermal Exploration At Fort Bidwell, Surprise Valley California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Details Activities (1) Areas (1) Regions (0) Abstract: A fourth exploration well within Fort Bidwell Indian Community (FBIC) lands has been successfully drilled to a total depth of 4,670 feet. Mud return temperatures and cuttings analysis are consistent with the hydrothermal model on which the well location was based. Wireline surveys have encountered an obstruction just below the casing shoe, and further evaluation of this well and resource awaits clean-out and testing activities. Author(s): Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul

442

City of Valley City, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Valley City, North Dakota (Utility Company) Valley City, North Dakota (Utility Company) Jump to: navigation, search Name City of Valley City Place North Dakota Utility Id 19687 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate - Single Phase Commercial Commercial service rate - Three Phase Commercial Commercial service rate(second meter if electric Heat) Commercial Industrial service rate Industrial Large power service rate Industrial Outdoor area lighting service - 100 Watt H.P.S Lighting

443

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

444

NETL: Ambient Monitoring - Upper Ohio River Valley Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Ohio River Valley Project Upper Ohio River Valley Project In cooperation with key stakeholders including EPA, local and state environmental agencies, industry, and academia, the U.S. Department of Energy (DOE) has established the Upper Ohio River Valley Project (UORVP), a network for monitoring and characterizing PM2.5 in the Upper Ohio River Valley. This region was chosen because it has a high density of coal-fired electric utilities, heavy industries (e.g. coke and steel making), light industry, and transportation emission sources. It is also ideally situated to serve as a platform for the study of interstate pollution transport issues. This region, with its unique topography (hills and river valleys) as well as a good mix of urban and rural areas, has a high population of elderly who are susceptible to health impacts of fine particulate as well as other related environmental issues (e.g., acid rain, Hg deposition, ozone). A world-class medical research/university system is also located in the region, which will facilitate the subsequent use of the air quality data in studies of PM2.5 health effects.

445

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

446

San Joaquin Valley Clean Energy Organization | Open Energy Information  

Open Energy Info (EERE)

Joaquin Valley Clean Energy Organization Joaquin Valley Clean Energy Organization Jump to: navigation, search Logo: San Joaquin Valley Clean Energy Organization Name San Joaquin Valley Clean Energy Organization Place California Region Bay Area Website http://www.sjvcleanenergy.org/ Notes Builds upon existing efforts and serves as a trusted resource on clean energy for San Joaquin Valley businesses, consumers, nonprofits and local governments Coordinates 36.778261°, -119.4179324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

448

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

449

EA-1697: San Joaquin Valley Right-of-Way Project, California | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

97: San Joaquin Valley Right-of-Way Project, California 97: San Joaquin Valley Right-of-Way Project, California EA-1697: San Joaquin Valley Right-of-Way Project, California Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of right-of-way maintenance (including facility inspection and repair, vegetation management, and equipment upgrades for transmission lines and associated rights-or-way, access roads, substations, and a maintenance facility) in the San Joaquin Valley in California. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 2, 2011 EA-1697: Finding of No Significant Impact Right-of-Way Maintenance in the San Joaquin Valley, California December 2, 2011 EA-1697: Final Environmental Assessment

450

Community Response to Concentrating Solar Power in the San Luis Valley |  

Open Energy Info (EERE)

Response to Concentrating Solar Power in the San Luis Valley Response to Concentrating Solar Power in the San Luis Valley Jump to: navigation, search Name Community Response to Concentrating Solar Power in the San Luis Valley Agency/Company /Organization National Renewable Energy Laboratory, University of Colorado Partner B.C. Farhar, L.M. Hunter, T.M. Kirkland, and K.J. Tierney Focus Area Solar Phase Bring the Right People Together, Evaluate Options, Get Feedback Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2010/06/01 Website http://www.nrel.gov/docs/fy10o Locality San Luis Valley, Colorado References Community Response to Concentrating Solar Power in the San Luis Valley[1] Contents 1 Overview 2 Highlights 3 Related Tools 4 References Overview This report is about the social acceptance of utility-scale concentrating

451

Shenandoah Valley Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Shenandoah Valley Elec Coop Place Virginia Utility Id 17066 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100% RENEWABLE ENERGY ATTRIBUTES ELECTRIC SERVICE- RIDER R Residential INTERIM RATE INCREASE RIDER OD-09 SALES AND USE TAX SURCHARGE-Q SCHEDULE A-10 (UNBUNDLED) RESIDENTIAL SERVICE Residential SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 100 Watt - Customer-Owned Lighting SCHEDULE ALQ PRIVATE OUTDOOR AREA LIGHTING SERVICE Mercury 175 Watt -

452

Case Study - Sioux Valley Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sioux Valley Energy Sioux Valley Energy SVE's smart meters report consumption levels every 30 minutes, which enables SVE to bill customers for critical peak events that occur on particular days and during particular time periods. This detailed billing cannot be done with conventional meters. Critical Peak Pricing Lowers Peak Demands and Electric Bills in South Dakota and Minnesota Sioux Valley Energy (SVE) is an electric cooperative serving approximately 21,000 customers in seven counties in South Dakota and Minnesota. SVE's Smart Grid Investment Grant (SGIG) Advanced Metering Infrastructure Project is a customer-focused initiative to assist customers with better managing their electricity consumption and associated costs, and to help SVE realize operational efficiencies and

453

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

454

Golden Valley Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program for Builders Golden Valley Electric Association - Residential Energy Efficiency Rebate Program for Builders < Back Eligibility Construction Savings Category...

455

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

456

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

457

West Valley Demonstration Project Transportation Emergency Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance...

458

VBA-0005 - In the Matter of Thomas Dwyer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer VBA-0005 - In the Matter of Thomas Dwyer This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on May 2, 2000, involving a complaint filed by Thomas Dwyer (Dwyer or the complainant) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. In his complaint, Dwyer claims that Fluor Daniel Fernald (FDF), a DOE contractor, suspended and then terminated his employment in retaliation for his making disclosures that are protected under Part 708. In the IAD, however, the Hearing Officer determined that FDF had shown that it would have terminated the complainant for his misconduct, even in the absence of the protected disclosures. As set forth in this decision, I have determined that Dwyer's Appeal must be

459

FIA-12-0023 - In the Matter of Thomas R. Thielen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23 - In the Matter of Thomas R. Thielen 23 - In the Matter of Thomas R. Thielen FIA-12-0023 - In the Matter of Thomas R. Thielen The Department of Energy's (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Privacy Act Appeal filed by Thomas R. Thielen. Mr. Thielen filed a request with the DOE's Richland Operations Office for documents regarding a safety concern he raised to CH2M Hill Plateau Remediation Company (CHPRC). Richland issued a determination letter which stated that, according to CHPRC's contract with DOE, CHPRC's employee concern records are the property of the contractor and not subject to the provisions of the Freedom of Information Act or Privacy Act. Richland released a copy of Mr. Thielen's DOE employee concern file, but withheld portions of the

460

An Interview with Thomas Kalil: Where politics, policy, technology and science converge  

Science Conference Proceedings (OSTI)

From the White House to Berkeley, Thomas Kalil has worked on shaping the national agenda for science and technology research initiatives. Kalil, President Clinton's former science and technology advisor, now holds a similar post at the University of ...

Ubiquity staff

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "valley area thomas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

VWA-0018 - In the Matter of Thomas T. Tiller | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of Thomas T. Tiller In the Matter of Thomas T. Tiller VWA-0018 - In the Matter of Thomas T. Tiller This Decision concerns two whistleblower complaints filed by Thomas T. Tiller (Tiller) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. At all times relevant to this proceeding, Tiller was employed by Wackenhut Services, Incorporated (Wackenhut), a DOE contractor that provides paramilitary security support services at the DOE's Savannah River Site in Aiken, South Carolina. Tiller contends in his first complaint that Wackenhut demoted him after he alleged that a senior level manager at Wackenhut had engaged in unethical and possible criminal conduct. In his second complaint, Tiller charges that Wackenhut retaliated against him after learning he had filed a Part 708

462

Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Administrator Thomas P. D'Agostino, 12th Annual Small NNSA Administrator Thomas P. D'Agostino, 12th Annual Small Business Conference & Expo, Kansas City, Missouri | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks by NNSA Administrator Thomas P. D'Agostino, ... Speech Remarks by NNSA Administrator Thomas P. D'Agostino, 12th Annual Small

463

Atoms with nuclei of finite extension at finite temperature: A Thomas-Fermi approximation  

Science Conference Proceedings (OSTI)

Atoms at finite temperature and with a nucleus of finite extension are analyzed by a modification of the Thomas-Fermi model for {ital T}{ne}0. Applications to strange-matter atoms are included.

Epele, L.N.; Fanchiotti, H.; Garcriaaa Canal, C.A.; Guillen, J.C. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo 67, 1900 La Plata (Argentina))

1990-08-01T23:59:59.000Z

464