National Library of Energy BETA

Sample records for v6 electric motor

  1. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  2. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  3. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY Most likely your operation's motors account for a large part of your monthly electric bill. Far too often motors are mismatched-or...

  4. Electric motor for laser-mechanical drilling

    DOE Patents [OSTI]

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  5. Selected Bibliography on Electric Motor Repair | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by...

  6. Electric Motor What happens if we put

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Electric Motor What happens if we put a loop of wire carrying a current in a B field ? FB on opposite sides of the loop produce a torque on the loop causing it to rotate. Electric motor ≠ a commutator. #12;Electric Motor Define normal n to plane using right-hand rule Torque tends to rotate loop to align

  7. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    1999-01-01

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  8. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  9. Buying an Energy-Efficient Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency testing protocol is the Institute of Electrical and Elec- tronics Engineers (IEEE ) 112 Method B, which uses a dynamometer to measure motor output under load. Different...

  10. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient and Power-Dense Electric Motors Advanced Electric Motors Offer Large Energy Savings in Industrial Applications Pumps, fans, and compressors use more than 60% of...

  11. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  12. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  13. Development of Ulta-Efficient Electric Motors

    SciTech Connect (OSTI)

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performa

  14. Electric Motor Remanufacturing and Energy Savings Sahil Sahni1

    E-Print Network [OSTI]

    Gutowski, Timothy

    Electric Motor Remanufacturing and Energy Savings Sahil Sahni1 , Avid Boustani1 , Timothy Gutowski to this study. #12;Contents 1 Introduction to Electric Motors 1 1.1 Motor Classifications . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Performance of Motors . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Impact of motor

  15. Energy-efficient electric motors study

    SciTech Connect (OSTI)

    Not Available

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  16. Ultra-Efficient and Power-Dense Electric Motors

    SciTech Connect (OSTI)

    2009-01-01

    This factsheet describes a research project whose goal is to develop line-start and line-run constant-speed electric motors and simple-to-control electric motors with the goal of obtaining at least a 30% reduction in motor losses as compared to conventional energy-efficient induction motors and a 15% reduction in motor losses as compared to NEMA Premiumģ efficient induction motors.

  17. Electric Motors and Critical Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,Local Government Nonprofit ResidentialofUlrich -andandMOTORS

  18. HMAX ģ:Active Energy Control for Electric Motors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    :Active Energy Control for Electric Motors Real-Time Sensing and Control of Electric Motor Operation Optimizes Energy Efficiency In 2011, the U.S. industrial sector consumed 3.7...

  19. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview: Advanced Power Electronics and Electric Motors (APEEM) R&D Overview: Advanced Power Electronics and Electric Motors (APEEM) R&D Presentation from the U.S. DOE Office of...

  20. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  1. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  2. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  3. Case Studies of High Efficiency Electric Motor Applicability†

    E-Print Network [OSTI]

    Wagner, J. R.

    1985-01-01

    Much has been written about the advantages and disadvantages of high efficiency electric motors. For a given motor application it is possible to find literature that enables a plant engineer to make an informed choice between a standard efficiency...

  4. Electric Motor Maintenance & Repair for Long Term Efficiency†

    E-Print Network [OSTI]

    Brithinee, W. P.

    1997-01-01

    department, for example) may use microprocessor-based devices (for logic control); power electronics (for motor speed control); and specially-built electric motors. These devices may require different maintenance procedures than the equipment used in the past...

  5. New Energy Efficiency Standards for Electric Motors and Walk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers...

  6. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  7. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  8. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  9. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar†will discuss standard procedures regarding the EERE Office and FOA process.

  10. DOE Issues Notice of Proposed Rulemaking for Electric Motors...

    Broader source: Energy.gov (indexed) [DOE]

    regarding energy conservation standards for certain commercial and industrial electric motors, under subpart B of Title 10 of the Code of Federal Regulations, Part 431, including a...

  11. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Broader source: Energy.gov (indexed) [DOE]

    EV Everywhere Workshop: Power Electronics and Thermal Management Breakout Session Report Electric Motors and Critical Materials EV Everywhere - Charge to Breakout Sessions...

  12. Reducing current reversal time in electric motor control

    DOE Patents [OSTI]

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  13. IEMDC - In-Line Electric Motor Driven Compressor

    SciTech Connect (OSTI)

    Michael J. Crowley

    2004-03-31

    This report covers the fifth quarter (01/01/04 to 03/31/04) of the In-Line Electric Motor Driven Compressor (IEMDC) project. Design efforts on the IEMDC continued with compressor efforts focused on performing aerodynamic analyses. These analyses were conducted using computational fluid dynamics. Compressor efforts also entailed developing mechanical designs of components through the use of solid models and working on project deliverables. Electric motor efforts focused on the design of the magnetic bearing system, motor pressure housing, and the motor-compressor interface. The mechanical evaluation of the main interface from both the perspective of the compressor manufacturer and electric motor manufacturer indicates that an acceptable design has been achieved. All mechanical and aerodynamic design efforts have resulted in considerable progress being made towards the completion of the compressor and electric motor design and towards the successful completion of the IEMDC unit.

  14. Replacing an Oversized and Underloaded Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interpolation between a motor's full- and half-load current values. The modified equation, useful for estimating loads in the 50% to full-load range, is: Motor Load 0.5 +...

  15. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todayís large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldorís motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  16. Economic Realities and Energy Efficient Polyphase Integral Horsepower Electric Motors

    E-Print Network [OSTI]

    Whittington, B. W.

    1980-01-01

    Energy efficient polyphase integral horsepower electric motors are currently being vigorously promoted as a profitable method of conserving energy in many industrial and commercial applications. While the goal to be attained is indeed laudable...

  17. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  18. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todayís EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powerís motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  19. The rebuilding and repairing of electric motors and generators

    E-Print Network [OSTI]

    Ridenour, Roy Everett

    1918-01-01

    Motor After Coils had been Put Back in Place In the repairing and rebuilding of electric motors and generators there are three principal factors which must be considered. These factors are, service, cost and reliability. If a machine can easily... motor. This motor had been through a fire in a Cripple Creek mine. The insulation had been burned from the coils except in the slots where mica had been used. The solder was*melted from the rotor and the babbitt from the bearings. Water had been...

  20. High-speed electrical motor evaluation

    SciTech Connect (OSTI)

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  1. System and method to determine electric motor efficiency nonintrusively

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Harley, Ronald G. (Lawrenceville, GA)

    2011-08-30

    A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.

  2. Selected Bibliography on Electric Motor Repair

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bethel, Noah, P., "Fault Zone Analysis Identifies Motor Defects in Detail." Pulp & Paper, Vol. 72, No. 2, February 1998, p. 87-93. Discussion of 5 fault zones to look at...

  3. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.

    2015-10-27

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  4. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G

    2015-11-06

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  5. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA)

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  6. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  7. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  8. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow passage requirements and electric motor requirements for support and utilities by bounding the flowpath within the compressor section. However most importantly, the benefits delivered by the new design remained the same as those proposed by the goals of the project. In addition, this alternate configuration resulted in the achievement of a few additional advantages over the original concept such as easier maintenance, operation, and installation. Interaction and feedback solicited from target clients regarding the unit configuration supports the fact that the design addresses industry issues regarding accessibility, maintainability, preferred operating practice, and increased reliability.

  9. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits†

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    1995-01-01

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  10. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

  11. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ape00arogers2013o.pdf More Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Electric Drive Status and Challenges...

  12. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview...

  13. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  14. Permanent split capacitor single phase electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-08-14

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  15. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.; Casada, D.A.

    1996-11-26

    A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.

  16. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, Howard D. (Knoxville, TN); Ayers, Curtis W. (Clinton, TN); Casada, Donald A. (Knoxville, TN)

    1996-01-01

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  17. Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors

    E-Print Network [OSTI]

    Whelan, C. D.

    1997-01-01

    Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production...

  18. Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    of Traciton Motors in Hybrid Electric Vehicles Xiaofeng Ding 1 , Jinglin Liu 2 , and Chris Mi 3 1 Department synchronous motor (IPMSM) systems are vulnerable to uncontrolled generation (UCG) when the inverter switches, uncontrolled rectifier is composed by freewheel diodes in the inverter, the current comes from the motor

  19. Advanced Power Electronics and Electric Motors (APEEM) R&D Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems Advanced Power Electronics & Electric Motors Susan Rogers & Steven Boyd Energy Storage DOE APEEM National Laboratories Academia Federal Agencies Industry U.S....

  20. Advanced Power Electronics and Electric Motors R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PM) Motors Reduce cost by 75% - required to meet 2020 target Motor design optimization may reduce cost by 25% to 40%. Magnet Materials Magnet material costs are 50%...

  1. Control of a Fuel-Cell Powered DC Electric Vehicle Motor

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Meeting, 2005 www.ntnu.no Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;2 Outline 1) Control of Fuel Cells--Status 2) Dynamic Modelling of Fuel Cells 3) DC

  2. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  3. IEMDC-IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2003-06-01

    During this reporting period, significant progress has been made towards the development of the IEMDC System design. Considerable effort was put forth by Curtiss-Wright EMD in the resolution of the technical issue of aerodynamically induced radial forces. This has provided a design basis with which to establish the radial magnetic bearing load capacity and the rotordynamic design. Dresser-Rand has made considerable progress on the flowpath design for the compressor section particularly on the volute and inlet aerodynamic design. All efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. These efforts continue to confirm the feasibility of the IEMDC system design.

  4. Method and system for operating an electric motor

    SciTech Connect (OSTI)

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  5. System and method for motor speed estimation of an electric motor

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Yan, Ting (Brookfield, WI); Luebke, Charles John (Sussex, WI); Sharma, Santosh Kumar (Viman Nagar, IN)

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  6. Method and system for early detection of incipient faults in electric motors

    DOE Patents [OSTI]

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  7. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  8. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    1999-01-01

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  9. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, J.S.

    1999-03-23

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.

  10. ECE 331 Electromechanical Energy Conversion Catalog Description: Energy conversion principles for electric motors. Steady-state

    E-Print Network [OSTI]

    . Introduction to drives and power electronics in control of electric machines, including switch-mode PWM (ABET Outcomes A, C, E, j, k) Learning Resources: Electric Machines and Drives: A First Course, Ned for electric motors. Steady-state characteristics and analysis of induction, synchronous and direct current

  11. Ameren Illinois (Electric) - Custom, HVAC and Motor Business...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heaters Chillers Heat Pumps Air conditioners Heat recovery Compressed air Motor VFDs Agricultural Equipment CustomOthers pending approval Other EE Tankless Water...

  12. Comparative analysis of electrical and mechanical fault signatures in induction motors

    E-Print Network [OSTI]

    Venugopal, Arvind Madabushi

    2005-02-17

    This research deals with the comparison of fault signatures in induction motors. The primary objective is to study and analyze the similarities in the electrical and mechanical fault signatures, and to determine the ...

  13. Design and manufacture of a chain driven motor shaft for Formula Electric applications

    E-Print Network [OSTI]

    Wanderman, Jack J. (Jack Joseph)

    2013-01-01

    This document describes the design, manufacture, and testing of a motor shaft assembly that is a subcomponent of the drivetrain system in a Formula Electric racecar. The design covers detailed analysis of the bearing, ...

  14. DATE : NVLAP LAB CODE: NVLAP EFFICIENCY OF ELECTRIC MOTORS APPLICATION (REV. 2013-06-11) PAGE 1 OF 1

    E-Print Network [OSTI]

    DATE : NVLAP LAB CODE: NVLAP EFFICIENCY OF ELECTRIC MOTORS APPLICATION (REV. 2013-06-11) PAGE 1 OF 1 EFFICIENCY OF ELECTRIC MOTORS TEST METHOD SELECTION LIST Instructions: Check each test method01* IEEE 112 Method B Test Procedure for Polyphase Induction Motors and Generators (for accreditation

  15. United States Industrial Electric Motor Systems Market Opportunities...

    Broader source: Energy.gov (indexed) [DOE]

    were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the...

  16. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect (OSTI)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  17. Computational analysis of temperature rise phenomena in electric induction motors

    E-Print Network [OSTI]

    Melnik, Roderick

    of electric machine design, it is generally agreed that the development of thermal design methodologies for electric machines lags behind [3]. One of the most common AC machines found in industrial applications of the overall performance and prevention of failures of these electric machines. In this paper we develop

  18. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2013-03-01

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  19. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowís automobiles will function as a unified system to improve fuel efficiency.

  20. Electric Motors and Critical Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EVtheEnergy ClimateandMotors and

  1. Motor Assembly Plant Saves $85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project.

  2. Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Introduction Research in fuel cells receives currently a lot of interest. Fuel cells can be used, in different. However, the dynamics of fuel cells has received comparatively less attention. Control of fuel cells

  3. Motor stator using corner scraps for additional electrical components

    DOE Patents [OSTI]

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-03-16

    A method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material (10) having an area larger than a cross section of the stator (11), removing material from the piece of material (10) to form a pattern for a cross section of a core (11) for the stator, and removing material from the piece of material (10) outside the cross section of the core of the stator (11) to allow positioning of cores (22, 23, 24) for supporting windings (25, 26, 27) of least one additional electromagnetic device, such as a transformer (62) in a dc-to-dc converter (61, 62) that provides a low. voltage dc output. An article of manufacture made according to the invention is also disclosed and apparatus made with the method and article of manufacture are also disclosed.

  4. Motors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStress NewradicalEnergy,US DeptMotor FuelMotors

  5. Vehicle Technologies Office: Electric Motors Research and Development |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable Low TemperaturePlug-in ElectricResearchDepartment

  6. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  7. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  8. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowís automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  9. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    SciTech Connect (OSTI)

    Rogers, Susan A.

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowís automobiles will function as a unified system to improve fuel efficiency.

  10. The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor

    E-Print Network [OSTI]

    Williams, Monte Glen

    1994-01-01

    of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design...

  11. Premium Efficient Motors

    E-Print Network [OSTI]

    Moser, P. R.

    1984-01-01

    MOTORS Paul R. Moser Baldor Electric Co. Fort Smith, Arkansas , ABSTRACT Premium efficient motors are available which convert electrical energy into mechanical energy with fewer losses than the more standard motors. The fewer losses...

  12. Report on the feasibility study for improving electric motor service centers in Ghana

    SciTech Connect (OSTI)

    Hsu, J.S.; Jallouk, P.A.; Staunton, R.H.

    1999-12-10

    On March 3 and 4, 1998, a visit was made to Oak Ridge National Laboratory (ORNL) by two officials from Ghana: Mr. I.K. Mintah, Acting Executive Director, Technical Wing, Ministry of Mines and Energy (MOME) and Dr. A.K. Ofosu-Ahenkorah, Coordinator, Energy Efficiency and Conservation Program, MOME. As a result of this visit, Dr. John S. Hsu of ORNL was invited by MOME to visit the Republic of Ghana in order to study the feasibility of improving electric motor service centers in Ghana.

  13. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  14. The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results†

    E-Print Network [OSTI]

    Rosenberg, M.

    1999-01-01

    presents key findings from the Market Assessment in regard to patterns of motor energy use, saturation of energy efficiency measures such as efficient motors and adjustable speed drives, and motor system purchase and maintenance practices....

  15. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOEís commitment to developing publicĖprivate partnerships to fund high-riskĖhigh-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from ďFreedomĒ and ďCooperative Automotive ResearchĒ) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratoryís (ORNLís) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrowís automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  16. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  17. System and method for motor parameter estimation

    DOE Patents [OSTI]

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  18. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  19. Discrimination among mechanical fault types in induction motors using electrical measurements†

    E-Print Network [OSTI]

    McFatter, Justin Robert

    2002-01-01

    squirrel-cage AC induction motors with staged fault conditions. The proposed method involves the multi-resolution signal analysis of the current residuals. These residuals are generated by comparing the measured motor current with the current predicted...

  20. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOEís Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United Statesí consumption of petroleum. This Proposed Action will also meaningfully assist in the nationís economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  1. Ontario Hydro Motor Efficiency Study†

    E-Print Network [OSTI]

    Dautovich, D. R.

    1980-01-01

    Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

  2. Implementing Motor Management†

    E-Print Network [OSTI]

    Colip, R. L.

    2002-01-01

    PRESIDENT-SALES, BALDOR ELECTRlC COMPANY, FORT SMITH, ARKANSAS IMPLEMENTING MOTOR MANAGEMENT ABSTRACT Electric motors account for sixty five percent of industrial energy consumed today. There are many opportunities to conserve electricity by using more...

  3. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    needs to be thor- oughly understood. The optimal design of electrical motors with solid thermal characteristics will provide improved efficiency and power densities in traction vehicle. Such vehicles rely complexities involved in designing PM motors for HEV applications require a breakdown of the individual thermal

  4. Not a Babe in the Woods: Using MotorMaster Software to Make Sophisticated Electric Motor Purchase Decisions†

    E-Print Network [OSTI]

    Litman, T.

    1993-01-01

    230/460 1055 Sterling SILVERLINE 93.0 88.0 1760 208-230/460 1263 Baldor SUPER-E 93.0 85.0 1760 230/460 1266 Magnetek E-PLUS III 93.0 86.5 1765 230/460 1268 US Motors PREM. EFF. / UTE 93.0 84.9 1770 230/460 1268 Toshiba E.Q.P. 93.0 84.9 1772 230.../460 1465 Siemens STANDARD EFFICIENC 89.0 88.0 1750 230/460 1025 Delco T LINE 88.6 78.9 1750 230/460 1025 Teco STD EFF 88.5 90.5 1750 208-230/460 1025 Baldor TEFC-RIGID BASE 88.5 81. 0 1760 230/460 1040 Brook Crom MULTIMOUNT 88.0 92.0 1750 230/460 1025...

  5. Sensor Network for Motor Energy Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor Network for Motor Energy Management Sensor Network for Motor Energy Management Remote Sensing Electric Motor Operation Optimizes Maintenance and Energy Efficiency Electric...

  6. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  7. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  8. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  9. Energy Conversion in Lifting Mass Vertically using a DC Electric Motor by Observing Required Time to Lift Object for a Certain Height

    E-Print Network [OSTI]

    Viridi, Sparisoma; Permana, Sidik; Srigutomo, Wahyu; Susilawati, Anggie; Nuryadin, Bebeh Wahid; Nurhasan,

    2014-01-01

    In lifting mass vertically using a DC electric motor energy conversion from electric energy, through intermediate kinetic energy, to gravitation potential energy shows that time required {\\Delta}t to lift load mass m for height h is dependent quadratically to m. Several approaches to explain the experiment observation are discussed in this work, from ideal energy conversion to numerical solution from differential equation.

  10. Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields†

    E-Print Network [OSTI]

    Ula, S.; Cain, W.; Nichols, T.

    1993-01-01

    Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn...

  11. Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors

    SciTech Connect (OSTI)

    Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

    2003-09-26

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  12. Policy V.6.1.2 Responsible Official: Vice President

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Policy V.6.1.2 Responsible Official: Vice President for Research Effective Date: July 1, 2015 Cost Policy on Sponsored Agreements - Interim Policy Statement Direct, indirect and allowable costs shall and the University's cost accounting standards. Reason for the Policy This policy statement and the guidelines

  13. The Wanlass Polyphase Rotating Magnetic Device in Electric Motor and Induction Generator Applications†

    E-Print Network [OSTI]

    Asp, D. E.

    1984-01-01

    . The machIne "n question is a Westinghouse 300 horse~ower 460 volt four Dole device. The motor wa" ested utilizing the IEEE 112 method B ot"'ocedure. The motor was then remanufactured to the Wanlass desicn an~ t~e~ re este u51l'"g .he same cest...'J.t'e ..} This .o1t' hart snc,ws the oet~foY'rl'a ICE! characterist ics Ql'"rIV at the f'J 1 :. l,:,aa II:j i "'1'(, l~i th t he sel f-':Jpt imiziy,g feature of thl= war,l""ss r,l I J't c?t' Imp","'ctved pet' f':Jr'n'dnce she? .\\ 1G be evioE!l'"It tnr...

  14. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  15. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

    1997-01-01

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  16. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  17. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    SciTech Connect (OSTI)

    Rich Schiferl

    2008-05-30

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  18. Die Casting Copper Motor Rotors

    Broader source: Energy.gov [DOE]

    Though it conducts electricity less efficiently than copper, aluminum is the industryís preferred fabrication material in electric induction motor rotors. Traditional tool steel casting molds...

  19. Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2010-11-16

    A sub-module consists of a set of two outer sets of stationary fan-blade-shaped sectors. These outer sectors include conductive material and are maintained at ground potential in several examples. Located midway between them is a set of stationary sector plates with each plate being electrically insulated from the others. An example provides that the inner sector plates are connected together alternately, forming two groups of parallel-connected condensers that are then separately connected, through high charging circuit resistances, to a source of DC potential with respect to ground, with an additional connecting lead being provided for each group to connect their output as an AC output to a load. These same leads can he used, when connected to a driver circuit, to produce motor action.

  20. A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation†

    E-Print Network [OSTI]

    Treadway, N.

    1987-01-01

    Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

  1. Optimizing Your Motor-Driven System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and air conditioning (HVAC) systems in many buildings use single or three-phase electrical power controlled by timers and thermostats to drive motors. These motors supply...

  2. Avoid Nuisance Tripping with Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoid Nuisance Tripping with Premium Efficiency Motors In most cases, upgrading to premium efficiency motors has no noticeable impact on the electrical system. However, in rare...

  3. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  4. 3M's Motor Challenge Showcase Demonstration Project†

    E-Print Network [OSTI]

    Schultz, S. C.

    1996-01-01

    . The Motor Challenge is a U. S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase...

  5. Motor Energy Saving Opportunities in an Industrial Plant†

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    1999-01-01

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  6. Writing Motor Specifications - How to Include Efficiency†

    E-Print Network [OSTI]

    Quartermaine, B. J.

    1980-01-01

    The escalating cost of electric power coupled with the rapid depletion of our non-renewable resources makes consideration of motor efficiency good sense both from economic and conservation viewpoints. The efficiency of an electric motor can...

  7. Motor monitoring method and apparatus using high frequency current components

    DOE Patents [OSTI]

    Casada, Donald A. (Knoxville, TN)

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  8. Design and performance evaluation of an electric go-kart and custom permanent magnet brushless DC motor

    E-Print Network [OSTI]

    Davis, Eli Marc

    2012-01-01

    This undergraduate thesis documents the design considerations and specifications of building a personal battery-powered go-kart. This includes designing and building a custom brushless DC motor for use in the drivetrain. ...

  9. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOE Patents [OSTI]

    Chavez, Rossemary V. (Monroeville, PA); Ekeroth, Douglas E. (Delmont, PA); Johnson, F. Thomas (Baldwin Boro, PA); Matusz, John M. (Plum Boro both of Allegheny County, PA)

    1994-01-01

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch.

  10. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOE Patents [OSTI]

    Chavez, R.V.; Ekeroth, D.E.; Johnson, F.T.; Matusz, J.M.

    1994-04-26

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch. 14 figures.

  11. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Magnetically Coupled Adjustable Speed Motor Drives - Motor Tip Sheet #13

    SciTech Connect (OSTI)

    2008-07-01

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump.

  13. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  14. Vehicle Technologies Office: Electrical Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in efficiency, cost, weight, and volume for competitive future electric vehicles. Tesla Motors, a U.S. electric vehicle manufacturer, uses induction motor technology....

  15. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm...

  16. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle†

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08

    . The aim of this thesis is to demonstrate the use of a multi level inverter fed Brush Less Direct Current (BLDC) motor in a field oriented control fashion in an EV and make it follow a given drive cycle. The switching operation and control of a multi level...

  17. Motor current signature analysis method for diagnosing motor operated devices

    DOE Patents [OSTI]

    Haynes, Howard D. (Kingston, TN); Eissenberg, David M. (Oak Ridge, TN)

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  18. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  19. 3M's Motor Challenge Showcase Demonstration Project†

    E-Print Network [OSTI]

    Schultz, S. C.

    1998-01-01

    Challenge is a U.S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase Project...

  20. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    shaft as the electric motor and the transmission. The clutchFuel Cell Electric Powertrain Configuration Pre-transmissionusing one electric motor in the pre-transmission position,

  1. A Novel Approach to Determining Motor Load†

    E-Print Network [OSTI]

    Brown, M.

    1992-01-01

    TO DETERMINING MOTOR LOAD by Michael Brown Georgia Tech Research Institute Atlanta, Georgia ABSTRACf Properly sized electric motors are essential if industrial plant efficiency is to be optimized and energy costs minimized. Because of the difficully..., oversizing is usually unwarranted and ultimately leads to ineffi-eiency and energy waste. This paper ex.amines methods to determine underloaded motor operdtion and presents an evaluation of the savings afforded by properly sizing of motors. MOTOR...

  2. Using MotorMaster to Track Motor Inventory and Analyze Purchasing Decisions†

    E-Print Network [OSTI]

    Brown, M.; Meffort, W.

    2007-01-01

    MotorMaster 4.0 can be a useful software package for electric motor management decisions in industrial facilities. To be successful, the MotorMaster database must be populated with detailed motor nameplate information. Georgia Tech worked with a...

  3. Conducting a Motor Survey: Key Step for Establishing a Motor Management Policy†

    E-Print Network [OSTI]

    Miller, R. B.

    2002-01-01

    Roughly 70% of the energy consumed by manufacturing processes is used by electric motors. According to the U.S. Department of Energy, greater attention to motor systems management can reduce motor-related energy costs by 18%. Establishing a motor...

  4. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  5. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ≠ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  6. Estimating Motor Efficiency in the Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    testing procedures as described in Institute of Electrical and Electronics Engineers (IEEE) Standard 112-2004 (Test Method B). Field measurements for determining motor efficiency...

  7. OIT Forest Products Motor Challenge Industry Profile: Motor System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paper and Allied Products Industry annually spends 3.6 billion or about 2.6% of its overall operating costs to operate electric motor systems-higher than any other 2- digit...

  8. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Motor-vehicle flows Uranium enrichment Agriculture Fuel production Nitrogen deposition Multi-modal emissions Corn-ethanol

  9. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  10. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, PA); Pollick, Richard D. (Sarver, PA)

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  11. Health Monitoring of Drive Connected Three-Phase Induction Motors ----- From Wired Towards Wireless Sensor Networks

    E-Print Network [OSTI]

    Xue, Xin

    2009-01-01

    to failure," in Electric Machines and Drives Conference,induction motor," in Electric Machines and Drives Conferenceevaluation for electric machines," in Industrial Electronics

  12. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todayís best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  13. 2010-05-19 Revised Patent Policy v6 Patent and Tangible Research Property

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    2010-05-19 Revised Patent Policy v6 Patent and Tangible Research Property Policies and Procedures hereby decree as follows: Article 2. Policy and Procedures on Inventions and Patents 2.0 Policy Statement on Inventions and Patents. It is the policy of the University that all INVENTIONS, together with associated MATE

  14. Application Guidelines for Energy Efficient Motors

    E-Print Network [OSTI]

    Cowern, E. H.

    1983-01-01

    GUIDELINES FOR ENERGY EFFICIENT MOTORS" Edward H. Cowern, P. E. Baldor Electric Company Hallingford, CT Abstract - Rapidly rlslng power costs have promp ted industrial motor users to consider specifying motors having efficiencies higher than the norm... and marketing posi tions. He is currently the New England District Manager for Baldor Electric Company and pre~ident of EMS, Inc. 480 ESL-IE-83-04-73 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17...

  15. Total Economics of Energy Efficient Motors

    E-Print Network [OSTI]

    Nester, A. T.

    1984-01-01

    Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part...

  16. VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT

    E-Print Network [OSTI]

    Noť, Reinhold

    VIRTUAL E-MOTOR AS A TOOL FOR THE DEVELOPMENT OF POWERTRAIN CONTROLLERS The introduction of electric motors in powertrains provides many possibilities to influence the vehicle driveability using the inverter. The high dynamic response of electric motors can be put to use for the compensation of powertrain

  17. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOE Patents [OSTI]

    Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

    1997-01-01

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  18. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  19. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  20. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  1. High Temperature, Buried Permanent Magnet, Brushless DC Motor

    E-Print Network [OSTI]

    Zhang, Zhengxin

    2010-10-12

    Outputs, Back EMF and Phase Current in One Electric Cycle ................ 31 Fig. 3-9 Hall Effect Sensor Positions ............................................................................. 33 Fig. 3-10 State One... 1- HIGH LEVEL HALL SENSOR INPUT 0- LOW LEVEL HALL SENSOR INPUT H- HIGH OR SWITCHING MOTOR OUTPUT L- LOW MOTOR OUTPUT X- MOTOR OUTPUT IS OFF (FLOATING) In one electrical cycle, the Hall Effect sensor outputs, Back EMF, Motor Phase inputs have a...

  2. Electric Motor R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  4. Design and rule base reduction of a fuzzy lter for the estimation of motor currents

    E-Print Network [OSTI]

    Simon, Dan

    ģltering to motor winding current estimation in permanent magnet synchronous motors. Motor winding current estimation of the current is needed. Motor winding currents are notoriously noisy because of electrical noiseģcation for motor winding current estimation. With the assumption that the membership functions are triangular (but

  5. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Broader source: Energy.gov (indexed) [DOE]

    vehicles recently patented a new design for electric vehicle motors that use non-rare earth magnets. While most plug-in electric vehicles (PEVs) use motors with rare earth...

  6. Water/Wastewater Engineering Report (High Efficiency Pump/Motor Replacement - M2 Model)†

    E-Print Network [OSTI]

    Liu, Z.; Brumbelow, K.; Haberl, J. S.

    2006-10-30

    primarily addresses electric motor-driven pumps, and does not include the pumps driven with gasoline or diesel engines....

  7. As Electric Vehicles Take Charge, Costs Power Down | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV...

  8. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Efficiency 3D Printed and Semiconductor Technology 'Mash-up' The General Motors Baltimore Operations facility at White Marsh is producing electric motors for the Chevrolet...

  9. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles...

  10. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape035millerp.pdf More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material...

  11. EE 3410 Electric Power Instructor: Ernest Mendrela

    E-Print Network [OSTI]

    Koppelman, David M.

    Conversion Introduction to Electric Machines 1. The very first experience with electric (linear) motors An operation of any electromechanical device, in that number electric machines, it is electric motors, and the machines that operates on the basis of the mode (b) are the rest of the majority of electric machines

  12. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  13. ELECTRIC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation ofSEPE.ELECTRIC

  14. MOTOR SCHEMAS IN ROBOT LEARNING Lynne E. Parker

    E-Print Network [OSTI]

    Parker, Lynne E.

    MOTOR SCHEMAS IN ROBOT LEARNING Lynne E. Parker Department of Electrical Engineering and Computer in robot learning; Macro actions in robot learning; Basis behaviors for robot learning. Definition Motor, or a task. Motor schemas in robot learning are also known as movement primitives, basis behaviors, units

  15. Induction motor modeling in stability simulation: Final report

    SciTech Connect (OSTI)

    Carlson, D.L.; Fedora, C.M.

    1988-12-01

    The objective of this project is to help utilities choose models of large motor loads when simulating electric system transient stability behavior during severe contingencies. Various motor models were evaluated through comparisons between simulations and field recordings obtained in this project. Guidelines are developed to assist engineers in applying typically available data describing large motors. 10 refs., 35 figs.

  16. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    to find some other market for the lignin). I have assumedmarkets for electricity affected by the generation of power from excess lignin

  17. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    in nuclear-power and hydro-power case are g/MMBtu of netmethanol, nuclear, and hydro power plants, individually orvehicles]) H = Hydro power (% of electricity generation [

  18. How to Improve Productivity with Energy-Efficient Motors

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01

    productivity is to reduce costs, particularly those which are rising faster than others such as electricity. Today's new energy efficient motors reduce the kilowatts consumed, thus reducing electric bills and improving productivity. This paper will discuss...

  19. Advanced Integrated Electric Traction System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...

  20. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  1. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  2. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  3. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  4. Implementing Motor Decision Plans†

    E-Print Network [OSTI]

    Elliott, R. N.

    2001-01-01

    The first step to reducing energy costs and increasing reliability in motors is to establish a motor plan. A motor plan allows decisions to be made in advance of motor failure, and increases the options available. By contrast, most motor decisions...

  5. Q-Sync Motors in Commercial Refrigeration. Preliminary Test Results and Projected Benefits

    SciTech Connect (OSTI)

    Fricke, Brian A.; Becker, Bryan R.

    2015-09-01

    This report provides background information on various fractional-horsepower electric motor technologies, summarizes initial data from a DOE-sponsored Q-Sync motor demonstration project, and extrapolates that data to project the potential economic and environmental benefits resulting from upgrading the current installed base of 9Ė12 W evaporator fan motors to Q-Sync motors.

  6. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  7. Edinburgh Motor Assessment (EMAS)†

    E-Print Network [OSTI]

    Bak, Thomas

    2013-12-01

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, ...

  8. Energetic electrons, 50 keV 6 MeV, at geosynchronous orbit: their responses to solar wind variations

    E-Print Network [OSTI]

    Li, Xinlin

    1 Energetic electrons, 50 keV6 MeV, at geosynchronous orbit: their responses to solar wind Short title: ENERGETIC ELECTRONS AT GEOSYNCHRONOUS ORBIT #12;2 Abstract. Using simultaneous measurements of the upstream solar wind and of energetic electrons at geosynchronous orbit, we analyze the response

  9. Multi-sensor Wireless System for Fault Detection in Induction Motors

    E-Print Network [OSTI]

    Tarkesh Esfahani, Ehsan

    2012-01-01

    Industrial Electric Motor Systems Market Opportunities As- sessment,Ē US DOE, Washington DC, 1998. [6] ďCalifornia Energyindustrial motors in California consume about 70 billion kWh. 95% of this energy (

  10. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Systems Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed Electric Motor Improves Energy Efficiency In 2011, the U.S. industrial,...

  11. MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation

    E-Print Network [OSTI]

    Alpay, S. Pamir

    6. 6.1 MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation Motor Bikes, Mopeds, and Motor Scooters are defined as motor vehicles and are subject to all regulations governing motor vehicle operation on the grounds of the University. Such a motor vehicle owned and operated by a member

  12. Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis

    DOE Patents [OSTI]

    Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

    2005-09-13

    A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

  13. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  14. A motor drive control system for the Lidar Polarimeter†

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  15. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce...

  16. Denton Municipal Electric- Standard Offer Rebate Program

    Broader source: Energy.gov [DOE]

    Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

  17. The Ford Motor Company Engineering Design Center opened

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    The Ford Motor Company Engineering Design Center opened fall 2005 The atrium in the new Ford Motor of electrical engineering and computer science, won a Department of Energy Early Career Award. Dudley Childress. He also received an IBM Faculty Award. Mark Daskin, professor of industrial engineering

  18. Molecules, muscles, and machines: Universal performance characteristics of motors

    E-Print Network [OSTI]

    Marden, James

    Molecules, muscles, and machines: Universal performance characteristics of motors James H. Marden, piston engines, electric motors, and all types of jets. Dependence of force production and stress of materials and mechanisms. Organisms and machines move by exerting forces on their external environment

  19. Stepping Motor Control System

    E-Print Network [OSTI]

    Larson, Noble G.

    This paper describes a hardware system designed to facilitate position and velocity control of a group of eight stepping motors using a PDP-11. The system includes motor driver cards and other interface cards in addition ...

  20. MotorWeek H2 on the Horizon Video

    Broader source: Energy.gov [DOE]

    MotorWeek Host: Fuel cell electric cars, or FCEVs, provide drivers with the same benefits as current gasoline vehicles with a comparable driving range and refueling in just a few minutes. FCEVs don...

  1. Low-cost motor drive embedded fault diagnosis systems†

    E-Print Network [OSTI]

    Akin, Bilal

    2009-05-15

    ]. When an asymmetry is introduced in the rotor structure, the backward rotating negative sequence ?sf e components start the chain electrical and mechanical interactions between rotor and stator of the motor. Initially, stator EMF at frequency (1-2s...

  2. Midwest Motor Systems Consortium- A Unique Business Partnership†

    E-Print Network [OSTI]

    Hackner, R.; Cockrill, C.

    1995-01-01

    in the Midwest Motor systems Consortium: the U.S. De partment of Energy; Steven Schultz, 3M; Jim Kelsey and Angela Prestil, Wisconsin Center for Demand Side Research; Sam Mahany Braithwait, Christensen Associates; Ted Atkins, Baldor Electric; Bobbi Mc...

  3. Quantum motor and future

    E-Print Network [OSTI]

    Evgeny G. Fateev

    2013-01-20

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  4. Motor Control STEVEN P. WISE

    E-Print Network [OSTI]

    Shadmehr, Reza

    Motor Control STEVEN P. WISE National Institute of Mental Health REZA SHADMEHR Johns Hopkins University I. What Controls Movement II. What the Motor System Controls III. Mechanisms of Motor Control IV. Motor Memory V. Flexibility in Motor Control VI. Evolution of the Motor System GLOSSARY agonist A muscle

  5. EE443L: Intermediate Control Lab Lab2: Modeling a DC motor

    E-Print Network [OSTI]

    Wedeward, Kevin

    EE443L: Intermediate Control Lab Lab2: Modeling a DC motor Introduction: In this lab we will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric, Mini-series, Minertia motor). The specific input/output relationship, which we are interested in determining, is the manner

  6. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  7. Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential†

    E-Print Network [OSTI]

    Chen, Krishichayan X.; Lui, Y. -W; Button, J.; Youngblood, David H.

    2010-01-01

    Elastic and inelastic scattering of 240-MeV (6)Li particles from (40)Ca and (48)Ca were measured with the multipole-dipole-multipole spectrometer from 4 degrees <= theta(c.m.) <= 40 degrees. Optical potential parameters ...

  8. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    operation of the engine and electric drive system. In thefor a wide variety of engines, electric, and lithium-ionstrategy of the electric motor and engine when the vehicle

  9. Electrical instrumentation of a contra-rotating propeller drive system

    E-Print Network [OSTI]

    Angle, Matthew G. (Matthew Gates)

    2011-01-01

    A prototype ship propulsion device based on an electric motor that spins propellers in opposite directions was constructed and tested. The device uses a single motor to spin both propellers without a gearbox. The rotor is ...

  10. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  11. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  12. Optimum Control for Interior Permanent Magnet Synchronous Motors (IPMSM) in Constant

    E-Print Network [OSTI]

    Noť, Reinhold

    Optimum Control for Interior Permanent Magnet Synchronous Motors (IPMSM) in Constant Torque and Electrical Drives, Paderborn, Germany Abstract--Interior Permanent Magnet Synchronous Motors (IPMSM) gain-power speed area. A widespread electrical machine used for this purpose is the Interior Permanent Magnet

  13. Traffic of Molecular Motors

    E-Print Network [OSTI]

    Stefan Klumpp; Melanie J. I. MŁller; Reinhard Lipowsky

    2005-12-06

    Molecular motors perform active movements along cytoskeletal filaments and drive the traffic of organelles and other cargo particles in cells. In contrast to the macroscopic traffic of cars, however, the traffic of molecular motors is characterized by a finite walking distance (or run length) after which a motor unbinds from the filament along which it moves. Unbound motors perform Brownian motion in the surrounding aqueous solution until they rebind to a filament. We use variants of driven lattice gas models to describe the interplay of their active movements, the unbound diffusion, and the binding/unbinding dynamics. If the motor concentration is large, motor-motor interactions become important and lead to a variety of cooperative traffic phenomena such as traffic jams on the filaments, boundary-induced phase transitions, and spontaneous symmetry breaking in systems with two species of motors. If the filament is surrounded by a large reservoir of motors, the jam length, i.e., the extension of the traffic jams is of the order of the walking distance. Much longer jams can be found in confined geometries such as tube-like compartments.

  14. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  15. Electric Motor Architecture R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EVtheEnergy Climateand Contactandandand2

  17. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EVtheEnergy Climateand

  18. Neural correlates underlying motor map plasticity and skilled motor behavior

    E-Print Network [OSTI]

    Ramanathan, Dhakshin

    2007-01-01

    of neurons within the motor cortex. Physiol Rev, 1975. 55(and S.P. Wise, The motor cortex of the rat: cytoarchitecturedelayed changes of rat motor cortical output representation

  19. Improve Motor System Performance with MotorMaster+

    SciTech Connect (OSTI)

    2010-08-01

    Fact sheet describes how industrial plants can improve their motor system performance using DOE-AMO's MotorMaster+ software tool.

  20. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny...

  1. The Role of Reluctance in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-06-16

    The international research community has lately focused efforts on interior permanent magnet (IPM) motors to produce a traction motor for hybrid electric vehicles (HEV). One of the beneficial features of this technology is the additional torque produced by reluctance. The objective of this report is to analytically describe the role that reluctance plays in permanent magnet (PM) motors, to explore ways to increase reluctance torque without sacrificing the torque produced by the PMs, and to compare three IPM configurations with respect to torque, power, amount of magnet material required (cost), and percentage of reluctance torque. Results of this study will be used to determine future research directions in utilizing reluctance to obtain maximum torque and power while using a minimum amount of magnet material.

  2. 3000 Horsepower super conductive field acyclic motor

    SciTech Connect (OSTI)

    Marshall, R.

    1983-05-01

    A 3000 hp acyclic motor was assembled and tested utilizing superconducting field coils. The magnet assembly is designed as a quadrupole magnet, utilizing a multifilamentary niobium titanium superconductor. Each magnet coil is 18 inches in diameter and 10 inches long, and operates at rated current of 200 amperes, providing 5.8 tesla in the bore of the coils in the motor configuration. The average winding current density is 10,600 A/cm/sup 2/. The acyclic motor is of a drum-type design with liquid metal current collectors, and is designed to model full-scale machinery for ship propulsion applications. Laboratory test data verified the electrical and electromagnetic design to be within three percent of the calculated values.

  3. Improve Motor System Efficiency for a Broad Range of Motors with MotorMaster+ International

    SciTech Connect (OSTI)

    2005-05-01

    Available at no charge, MotorMaster+ International is designed to support motor systems improvement planning at industrial facilities by identifying the most cost-effective choice when deciding to repair or replace older motor models.

  4. DOE Announces Webinars on Next Generation Electric Machines,...

    Broader source: Energy.gov (indexed) [DOE]

    April 1: Live Webinar on Next Generation Electric Machines: Megawatt Class Motors FOA Webinar Sponsor: Advanced Manufacturing Office The Energy Department will present a live...

  5. Empire Electric Association- Commercial Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    Empire Electric Association provides rebates for its commercial customers who upgrade to energy efficient lighting, HVAC equipment, and motors. †These rebates are offered in conjunction with Tri...

  6. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect (OSTI)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

  7. Analysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    E-Print Network [OSTI]

    Tolbert, Leon M.

    machine, synchronous motors, torque. I. NOMENCLATURE BFE brushless field excitation IPMSM interiorAnalysis of Slanted Air-gap Structure of Interior Permanent Magnet Synchronous Motor with Brushless permanent magnet synchronous motor (IPMSM) for application in a hybrid electric vehicle. This unique slanted

  8. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOE Patents [OSTI]

    Mikesell, Harvey E. (McMurray, PA); Lucy, Eric (Murrysville, PA)

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  9. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  10. Justification for Energy Efficient Motors

    E-Print Network [OSTI]

    Buschart, R. J.

    1981-01-01

    This paper presents the results of a study of Energy Efficient (or EE) motors in NEMA frame sizes, (1-200 HP). It examines the economics of using EE motors for new motor requirements, as replacements for motors - instead of rewinding...

  11. Molecular Motors: A Theorist's Perspective

    E-Print Network [OSTI]

    Molecular Motors: A Theorist's Perspective Anatoly B. Kolomeisky1 and Michael E. Fisher2 1/0505-0675$20.00 Key Words motor proteins, kinesin, myosin, single-molecule experiments, discrete stochastic models Abstract Individual molecular motors, or motor proteins, are enzymatic molecules that convert chemical

  12. Single phase two pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  13. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  14. Markov Process of Muscle Motors

    E-Print Network [OSTI]

    Yu. Kondratiev; E. Pechersky; S. Pirogov

    2007-06-20

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  15. Energy Efficient Motors

    E-Print Network [OSTI]

    Hoffmeyer, W.

    1982-01-01

    Efficiency is only one aspect of motor performance. This paper discusses how efficiency is influenced by such factors as horsepower rating, poles, actual load, and starting requirements. It discusses some of the variables affecting efficiency...

  16. MotorWeek

    SciTech Connect (OSTI)

    2009-01-01

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  17. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  18. MotorWeek

    ScienceCinema (OSTI)

    None

    2013-04-19

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  19. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  20. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  1. Motor Control CTIO 60 inches CHIRON

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Motor Control CTIO 60 inches CHIRON CHI60HF8.1 La Serena, December 2010 #12;Contents..............................................................................................................................3 1. Image Slicer motor..............................................................................................................5 2. Focus motor

  2. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  3. Brushless Motor Controller Report Spring 2010

    E-Print Network [OSTI]

    Ruina, Andy L.

    Brushless Motor Controller Report Spring 2010 May 15, 2010 Brian Clementi MAE of 2010 322 Bogert ...................................................................................................... 5 A. Motor Description...................................................................................................... 5 B. The Motor Controller Board

  4. Sensory-Motor Integration and Control

    E-Print Network [OSTI]

    Welch, Dan Bruce

    2011-01-01

    spinal interneurons during motor pattern generation inStep, Swim, and Scratch Motor Patterns in the Turtle. JStep, Swim, and Scratch Motor Patterns in the Turtle. J

  5. Undergraduate Grainger Center for Electric Machinery and Electromechanics (CEME) Research and Leadership Program

    E-Print Network [OSTI]

    Jain, Kanti

    machines. Major CEME research areas include design of machines, efficiency enhancement for electric motors for power applications and machines, and other innovations in electrical energy. The CEME ResearchUndergraduate Grainger Center for Electric Machinery and Electromechanics (CEME) Research

  6. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  7. Design and prototyping methods for brushless motors and motor control

    E-Print Network [OSTI]

    Colton, Shane W. (Shane William)

    2010-01-01

    In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two ...

  8. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, Gilbert L. (Albuquerque, NM)

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  9. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  10. Replacing Motors Counting Savings: Results from a 100 Motor Study†

    E-Print Network [OSTI]

    Kaufman, N. M.

    2006-01-01

    that this model is too simple for application in the complex economy of industry. When new motor purchase is planned and specifically budgeted, particularly for expansion or upgrade, it makes sense to account for the present value of the energy savings... based on manufacturer data of available motors accurately reflected the motors found in industry. Based on testing results of 64 motors operating in industry for at least the past ten years, it is determined that tested values at rated load do...

  11. Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an

    E-Print Network [OSTI]

    Noť, Reinhold

    and Electrical Drives Paderborn University 33098 Paderborn, Germany Abstract-- A high performance 55kW (peak-transportation along with rising crude prices have led to renewed interest in electric transportation infrastructureDesign of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric

  12. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    SciTech Connect (OSTI)

    Pressly, R.B.; Mentesana, C.P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  13. Economics of Electric Compressors for Gas Transmission†

    E-Print Network [OSTI]

    Schmeal, W. R.; Hibbs, J. J.

    1994-01-01

    Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental...

  14. DragNDrop Directions v6 Windows Users: How do I access DragNDrop web documents to place or update them?

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    DragNDrop Directions v6 12/12/05 Windows Users: How do I access DragNDrop web documents to place or update them? If you are on the PPPL Domain: Open My Computer. Then the P drive. Find the web folder. Find to your web files contact Lena Scimeca OS/X Users: How do I access the web documents to place or update

  15. Verification of Motor Repair Quality†

    E-Print Network [OSTI]

    Butler, K.

    1998-01-01

    is done properly. But how can an industrial customer know that the motor has been repaired properly?...

  16. Filament depolymerization by motor molecules

    E-Print Network [OSTI]

    Gernot A. Klein; Karsten Kruse; Gianaurelio Cuniberti; Frank Juelicher

    2005-01-24

    Motor proteins that specifically interact with the ends of cytoskeletal filaments can induce filament depolymerization. A phenomenological description of this process is presented. We show that under certain conditions motors dynamically accumulate at the filament ends. We compare simulations of two microscopic models to the phenomenological description. The depolymerization rate can exhibit maxima and dynamic instabilities as a function of the bulk motor density for processive depolymerization. We discuss our results in relation to experimental studies of Kin-13 family motor proteins.

  17. Modeling of D/C motor driven synthetic jet acutators for flow separation control†

    E-Print Network [OSTI]

    Balasubramanian, Ashwin Kumar

    2004-11-15

    The objective of this research is to present a theoretical study of the compressibility effects on the performance of an electric D/C motor driven synthetic jet actuator for flow separation control. Hot wire anemometer experiments were conducted...

  18. Magazine R729 Motor prediction

    E-Print Network [OSTI]

    Flanagan, Randy

    Magazine R729 Primer Motor prediction Daniel M. Wolpert* and J. Randall Flanagan The concept of motor prediction was first considered by Helmholtz when trying to understand how we localise visual position of the eye, predicted the gaze position based on a copy of the motor command acting on the eye

  19. Kinematic Motor Learning Wolfram Schenck

    E-Print Network [OSTI]

    Moeller, Ralf

    Kinematic Motor Learning Wolfram Schenck Computer Engineering Group Faculty of Technology Bielefeld-521-106-6440 mail: wschenck@ti.uni-bielefeld.de Abstract This paper focuses on adaptive motor control in the kinematic domain. Several motor learning strategies from the literature are adopted to kinematic problems

  20. Motor technology for mining applications advances

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-08-15

    AC motors are steadily replacing DC motors in mining and mineral processing equipment, requiring less maintenance. The permanent magnet rotor, or the synchronous motor, has enabled Blador to introduce a line of cooling tower motors. Synchronous motors are soon likely to take over from the induction motor. 1 photo.

  1. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  2. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  3. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  4. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  5. Position sensor for linear synchronous motors employing halbach arrays

    DOE Patents [OSTI]

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  6. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nationís transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  7. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  8. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  9. Abstract--There are two types of drivers in production machine systems: constant velocity (CV) motor and servo-motor.

    E-Print Network [OSTI]

    Zhang, WJ "Chris"

    the dynamic model of the five-bar hybrid mechanism including its electric motors. Section 3 presents to which constraints are applied. In the planar five-bar mechanism (Fig. 1), the free system is two open the tracking performance of the hybrid system. A five-bar linkage with two degrees of freedom is used

  10. EV Everywhere: Electric Drive Systems Bring Power to Plug-in...

    Broader source: Energy.gov (indexed) [DOE]

    it into a form that the electric motor can use. Specifically, the inverter changes direct current (DC) power from the battery into alternating current (AC) power. The...

  11. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to life. It takes place even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from...

  12. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    even at the cellular level where cargo is continually being transported by motor proteins. These tiny machines convert the energy gained from hydrolysing ATP into a series of...

  13. Motor Gasoline Assessment, Spring 1997

    Reports and Publications (EIA)

    1997-01-01

    Analyzes the factors causing the run up of motor gasoline prices during spring 1996 and the different market conditions during spring 1997 that caused prices to decline.

  14. How to Build a Motor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates Expand...

  15. Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoeOhio:LightNewIndustriesMotors

  16. 3.1. MOTOR SYSTEM 35 3.1 Motor System

    E-Print Network [OSTI]

    Toronto, University of

    3.1. MOTOR SYSTEM 35 3.1 Motor System The motor system comprises the dynamic model of the fish, the actuators, and a set of motor controllers (MCs) which constitutes the motor control center in the artificial consistency, hence realism, and computational efficiency. Our model is rich enough so that we can build motor

  17. An Electric Flight Concept Mller, N.*1

    E-Print Network [OSTI]

    MŁller, Norbert

    some motivations in the search for solutions. Weight concerns related to power densities of energy as weight saver. The technical realization of counter-rotation with conventional drive designs often appears and versatile transmission of electrical energy instead of mechanical (rotational) energy. Electrical motors can

  18. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Sin, Peter

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  19. Developing a Motor Management Policy at BASF†

    E-Print Network [OSTI]

    Zickefoose, B.; Theising, T. R.

    2001-01-01

    In early 1998 Thomas R. Theising, BASF Corporate Engineering initiated the formation of a motor management team. The goal of the team was to develop a Motor Management Guideline to better manage the purchase and repair of motors used throughout...

  20. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J; Hsu, John S; Adams, Donald J

    2007-11-01

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  1. Combined passive bearing element/generator motor

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2000-01-01

    An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.

  2. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  3. Magnetically Coupled Adjustable Speed Motor Drives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    include: * Creation of harmonics, which requires installation of line reactors or harmonic filters * Voltage spikes that can lead to early motor failure * Motor bearing...

  4. Magnetically Coupled Adjustable Speed Motor Drives

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  5. Turn Motors Off When Not in Use

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  6. Energy Management for Motor-Driven Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and to design a motor improvement plan. These actions will help you: Reduce energy costs, Improve motor-driven system reliability and efficiency, Increase productivity,...

  7. Solar panel driven air purging apparatus for motor vehicles

    SciTech Connect (OSTI)

    Bobier, J.A.; Brown, G.E.

    1992-02-18

    This patent describes improvement in a motor vehicle having an enclosable cabin an internal combustion engine, a battery, an ignition switch having an on position for enabling the internal combustion engine and an off position, an electric motor coupled in driving relationship with an air circulating fan for circulating air through the cabin. The improvement comprises: a solar panel mounted upon the vehicle having a panel output exhibiting variable voltage levels including a peak voltage level and substantially constant current; a power transfer regulator for transferring power form the panel to the motor when enabled, including: energy storage means connectable across the panel output and chargeable by the current to variable charge levels; solid-state switch means connected in energy transfer relationship with the energy storage means and actuable between conducting and non-conducting states when the power transfer regulator is enabled; inductor means connected with the solid-state switch means and connectable with the electric motor for conveying current thereto from the panel and the energy storage means when the solid-state switch means is in the conducting state.

  8. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

  9. A water film motor

    E-Print Network [OSTI]

    R. Shirsavar; A. Amjadi; N. Hamedani Radja; M. D. Niry; M. Reza Rahimi Tabar; M. R. Ejtehadi

    2006-05-01

    We report on electrically-induced rotations in water films, which can function at many length scales. The device consists of a two-dimensional cell used for electrolysis of water films, as simple as an insulator frame with two electrodes on the sides, to which an external in-plane electric field perpendicular to the mean electrolysis current density is applied. If either the external field or the electrolysis current exceeds some threshold (while the other one is not zero), the liquid film begins to rotate.

  10. Turn Motors Off When Not in Use - Motor Tip Sheet #10

    SciTech Connect (OSTI)

    2008-07-01

    Motors use no energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a NEMA Premiumģ efficiency motor. In fact, given that 97% of the life cycle cost of purchasing and operating a motor is energy-related, turning a motor off 10% of the time could reduce energy costs enough to purchase three new motors.

  11. 1 5/22/2014 Electrical and Electronics Systems

    E-Print Network [OSTI]

    1 5/22/2014 Electrical and Electronics Systems Research Division Kenneth Tobin, Director Electro and Safety Operations, EESD David Fowler Yvonne Horton Advanced Power and Electronics and Electric Motors and Controls Program Peter Fuhr Sustainable Electricity Program Office Tom King USEC CRADA Program Terry Payne

  12. Our Favorite Electrical Energy Saving Opportunities†

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.; Spivey, V.

    1986-01-01

    ELECTRICAL ENERGY SAVING OPPORTUNITIES w. C. Turner Industrial & Management Engineering School ABSTRACT Montana State university Bozeman, Montana C. B. Estes, V. Spivey, of Industrial Engineering & Management Oklahoma state University... energy efficient motors *Involve electricity Table 2 is a listing of popular opportunities ranked by average dollar electricity. Of the three that don't savings. Five of the top ten do involve n e c e s sa r i 1yinvolvee1e c t ric i t y, # 2- (air...

  13. Electrical and Electronics Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Electrical and Electronics Technical Teamís (EETT's) mission is to enable cost-effective, smaller, lighter, and efficient power electronics and electric motors for electric traction drive systems (ETDSs) while maintaining performance of internal combustion engine (ICE)-based vehicles. The EETT also identifies technology gaps, establishes R&D targets, develops a roadmap to achieve technical targets and goals, and evaluates the R&D progress toward meeting the established R&D targets and goals.

  14. Mechatronics 2: Part 2 Electrical Connections Copyright 2011 by Paul Oh

    E-Print Network [OSTI]

    Oh, Paul

    Mechatronics 2: Part 2 ≠ Electrical Connections Copyright 2011 by Paul Oh Hands-on Lab NXT Motor reveals 6 milliamp running current at no load and lithium NXT battery at 100% motor speed #12;Mechatronics the cable's black wires #12;Mechatronics 2: Part 2 ≠ Electrical Connections Copyright 2011 by Paul Oh Step 3

  15. State observer for synchronous motors

    DOE Patents [OSTI]

    Lang, Jeffrey H. (Waltham, MA)

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  16. Occupational Electric Shocks, Electromagnetic Fields and Amyotrophic Lateral Sclerosis

    E-Print Network [OSTI]

    Vergara, Ximena Patricia

    2012-01-01

    working near machines with electric motors, and welders haveelectric shock exposure categorization is somewhat uncertain, especially for specific occupations such as office machineelectric shocks and electrocutions were precision production, craft and repair occupations, followed by service occupations and machine

  17. Electric vehicle design, racing and distance to empty algorithms

    E-Print Network [OSTI]

    Rodgers, Lennon Patrick

    2013-01-01

    This research began with the goal of designing and building an electric motorcycle to compete in the Isle of Man TT Zero race. A set of parametric physics-based models was derived to size the batteries and motors, predict ...

  18. Torquespeed relationship of the bacterial flagellar motor

    E-Print Network [OSTI]

    Oster, George

    Torque≠speed relationship of the bacterial flagellar motor Jianhua Xing* , Fan Bai , Richard Berry swimming bacteria are propelled by flagellar filaments driven by a rotary motor. Each of these tiny motors can generate an impressive torque. The motor torque vs. speed relationship is considered one

  19. Rotary protein motors George Oster1

    E-Print Network [OSTI]

    Oster, George

    unambiguously iden- tified as rotary engines: the bacterial flagellar motor and the two motors that constituteRotary protein motors George Oster1 and Hongyun Wang2 1 Depts Molecular and Cellular Biology review the current understanding of how these protein motors convert their energy supply into a rotary

  20. Motor Cortex Is Required for Learning but Not for Executing a Motor Skill

    E-Print Network [OSTI]

    Olveczky, Bence

    Article Motor Cortex Is Required for Learning but Not for Executing a Motor Skill Highlights d We train rats to execute spatiotemporally precise task- specific motor sequences d We show that motor cortex is not required for executing the learned skills d Motor cortex, however, is essential

  1. Rotary Electrodynamics of a DC Motor: Motor as Mechanical Capacitor Lab 2: Modeling and System Identification

    E-Print Network [OSTI]

    Rm La im + - vm vin 0 V Jm m m Kg : 1 gm gm g g J m = shaft + gm Motor shaft inertia shaft = Jm m by the motor to its rotational output shaft. ∑ m is the angular speed (i.e., derivative of the motor shaft's angular position m) of the motor's output shaft rotations. ∑ Jm is the rotational inertia of the motor

  2. Recover Power with Hydraulic Motors

    E-Print Network [OSTI]

    Brennan, J. R.

    1982-01-01

    Anywhere liquid pressure is reduced across a throttling device, there is a potential application for a hydraulic power recovery motor (HPRM). Cost of power makes HPRM's attractive with recoveries as small as 25 hp on a continuous basis. When...

  3. MOTOR POOL RESERVATIONS Reservation Number:_______________

    E-Print Network [OSTI]

    Ottino, Julio M.

    of Department Chair or Organization Advisor: ________________________________________ Chart String Number: Fund: ______________________________________________________________________ Name of Department or Organization: _____________________________________________________ Name reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

  4. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, Allen R. (Salt Lake City, UT)

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  5. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  6. Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor Systems Motor Systems Dramatic

  7. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-02-11

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power regardless of speed for relative speeds, n = {omega}/{omega}{sub base} {ge} 2. Performance was also examined with efficiency measurements during the 30-kW PM motor test. Material requirements were examined with finite-element analyses (FEA) to determine the speed and location where yield starts and the corresponding deformations and stresses.

  8. Magnetic tweezers to studyMagnetic tweezers to studyMagnetic tweezers to studyMagnetic tweezers to study DNA motorsDNA motorsDNA motorsDNA motors

    E-Print Network [OSTI]

    Ritort, Felix

    to study DNA motorsDNA motorsDNA motorsDNA motors MariaMariaMariaMaria MaŮosasMaŮosasMaŮosasMaŮosas Ritort) ∑ Applications: 1. Tracking DNA motors: (i) Helicases (ii) Annealing motor 2. Studying a multiprotein system: DNA hexamers (Dong et al, JBC 1995) Tracking DNA motors: (i) Helicases #12;Passive: helicase behaves

  9. Improve Motor Operation at Off-Design Voltages - Motor Tip Sheet #9

    SciTech Connect (OSTI)

    2008-07-01

    Motors are designed to operate within +/- 10% of their nameplate rated voltages. When motors operate at conditions of over- or under-voltage, motor efficiency and other performance parameters are degraded.

  10. EE 204.3 (3L-1.5P) Basic Electronics and Electrical Power

    E-Print Network [OSTI]

    Saskatchewan, University of

    inductor and capacitor transient circuits, basic generator and motor principles, basic transformerEE 204.3 (3L-1.5P) Basic Electronics and Electrical Power Department of Electrical and Computer Engineering Fall 2014 Description: This is a basic course on electrical topics for non-electrical engineering

  11. Department of Power Electronics and Electrical Drives Prof. Dr.Ing. Joachim Bcker

    E-Print Network [OSTI]

    Paderborn, Universitšt

    .09.2014 Mechatronics und Electrical Drives SS 2014 Page 1 of 6 Mechatronics and Electrical Drives 03.09.2014 Surname Drives Prof. Dr.≠Ing. J. BŲcker 03.09.2014 Mechatronics und Electrical Drives SS 2014 Page 2 of 6.09.2014 Mechatronics und Electrical Drives SS 2014 Page 3 of 6 Aufgabe 2: Reluctance motor (18 Points) The profiles

  12. Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation

    E-Print Network [OSTI]

    Brennan, Sean

    Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation: Hardware-in-the-loop Hybrid electric vehicle Buckingham Pi Theorem Battery model a b s t r a c t Hardware to correctly scale electric vehicle components, particularly the following subsystems: electric motor

  13. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  14. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  15. Assessing the Energy Efficiency Potential of Industrial Motor Systems

    E-Print Network [OSTI]

    McKane, Aimee

    2014-01-01

    2003. Energy-efficient motor systems in the industrial andpotential for energy efficiency in industrial motor systemspotential for energy efficiency in industrial motor systems

  16. Functional Magnetic Resonance Imaging of Motor Cortex Activation in Schizophrenia

    E-Print Network [OSTI]

    2015-01-01

    Magnetic Resonance Imaging of Motor Cortex Activation inBrain dysfunction during motor activation and corpus callo-Lee HJ, et al. ē FMRI of Motor Cortex Activation in

  17. Lab 4 -Motor Constants and Sensor Calibration Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational

    E-Print Network [OSTI]

    Stanford University

    Lab 4 - Motor Constants and Sensor Calibration PRE-LAB Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational damping in the motor is bm. The motor produces a torque Tm = Kmi where Km is the motor's torque constant and i is the current from the power supply. a

  18. Three phase AC motor controller

    DOE Patents [OSTI]

    Vuckovich, Michael (Elizabeth, PA); Wright, Maynard K. (Bethel Park, PA); Burkett, John P. (South Huntington Township, Westmoreland County, PA)

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  19. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein Motor DomainDynein Motor

  20. Experimental determination of equivalent circuit parameters for PM synchronous motors

    SciTech Connect (OSTI)

    Consoli, A.; Raciti, A. (Dept. Elettrico Elettronico e Sistemistico, Univ. di Catania, 95125 Catania (IT))

    1992-01-01

    The growing interest in energy savings, especially in industrial applications, has led to explore in more details the potential of unconventional excitation systems for electric machines. The wide spread use of Permanent Magnet materials in dc as well as in synchronous machines, to substitute the excitation circuit, is one of the ways followed to reach this objective. Significative work has been done in order to minimize the volume of the use permanent magnet material, to eliminate the motor behavior limitations due to the fixed value of excitation, to find the best geometries easy to manufacture and also reliable according to the dynamic stresses. A full procedure is presented in this paper to provide a straightforward tool useful for parameter determination of Permanent Magnet Synchronous Motors. Classical tests, that are well established to measure the parameters of synchronous machines with conventional field excitation, are reviewed to confirm or not their applicability. A novel test performed during particular transient conditions allows us to evaluate one of the concerned motor time constants. The motor behavior is simulated by means of a simulation language (ACSL) on a digital computer and several runs in different transient conditions are performed. Comparison of the simulated and experimental waveforms of speeds and currents shows good agreement and confirms the validity of the proposed procedure.

  1. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3ô replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost effectiveness. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Results indicate that BPM replacement motors will be most cost effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  2. DYNAMICS OF FUNCTIONAL CONNECTIVITY WITHIN CORTICAL MOTOR NETWORK DURING MOTOR LEARNING IN STROKE - CORRELATIONS WITH "TRUE" MOTOR RECOVERY

    E-Print Network [OSTI]

    BANI-AHMED, ALI

    2013-08-31

    investigate the changes in cortical motor function at two levels, regional (micro-circuitry, regional activation) and network (macro-circuitry, functional connectivity), following an arm-focused motor training in chronic stroke survivors and how these brain...

  3. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  4. Homopolar motor with dual rotors

    DOE Patents [OSTI]

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  5. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  6. Efficient, Inexpensive Motors: A New Trend in The Motors Market†

    E-Print Network [OSTI]

    Wroblewksi, R. G.

    2001-01-01

    criteria ABB 0 100Baldor GE 50 83 Part of Marathon Grainger!Dayton Leeson Lincoln 81 67 46 78 12 24 51 60 67 62 54 Magnetek Marathon Reliance Siemens Sterling Tatung Teco/Westinghouse Toshiba U.S. Motors WEG Table 3 is a list...

  7. Electricity Reliability

    E-Print Network [OSTI]

    Post, Wilfred M.

    Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

  8. Impact of Motor Failures on Payback Periods†

    E-Print Network [OSTI]

    Cheek, K. F.; Pillay, P.; Dudley, K. J.

    1995-01-01

    This paper uses MotorMaster and Vaughen's Complete Price Guide to determine payback periods for different motor failure scenarios. Some scenarios considered are rewinds, reconditions, and replacement of bearings. Prices for these repairs...

  9. Sensorless performance evaluation of induction motors

    E-Print Network [OSTI]

    Ahmed, Shehab

    2000-01-01

    In this thesis, various aspects of induction motor performance are discussed. The importance of the speed-torque curve for an induction motor system and its various applications are emphasized. Difficulties in the presently available methods...

  10. Learning Motor Skills: From Algorithms to Robot

    E-Print Network [OSTI]

    Learning Motor Skills: From Algorithms to Robot Experiments Erlernen Motorischer Fšhigkeiten: Von Algorithmen zu Roboter-Experimenten Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr Motor Skills: From Algorithms to Robot Experiments Erlernen Motorischer Fšhigkeiten: Von Algorithmen zu

  11. Self-bearing motor design & control

    E-Print Network [OSTI]

    Imani Nejad, Mohammad

    2013-01-01

    This thesis presents the design, implementation and control of a new class of self-bearing motors. The primary thesis contributions include the design and experimental demonstration of hysteresis self-bearing motors, novel ...

  12. Injectable Spontaneous Generation of Tremendous Self-Fueled Liquid Metal Droplet Motors in a Moment

    E-Print Network [OSTI]

    Yao, You-You; Liu, Jing

    2015-01-01

    Micro motors that could run in liquid environment is very important for a variety of practices such as serving as pipeline robot, soft machine, drug delivery, or microfluidics system etc. However, fabrication of such tiny motors is generally rather time and cost consumptive and has been a tough issue due to involve too many complicated procedures and tools. Here, we show a straightforward injectable way for spontaneously generating autonomously running soft motors in large quantity. A basic fabrication strategy thus enabled is established and illustrated. It was found that, injecting the GaIn alloy pre-fueled with aluminum into electrolyte would automatically split in seconds into tremendous droplet motors swiftly running here and there. The driving force originated from the galvanic cell reaction among alloy, aluminum and surrounding electrolyte which offers interior electricity and hydrogen gas as motion power. This finding opens the possibility to develop injectable tiny-robots, droplet machines or microfl...

  13. Frequency modulation drive for a piezoelectric motor

    DOE Patents [OSTI]

    Mittas, Anthony (Albuquerque, NM)

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  14. Motorized control for mirror mount apparatus

    DOE Patents [OSTI]

    Cutburth, Ronald W. (Tracy, CA)

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  15. Coupling between motor proteins determines dynamic behaviors of motor protein assemblies

    E-Print Network [OSTI]

    Coupling between motor proteins determines dynamic behaviors of motor protein assemblies Jonathan W of intracellular cargos by multiple microtubule motor proteins is believed to be a common and significant phenomenon in vivo, yet signatures of the microscopic dynamics of multiple motor systems are only now

  16. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  17. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  18. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01

    Agency; Highway Vehicle Emission Estimates; Office offor Evolving Motor Vehicle Emission Modeling Approachesfor Evolving Motor Vehicle Emission Modeling Approaches

  19. Lithographically Patterned Channels Spatially Segregate Kinesin Motor

    E-Print Network [OSTI]

    Hancock, William O.

    Lithographically Patterned Channels Spatially Segregate Kinesin Motor Activity and Effectively Received March 25, 2003 ABSTRACT To extract useful work from biological motor proteins, it is necessary microfabrication to construct 1.5-Ķm-deep channels in SU-8 photoresist patterned on glass. Although motor proteins

  20. INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS

    E-Print Network [OSTI]

    Povinelli, Richard J.

    INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

  1. General Motors Clean Combustion Engines Advanced

    E-Print Network [OSTI]

    Siefert, Chris

    General Motors Clean Combustion Engines Advanced with Predictive Simulation Tools Sandia National Laboratories (SNL) has been working with General Motors (GM) for over 30 years. In the last few years General Motors n Daniel Dedrick, an SNL researcher, handles a complex metal hydride within an inert

  2. Microtubule Motors in Microfluidics Maruti Uppalapati,

    E-Print Network [OSTI]

    Hancock, William O.

    CHAPTER 1 3 Microtubule Motors in Microfluidics Maruti Uppalapati, 1 Ying-Ming Huang, 2 Shankar-mail: wohbio@engr.psu.edu 311 Abstract Kinesin motor proteins carry out a range of transport functions that successfully integrates microtubule-based transport. Key terms kinesin microtubule transport motor protein

  3. Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. High Efficiency Fans and High Efficiency Electrical Motors

    E-Print Network [OSTI]

    Breedlove, C. W.

    1989-01-01

    operates from 800 hours to 1500 hours per year or 15% of the year. Sixty percent of the connected horsepower is operating pneumatic air fans. These pneumatic fans transport the seed cotton, cotton lint, cottonseed and cotton trash throughout... efficiency will be consistent and ongoing. Since pneumat cs use 60% of the total power consumed in a cotton gin it seemed the most likely pace to improve efficiency. Each fan's sys em was redesigned and engineered. Not on y were old inefficient fans...

  5. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is currently developing joint programs with the Technical Association of the Pulp and Paper Industry, the Association of Iron and Steel Engineers, the American Water Works...

  6. New Energy Efficiency Standards for Electric Motors and Walk...

    Energy Savers [EERE]

    Climate Action Plan, which called for efficiency standards that cut carbon pollution and save money by saving energy, the Energy Department today announced two new energy...

  7. Optimizing Electric Motor Systems at a Corporate Campus Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BENEFITS * Saves over 375,000 annually * Reduces annual energy consumption by 170 billion Btu * Reduces air emissions APPLICATIONS Improving control strategies can increase the...

  8. Selected Bibliography on Electric Motor Repair | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDISTDepartment ofPrimeSaltstone(fromEnergy MagiQ

  9. Replacing an Oversized and Underloaded Electric Motor | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7 Multiple<

  10. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas of the countryof Energy TheNevadaAmgad2008 |Department

  11. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,Jump to:Corp JumpJSON showsHybrid

  12. EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis

  13. Determining Electric Motor Load and Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i Framing DocumentUnits at Eight- Special Advisor, OfficeFactorsa

  14. DOE Issues Notice of Proposed Rulemaking for Electric Motors Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal AviationSynchrophasor Engineering

  15. Buying an Energy-Efficient Electric Motor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at theEnergy StateSpecifiers | Department ofis an

  16. United States Industrial Electric Motor Systems Market Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed|Department ofInspector Generalcalled theAssessment

  17. Ameren Illinois (Electric) - Custom, HVAC and Motor Business Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiency RebateFederalDepartment ofIncentives |

  18. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergy ToolsCoordinationDepartment of

  19. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergy ToolsCoordinationDepartment ofEnergy 1 DOE

  20. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25, 2014TEMPLATE|OffInfrastructureGroup Report

  1. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics ¬Ľ USAJobs Search USAJobs Search The jobsFelix Storch Inc.Bl 'vl/OU Wy) :jJ. rI AO

  2. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein Khalil Director ofHydrogen andA

  3. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic 2015 Chevrolet Spark EV 2015

  4. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  5. ARTI/MCRL Project Report products of motor burnout (Second quarter report)

    SciTech Connect (OSTI)

    Hawley-Fedder, R.

    1995-01-15

    The OSP (Operating Safety Procedure) required for performance of electrical arc testing of CFC replacement fluids was renewed. Electrical breakdown tests at one (1) atmosphere pressure have been performed for R-22, R-134a, and R-125/R-143a (50:50 blend; AZ-50), and breakdown products identified. No differences in HCFC breakdown products are seen in the presence or absence of lubricant oils. The design of the high pressure-high temperature test stand has been finalized, and construction initiated during this quarter. Three motor stators and rotors were received from Tecumseh Products Company for use in motor burnout tests. A test plan for the motor breakdown tests is in preparation.

  6. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  7. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOE Patents [OSTI]

    Casada, Donald A. (Oak Ridge, TN)

    1996-01-01

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  8. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOE Patents [OSTI]

    Casada, D.A.

    1996-01-16

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization. 14 figs.

  9. Course Outline Engineer 2MM3 Electrical Circuits & Power

    E-Print Network [OSTI]

    Haykin, Simon

    .ece.mcmaster.ca/~mrhowlader/2mm3/notes.htm Text Book: S.J. Chapman, Electric Machinery Fundamentals, McGraw Hill, Fifth Edition Course Description: Fundamentals of electromechanical energy conversion. Motors and generators. Fundamentals of Magnetic Circuits; 2. Fundamentals of Electrical Circuits, Phasors; 3. Power in AC Circuits; 4

  10. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  11. Electrical + Engineering

    E-Print Network [OSTI]

    Cafarella, Michael J.

    Electrical + Computer Engineering Electrical + Computer Engineering 2013 PROFILE PEOPLE Faculty Students Electrical Engineering - 330 Computer Engineering - 224 Graduate Students EE and EE:Systems MSE - 301 EE and EE:Systems PhD - 296 Degrees Awarded Electrical Engineering BSE - 123 Computer Engineering

  12. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  13. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  14. Motor protein accumulation on antiparallel microtubule overlaps

    E-Print Network [OSTI]

    Hui-Shun Kuan; M. D. Betterton

    2015-09-24

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. The center region, far from the overlap ends, has a constant motor density as one would na\\"ively expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule overlap geometry may offer a novel mechanism for biological regulation of protein concentration and consequent activity.

  15. Chemistry in Motion: Tiny Synthetic Motors

    E-Print Network [OSTI]

    Peter H. Colberg; Shang Yik Reigh; Bryan Robertson; Raymond Kapral

    2014-11-03

    In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

  16. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, ďPlug-in Hybrid Ethanol Research PlatformĒ, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  17. Motor protein accumulation on antiparallel microtubule overlaps

    E-Print Network [OSTI]

    Kuan, Hui-Shun

    2015-01-01

    Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this system that couples the totally asymmetric simple exclusion process (TASEP) for motor motion with switches between antiparallel filaments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approximate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. The center region, far from the overlap ends, has a constant motor density as one would na\\"ively expect. However, rather than following a simple binding equilibrium, the center ...

  18. Traffic by small teams of molecular motors

    E-Print Network [OSTI]

    Melanie J. I. MŁller; Janina Beeg; Rumiana Dimova; Stefan Klumpp; Reinhard Lipowsky

    2008-07-07

    Molecular motors transport various cargos along cytoskeletal filaments, analogous to trucks on roads. In contrast to vehicles, however, molecular motors do not work alone but in small teams. We describe a simple model for the transport of a cargo by one team of motors and by two teams of motors, which walk into opposite directions. The cooperation of one team of motors generates long-range transport, which we observed experimentally in vitro. Transport by two teams of motors leads to a variety of bidirectional motility behaviour and to dynamic instabilities reminiscent of spontaneous symmetry breaking. We also discuss how cargo transport by teams of motors allows the cell to generate robust long-range bidirectional transport.

  19. Single phase four pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-10-09

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.

  20. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  1. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  2. Dr. S. Cruz-Pol, INEL 4152-Electromagnetics Electrical Engineering, UPRM

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    was born! ∑ This is the principle of motors, hydro-electric generators and transformers operation. CruzDr. S. Cruz-Pol, INEL 4152-Electromagnetics Electrical Engineering, UPRM 1 Electromagnetism Polariza4on ∑ Applica4ons and Concepts Electricity => Magnetism ōIn 1820 Oersted discovered

  3. EE 202.3 (3L-3P alt weeks) Electric and Magnetic Fields and Circuits

    E-Print Network [OSTI]

    Saskatchewan, University of

    for magnetic circuits, principles of linear motors and generators The course is about 1/3 fields and 2EE 202.3 (3L-3P alt weeks) Electric and Magnetic Fields and Circuits Department of Electrical and Computer Engineering Fall 2015 Description: Further develops the theory and analysis of electric

  4. ENGINEER 2MM3 -Electrical Circuits & Power TERM 1, 2014/15

    E-Print Network [OSTI]

    Haykin, Simon

    Machinery Fundamentals, McGraw Hill, Fourth Edition, 2005. Reference Book: T. Wildi, Electrical machines of electric circuits, phasors 3. Transformers 4. AC generators and motors 5. Three-phase circuits 7. 3-phaseENGINEER 2MM3 - Electrical Circuits & Power TERM 1, 2014/15 Course Outline Instructor: Shiva

  5. Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Bocker

    E-Print Network [OSTI]

    Noé, Reinhold

    ]. In order to maximize the quality of simulation results of an electrical drivetrain it is therefore) for an electric drive, where the control structure, power electronics and motor are modeled in different environ works as a combined system. The system model of the electric drive discussed in this work consists

  6. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit

  7. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  8. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDieselAbsorption Techniques |Dr.Dr.Durathon(tm)Dynein Motor

  9. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein Motor Domain Shows

  10. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein Motor Domain ShowsDynein

  11. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein Motor Domain

  12. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein Motor DomainDynein

  13. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program†

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    1995-01-01

    The Department of Energy's (DOE) Motor Challenge program is an industry/government collaborative that is working to increase the market penetration of efficient motor-driven systems. In support of the program's Showcase Demonstrations, a variety...

  14. When Should Inverter-Duty Motors Be Specified? - Motor Tip Sheet #14

    SciTech Connect (OSTI)

    2008-07-01

    Electronic adjustable speed drives (ASDs) used to be marketed as ďusable with any standard motor.Ē However, premature failures of motor insulation systems began to occur with the introduction of fast-switching pulse-width modulated (PWM) drives.

  15. System and method for determining stator winding resistance in an AC motor using motor drives

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  16. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  17. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  18. MotorMaster+ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor Systems Motor MotorMaster+

  19. Motor Fleet Request/Authorization Page 1 UNCW Travel System

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Motor Fleet Request/Authorization Page 1 UNCW Travel System Motor Fleet Request/Travel Authorization ENTER THE MOTOR FLEET REQUEST IN THE TRANSPORTATION SECTION OF THE TRAVEL AUTHORIZATION. PRESS CLICK TO ADD AND SELECT MOTOR FLEET FROM THE DROP-DOWN BOX. #12;Motor Fleet Request/Authorization Page 2

  20. Cooperative transport by small teams of molecular motors

    E-Print Network [OSTI]

    Stefan Klumpp; Melanie J. I. Muller; Reinhard Lipowsky

    2006-12-04

    Molecular motors power directed transport of cargoes within cells. Even if a single motor is sufficient to transport a cargo, motors often cooperate in small teams. We discuss the cooperative cargo transport by several motors theoretically and explore some of its properties. In particular we emphasize how motor teams can drag cargoes through a viscous environment.

  1. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  2. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  3. Electrically-Assisted Turbocharger Development for Performance and Emissions

    SciTech Connect (OSTI)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

  4. 3.1. MOTOR SYSTEM 35 3.1 Motor System

    E-Print Network [OSTI]

    Toronto, University of

    3.1. MOTOR SYSTEM 35 3.1 Motor System The motor system comprises the dynamic model of the fish fish's brain. Since our goal is to animate an animal realistically and at reasonable computational cost controllers by gleaning information from the fish biomechanics literature (Blake, 1983; Alexander, 1992

  5. Motor VFDs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio:Hill,Morrisville, NewMoshanirMotor

  6. BSA Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana)District Office JumpBRMFBSA Motors

  7. Aurica Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,AtlantisstromAugusta County,Aurica Motors Jump

  8. How to Build a Motor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHoursa Wind Turbine WorksMotor

  9. Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for

    E-Print Network [OSTI]

    Fay, Noah

    Motor Pool Guidelines for Geosciences ∑ A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf ∑ If the trip be submitted with the Motor Pool Request. ∑ A list of passengers and drivers is for all motor pool travel (this

  10. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars (Northville, MI)

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  12. The US Motor Systems Market Assessment: Baseline and Survey Methods†

    E-Print Network [OSTI]

    Rosenberg, M.

    1997-01-01

    This paper summarizes the current status of the US Motor Systems Market Assessment. This component of the Department of Energy's Motor Challenge program will provide a detailed portrait of the inventory of motor systems currently in use in US...

  13. What does motor efference copy represent? evidence from speech production

    E-Print Network [OSTI]

    Niziolek, CA; Nagarajan, SS; Houde, JF

    2013-01-01

    What does motor efference copy represent? Evidence fromAbbreviated title: What does motor efference copy represent?SJ, Wang X (2003) Sensory-Motor Interaction in the Primate

  14. Motor Neurons Controlling Fluid Ingestion in Drosophila melanogaster

    E-Print Network [OSTI]

    Manzo, Andrea

    2011-01-01

    coordination of rhythmic motor patterns. J Neurophysiol 90:Figure 3.5. Individual motor neurons project to eitherGraphs as in (C-D) for MN12 motor neurons. n=10-13 flies per

  15. On the Costs of Air Pollution from Motor Vehicles

    E-Print Network [OSTI]

    Small, Kenneth A.; Kazimi, Camilla

    1995-01-01

    Costs of Air Pollution fromMotor Vehicles By Kenneth A.we have found, motor vehicle pollution sterns best addressedCosts of Air Pollution from Motor Vehicles K A Small and Cį

  16. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Power curves show blower motor input power as a function ofOverall, it appears the BPM motors used in furnaces offerThe impact of ECM furnace motors on natural gas use and

  17. MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by

    E-Print Network [OSTI]

    Anderson, Charles W.

    THESIS MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES Submitted by Jared Tucker Heath 2011 All Rights Reserved #12;ii ABSTRACT MOTORIZED WINTER RECREATION IMPACTS ON SNOWPACK PROPERTIES interactions. Motorized winter recreation in the backcountry compacts the snow possibly influencing

  18. Influence of direct motor-motor interaction in models for cargo transport by a single team of motors

    E-Print Network [OSTI]

    Sebastian Bouzat; Fernando Falo

    2010-12-14

    We analyze theoretically the effects of excluded-volume interactions between motors on the dynamics of a cargo driven by multiple motors. The model considered shares many commons with other recently proposed in the literature, with the addition of direct interaction between motors and motor back steps. The cargo is assumed to follow a continuum Langevin dynamics, while individual motors evolve following a Monte Carlo algorithm based on experimentally accessible probabilities for discrete forward and backward jumps, and attachment and detachment rates. The links between cargo and motors are considered as non linear springs. By means of numerical simulations we compute the relevant quantities characterizing the dynamical properties of the system, and we compare the results to those for non interacting motors. We find that interactions lead to quite relevant changes in the force-velocity relation for cargo, with a considerable reduction of the stall force, and cause also a notable decrease of the run length. These effects are mainly due to traffic-like phenomena in the microtubule. The consideration of several parallel tracks for motors reduces such effects. However, we find that for realistic values of the number of motors and the number of tracks, the influence of interactions on the global parameters of transport of cargo are far from being negligible. Our studies provide also an analysis of the relevance of motor back steps on the modeling, and of the influence of different assumptions for the detachment rates. In particular, we discuss these two aspects in connection with the possibility of observing processive back motion of cargo at large load forces.

  19. Electric Utility Measurement & Verification Program†

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    2007-01-01

    . Therefore, if the flow fluctuates from what is required, the gas must be recycled. The M&V technique used for this project was Option B, Metering. The analysis was based on liquid flow data and motor current data (used as a ESL-IE-07... is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydro?s demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential...

  20. Harsh-environment motor renovation - the only alternative in an emergency

    SciTech Connect (OSTI)

    Hendricks, J.R.; Farwell, C.R. Jr.

    1988-01-01

    It is difficult for utilities to obtain identical replacements for safety-related motors in an emergency because of the limited number of renovation facilities and the utilities' understanding of the renovation process. This paper addresses the renovation of motors installed in harsh environments. It also applies to mild-environment safety-related materials, wherein improperly related electrical materials could affect seismic qualification and catastrophic failures while operating at the motor's temperature extreme. The purpose of this paper is to provide utilities with insight into today's renovation process and its complexity when dealing with issues such as regulatory guides 10CFR50.49, 10CFR50 Appendix B, and 10CFR21.

  1. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ≠ Passing score: BE43.5 ∑ Enforcement tool for only 3 years. ∑ Based solely on brake Brake Research ∑ CMVRTC research built on these enforcement tools ≠ Correlation Study ≠ Level-1 / PBBT

  2. Molecular Motors Interacting with Their Own Tracks

    E-Print Network [OSTI]

    Max N. Artyomov; Alexander Yu. Morozov; Anatoly B. Kolomeisky

    2007-12-20

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state ``burnt-bridge'' models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor's motion for some range of parameters. The molecular motor also experiences non-monotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  3. Duty-ratio of cooperative molecular motors

    E-Print Network [OSTI]

    Nadiv Dharan; Oded Farago

    2012-01-22

    Molecular motors are found throughout the cells of the human body, and have many different and important roles. These micro-machines move along filament tracks, and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty-ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II - a non-processive molecular machine with a low duty ratio - cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of non-processive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  4. Entropic Studies of Cytoskeletal Motors Jamming

    E-Print Network [OSTI]

    C. M. Arizmendi; H. G. E. Hentschel; F. Family

    2007-04-28

    Can the different causes for disruption of intracellular transport be traced from the trajectories of the molecular motors on the cytoskeletal filaments? We will attempt to answer this important question in a Monte Carlo model of microtubule-motor protein interaction from the point of view of information theory.

  5. Nanoconfined catalytic ŇngstrŲm-size motors

    E-Print Network [OSTI]

    Peter H. Colberg; Raymond Kapral

    2015-01-13

    Chemically-powered synthetic micron and nano-scale motors that propel themselves in solution are being intensively studied because of the wide range of potential applications that exploit their directed motion. Recent experiments have shown that, even on the molecular scale, small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to self-propulsion. Simulations of very small {\\AA}ngstr\\"om-size synthetic motors in bulk solution have shown similar effects. Applications of such small motors in the cell or in microfluidic devices require knowledge of how these motors interact with boundaries. Molecular dynamics is used to investigate the properties of {\\AA}ngstr\\"om-size synthetic chemically-powered motors confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent exclusion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation and mean square displacement, are anisotropic and depend on the distance from the walls. This research presents information needed for potential applications that use these motors in the complex confined geometries encountered in biology and the laboratory.

  6. Performance improvement of permanent magnet ac motors

    E-Print Network [OSTI]

    Parsa, Leila

    2005-08-29

    positively to output torque, a five-phase permanent magnet motor with quasi-rectangular back-EMF waveform is supplied with combined fundamental and third harmonic of currents. For modeling and analysis of the motor a 0 3 3 1 1 q d q d frame of reference...

  7. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  8. A Five-Leg Inverter for Driving a Traction Motor and a Compressor Motor

    SciTech Connect (OSTI)

    Su, Gui-Jia; Hsu, John S

    2006-01-01

    This paper presents an integrated inverter for speed control of a traction motor and a compressor motor to reduce the compressor drive cost in EV/HEV applications. The inverter comprises five phase-legs; three of which are for control of a three-phase traction motor and the remaining two for a two-phase compressor motor with three terminals. The common terminal of the two-phase motor is tied to the neutral point of the three-phase traction motor to eliminate the requirement of a third phase leg. Further cost savings are made possible by sharing the switching devices, dc bus filter capacitors, gate drive power supplies, and control circuit. Simulation and experimental results are included to verify that speed control of the two motors is independent from each other.

  9. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  10. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    E-Print Network [OSTI]

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-01-01

    Motor Systems Energy Conservation Program: A Major Nationalnational program tentatively called the China Motor Systems Energy Conservation Program.a major national program to reduce motor system energy use.

  11. ŇngstrŲm-scale chemically powered motors

    E-Print Network [OSTI]

    Peter H. Colberg; Raymond Kapral

    2014-05-16

    Like their larger micron-scale counterparts, {\\AA}ngstr\\"om-scale chemically self-propelled motors use asymmetric catalytic activity to produce self-generated concentration gradients that lead to directed motion. Unlike their micron-scale counterparts, the sizes of {\\AA}ngstr\\"om-scale motors are comparable to the solvent molecules in which they move, they are dominated by fluctuations, and they operate on very different time scales. These new features are studied using molecular dynamics simulations of small sphere dimer motors. We show that the ballistic regime is dominated by the thermal speed but the diffusion coefficients of these motors are orders of magnitude larger than inactive dimers. Such small motors may find applications in nano-confined systems or perhaps eventually in the cell.

  12. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  13. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  14. Best Practices in Non-Motorized Transport Planning, Implementation...

    Open Energy Info (EERE)

    Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices in Non-Motorized...

  15. Improve Motor Operation at Off-Design Voltages

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  16. Minimize Adverse Motor and Adjustable Speed Drive Interactions

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  17. Improving Motor and Drive System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems

  18. When Should Inverter-Duty Motors Be Specified?

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  20. Improving Motor and Drive System Performance - A Sourcebook for...

    Broader source: Energy.gov (indexed) [DOE]

    sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: Motor and Drive System Basics: Summarizes...

  1. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving...

  2. Continuous Energy Improvement in Motor Driven Systems - A Guidebook...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Improvement in Motor Driven Systems - A Guidebook for Industry Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry This guidebook provides a...

  3. Improving Motor and Drive System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2010-06-25

    This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems.

  4. United States Industrial Motor-Driven Systems Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment:...

  5. When Should Inverter-Duty Motors Be Specified? | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power semiconductors can lead to voltage overshoots. These voltage spikes can rapidly damage a motor's insulation system, resulting in premature motor failure. This tip sheet...

  6. Premium Efficiency Motor Selection and Application Guide - A...

    Broader source: Energy.gov (indexed) [DOE]

    identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial...

  7. New rocket propellant and motor design offer high-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested...

  8. Exposure to motor vehicle emissions: An intake fraction approach

    E-Print Network [OSTI]

    Marshall, Julian D.

    2002-01-01

    on California Light-Duty Vehicle Emissions." EnvironmentalGasoline on Motor Vehicle Emissions. 2. Volatile OrganicGasoline on Motor Vehicle Emissions. I. Mass Emission

  9. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard Freeman

    2012-09-11

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  10. Honda motor company's CVCC engine

    SciTech Connect (OSTI)

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  11. Technology Solutions Case Study: Replacement of Variable-Speed Motors for Furnaces

    SciTech Connect (OSTI)

    2013-02-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) evaluated the Concept 3ô replacement motors for residential furnaces in eight homes in Syracuse, NY. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh, with average cost savings of $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load.

  12. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  13. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  14. Insulation assembly for electric machine

    DOE Patents [OSTI]

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  15. H:\\Research\\Proposals\\grandchallenges\\artificial_sensing.doc -1 -Grand Challenges: Building a synthetic sensory-motor system

    E-Print Network [OSTI]

    Smith, Leslie S.

    . The sensory part detects some form of variable flux (such as changing energy fields or electrical or material the biological sensory-motor systems, but built, rather than grown. Animals have developed senses based on pressure waves (hearing, bat sonar), light (vision), trace element gradients in air or water (smell, taste

  16. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner coreócoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  17. The efficiency of the molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2009-02-12

    Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either $N$ or infinite chemical states, we find that the energy efficiency of the molecular motors, whether the Stokes efficiency or the usual thermodynamic efficiency, is strictly bounded by 1, because of the dissipation of the energy in both the overdamped surroundings and in the process of the chemical reaction.

  18. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  19. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  20. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Patents [OSTI]

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  1. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  2. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect (OSTI)

    Crapo, A.D.; Lloyd, J.D. (Emerson Electric Co., St. Louis, MO (US))

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  3. Motor transport of self-assembled cargos in crowded environments

    E-Print Network [OSTI]

    Ross, Jennifer

    Motor transport of self-assembled cargos in crowded environments Leslie Conwaya , Derek Woodb is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how

  4. Inferring Motor Programs from Images of Handwritten Digits

    E-Print Network [OSTI]

    Hinton, Geoffrey E.

    Inferring Motor Programs from Images of Handwritten Digits Geoffrey Hinton and Vinod Nair whose stiffnesses are controlled by a motor program. We show how neural networks can be trained to infer the motor programs required to accurately reconstruct the MNIST digits. The inferred motor programs can

  5. Motor Fleet Approval Process Page 1 UNCW Travel System

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Motor Fleet Approval Process Page 1 UNCW Travel System Motor Fleet Approval Process Preparer submits the motor fleet vehicle request; and the request is automatically routed to the traveler an e-mail notifying them there are pending motor fleet signatures. If you are both supervisor

  6. 38 CHAPTER 1. ASSEMBLY MANUAL BiDirectional Motor

    E-Print Network [OSTI]

    38 CHAPTER 1. ASSEMBLY MANUAL Bi≠Directional Motor and Infrared Beacon Uni≠Directional Motor, LED to build reliable cables and connectors for the motors and sensors that will plug into the robot more reliable overall and will ease development difficulties. Sensors and motors are built

  7. Convective Cooling and Passive Stack Improvements in Motors (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-06-01

    This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

  8. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  9. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  10. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  11. electrical, engineering

    E-Print Network [OSTI]

    school of electrical, computer and energy engineering Annual Report 2012-2013 Breaking the final systems engineering Marco Santello, School Director enrollment 930 undergraduate 771 graduate 159 DEGREE PROGRAM biomedical engineering (Harrington Bioengineering program) school of computing, informatics

  12. Electrical, Engineering

    E-Print Network [OSTI]

    School of Electrical, Computer and Energy Engineering 2009-2010 Annual Report #12;Organizational Structure for Ira A. Fulton Schools of Engineering Schools (Director) Lead These Engineering Undergraduate Degree Programs Coordinate Across Engineering for These Grand Challenge Areas... Biological & Health

  13. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  14. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  15. Integrated Inverter For Driving Multiple Electric Machines

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  16. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect (OSTI)

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high speed depends solely on machine parameters and is virtually independent of the load level and the direct current (dc) supply voltage. Thus, the motor current is virtually the same at no load as at full load resulting in poor efficiency at less than full load conditions. While an inductance higher than the value cited above is warranted, it still does not ensure that the motor current is proportional to load; consequently, the problem of low efficiency at high speed and partial load is not resolved but is only mitigated. A common definition of 'base speed' is the speed at which the voltage applied to the motor armature is equal to the magnitude of the back-emf. The results in this study indicate that the dc supply voltage should be adequate to drive rated current into the motor winding at the specified base speed. At a minimum this requires sufficient voltage to overcome not only the back-emf but also the voltage drop across the internal impedance of the machine. For a high inductance PMSM, the internal impedance at base speed can be considerable and substantial additional voltage is required to overcome the internal voltage drop. It is further shown that even more voltage than the minimum required for injecting rated current at base speed can be beneficial by allowing the required power to be developed at lower current, which reduces losses in the motor and inverter components. Further, it is shown that the current is minimized at a unique speed; consequently, there may be room for optimization if the drive spends a substantial amount of its operating life at a certain speed (for example 60 mph). In this study, fundamental frequency phasor models are developed for a synchronous PMSM and the control systems that drive them is CPA. The models were compared with detailed simulations to show their validity. The result was used to design a traction drive control system with optimized efficiency to drive the fractional-slot motor with concentrated windings. The goal is to meet or exceed the FreedomCAR inverter cost and performance targets.

  17. Case Histories of Energy Efficient Motors

    E-Print Network [OSTI]

    Riley, J. C.; Comiskey, W. T

    1985-01-01

    A number of new energy efficient (EE) motors have been installed at the Port Neches SBR plant in the past few years. Some of these installations presented many problems. The measurement of dollars saved has been difficult. Easy installations...

  18. High speed linear induction motor efficiency optimization

    E-Print Network [OSTI]

    Johnson, Andrew P. (Andrew Peter)

    2005-01-01

    One of the reasons linear motors, a technology nearly a century old, have not been adopted for a large number of linear motion applications is that they have historically had poor efficiencies. This has restricted the ...

  19. Scaling Reinforcement Learning Paradigms for Motor Control†

    E-Print Network [OSTI]

    Vijayakumar, Sethu; Peters, Jan; Schaal, Stefan

    Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems ...

  20. Solid State AC Motor Drives - Conservation Perspectives†

    E-Print Network [OSTI]

    Mohan, N.; Ferraro, R. J.

    1982-01-01

    Variable Frequency Solid-State Inverters: can control the speed of ac motors by producing adjustable frequency ac voltage, with an enormous potential for energy conservation in pumps and air handling systems. 3. Other Variable Frequency Drives: include...

  1. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  2. Method and apparatus for large motor control

    DOE Patents [OSTI]

    Rose, Chris R. (Santa Fe, NM); Nelson, Ronald O. (White Rock, NM)

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  3. Desk for Lynn Motors Mgrs. Office†

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    2011-08-29

    This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

  4. Modeling and optimization of permanent magnetic motors

    E-Print Network [OSTI]

    Pinkham, Andrew P

    2008-01-01

    This thesis develops analytic models for the prediction and optimization of radial-flux permanent magnet motor torque and efficiency. It also facilitates the design optimization of electromagnetically-powered rotorcraft ...

  5. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  6. ac-driven atomic quantum motor

    E-Print Network [OSTI]

    A. V. Ponomarev; S. Denisov; P. Hanggi

    2009-06-09

    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.

  7. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect (OSTI)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  8. Direct-drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  9. Direct-drive field actuator motors

    DOE Patents [OSTI]

    Grahn, Allen R. (Salt Lake City, UT)

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  10. Loose mechanochemical coupling of molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2011-05-05

    In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is dissipated into environment during substeps without contributions to the macro scale unidirectional movement.

  11. Trapped field internal dipole superconducting motor generator

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  12. Motor Thermal Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor Systems Motor Systems

  13. MotorMaster+ International | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor Systems Motor Systems

  14. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  15. Are motor proteins power strokers, Brownian motors or Brian Geislingera, Erin Darnellb, Kimberly Farrisc, and Ryoichi Kawaia

    E-Print Network [OSTI]

    Kawai, Ryoichi

    Are motor proteins power strokers, Brownian motors or both? Brian Geislingera, Erin Darnellb Baccalaureate, Birmingham, AL 35210 ABSTRACT About a decade ago Brownian motors were introduced as a possible mechanism for motor protein mobility. Since then many theoretical and experimental papers have been

  16. Molecular motors: design, mechanism and control

    E-Print Network [OSTI]

    Debashish Chowdhury

    2008-01-10

    Biological functions in each animal cell depend on coordinated operations of a wide variety of molecular motors. Some of the these motors transport cargo to their respective destinations whereas some others are mobile workshops which synthesize macromolecules while moving on their tracks. Some other motors are designed to function as packers and movers. All these motors require input energy for performing their mechanical works and operate under conditions far from thermodynamic equilibrium. The typical size of these motors and the forces they generate are of the order of nano-meters and pico-Newtons, respectively. They are subjected to random bombardments by the molecules of the surrounding aqueous medium and, therefore, follow noisy trajectories. Because of their small inertia, their movements in the viscous intracellular space exhibits features that are characteristics of hydrodynamics at low Reynold's number. In this article we discuss how theoretical modeling and computer simulations of these machines by physicists are providing insight into their mechanisms which engineers can exploit to design and control artificial nano-motors.

  17. Nonlinear Electrical Simulation of High-Power Synchronous Generator System

    E-Print Network [OSTI]

    Wu, Thomas

    power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite for motor simulation [I]. Fardoun simulated permanent-magnet machine drive system using SPlCE [2]. NatarajanNonlinear Electrical Simulation of High-Power Synchronous Generator System Jie Chen and Thomas Wu

  18. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  19. COLLEGE OF ENGINEERING TRANSFER GUIDE IOWA LAKES COMMUNITY COLLEGE Electrical Engineering

    E-Print Network [OSTI]

    Stanier, Charlie

    Electrical Motors & Generators 4 EFA Elective 3 WTT 225 Data Acquisition & Assessment 4 EFA Elective 3 WTT12/03/2014 COLLEGE OF ENGINEERING ≠ TRANSFER GUIDE IOWA LAKES COMMUNITY COLLEGE ≠Electrical Composition I Composition II Fundamentals of Oral Communication Public Speaking 3 3 3 3 CHEM:1110 Principles

  20. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.