Sample records for v6 electric motor

  1. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  2. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30T23:59:59.000Z

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  3. Highly Efficient Electric Motor Systems

    E-Print Network [OSTI]

    over wider operating range with same size motor Uses up to 40% less electricity NREL Energy Forum;Annual Serviceable Addressable Market (SAM) for >1hp non-hermetic motors NREL Energy Forum November 2009Highly Efficient Electric Motor Systems NREL Energy Forum November 2009 www.novatorque.com Emily

  4. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    1999-01-01T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  5. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  6. Electric Motors and Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy Eighth AnnualELECTRIC MOTORS AND

  7. DOE Issues Notice of Proposed Rulemaking for Electric Motors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Proposed Rulemaking for Electric Motors Energy Conservation Standards DOE Issues Notice of Proposed Rulemaking for Electric Motors Energy Conservation Standards November...

  8. Quality electric motor repair: A guidebook for electric utilities

    SciTech Connect (OSTI)

    Schueler, V.; Douglass, J.

    1995-08-01T23:59:59.000Z

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  9. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  10. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  11. Development of Ulta-Efficient Electric Motors

    SciTech Connect (OSTI)

    Shoykhet, B. (Baldor Comp.); Schiferl, R. (Baldor Comp.); Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01T23:59:59.000Z

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performa

  12. Electric Motor Remanufacturing and Energy Savings Sahil Sahni1

    E-Print Network [OSTI]

    Gutowski, Timothy

    Electric Motor Remanufacturing and Energy Savings Sahil Sahni1 , Avid Boustani1 , Timothy Gutowski to this study. #12;Contents 1 Introduction to Electric Motors 1 1.1 Motor Classifications . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Performance of Motors . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Impact of motor

  13. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Broader source: Energy.gov (indexed) [DOE]

    rogers.pdf More Documents & Publications Advanced Power Electronics and Electric Motors R&D Advnaced Power Electronics and Electric Machines (APEEM) R&D Program Overview Electric...

  14. Energy-efficient electric motors study

    SciTech Connect (OSTI)

    Not Available

    1981-03-23T23:59:59.000Z

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  15. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  16. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01T23:59:59.000Z

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  17. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01T23:59:59.000Z

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  18. New Energy Efficiency Standards for Electric Motors and Walk...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers...

  19. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31T23:59:59.000Z

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.

  20. Dual power, constant speed electric motor system

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01T23:59:59.000Z

    A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.

  1. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  2. MotorMaster database of three-phase electric motors

    SciTech Connect (OSTI)

    Stickney, B.L.

    1993-12-31T23:59:59.000Z

    Selecting the right motor for a new or replacement application used to be a daunting task. Making an intelligent choice involved a search through a stack of motor catalogs for information on efficiency, voltage, speed, horsepower, torque, service factor, power factor, frame type, and cost. The MotorMaster software package, available from the Washington State Energy Office, takes the drudgery out of motor selection by enabling rapid analysis of the most efficient and cost-effective single-speed three-phase induction motors. It has a built-in motor database, easy to use comparison and analysis features, and can calculate utility rebates and simple paybacks. By speeding the selection process and providing comprehensive economic justification for the final equipment choice, software tools like MotorMaster can become an important component of utility DSM programs. And as a bonus, wide use of such software may lead to more systematic and consistent use of energy efficient equipment.

  3. Reducing current reversal time in electric motor control

    DOE Patents [OSTI]

    Bredemann, Michael V

    2014-11-04T23:59:59.000Z

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  4. High Efficiency Fans and High Efficiency Electrical Motors

    E-Print Network [OSTI]

    Breedlove, C. W.

    Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

  5. History of HTS motor development at Reliance Electric

    SciTech Connect (OSTI)

    Schiferl, R. [Reliance Electric Co., Cleveland, OH (United States)

    1994-07-29T23:59:59.000Z

    A review of the High Temperature Superconducting (HTS) motor development program at Reliance Electric is presented. The project was initiated in 1987 by EPRI to investigate the use of high temperature superconducting materials in electric motors. Liquid nitrogen was proposed as the HTS winding coolant. The ultimate goal, motivation, motor type and HTS wire requirements as well as the program milestones are outlined. It was concluded that the HTS motor development has paralleled wire development; progress continues toward the goal of large horsepower HTS motors for commercial applications; the team is well on the way toward completing the design of a 125 hp, 1800 rpm motor with HTS coils cooled to 20 to 40 K; and the program is a vital step in the development of HTS motors.

  6. Summary of electric vehicle dc motor-controller tests

    SciTech Connect (OSTI)

    McBrien, E F; Tryon, H B

    1982-09-01T23:59:59.000Z

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  7. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todayís large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldorís motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  8. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect (OSTI)

    Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01T23:59:59.000Z

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  9. Computational analysis of temperature rise phenomena in electric induction motors

    E-Print Network [OSTI]

    Melnik, Roderick

    machines in general, and induction motors in particular, temperature limits is a key factor affectingComputational analysis of temperature rise phenomena in electric induction motors Ying Huai Kraftwerkstechnik, Petersenstra√?e 30, 64287 Darmstadt, Germany b Faculty of Science and Engineering, Mads Clausen

  10. Economic Realities and Energy Efficient Polyphase Integral Horsepower Electric Motors

    E-Print Network [OSTI]

    Whittington, B. W.

    1980-01-01T23:59:59.000Z

    Energy efficient polyphase integral horsepower electric motors are currently being vigorously promoted as a profitable method of conserving energy in many industrial and commercial applications. While the goal to be attained is indeed laudable...

  11. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect (OSTI)

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01T23:59:59.000Z

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  12. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todayís EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powerís motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  13. High-speed electrical motor evaluation

    SciTech Connect (OSTI)

    Not Available

    1989-02-03T23:59:59.000Z

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  14. System and method to determine electric motor efficiency nonintrusively

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Harley, Ronald G. (Lawrenceville, GA)

    2011-08-30T23:59:59.000Z

    A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.

  15. Electric motor systems in developing countries: Opportunities for efficiency improvement

    SciTech Connect (OSTI)

    Meyers, S.; Monahan, P.; Lewis, P.; Greenberg, S. [Lawrence Berkeley Lab., CA (United States); Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1993-08-01T23:59:59.000Z

    This report presents an overview of the current status and efficiency improvement potential of industrial motor systems in developing countries. Better management of electric motor systems is of particular relevance in developing countries, where improved efficiency can lead to increased productivity and slower growth in electricity demand. Motor systems currently consume some 65--80% of the industrial electricity in developing countries. Drawing on studies from Thailand, India, Brazil, China, Pakistan, and Costa Rica, we describe potential efficiency gains in various parts of the motor system, from the electricity delivery system through the motor to the point where useful work is performed. We report evidence of a significant electricity conservation potential. Most of the efficiency improvement methods we examine are very cost-effective from a societal viewpoint, but are generally not implemented due to various barriers that deter their adoption. Drawing on experiences in North America, we discuss a range of policies to overcome these barriers, including education, training, minimum efficiency standards, motor efficiency testing protocols, technical assistance programs, and financial incentives.

  16. Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study M. Zeraoulia1 and on an effective comparison of the performances of the four main electric propulsion systems that are the dc motor, the induction motor, the permanent magnet synchronous motor, and the switched reluctance motor. The main

  17. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA)

    2011-06-07T23:59:59.000Z

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  18. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

    1999-09-28T23:59:59.000Z

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  19. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01T23:59:59.000Z

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  20. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01T23:59:59.000Z

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow passage requirements and electric motor requirements for support and utilities by bounding the flowpath within the compressor section. However most importantly, the benefits delivered by the new design remained the same as those proposed by the goals of the project. In addition, this alternate configuration resulted in the achievement of a few additional advantages over the original concept such as easier maintenance, operation, and installation. Interaction and feedback solicited from target clients regarding the unit configuration supports the fact that the design addresses industry issues regarding accessibility, maintainability, preferred operating practice, and increased reliability.

  1. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  2. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits†

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    1995-01-01T23:59:59.000Z

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  3. Not a Babe in the Woods: Using MotorMaster Software to Make Sophisticated Electric Motor Purchase Decisions

    E-Print Network [OSTI]

    Litman, T.

    Three-phase motors use more than half of all electricity in the United States. Energy efficient models are available in most motor classes in the 1 to 500 horsepower range, offering simple pay backs under two years. In practice, few motor buyers...

  4. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    SciTech Connect (OSTI)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01T23:59:59.000Z

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also started. Detailed calculations of cooling gas flow requirements for the motor and magnetic bearings, per several new operating points designated by DR, confirmed that the required gas flow was within the compressor design guidelines. Previous thrust load calculations had confirmed that the magnetic thrust bearing design load capacity of 6,000 lb. was sufficient to handle the net thrust load produced by the motor and compressor pressure loading. Thus the design data that has been generated, for the variable speed 10 MW 12,000 rpm motor, during the last three quarters, continue to confirm the feasibility of an efficient and robust motor design.

  5. Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

  6. A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances methodology is validated through extensive simulations for different induction motor-based electric vehicles

  7. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-Print Network [OSTI]

    Brest, Universitť de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  8. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12T23:59:59.000Z

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  9. Permanent split capacitor single phase electric motor system

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-08-14T23:59:59.000Z

    A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.

  10. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, Howard D. (Knoxville, TN); Ayers, Curtis W. (Clinton, TN); Casada, Donald A. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.

  11. Instrument for analysis of electric motors based on slip-poles component

    DOE Patents [OSTI]

    Haynes, H.D.; Ayers, C.W.; Casada, D.A.

    1996-11-26T23:59:59.000Z

    A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.

  12. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Industry MotorMaster+ User Manual New Motor Systems Market Assessment AMO and LBNL are currently developing an update to the original Motor Systems Market Assessment. The...

  13. Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors

    E-Print Network [OSTI]

    Whelan, C. D.

    Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production...

  14. Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors

    E-Print Network [OSTI]

    Whelan, C. D.

    1997-01-01T23:59:59.000Z

    Over 100,000 electric motors drive the production equipment throughout a large chemical company. The energy-efficiency and reliability of these motors during their entire life have a decided impact on the company's manufacturing costs and production...

  15. SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational for an electric vehicle control. Keywords: Sensorless Direct Torque Control (SDTC), Extented Kalman Filter (EKF

  16. 1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive Selection Issues for HEV

    E-Print Network [OSTI]

    1756 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 6, NOVEMBER 2006 Electric Motor Drive of electric motors adopted or under serious consideration for HEVs as well as for EVs include the dc motor) and the electric motor to deliver power in parallel to drive the wheels.

  17. Control of a Fuel-Cell Powered DC Electric Vehicle Motor

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Meeting, 2005 www.ntnu.no Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;2 Outline 1) Control of Fuel Cells--Status 2) Dynamic Modelling of Fuel Cells 3) DC

  18. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01T23:59:59.000Z

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  19. Method and system for operating an electric motor

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22T23:59:59.000Z

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  20. System and method for motor speed estimation of an electric motor

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Yan, Ting (Brookfield, WI); Luebke, Charles John (Sussex, WI); Sharma, Santosh Kumar (Viman Nagar, IN)

    2012-06-19T23:59:59.000Z

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  1. Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle BekheÔra Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

  2. Method and system for early detection of incipient faults in electric motors

    DOE Patents [OSTI]

    Parlos, Alexander G; Kim, Kyusung

    2003-07-08T23:59:59.000Z

    A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.

  3. Extended cage adjustable speed electric motors and drive packages

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.

  4. Design and manufacture of a chain driven motor shaft for Formula Electric applications

    E-Print Network [OSTI]

    Wanderman, Jack J. (Jack Joseph)

    2013-01-01T23:59:59.000Z

    This document describes the design, manufacture, and testing of a motor shaft assembly that is a subcomponent of the drivetrain system in a Formula Electric racecar. The design covers detailed analysis of the bearing, ...

  5. Department of Electrical Engineering Fall 2009 Electridyne Motor

    E-Print Network [OSTI]

    Demirel, Melik C.

    ∑ Utilized Solidworks to generate Stator and Rotor Lamination designs and a 3D representation of our design have the process to develop other motor designs. #12;

  6. Ameren Illinois (Electric)- Custom, HVAC, and Motor Business Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Prescriptive rebates are available for many HVAC and motor efficiency improvements. Pre-approval is required for all rebates. The programs are available only to non-residential customers that...

  7. EV Everywhere Workshop: Electric Motors and Critical Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  8. The 4 phase VSR motor: The ideal prime mover for electric vehicles

    SciTech Connect (OSTI)

    Holling, G.H.; Yeck, M.M.

    1994-12-31T23:59:59.000Z

    4 phase variable switched reluctance motors are gaining acceptance in many applications due to their fault tolerant characteristics. A 4 phase variable switched reluctance motor (VSR) is modelled and its performance is predicted for several operating points for an electric vehicle application. The 4 phase VSR offers fault tolerance, high performance, and an excellent torque to weight ratio. The actual system performance was measured both on a teststand and on an actual vehicle. While the system described is used in a production electric motorscooter, the technology is equally applicable for high efficiency electric cars and buses. 4 refs.

  9. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect (OSTI)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12T23:59:59.000Z

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  10. Case Studies of High Efficiency Electric Motor Applicability

    E-Print Network [OSTI]

    Wagner, J. R.

    addresses the problems of limited time and missing data, and suggests ways for quickly filling in data gaps. The motors in the studies spanned a range of 7.5 to 250 hp. The prioritization was performed primarily on the basis of simple payback. The study...

  11. Electric Motor Maintenance & Repair for Long Term Efficiency

    E-Print Network [OSTI]

    Brithinee, W. P.

    the assembled motor to operate cooler, thus reducing stator and rotor conductor losses. At full load, these are the majority of losses. Dynamic balancing of the rotor to minimize vi bration is always recommended. The energy produc ing vibration... ing be no greater than the current density of the origi nal winding. If winding and connection patterns are the same, that means specifying that the conductor cross-sectional area not be reduced. And, if original windings have aluminum conductors...

  12. Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Introduction Research in fuel cells receives currently a lot of interest. Fuel cells can be used, in different. However, the dynamics of fuel cells has received comparatively less attention. Control of fuel cells

  13. Motor stator using corner scraps for additional electrical components

    DOE Patents [OSTI]

    Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

    2004-03-16T23:59:59.000Z

    A method for making a motor and auxiliary devices with a unified stator body comprises providing a piece of material (10) having an area larger than a cross section of the stator (11), removing material from the piece of material (10) to form a pattern for a cross section of a core (11) for the stator, and removing material from the piece of material (10) outside the cross section of the core of the stator (11) to allow positioning of cores (22, 23, 24) for supporting windings (25, 26, 27) of least one additional electromagnetic device, such as a transformer (62) in a dc-to-dc converter (61, 62) that provides a low. voltage dc output. An article of manufacture made according to the invention is also disclosed and apparatus made with the method and article of manufacture are also disclosed.

  14. Electric motor/controller design tradeoffs for noise, weight, and efficiency

    SciTech Connect (OSTI)

    Kopp, N.L.; Brown, G.W.

    1994-12-31T23:59:59.000Z

    It is common for an AUV [Autonomous Underwater Vehicle] designer to be put in the position of a subsystem hardware integrator. In the case of electric motors and controllers this may be more by necessity than choice because a suitable subsystems supplier cannot be found. As a result, motors and controllers are purchased from various manufacturers who may optimize the design of each part but hold system performance secondary in importance. Unlike hydraulics, an electric motor/controller system presents significant opportunities to improve noise, weight, and efficiency. But, these opportunities can best be recognized by a single source who not only understands the technology but has the ability to implement them in the development and manufacture of the product. An analysis is presented which explains the various design considerations of noise, weight and efficiency of electric motors and controllers for submersible AUV`s. In concert with the design considerations, their interrelationships are discussed as to how they affect each other in the overall optimization of the system. In conclusion, a matrix is created which shows how the resultant system parameters of noise, weight, and efficiency may be ``traded off`` to tailor the best overall system for the application. 1 ref.

  15. Electric Motors and Critical Materials | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: EfficientMultiferroicElectric Grid

  16. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan WorkingUSEA/Johnsonand Power-Dense

  17. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D I United

  18. The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results

    E-Print Network [OSTI]

    Rosenberg, M.

    industry groups (SICs) are derived from the Manufacturing Energy Consumption Survey: 1994 (MECS) and various surveys conducted by the Bureau of the Census. Information on the breakdown of that energy by application and motor size, as well..., and total onsite electricity generation, minus sales and transfers off site. See MECS 1994. Other sources; Department of Agriculture, 1992, Census of Mineral Industries, 1992, ADL 1980, EPRI 1988, EPRI 1992. 206 ESL-IE-99-05-30 Proceedings from...

  19. The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor

    E-Print Network [OSTI]

    Williams, Monte Glen

    1994-01-01T23:59:59.000Z

    of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design...

  20. Premium Efficient Motors

    E-Print Network [OSTI]

    Moser, P. R.

    1984-01-01T23:59:59.000Z

    Premium efficient motors are available which convert electrical energy into mechanical energy with fewer losses than the more standard motors. The fewer losses in these motors are due to changes in the motor design and improved manufacturing methods...

  1. Report on the feasibility study for improving electric motor service centers in Ghana

    SciTech Connect (OSTI)

    Hsu, J.S.; Jallouk, P.A.; Staunton, R.H.

    1999-12-10T23:59:59.000Z

    On March 3 and 4, 1998, a visit was made to Oak Ridge National Laboratory (ORNL) by two officials from Ghana: Mr. I.K. Mintah, Acting Executive Director, Technical Wing, Ministry of Mines and Energy (MOME) and Dr. A.K. Ofosu-Ahenkorah, Coordinator, Energy Efficiency and Conservation Program, MOME. As a result of this visit, Dr. John S. Hsu of ORNL was invited by MOME to visit the Republic of Ghana in order to study the feasibility of improving electric motor service centers in Ghana.

  2. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30T23:59:59.000Z

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  3. Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature

    SciTech Connect (OSTI)

    Kelledes, William L. (Brighton, MI); St. John, Don K. (Livonia, MI)

    1992-01-01T23:59:59.000Z

    The present invention maintains constant torque in an inverter driven AC induction motor during variations in rotor temperature. It is known that the torque output of a given AC induction motor is dependent upon rotor temperature. At rotor temperatures higher than the nominal operating condition the rotor impedance increases, reducing the rotor current and motor torque. In a similar fashion, the rotor impedance is reduced resulting in increased rotor current and motor torque when the rotor temperature is lower than the nominal operating condition. The present invention monitors the bus current from the DC supply to the inverter and adjusts the slip frequency of the inverter drive to maintain a constant motor torque. This adjustment is based upon whether predetermined conditions implying increased rotor temperature or decreased rotor temperature exist for longer that a predetermined interval of time.

  4. Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

  5. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  6. To appear in the Wiley Encyclopaedia of Electrical and Electronics Engineering Assistive Devices For People With Motor Disabilities -Kumar, Rahman & Krovi, 1997

    E-Print Network [OSTI]

    Krovi, Venkat

    To appear in the Wiley Encyclopaedia of Electrical and Electronics Engineering Assistive Devices powered devices: #12;To appear in the Wiley Encyclopaedia of Electrical and Electronics Engineering For People With Motor Disabilities - Kumar, Rahman & Krovi, 1997 Assistive Devices For People With Motor

  7. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31T23:59:59.000Z

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  8. System and method for motor parameter estimation

    DOE Patents [OSTI]

    Luhrs, Bin; Yan, Ting

    2014-03-18T23:59:59.000Z

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.

  9. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond [BIZTEK Consulting, Inc.

    2011-03-01T23:59:59.000Z

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  10. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOEís Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United Statesí consumption of petroleum. This Proposed Action will also meaningfully assist in the nationís economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  11. Development of ultra efficient electric motors. Quarterly report, July-September 1999

    SciTech Connect (OSTI)

    Driscoll, David I.

    1999-10-01T23:59:59.000Z

    There are four major tasks included in this project: (1) design, build and test a 1000 horsepower synchronous motor with high-temperature superconducting (HTS) coils operating in the 25 to 40 K temperature range; (2) design, build and test a 5000 horsepower synchronous motor with HTS coils operating in the 25 to 40 K temperature range; (3) develop and integrate closed-cycle cryogenic refrigeration systems with both motors; (4) develop the HTS wire and coil technology required for both motor demonstrations. The goal of the 1000 hp motor demonstration is to build an HTS motor which is comparable in size and efficiency to a conventional motor of the same rating. The goal of the 5000 hp motor demonstration is to build an HTS motor which is half the active volume and has half the losses of a conventional motor of the same rating, and to demonstrate continuous operation of the 5000 horsepower motor at a beta test site. The project represents a vital step in the development of HTS motors for commercial applications.

  12. Ontario Hydro Motor Efficiency Study

    E-Print Network [OSTI]

    Dautovich, D. R.

    1980-01-01T23:59:59.000Z

    Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

  13. Implementing Motor Management

    E-Print Network [OSTI]

    Colip, R. L.

    Electric motors account for sixty five percent of industrial energy consumed today. There are many opportunities to conserve electricity by using more energy efficient motors and drives. Proven technologies and practices can reduce energy...

  14. Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

  15. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16T23:59:59.000Z

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  16. Discrimination among mechanical fault types in induction motors using electrical measurements

    E-Print Network [OSTI]

    McFatter, Justin Robert

    2002-01-01T23:59:59.000Z

    signals are sufficient to warrant the use of multi-resolution analysis. The fault diagnosis system is tested using data taken from an 800 hp motor and a 3 hp motor. The method is successful in identifying residual distortion in the frequency range...

  17. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  18. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  19. Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields

    E-Print Network [OSTI]

    Ula, S.; Cain, W.; Nichols, T.

    Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn...

  20. Comparative analysis of electrical and mechanical fault signatures in induction motors

    E-Print Network [OSTI]

    Venugopal, Arvind Madabushi

    2005-02-17T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . 83 3. Two Broken Rotor Bars . . . . . . . . . . . . . . . . . 88 4. Four Broken Rotor Bars . . . . . . . . . . . . . . . . . 103 C. Fault III: Air-Gap Eccentricity . . . . . . . . . . . . . . . . 114 1. Air-Gap Eccentricity - Case 1... . . . . . . . . . . . . . . 114 2. Air-Gap Eccentricity - Case 2 . . . . . . . . . . . . . . 125 D. Fault IV: Mechanical Imbalance . . . . . . . . . . . . . . . 136 E. Summary of the Comparison Based on the Load Levels . . 147 F. Summary of the Comparison Based on Motor Ratings...

  1. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  2. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.

  3. Method for assessing motor insulation on operating motors

    DOE Patents [OSTI]

    Kueck, J.D.; Otaduy, P.J.

    1997-03-18T23:59:59.000Z

    A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.

  4. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    SciTech Connect (OSTI)

    Rich Schiferl

    2008-05-30T23:59:59.000Z

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  5. Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2010-11-16T23:59:59.000Z

    A sub-module consists of a set of two outer sets of stationary fan-blade-shaped sectors. These outer sectors include conductive material and are maintained at ground potential in several examples. Located midway between them is a set of stationary sector plates with each plate being electrically insulated from the others. An example provides that the inner sector plates are connected together alternately, forming two groups of parallel-connected condensers that are then separately connected, through high charging circuit resistances, to a source of DC potential with respect to ground, with an additional connecting lead being provided for each group to connect their output as an AC output to a load. These same leads can he used, when connected to a driver circuit, to produce motor action.

  6. A State Regulatory Perspective; New Building, Old Motors, and Marginal Electricity Generation

    E-Print Network [OSTI]

    Treadway, N.

    1987-01-01T23:59:59.000Z

    Electricity consumption in Texas is expected to grow at 3.2 percent annually for the next ten years. Utility demand management activities, if effective, may reduce that expected rate of growth. Residential cooling, commercial lighting and cooling...

  7. Sensorless, Online Motor Diagnostics

    E-Print Network [OSTI]

    Yazici, Birsen

    of faults or incipi- ent faults in electric motor drives: Sensorless torque measurement Direct detection as the motor. Exten- sive online monitoring of the motors can lead to greater plant availability, extended over the last several years, ade- quate data processing capability is now available on cost

  8. Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields†

    E-Print Network [OSTI]

    Ula, S.; Cain, W.; Nichols, T.

    1993-01-01T23:59:59.000Z

    and the inventory of completed wells are shown in Tables 1,2 and 3, respectively. Tables 4 and 5 show the 1991 electrical energy use and the potential energy savings, respectively. A 10% electric energy savings translates into $120,000 per year for NPR-3... wells. Table 1 NAVAL PETROLEUM RESERVE PRODUCT ION HISTORY (in million barrels) NPR-I NPR-3 Year of First Product ion Cumu lat ive Product ion Production Since 1976 Remaining Reserves (Us ing pr imar~ and secondar~ product ion) Added Reserves...

  9. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03T23:59:59.000Z

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  10. Policy V.6.1.1 Responsible Official: Vice President

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Policy V.6.1.1 Responsible Official: Vice President for Research Effective Date: July 1, 2012 Cost Policy on Sponsored Agreements Policy Statement Direct, indirect and allowable costs shall and the University's cost accounting standards. Reason for the Policy This policy statement and the guidelines

  11. ELECTRICAL AND COMPUTER ENGINEERING

    E-Print Network [OSTI]

    Haykin, Simon

    Edison (prolific inventor), Nikola Tesla (inventor of the electric motor, transformer), Dilbert (comic

  12. United States Industrial Electric Motor Systems Market Opportunities Assessment - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D I

  13. Motor Energy Saving Opportunities in an Industrial Plant

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  14. Writing Motor Specifications - How to Include Efficiency

    E-Print Network [OSTI]

    Quartermaine, B. J.

    1980-01-01T23:59:59.000Z

    The escalating cost of electric power coupled with the rapid depletion of our non-renewable resources makes consideration of motor efficiency good sense both from economic and conservation viewpoints. The efficiency of an electric motor can...

  15. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program†

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    1995-01-01T23:59:59.000Z

    motors and motor-dri ven equipment that wi 11 improve indus! ri al energy effic iency, producti vi ty and environmental performance. The overall goal is to increase the market penetration of energy-efficient industrial electric motor systems...

  16. Tesla Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    465 million loan arrangement with Tesla Motors, Inc. to produce specially designed, all-electric plug-in vehicles; and to develop a manufacturing facility to produce battery...

  17. Motor monitoring method and apparatus using high frequency current components

    DOE Patents [OSTI]

    Casada, Donald A. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  18. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOE Patents [OSTI]

    Chavez, Rossemary V. (Monroeville, PA); Ekeroth, Douglas E. (Delmont, PA); Johnson, F. Thomas (Baldwin Boro, PA); Matusz, John M. (Plum Boro both of Allegheny County, PA)

    1994-01-01T23:59:59.000Z

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch.

  19. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOE Patents [OSTI]

    Chavez, R.V.; Ekeroth, D.E.; Johnson, F.T.; Matusz, J.M.

    1994-04-26T23:59:59.000Z

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch. 14 figures.

  20. Design and performance evaluation of an electric go-kart and custom permanent magnet brushless DC motor

    E-Print Network [OSTI]

    Davis, Eli Marc

    2012-01-01T23:59:59.000Z

    This undergraduate thesis documents the design considerations and specifications of building a personal battery-powered go-kart. This includes designing and building a custom brushless DC motor for use in the drivetrain. ...

  1. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14T23:59:59.000Z

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  3. Proceedings of the 2008 International Conference on Electrical Machines Paper ID 1433 Hybrid Cascaded H-Bridge Multilevel Inverter Motor

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    is based on Direct Torque Control operating principles. The stator voltage vector reference is computed from the stator flux and torque errors imposed by the flux and torque controllers. This voltage spectrum and to limit the motor-winding insulation stress. However, their increasing number of devices

  4. Total Economics of Energy Efficient Motors

    E-Print Network [OSTI]

    Nester, A. T.

    1984-01-01T23:59:59.000Z

    priced energy-efficient motor or a standard electric motor. It will also address the question of whether it is cost-effective to rewind an old motor which has failed or to replace it with a new energy-efficient motor....

  5. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  6. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle†

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    -emf ................................................................................................. 77 6.8 Regenerative Capability of the Implemented System ....................................... 78 6.9 Fault Analysis .................................................................................................... 79 6.10 Fault Diagnostics... follow the reference drive cycle. e) To evaluate the performance of the batteries during charge and recharge cycles, especially during regeneration which is achieved through the electrical braking. 1.5 Demand for Electric Vehicles In a popular...

  7. Module 8: Fuel Cell Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    This course covers hybrid electric vehicles, electric motors, auxiliary power units, generators, energy storage systems, regenerative braking, control systems

  8. Conducting a Motor Survey: Key Step for Establishing a Motor Management Policy

    E-Print Network [OSTI]

    Miller, R. B.

    Roughly 70% of the energy consumed by manufacturing processes is used by electric motors. According to the U.S. Department of Energy, greater attention to motor systems management can reduce motor-related energy costs by 18%. Establishing a motor...

  9. Low-cost motor drive embedded fault diagnosis systems

    E-Print Network [OSTI]

    Akin, Bilal

    2009-05-15T23:59:59.000Z

    Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low...

  10. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ≠ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  11. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  12. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    mounted PM synchronous motor (SPMSM) is developed in this paper. Due to the high conductivity of the rare of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets Xiaofeng, University of Michigan-Dearborn, mi@ieee.org Abstract Permanent Magnet (PM) Motors are popular choices

  13. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

    1997-01-01T23:59:59.000Z

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  14. Segmented rail linear induction motor

    SciTech Connect (OSTI)

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03T23:59:59.000Z

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  15. Development of microprocessor control for a V-6 engine fueled by prevaporized methanol

    E-Print Network [OSTI]

    Schneider, Donald F.

    1985-01-01T23:59:59.000Z

    DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

  16. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07T23:59:59.000Z

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  17. Submersible canned motor mixer pump

    DOE Patents [OSTI]

    Guardiani, Richard F. (Ohio Township, PA); Pollick, Richard D. (Sarver, PA)

    1997-01-01T23:59:59.000Z

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  18. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todayís best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  19. U.S. Department of Energy's Motor Challenge Program: A National...

    Broader source: Energy.gov (indexed) [DOE]

    industry needs, and market drivers associated with improving industrial electric motor-driven systems. The key strategies and tactics being employed by the DOE Motor...

  20. A Novel Approach to Determining Motor Load

    E-Print Network [OSTI]

    Brown, M.

    A NOVEL APPROACH TO DETERMINING MOTOR LOAD by Michael Brown Georgia Tech Research Institute Atlanta, Georgia ABSTRACf Properly sized electric motors are essential if industrial plant efficiency is to be optimized and energy costs... minimized. Because of the difficully in making power measurements on three phase motors, loading is rarely, if ever, checked. A simple indication of motor load can be achieved by measuring operating speed because speed and load are almost linearly...

  1. Total Economics of Energy Efficient Motors

    E-Print Network [OSTI]

    Nester, A. T.

    1984-01-01T23:59:59.000Z

    Due to the large increases in cost of electrical energy in recent years, the energy savings attainable with the use of energy-efficient motors is very attractive to all motor users. But energy and electric demand charge savings tell only part...

  2. Updated Capital Cost Estimates for Utility Scale Electricity...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    turbines, and other auxiliary equipment * Electrical and instrumentation and control: electrical transformers, switchgear, motor control centers, switchyards, distributed...

  3. Sixth Northwest Conservation and Electric Power Plan Chapter 1: Introduction

    E-Print Network [OSTI]

    electricity can provide, such as heat for homes, lights for commercial buildings, or motors for industrial

  4. Improving ac motor efficiency with fuzzy logic energy optimizer

    SciTech Connect (OSTI)

    Spiegel, R.J.; Chappell, P.J.; Cleland, J.G.

    1994-08-01T23:59:59.000Z

    The paper discusses EPA's research program to develop fuzzy-logic-based energy optimizers for alternating-current (AC) induction motors driven by Adjustable Speed Drives (ASDs). The technical goals of the program are to increase the efficiency of ASD/motor combinations (especially when operating at off-rated torque/speed conditions), develop a generic controller for energy optimization that can be applied to a wide range of motors and ASDs regardless of size and application, and develop a controller for energy optimization that can eliminate the requirement for tachometer or encoder feedback, and still maintain the stability and response of closed-loop control. Electric motors use over 60% of the electrical power generated in the U.S. The U.S. population of approximately 1 billion motors use over 1700 billion kWh per year. Over 140 million new motors are sold each year. A review of the U.S. motor population reveals that 90% of the motors are less than 1 hp (fractional motors) in size, but use less than 10% of the electricity consumed by motors. More that 80% of the electricity used by motors is consumed by less than 1% of the motor population (motors greater than 20 hp). Thus, it is clear that large energy savings from improvement in motor efficiency could be achieved from a relatively small motor population.

  5. Method for assessing in-service motor efficiency and in-service motor/load efficiency

    DOE Patents [OSTI]

    Kueck, John D. (Oak Ridge, TN); Otaduy, Pedro J. (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.

  6. Variable Frequency Drives: Energy Savings and Impact on Motor Performance

    E-Print Network [OSTI]

    Petro, D.

    , and Pitfalls: Motor Acoustic Noise, Motor Heating. This paper is intended for plant engineers and maintenance personnel who have some practical experience with electrical and mechanical equipment, but are not VFD experts....

  7. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  8. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  9. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  10. 2010-05-19 Revised Patent Policy v6 Patent and Tangible Research Property

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    2010-05-19 Revised Patent Policy v6 Patent and Tangible Research Property Policies and Procedures hereby decree as follows: Article 2. Policy and Procedures on Inventions and Patents 2.0 Policy Statement on Inventions and Patents. It is the policy of the University that all INVENTIONS, together with associated MATE

  11. The US Motor Systems Market Assessment: Baseline and Survey Methods

    E-Print Network [OSTI]

    Rosenberg, M.

    of industrial motor systems. (E-Source 1993; EPRI 1992; Nadel et al. 1992; Easton Consultants 1996) These publications take as their principal point of departure the 1980 study Classification and Evaluation ofElectric Motors and Pumps sponsored... of motor drive energy among the three major application groups for the four manufacturing sectors and for manufacturing facilities as a whole. These estimates are drawn from the Midwest database and the EPRI Electric Motors Study (1992). The results...

  12. Electric Motor R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Submersible canned motor transfer pump

    DOE Patents [OSTI]

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19T23:59:59.000Z

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  14. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    SciTech Connect (OSTI)

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-05-31T23:59:59.000Z

    Electric motor systems are widely used in China to power fans, pumps, blowers, air compressors, refrigeration compressors, conveyers, machinery, and many other types of equipment. Overall, electric motor systems consume more than 600 billion kWh annually, accounting for more than 50 percent of China's electricity use. There are large opportunities to improve the efficiency of motor systems. Electric motors in China are approximately 2-4 percent less efficient on average than motors in the U.S. and Canada. Fans and pumps in China are approximately 3-5 percent less efficient than in developed countries. Even more importantly, motors, fans, pumps, air compressors and other motor-driven equipment are frequently applied with little attention to system efficiency. More optimized design, including appropriate sizing and use of speed control strategies, can reduce energy use by 20 percent or more in many applications. Unfortunately, few Chinese enterprises use or even know about these energy-saving practices. Opportunities for motor system improvements are probably greater in China than in the U.S. In order to begin capturing these savings, China is establishing a China Motor Systems Energy Conservation Program. Elements of this program include work to develop minimum efficiency standards for motors, a voluntary ''green motor'' labeling program for high-efficiency motors, efforts to develop and promote motor system management guidelines, and a training, technical assistance and financing program to promote optimization of key motor systems.

  15. Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

    E-Print Network [OSTI]

    Papalambros, Panos

    curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three, since the motor performance information (torque curves and power loss map) significantly impacts

  16. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation ape035millerp.pdf More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of...

  17. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

  18. How to Improve Productivity with Energy-Efficient Motors

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01T23:59:59.000Z

    by most Industries. The electrIc motor. Fig. 2 Electric motors have always been relatIvely efficIent, that Is they've really been qUite good at turning electrical energy Into mechanical ener gy. The average motor used by Industry Is a 25 HP unit... with a standard efficIency of about 89% which means that all but 11% of the kilowatts consumed by a motor perform useful work. It's precisely that 11%, the energy that' 5 lost I n the form of heat, that we've reduced. Reduced on the average by about...

  19. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2003-02-11T23:59:59.000Z

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  20. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott (Lee's Summit, MO)

    2001-07-17T23:59:59.000Z

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  1. Advanced Integrated Electric Traction System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...

  2. How to Improve Productivity with Energy-Efficient Motors

    E-Print Network [OSTI]

    Curley, J. P.

    1983-01-01T23:59:59.000Z

    productivity is to reduce costs, particularly those which are rising faster than others such as electricity. Today's new energy efficient motors reduce the kilowatts consumed, thus reducing electric bills and improving productivity. This paper will discuss...

  3. the 4th Power Electronics, Drive Systems & Technologies Conference, PEDSTC 2013 Simultaneous Sensing cum Actuating Linear Motor

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Sensing cum Actuating Linear Motor Ali Karimi Varkani Tarbiat Modares University Tehran, Iran ali of an electric machine (a linear motor) without using conventional sensors. Tested is a back-drivable linear motor stage which uses the linear motor electric machine as simultaneous sensor cum actuator

  4. Giant resonances in (116)Sn from 240 MeV (6)Li scattering

    E-Print Network [OSTI]

    Chen, X.; Lui, Y. -W; Clark, H. L.; Tokimoto, Y.; Youngblood, David H.

    2009-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 79, 024320 (2009) Giant resonances in 116Sn from 240 MeV 6Li scattering X. Chen, Y.-W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received... multipole excitation operator Q = ? i f (ri)YML (#2;i), (2) 0556-2813/2009/79(2)/024320(8) 024320-1 2009 The American Physical Society CHEN, LUI, CLARK, TOKIMOTO, AND YOUNGBLOOD PHYSICAL REVIEW C 79, 024320 (2009) the EWSR can be evaluated by means...

  5. Giant resonances in (24)Mg and (28)Si from 240 MeV (6)Li scattering

    E-Print Network [OSTI]

    Chen, X.; Lui, Y. -W; Clark, H. L.; Tokimoto, Y.; Youngblood, David H.

    2009-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 80, 014312 (2009) Giant resonances in 24Mg and 28Si from 240 MeV 6Li scattering X. Chen,1 Y.-W. Lui,2 H. L. Clark,2 Y. Tokimoto,2 and D. H. Youngblood2 1Chemistry Department, Washington University, St. Louis, Missouri 63130, USA...-1 ?2009 The American Physical Society CHEN, LUI, CLARK, TOKIMOTO, AND YOUNGBLOOD PHYSICAL REVIEW C 80, 014312 (2009) TABLE I. Spectrometer angles used for measuring elastic scat- tering and giant resonances. The numbers in parenthesis are the slit...

  6. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02T23:59:59.000Z

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  7. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29T23:59:59.000Z

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  8. Design and rule base reduction of a fuzzy lter for the estimation of motor currents

    E-Print Network [OSTI]

    Simon, Dan

    The electrical windings of a permanent magnet synchronous motor are spaced on the stator (the ģxed part the current in the stator windings. Krause and Wasynczuk [1] provide a good overview of per- manent magnet ģltering to motor winding current estimation in permanent magnet synchronous motors. Motor winding current

  9. Behavioral/Systems/Cognitive Encoding of Movement Fragments in the Motor Cortex

    E-Print Network [OSTI]

    Amit, Yali

    Behavioral/Systems/Cognitive Encoding of Movement Fragments in the Motor Cortex Nicholas G be elicited by electrical stimulation of the motor cortex. Most recording studies in the motor cortex, however, position, or force. Here, we show that single motor cortical neurons encode temporally evolving movement

  10. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13T23:59:59.000Z

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  11. Implementing Motor Decision Plans

    E-Print Network [OSTI]

    Elliott, R. N.

    The first step to reducing energy costs and increasing reliability in motors is to establish a motor plan. A motor plan allows decisions to be made in advance of motor failure, and increases the options available. By contrast, most motor decisions...

  12. The Environmental Impacts of Electric Bikes in Chinese Cities

    E-Print Network [OSTI]

    Cherry, Christopher; Weinert, Jonathan; Ma, Chaktan

    2007-01-01T23:59:59.000Z

    tires and two motors. Steel, which is the heaviest component of electric bikes also has a high recycling

  13. Edinburgh Motor Assessment (EMAS)†

    E-Print Network [OSTI]

    Bak, Thomas

    2013-12-01T23:59:59.000Z

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, ...

  14. Abstract--Linear electrical loading system (LELS) driven by electrical cylinder with permanent magnet synchronous

    E-Print Network [OSTI]

    Yao, Bin

    magnet synchronous motor (PMSM) offers several advantages of high transmission efficiency and high cylinder driven by permanent magnet synchronous motor (PMSM). Though direct-drive linear motors has some to direct-drive linear motor, the solution of electrical cylinder with PMSM has larger output force

  15. On-line implementation of a fault diagnosis system for three-phase induction motors

    E-Print Network [OSTI]

    Alladi, Vijaya Mallikarjun

    2002-01-01T23:59:59.000Z

    regarding the health of the motor and automates the monitoring process. Negative sequence components and the root mean square of the harmonics of the current residuals are used as indicators for identifying electrical and mechanical faults in the motor...

  16. Understanding premium-efficiency motor economics

    SciTech Connect (OSTI)

    Hirzel, J. (GE Motors, Fort Wayne, IN (US))

    1992-04-30T23:59:59.000Z

    This paper reports that from a numerical standpoint, motors in continuous-duty service comprise only a fraction of those used in America's industrial plants. Not all plant engineers, however, are aware that the relatively few motors in continuous-duty service account for about 75% of all industrial electrical use. For motors in continuous-duty service, a few percentage points gain in efficiency can yield tremendous reductions in the plant electric bill energy charge. Acknowledgment of this fact has spawned the common practice of replacing less-efficient motors with types of more energy-efficient design. However, arbitrary application of this retrofit practice can be a costly mistake. To maximize return on investment, some basic factors must be understood and considered.

  17. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  18. Efficiency test on the Buchanan pump motor

    E-Print Network [OSTI]

    Krezdorn, Roy Rankin

    1954-01-01T23:59:59.000Z

    representing the Lower Colorado River Authority, Fargo Engineering Company~ and the Westinghouse Electric Corporation began conducting the necessary tests to determine the efficiency of the machine, The first test conducted obtained data for a no... excitation the motor breaker was tripped and the motor allowed to decelerate, The Buchanan powerhouse synchroscope was used to determine the time at which the mctor was turning at rated speed. On a signal from the operator at that instant simultaneous...

  19. Energy Savings of Variable Speed Motors

    E-Print Network [OSTI]

    Fishel, F. D.

    1979-01-01T23:59:59.000Z

    pump) The input horsepower from the electrical system can be calculated using Equation (3). static head + frictional head + control valve Input HP = ::"\\;;=~..l... motor, conduit, and wire. Motors in the 25-350 HP range are best suited to VFD Systems. As the cost of energy increases and the relative cost savings of variable speed systems increase, the application of these systems should be more widespread. 281...

  20. CLEMSON UNIVERSITY Electrical and Computer Engineering Department

    E-Print Network [OSTI]

    Bolding, M. Chad

    Motors seven DC Motors eight Transmission Lines nine Power System representation and Equations tenCLEMSON UNIVERSITY Electrical and Computer Engineering Department ECE 360 ELECTRIC POWER, 10:10 am ≠ 11 am, MWF Text Electric Machinery and Power System Fundamentals Stephen J. Chapman, Mc

  1. MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    6. 6.1 MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation Motor Bikes, Mopeds, and Motor Scooters are defined as motor vehicles and are subject to all regulations governing motor vehicle operation on the grounds of the University. Such a motor vehicle owned and operated by a member

  2. lectric Motors are used to drive tools and machines of all sizes. They move huge pots of molten steel in steel mills; they run mixers in the kitchen and drills in the garage.You may have used model cars or trains

    E-Print Network [OSTI]

    Weston, Ken

    model cars or trains powered by electric motors. Electricity for these motors may come from batteries, from house current, or from some special supply. The electric motor in your Discovery Kit is powered by a small battery. 3 E L E C T R I C M O T O R 2Student's Workbook 3IntroductIon Electric Motors are used

  3. Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis

    DOE Patents [OSTI]

    Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

    2005-09-13T23:59:59.000Z

    A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

  4. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23T23:59:59.000Z

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  5. Abstract Efficiency issues of variable-capacitance micromotors are discussed in context of combined drive and motor

    E-Print Network [OSTI]

    Chapman, Patrick

    of combined drive and motor interaction. It is shown that variable-capacitance motors ideally have nearly, the drive system consisting of both the motor and electronics is not ideal when considering different motors, electric drives, efficiency I. INTRODUCTION An active area of research for commercial

  6. Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace

    E-Print Network [OSTI]

    Elliott, R. N.

    Conference, New Orleans, LA, May 12-15, 2009 percent increase over the previous two years. Rising electric rates, growing concerns about global warming, changes in the motor marketplace, and a new political environment in Washington create... of industry. This class of motors also accounts for a significant portion of the motor electricity consumption in the commercial sector (Nadel et al. 2002). Because of the large share of electricity consumption accounted for by this class of product...

  7. Denton Municipal Electric- Standard Offer Rebate Program

    Broader source: Energy.gov [DOE]

    Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

  8. Vehicle Technologies Office: Electric Drive Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Motor R&D North American Power Electronics Supply Chain Analysis Benchmarking EV and HEV Technology View all presentations from the 2014 Merit Review....

  9. Adjustable Speed AC Motor Drives-Applications Problems

    E-Print Network [OSTI]

    Enjeti, P.

    Adjustable Speed AC Motor Drives Applications Problems by Dr. P. Enjeti Power Quality Laboratory Department ofElectrical Engineering Texas A&M University College Station, TX 77843 Tel: 409-845-7466 Fax: 409-845-6259 Email..., it generates side effects, some which have been recognized only recently. This paper presents a comprehensive coverage of application issues of PWM inverter controlled ac motor drives which include damage to motor insulation due to reflected voltages caused...

  10. A motor drive control system for the Lidar Polarimeter

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01T23:59:59.000Z

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  11. High Temperature, Buried Permanent Magnet, Brushless DC Motor

    E-Print Network [OSTI]

    Zhang, Zhengxin

    2010-10-12T23:59:59.000Z

    Circuit Model Predictions of the motor performance are accomplished with a closed loop electric circuit incorporating the motor. The circuit is broken down into three sub-circuits which are the equivalent generator as motor rotating, the coil pair...,Kang, Jungu Lee, Zhiyang Wang and others who worked with me in Vibration Control and Electrormechanics Laboratory. I also would like to thank Dr. Jinfang Liu and Dr. Heeju Choi at Electron Energy Corporation who constantly support our work. Finally, thanks...

  12. MOTOR SCHEMAS IN ROBOT LEARNING Lynne E. Parker

    E-Print Network [OSTI]

    Parker, Lynne E.

    allows robot learning to scale to more complex robots or tasks, thus making practical applicationsMOTOR SCHEMAS IN ROBOT LEARNING Lynne E. Parker Department of Electrical Engineering and Computer in robot learning; Macro actions in robot learning; Basis behaviors for robot learning. Definition Motor

  13. EE443L Lab 2: Modeling a DC Motor Introduction

    E-Print Network [OSTI]

    Wedeward, Kevin

    and add conversion factors. Copy the LabVIEW VI lab2.vi and its associated subVI Altera the four conversion factors. Motor voltage is measured with a voltage divider to ensure DAQ card analog: The DC motor is a common actuator in control systems that converts electrical energy into rotational

  14. Stepping Motor Control System

    E-Print Network [OSTI]

    Larson, Noble G.

    This paper describes a hardware system designed to facilitate position and velocity control of a group of eight stepping motors using a PDP-11. The system includes motor driver cards and other interface cards in addition ...

  15. MotorWeek H2 on the Horizon Video

    Broader source: Energy.gov [DOE]

    MotorWeek Host: Fuel cell electric cars, or FCEVs, provide drivers with the same benefits as current gasoline vehicles with a comparable driving range and refueling in just a few minutes. FCEVs don...

  16. Development of a high power density motor for aircraft propulsion

    E-Print Network [OSTI]

    Dibua, Imoukhuede Tim Odion

    2007-04-25T23:59:59.000Z

    are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends...

  17. Quantum motor and future

    E-Print Network [OSTI]

    Evgeny G. Fateev

    2013-01-20T23:59:59.000Z

    In a popular language, the possibilities of the Casimir expulsion effect are presented, which can be the basis of quantum motors. Such motors can be in the form of a special multilayer thin film with periodic and complex nanosized structures. Quantum motors of the type of the Casimir platforms can be the base of transportation, energy and many other systems in the future.

  18. Motor Control STEVEN P. WISE

    E-Print Network [OSTI]

    Shadmehr, Reza

    Motor Control STEVEN P. WISE National Institute of Mental Health REZA SHADMEHR Johns Hopkins University I. What Controls Movement II. What the Motor System Controls III. Mechanisms of Motor Control IV. Motor Memory V. Flexibility in Motor Control VI. Evolution of the Motor System GLOSSARY agonist A muscle

  19. 3M's Motor Challenge Showcase Demonstration Project

    E-Print Network [OSTI]

    Schultz, S. C.

    In January 1994, 3M began the task of optimizing the electric motor systems at 3M Center, a 26 building, 7 million square foot corporate campus. A cross-functional, cross-company team was established which included four 3M employees representing two...

  20. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13T23:59:59.000Z

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  1. PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    PSU ≠ TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University ≠ Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU ≠ Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

  2. Replacing Motors Counting Savings: Results from a 100 Motor Study

    E-Print Network [OSTI]

    Kaufman, N. M.

    2006-01-01T23:59:59.000Z

    REPLACING MOTORS, COUNTING SAVINGS: RESULTS FROM A 100 MOTOR STUDY Nicole M. Kaufman Motor Systems Engineer Advanced Energy Raleigh, NC ABSTRACT Software tools such as MotorMaster+ aid facility personnel in conducting payback... analyses for replacing motors. These tools make assumptions on the motorsí operational efficiency in their calculations. By observing 100 pre-EPCA (Energy Policy & Conservation Act) motors in operation, removing them from service and conducting IEEE...

  3. Replacing Motors Counting Savings: Results from a 100 Motor Study†

    E-Print Network [OSTI]

    Kaufman, N. M.

    2006-01-01T23:59:59.000Z

    REPLACING MOTORS, COUNTING SAVINGS: RESULTS FROM A 100 MOTOR STUDY Nicole M. Kaufman Motor Systems Engineer Advanced Energy Raleigh, NC ABSTRACT Software tools such as MotorMaster+ aid facility personnel in conducting payback... analyses for replacing motors. These tools make assumptions on the motorsí operational efficiency in their calculations. By observing 100 pre-EPCA (Energy Policy & Conservation Act) motors in operation, removing them from service and conducting IEEE...

  4. Electrical instrumentation of a contra-rotating propeller drive system

    E-Print Network [OSTI]

    Angle, Matthew G. (Matthew Gates)

    2011-01-01T23:59:59.000Z

    A prototype ship propulsion device based on an electric motor that spins propellers in opposite directions was constructed and tested. The device uses a single motor to spin both propellers without a gearbox. The rotor is ...

  5. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

    1998-01-01T23:59:59.000Z

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  6. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06T23:59:59.000Z

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  7. Mechanical fault detection in induction motor drives through stator current monitoring -Theory

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    vibrations lead to acoustic noise, noise monitoring is also a possible approach. However, these methods0 Mechanical fault detection in induction motor drives through stator current monitoring - Theory machines are a key element in many electrical systems. Amongst all types of electric motors, induction

  8. Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an

    E-Print Network [OSTI]

    Paderborn, Universität

    Design of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric) ferrite-based permanent magnet-assisted synchronous reluctance motor has been designed for an electric vehicle application. The design steps are outlined. Ferrite magnets have been chosen over conventional Nd

  9. Electric Motor Architecture R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Selected Bibliography on Electric Motor Repair

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo ¬ĽUsageSecretary of Energy Advisory BoardSecuringSee theEnergy3

  11. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal * August 2004DETERMINING

  12. Buying an Energy-Efficient Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLight WaPROJECTS FUNDED

  13. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. ||Departmentandand2 DOE

  14. Electric Motor Thermal Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc. ||Departmentandand2

  15. Replacing an Oversized and Underloaded Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July0 Replace2-AIncandescent1

  16. Energy Efficient Motors

    E-Print Network [OSTI]

    Hoffmeyer, W.

    1982-01-01T23:59:59.000Z

    , and how to interpret efficiency data. A perspective is given from which to evaluate available energy efficient motor offerings for a given application....

  17. Neural correlates underlying motor map plasticity and skilled motor behavior

    E-Print Network [OSTI]

    Ramanathan, Dhakshin

    2007-01-01T23:59:59.000Z

    of neurons within the motor cortex. Physiol Rev, 1975. 55(and S.P. Wise, The motor cortex of the rat: cytoarchitecturedelayed changes of rat motor cortical output representation

  18. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  19. Stepping motor controller

    DOE Patents [OSTI]

    Bourret, S.C.; Swansen, J.E.

    1982-07-02T23:59:59.000Z

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  20. Empire Electric Association- Residential Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    Empire Electric Association provides rebates for its commercial customers who upgrade to energy efficient lighting, HVAC equipment, and motors. †These rebates are offered in conjunction with [http:...

  1. Asymptotic Analysis of Cooperative Molecular Motor System

    E-Print Network [OSTI]

    Durrett, Richard

    Mesoscale Model for Collections of Molecular Motors Stochastic Asymptotic Techniques #12;Molecular Motors

  2. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect (OSTI)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31T23:59:59.000Z

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

  3. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  4. Corona and Motor Voltage Interim Report

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-05-06T23:59:59.000Z

    It has been suggested that to meet the FreedomCAR objectives for cost, size, weight, efficiency, and reliability higher buss voltages be utilized in HEV and FC automotive applications. The reasoning is that since electric power is equal to the product of voltage and current for a given power a higher voltage and lower current would result in smaller cable and inverter switching components. Consequently, the system can be lighter and smaller. On the other hand, higher voltages are known to require better and thicker electrical insulation that reduce the available slot area for motor windings. One cause of slow insulation breakdown is corona that gradually erodes the insulation and shortens the life expectancy of the motor. This study reports on the results of a study on corona initiating voltages for mush-wound and bobbin-wound stators. A unique testing method is illustrated.

  5. Motor processes 1 Motor Processes in Mental Rotation1

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Motor processes 1 Motor Processes in Mental Rotation1 1 M.W. wishes to thank the LPPA for its are at least in part guided by motor processes, even in the case of images of abstract objects rather than of a specific motor action. We directly test the hypothesis by means of a dual-task paradigm in which subjects

  6. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOE Patents [OSTI]

    Mikesell, Harvey E. (McMurray, PA); Lucy, Eric (Murrysville, PA)

    1998-01-01T23:59:59.000Z

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  7. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOE Patents [OSTI]

    Mikesell, H.E.; Lucy, E.

    1998-02-03T23:59:59.000Z

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  8. Single phase two pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01T23:59:59.000Z

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  9. Single phase two pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-09-25T23:59:59.000Z

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  10. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01T23:59:59.000Z

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  11. Justification for Energy Efficient Motors

    E-Print Network [OSTI]

    Buschart, R. J.

    1981-01-01T23:59:59.000Z

    This paper presents the results of a study of Energy Efficient (or EE) motors in NEMA frame sizes, (1-200 HP). It examines the economics of using EE motors for new motor requirements, as replacements for motors - instead of rewinding...

  12. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

    1999-01-01T23:59:59.000Z

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  13. Markov Process of Muscle Motors

    E-Print Network [OSTI]

    Yu. Kondratiev; E. Pechersky; S. Pirogov

    2007-06-20T23:59:59.000Z

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  14. MotorWeek

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "to learn what it really takes to make clean power sources a viable reality."

  15. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  16. MotorMaster+ International | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the capabilities and features of MotorMaster+. However, users can evaluate repairreplacement options on a broader range of motors, including 60 hertz (Hz) motors tested under...

  17. Motor Control CTIO 60 inches CHIRON

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Motor Control CTIO 60 inches CHIRON CHI60HF8.1 La Serena, December 2010 #12;Contents..............................................................................................................................3 1. Image Slicer motor..............................................................................................................5 2. Focus motor

  18. Sensory-Motor Integration and Control

    E-Print Network [OSTI]

    Welch, Dan Bruce

    2011-01-01T23:59:59.000Z

    spinal interneurons during motor pattern generation inStep, Swim, and Scratch Motor Patterns in the Turtle. JStep, Swim, and Scratch Motor Patterns in the Turtle. J

  19. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  20. Brushless Motor Controller Report Spring 2010

    E-Print Network [OSTI]

    Ruina, Andy L.

    Brushless Motor Controller Report Spring 2010 May 15, 2010 Brian Clementi MAE of 2010 322 Bogert ...................................................................................................... 5 A. Motor Description...................................................................................................... 5 B. The Motor Controller Board

  1. Nicholas J. Cotton and Bogdan M. Wilamowski Electrical and Computer Engineering Auburn University

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    Characteristics of the Induction Motor" by measuring the characteristics of the electrical motor driving the oil complex neural networks on one of the simplest microcontrollers available the PIC microcontroller made

  2. Permissible loadings of generators and large motors. Facilities instructions, standards, and techniques. Volume 1-4

    SciTech Connect (OSTI)

    Watson, H.

    1991-03-01T23:59:59.000Z

    This volume is intended to fill the need for practical information concerning the temperature and mechanical and electrical overload limits of rotating electric equipment such as generators and large motors. Rotating electrical equipment cannot be overloaded on the same basis as transformers and is not as able to stand short-time overloads.

  3. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynein Motor Domain Shows Ring-Shaped Motor, Buttress Print Movement is fundamental to life. It takes place even at the cellular level where cargo is continually being transported...

  4. Design and prototyping methods for brushless motors and motor control

    E-Print Network [OSTI]

    Colton, Shane W. (Shane William)

    2010-01-01T23:59:59.000Z

    In this report, simple, low-cost design and prototyping methods for custom brushless permanent magnet synchronous motors are explored. Three case-study motors are used to develop, illustrate and validate the methods. Two ...

  5. Economics of Electric Compressors for Gas Transmission

    E-Print Network [OSTI]

    Schmeal, W. R.; Hibbs, J. J.

    Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental...

  6. Actuator 1-Electric Dr. C. Alex Simpkins

    E-Print Network [OSTI]

    Simpkins, Alex

    -Controller WindowsTM Software #12;Electric Motors ∑ Develop maximum thrust at low speeds ≠ Heavy, and laser and mirror positioning. Direct drive, zero backlash stages have no moving cables and are available

  7. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, G.L.

    1998-05-05T23:59:59.000Z

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  8. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, Gilbert L. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  9. Induction Motors Bearing Failures Detection and Diagnosis: Park and Concordia Transform

    E-Print Network [OSTI]

    Boyer, Edmond

    to metallurgical damage from interrupted electrical current flow. Increased noise and vibration are typicalInduction Motors Bearing Failures Detection and Diagnosis: Park and Concordia Transform Approaches with the problem of bearing failure detection and diagnosis in induction motors. Indeed, bearings deterioration

  10. Joint Identification of Stepper Motor Parameters and of Initial Encoder Offset

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    procedure to identify at the same time the electrical parameters of a permanent magnet stepper motor (PMSM is present. The standard DQ model of PMSM's assumes that the permanent magnet is lined up with a winding when, offset calibration, sliding modes. 1. INTRODUCTION Permanent Magnet Stepper Motors (PMSM's) are widely

  11. Efficient, Inexpensive Motors: A New Trend in The Motors Market

    E-Print Network [OSTI]

    Wroblewksi, R. G.

    EFFICIENT, INEXPENSIVE MOTORS: A NEW TREND IN THE MOTORS MARKET Ronald G. Wroblewski, P.E. Trainer and Consultant ABSTRACT The Consortiwn for Energy Efficiency (CEE) has established criteria for premium-efficiency motors above the EPACf... standard. CEE has set a wrifonn efficiency benchmark that all market players (manufacturers, utilities, and end-users) can use. Some end-users however, have been reluctant to specify these motors because they think they are too expensive...

  12. DIFFUSION MEDIATED TRANSPORT AND THE BROWNIAN MOTOR

    E-Print Network [OSTI]

    DIFFUSION MEDIATED TRANSPORT AND THE BROWNIAN MOTOR David Kinderlehrer Center for Nonlinear in small viscous systems and provide brief illustrations to brownian motor or molecular rachet situations which are found in intracellular transport. Keywords: Brownian motor, molecular rachet, motor protein

  13. Evaluating High Efficiency Motor Retrofit

    E-Print Network [OSTI]

    Evans, T. A.

    1984-01-01T23:59:59.000Z

    In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a...

  14. RMP Colloquia Modeling molecular motors

    E-Print Network [OSTI]

    JŁlicher, Frank

    The authors present general considerations and simple models for the operation of isothermal motors at small structural differences from the usual Carnot engines. Turning to more explicit models for a single motorRMP Colloquia Modeling molecular motors Frank Ju®licher,* Armand Ajdari, and Jacques Prost

  15. Kinematic Motor Learning Wolfram Schenck

    E-Print Network [OSTI]

    Moeller, Ralf

    Kinematic Motor Learning Wolfram Schenck Computer Engineering Group Faculty of Technology Bielefeld-521-106-6440 mail: wschenck@ti.uni-bielefeld.de Abstract This paper focuses on adaptive motor control in the kinematic domain. Several motor learning strategies from the literature are adopted to kinematic problems

  16. Motor Speech Disorders in Neurodevelopmental

    E-Print Network [OSTI]

    Shoubridge, Eric

    4/14/13 1 Motor Speech Disorders in Neurodevelopmental Syndromes Shelley Velleman University many graduate and undergraduate research assistants at UMass, U of Louisville, and UVM 2 Motor Speech difference/insult ßSymptoms 3 Motor Speech Disorders Dysarthria: neurological bases ßresult of damage

  17. Magazine R729 Motor prediction

    E-Print Network [OSTI]

    Flanagan, Randy

    Magazine R729 Primer Motor prediction Daniel M. Wolpert* and J. Randall Flanagan The concept of motor prediction was first considered by Helmholtz when trying to understand how we localise visual position of the eye, predicted the gaze position based on a copy of the motor command acting on the eye

  18. The University of British Columbia Supply Management GSAB, 2075 Wesbrook Mall, Vancouver, B.C. V6T 1Z1

    E-Print Network [OSTI]

    Michelson, David G.

    The University of British Columbia Supply Management GSAB, 2075 Wesbrook Mall, Vancouver, B.C. V6T Management DATE: December 9, 2009 RE: Document Management Strategy Dear Colleagues, An agreement has been and delivery of print materials. Initial benefits include consistent, affordable and reliable campus

  19. School of Public and Environmental Affairs, Indiana University Electric Vehicle Survey Research Team

    E-Print Network [OSTI]

    Craft, Christopher B.

    outlet and using electricity to charge a battery pack, but does not have a gasoline engine that works have a gasoline motor that serves as a back-up or works together with the electric motor. A Chevy Volt, such as the Toyota Prius, which uses both gasoline and battery power, but does not plug into the electrical grid

  20. Position sensor for linear synchronous motors employing halbach arrays

    DOE Patents [OSTI]

    Post, Richard Freeman

    2014-12-23T23:59:59.000Z

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  1. SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR

    E-Print Network [OSTI]

    Wu, Thomas

    with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided

  2. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  3. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04T23:59:59.000Z

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  4. Computerized controller with service display panel for an oil well pumping motor

    SciTech Connect (OSTI)

    Markuson, N.D.; Wiens, T.A.

    1988-08-30T23:59:59.000Z

    An oil well pump controller in combination with an oil pumping unit and oil well electrical pump motor for controlling and monitoring the operation of an oil well including: microprocessor means for monitoring three-phase electrical power consumption of the electrical pump motor and for calculating real time demand power consumption of the motor, power measuring means electrically connected to the three-phase electrical input of the motor for producing an analog signal indicative of power consumption, conversion means connected to the power measuring means for converting the analog signal into a digital signal usable by the microprocessor means to calculate electrical power consumption, relay means connected to and receiving signals from the microprocessor means indicative of detected power normal, power overload and power underload conditions, the relay means additionally providing circuitry to allow the microprocessor to selectively switch the motor on or off, waterproof box means for housing the components of the oil well pump controller, the waterproof box including a service display panel, overload display means, mounted on the service display panel, which is clearly visible from a distance, and connected to the relay means for indicating when power consumption of the motor has exceeded preprogrammed limits.

  5. Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Tolbert, Leon M.

    of battery bank can be reduced for optimum design. Keywords -- Silicon carbide (SiC), inverter, hybrid -- The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV has rapidly expanded. The application of SiC devices (as battery interface, motor controller, etc

  6. When to Purchase Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto Purchase Premium Efficiency Motors

  7. Trexa Motor Corporation TMC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)LibraryDatasetsElectricRiverTrexa Motor

  8. Standby Electric Generators for Emergency Farm Use Susan W. Gay, Extension Engineer, Biological Systems Engineering, Virginia Tech

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    -phase system. This publication only discusses single-phase motors. Electric motors for agricultural use require start. Gasoline-, liquid-propane- (LP-) gas-, and diesel-fueled models are available. Engine

  9. Optimization of induction motor efficiency: Volume 2, Single-phase induction motors: Final report

    SciTech Connect (OSTI)

    Fuchs, E.F.; Huang, H.; Vandenput, A.J.; Holl, J.; Appelbaum, J.; Zak, Z.; Erlicki, M.S.

    1987-05-01T23:59:59.000Z

    The optimal design of the motor dimensions, the capacitance of the run capacitor, the winding distribution and the choice of the electrical steel are the most important sources for an improvement of the efficiency of modern single-phase induction motors for given performance and material cost constraints. The formulation of the techniques which realize this optimization is based on nonlinear programming approaches. The Method of Boundary Search Along Active Constraints is used for the optimal design of the motor dimensions of a commercially available 2 hp, 115 V single-phase induction motor. Based on the optimization results due to the above mentioned four optimization components, the relationships between efficiency, power factor, cost, active materials and the values of the capacitance of the run capacitor are studied and the limited validity of the model law is discussed. This report also explains why the Wanlass retrofit improves efficiency and details the advantages and disadvantages of such a retrofitting as compared with the operation in the standard configuration.

  10. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  11. Preventing Electrical Shock

    E-Print Network [OSTI]

    Smith, David

    2004-09-16T23:59:59.000Z

    closer to un- guarded energized overhead lines than the following distances: 1) For voltages to ground 50 kV or less?10 feet; 2) For voltages to ground more than 50 kV ?10 feet plus 4 inches for every 10 kV over 50 kV. ? Make sure all electric motors... attempt to unplug the cord, move an energized line with any object, or grab the person to free him. Once the person is free, administer CPR immedi- ately, if necessary, to try to resuscitate the individual. In case of an electrical fi re, turn off...

  12. DragNDrop Directions v6 Windows Users: How do I access DragNDrop web documents to place or update them?

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    DragNDrop Directions v6 12/12/05 Windows Users: How do I access DragNDrop web documents to place or update them? If you are on the PPPL Domain: Open My Computer. Then the P drive. Find the web folder. Find to your web files contact Lena Scimeca OS/X Users: How do I access the web documents to place or update

  13. Using MotorMaster to Track Motor Inventory and Analyze Purchasing Decisions

    E-Print Network [OSTI]

    Brown, M.; Meffort, W.

    2007-01-01T23:59:59.000Z

    maintenance actions and to analyze motor replacement options. The approach used to secure and enter motor nameplate data along with examples of purchasing analyses completed will be presented. The success of the MotorMaster software with large motors has...

  14. How to Build a Motor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates Expand...

  15. Evaluating High Efficiency Motor Retrofit†

    E-Print Network [OSTI]

    Evans, T. A.

    1984-01-01T23:59:59.000Z

    OPERATING COST Although It would seem that most peoPlel un derstand the re I atlonsh I p beneen the fIrst cost and operating cost for motors, that's not the case. The purchase price of a standard efficIency 50 HP enclosed motor I s about $2000. Operatl...Ife, the energy efficIent motor will save about $7100 - assum f ng power costs grow as forecasted. That's why the co nom J cs of Energy $aver motors are so attractIve. The savIngs, assuming continuous operatIon at a 5i/kWh power cost, range from $300 per year...

  16. Comparison of Early-stage Design Methods for a Two-mode Hybrid Electric Vehicle

    E-Print Network [OSTI]

    Papalambros, Panos

    Whitefoot+ , V. P Atluri*, E Tate*, and P Papalambros+ + University of Michigan * General Motors Company with a vast design space consisting of distinct subsystems, such as engine, motor, transmission, and battery models are detailed high-fidelity simulations of engine and electric motor components combined with two

  17. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternative

  18. Study of Advantages of PM Drive Motor with Selectable Windings for HEVs

    SciTech Connect (OSTI)

    Otaduy, Pedro J [ORNL; Hsu, John S [ORNL; Adams, Donald J [ORNL

    2007-11-01T23:59:59.000Z

    The gains in efficiency and reduction in battery costs that can be achieved by changing the effective number of stator turns in an electric motor are demonstrated by simulating the performance of an electric vehicle on a set of eight standard driving cycles.

  19. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  20. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08T23:59:59.000Z

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  1. Thermal-Electromagnetic Analysis of a Fault-Tolerant Dual Star Flux-Switching Permanent Magnet Motor for Critical

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    ]-[5], multi-motor structures [6] or dual-star stator machines [7]-[8], etc. D hal-00628764,version1-4Oct2011 of additional end-winding length, the series [9] or parallel [6] motor connections need more system volume than the Variable Stator Vane (VSV) of aircraft. In VSV application, the electrical machine is applied to control

  2. Abstract--This paper discusses an optimum design of an ultra high-speed permanent-magnet synchronous motor

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    -magnet synchronous motor (PMSM), which is applied to a supercharger of an automotive engine. Although the motor (PMSM), which is specifically applied to the electric supercharger of the automotive engines. Although the PMSM is operated by an inverter with a 12-V DC bus voltage for an adjustable-speed drive, it must

  3. Developing a Motor Management Policy at BASF

    E-Print Network [OSTI]

    Zickefoose, B.; Theising, T. R.

    In early 1998 Thomas R. Theising, BASF Corporate Engineering initiated the formation of a motor management team. The goal of the team was to develop a Motor Management Guideline to better manage the purchase and repair of motors used throughout...

  4. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  5. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  6. Industrial motor repair in the United States

    SciTech Connect (OSTI)

    Schueler, V.; Leistner, P.; Douglass, J.

    1994-09-01T23:59:59.000Z

    This report characterizes the motor repair industry in the United States; summarizes current motor repair and testing practice; and identifies barriers to energy motor repair practice and recommends strategies for overcoming those barriers.

  7. 1/25/12 Aspirations in Colorado to Be a New Motor City -NYTimes.com 1/5www.nytimes.com/2011/12/18/automobiles/aspirations-in-colorado-to-be-a-new-motor-city.html?page...

    E-Print Network [OSTI]

    with a competition. In 1990, General Motors, with the Energy Department as a co-sponsor, challenged 25 engineering grids, electric vehicle components, alternative fuels and new twists on conventional drivetrains

  8. Verification of Motor Repair Quality

    E-Print Network [OSTI]

    Butler, K.

    Motor testing at Advanced Energy has shown that a motor that has not suffered irreparable damage as a result of failure can be repaired to perform as well as before the failure. But the only way to achieve the performance level of an energy...

  9. Unique Lanthide-Free Motor Construction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of rare-earth elements E: Efficiency Partners Ames Laboratory: improved magnet properties NREL: motor thermal management ORNL: motor testing 2 Relevance - Objectives Overall...

  10. Magnetically Coupled Adjustable Speed Motor Drives

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    This is one in a series of tip sheets to help manufacturers optimize their industrial motor and motor-driven systems.

  11. ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    1 PB13-078 ELECTRICAL ANALOGY MODELLING OF PEFC SYSTEM FED BY A COMPRESSOR Moussa Chnani1 , Hattab to be integrated in the simulation of an electrical vehicle power train. As many components have to be modelled by the motor speed. The modelling of the fuel cell electrical response is developed, based on semi

  12. A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles Farid Khoucha, Khoudir an Electric Vehicle (EV). The proposed scheme uses an adaptive flux and speed observer that is based on a full is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive

  13. Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential

    E-Print Network [OSTI]

    Chen, Krishichayan X.; Lui, Y. -W; Button, J.; Youngblood, David H.

    2010-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 81, 044612 (2010) Elastic and inelastic scattering of 240-MeV 6Li ions from 40Ca and 48Ca and tests of a systematic optical potential Krishichayan, X. Chen,* Y.-W. Lui, J. Button, and D. H. Youngblood Cyclotron Institute, Texas... that 0556-2813/2010/81(4)/044612(10) 044612-1 ?2010 The American Physical Society KRISHICHAYAN, CHEN, LUI, BUTTON, AND YOUNGBLOOD PHYSICAL REVIEW C 81, 044612 (2010) the real and imaginary optical potentials have the same radial shape [22]. However...

  14. Field demonstration of three-phase Wanlass motors. Final report Aug 81-Apr 83

    SciTech Connect (OSTI)

    Dann, G.

    1984-01-01T23:59:59.000Z

    Electric motors are major part of the load at Naval shore facilities. The Naval Civil Engineering Laboratory (NCEL) investigated the Wanlass motor as a means of reducing power consumption, reducing current flow, and improving power factor, as compared to standard motors. NCEL surveyed the literature on single-phase and poly-phase Wanlass motors and tested poly-phase Wanlass motors. Efficiency, current, power factor, load sharing, temperature rise, vibration and noise, torque-speed, and reliability were judged. A reduction in current flow and a corresponding improvement in power factor can be expected with the Wanlass rewind. A small improvement in efficiency - a reduction in power consumption - is possible but not certain. It was recommended that Wanlass rewinds not be purchased on the basis of energy savings or power factor improvement.

  15. The Development and Demonstration of an Electric Submersible...

    Broader source: Energy.gov (indexed) [DOE]

    0 4.4.2 The Development and Demonstration of an Electric Submersible Pump at High Temperatures - High-temperature Motor Windings for Down-hole Pumps Used in Geothermal Energy...

  16. Electric vehicle design, racing and distance to empty algorithms

    E-Print Network [OSTI]

    Rodgers, Lennon Patrick

    2013-01-01T23:59:59.000Z

    This research began with the goal of designing and building an electric motorcycle to compete in the Isle of Man TT Zero race. A set of parametric physics-based models was derived to size the batteries and motors, predict ...

  17. STEPS IN SLOW FLAGELLAR MOTOR ROTATION

    E-Print Network [OSTI]

    Leake, Mark C.

    STEPS IN SLOW FLAGELLAR MOTOR ROTATION Alexander D. Rowe1 , Yoshiyuki Sowa2, Mark C. Leake1+ -specific motors. Torque is generated by the interaction between stator complexes and FliG proteins revolution. CHIMERIC MOTOR: The stator units comprising the flagellar motors of the YS34 strain - used

  18. Motor Control Abnormalities in Parkinson's Disease

    E-Print Network [OSTI]

    Motor Control Abnormalities in Parkinson's Disease Pietro Mazzoni, Britne Shabbott, and Juan Camilo Corteīs Motor Performance Laboratory, The Neurological Institute, Columbia University, New York, New. Motor symptoms can also be described in terms of motor control, a level of description that explains how

  19. 104 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 1, JANUARY 2011 An Adaptive Electric Differential for

    E-Print Network [OSTI]

    Boyer, Edmond

    : electrical motor, EC: electronic controller, ES: energy source, PC: power converter). requiring gear.Benbouzid@univ-brest.fr). Color versions of one or more of the figures in this paper are available online at http, the induction motor has been adopted as the EV propulsion base [6]. Among the available induction motor control

  20. Recover Power with Hydraulic Motors

    E-Print Network [OSTI]

    Brennan, J. R.

    1982-01-01T23:59:59.000Z

    displacement device, the HPRM torque and speed are almost completely independent - unlike hydraulic power recovery turbines (centrifugal motors). Three screw HPRM's have low moments of inertia, operate at low vibration and noise levels and extract power...

  1. Direct drive field actuator motors

    DOE Patents [OSTI]

    Grahn, A.R.

    1998-03-10T23:59:59.000Z

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  2. Radial-Gap Permanent Magnet Motor and Drive Research FY 2004

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-02-11T23:59:59.000Z

    The objective of this task was to study permanent magnet (PM) radial-gap traction drive systems that could meet the U.S. Department of Energy FreedomCAR Program's 2010 goals to expose weaknesses or identify strengths. Initially, the approach was to compare attributes such as physical deformations during operation, performance (torque, power, efficiency versus speed), material requirements (strength), material costs, manufacturability, weight, power density, specific power, reliability, and drivability for specific motors. Three motors selected were the commercially available 60-kW radial-gap surface-mounted PM motor manufactured by UQM Technologies, Inc.; a hypothetical PM motor with rotor-supported magnets similar to the Honda MCF-21; and Delphi's automotive electric machine drive motor, whose rotor is a ferromagnetic cylinder, held at one end by a shaft that supports the magnets on its inner surface. Potential problems have appeared related to PM motors, such as (1) high no-load spin losses and high operational power losses, probably from eddy current losses in the rotor; (2) the undemonstrated dual mode inverter control (DMIC) for driving a brushless dc motor (BDCM) (UQM and Delphi motors); (3) uncertainty about the potential for reducing current with DMIC; and (4) uncertainty about the relation between material requirements and maximum rotor speed. Therefore, the approach was changed to study in detail three of the comparison attributes: drivability, performance, and material requirements. Drivability and related problems were examined by demonstrating that DMIC may be used to drive an 18-pole 30-kW PM motor to 6000 rpm, where the maximum electrical frequency is 900 Hz. An available axial-gap test motor with 18 poles was used because its control is identical to that of a radial gap PM motor. Performance was analytically examined, which led to a derivation showing that DMIC controls a PM motor so that the motor uses minimum current to produce any power regardless of speed for relative speeds, n = {omega}/{omega}{sub base} {ge} 2. Performance was also examined with efficiency measurements during the 30-kW PM motor test. Material requirements were examined with finite-element analyses (FEA) to determine the speed and location where yield starts and the corresponding deformations and stresses.

  3. Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

  4. Mechanisms of motor activity regulation in axonal transport

    E-Print Network [OSTI]

    Reis, Gerald Feliz

    2008-01-01T23:59:59.000Z

    emerging principles of kinesin motor utilization." Annu Revopposite-polarity microtubule motors." J Cell Biol 156( 4):Kinesin mutations cause motor neuron disease phenotypes by

  5. Lab 4 -Motor Constants and Sensor Calibration Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational

    E-Print Network [OSTI]

    Stanford University

    Lab 4 - Motor Constants and Sensor Calibration PRE-LAB Consider a DC servo motor which is connected to a power supply. The motor inertia is Jm. The rotational damping in the motor is bm. The motor produces a torque Tm = Kmi where Km is the motor's torque constant and i is the current from the power supply. a

  6. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  7. Three phase AC motor controller

    DOE Patents [OSTI]

    Vuckovich, Michael (Elizabeth, PA); Wright, Maynard K. (Bethel Park, PA); Burkett, John P. (South Huntington Township, Westmoreland County, PA)

    1984-03-20T23:59:59.000Z

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  8. Case Histories of Energy Efficient Motors

    E-Print Network [OSTI]

    Riley, J. C.; Comiskey, W. T

    should be the value read from a reputable manufactur er I s data sheet. COOLING TOWER MOTORS The plant is now replacing 25 hp cooling tower motors with EE motors as the old ones burn out. An adapter base for changing from the old frame size 365... volts and amps from an EE motor and comparing this to readings from an old motor in service on the tower. This was based on an assumption of identical loads and motor power factors. This calculation showed yearly savings very close to the cost...

  9. Alternatives to Electric Air Conditioning Systems

    E-Print Network [OSTI]

    Lindsay, B. B.; Koplow, M. D.

    1988-01-01T23:59:59.000Z

    of an engine-driven chiller is very fundamental. The electric motor: which drives the refrigerant compressor, is replaced with an engine. (Each prime mover has a shaft that rotates and transmits power.) Gas engine-driven chillers can capitalize... on the advances in compressor technology that have made electric air conditioning so attractive. The relative prices of natural gas and electricity will determine the best choice. An electric chiller may have a COP of 5.5. The gas engine chiller, because its...

  10. DOE Fundamentals Handbook: Electrical Science, Volume 4

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  11. DOE Fundamentals Handbook: Electrical Science, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  12. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  13. Homopolar motor with dual rotors

    DOE Patents [OSTI]

    Hsu, J.S.

    1998-12-01T23:59:59.000Z

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  14. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Benson, Ralph A. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  15. Electric vehicle drive train with contactor protection

    DOE Patents [OSTI]

    Konrad, C.E.; Benson, R.A.

    1994-11-29T23:59:59.000Z

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  16. NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO

    E-Print Network [OSTI]

    SHARK, NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO SWITCHED RELUCTANCE MOTOR by Ana of the cylindrical and Shark air gap Switched Reluctance Motors and their assistance during the experimental work with other motor technologies such

  17. Techniques for energy conservation in ac motor-driven systems. Final report

    SciTech Connect (OSTI)

    Mohan, N.

    1981-09-01T23:59:59.000Z

    Techniques for energy conservation of reducing losses in ac motor-driven systems proposed by the technical community in response to surging cost of energy are evaluated and compared. Report objectives are to provide better understanding of underlying principles and to evaluate technical and economic viability of these techniques for various applications. An important aspect considered is the impact on electric utility system in terms of harmonics, power factor of operation, and Electro-Magnetic Interference (EMI). The techniques evaluated are: NASA Power Factor Controller, a simple device for reducing power losses in lightly loaded ac motors; wanlass motor modification, a scheme of reconnecting motor windings with capacitors in series, with the intention of improving the motor efficiencies under all loading conditions; conventional variable frequency solid-state inverters which can control the speed of ac motors by producing adjustable frequency ac voltage, with a significant potential for energy conservation in pumps and air-handling systems; and other variable frequency drives and schemes including cycloconverters, slip-recovery scheme, Exxon Alternating Current Synthesizer, Venturini conversion technique, permanent magnet synchronous motors, and a device called the Phase-Liner. The impact of rapid growth in semiconductors and magnetic materials technologies is also considered.

  18. Injectable Spontaneous Generation of Tremendous Self-Fueled Liquid Metal Droplet Motors in a Moment

    E-Print Network [OSTI]

    Yao, You-You; Liu, Jing

    2015-01-01T23:59:59.000Z

    Micro motors that could run in liquid environment is very important for a variety of practices such as serving as pipeline robot, soft machine, drug delivery, or microfluidics system etc. However, fabrication of such tiny motors is generally rather time and cost consumptive and has been a tough issue due to involve too many complicated procedures and tools. Here, we show a straightforward injectable way for spontaneously generating autonomously running soft motors in large quantity. A basic fabrication strategy thus enabled is established and illustrated. It was found that, injecting the GaIn alloy pre-fueled with aluminum into electrolyte would automatically split in seconds into tremendous droplet motors swiftly running here and there. The driving force originated from the galvanic cell reaction among alloy, aluminum and surrounding electrolyte which offers interior electricity and hydrogen gas as motion power. This finding opens the possibility to develop injectable tiny-robots, droplet machines or microfl...

  19. Impact of Motor Failures on Payback Periods

    E-Print Network [OSTI]

    Cheek, K. F.; Pillay, P.; Dudley, K. J.

    This paper uses MotorMaster and Vaughen's Complete Price Guide to determine payback periods for different motor failure scenarios. Some scenarios considered are rewinds, reconditions, and replacement of bearings. Prices for these repairs...

  20. Self-bearing motor design & control

    E-Print Network [OSTI]

    Imani Nejad, Mohammad

    2013-01-01T23:59:59.000Z

    This thesis presents the design, implementation and control of a new class of self-bearing motors. The primary thesis contributions include the design and experimental demonstration of hysteresis self-bearing motors, novel ...

  1. Motorized control for mirror mount apparatus

    DOE Patents [OSTI]

    Cutburth, Ronald W. (Tracy, CA)

    1989-01-01T23:59:59.000Z

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  2. Frequency modulation drive for a piezoelectric motor

    DOE Patents [OSTI]

    Mittas, Anthony (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  3. Coupling between motor proteins determines dynamic behaviors of motor protein assemblies

    E-Print Network [OSTI]

    Coupling between motor proteins determines dynamic behaviors of motor protein assemblies Jonathan W of intracellular cargos by multiple microtubule motor proteins is believed to be a common and significant phenomenon in vivo, yet signatures of the microscopic dynamics of multiple motor systems are only now

  4. Preferred track: Speech Motor Control Title: Specificity of speech sensori-motor learning

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    COVER PAGE Preferred track: Speech Motor Control Title: Specificity of speech sensori-motor University, France. Ph.D. thesis focused on the link between language universals and the motor constraints of speech production. Current research focuses on speech sensori-motor learning and its consequences

  5. Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Overview: Advanced Power Electronics and Electric Motors (APEEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications HEV HEV Blended ICEElectric - Power requirement 55 kW - Parallel architecture - Intermittent short operation Blended ICEElectric - Power requirement 55 kW -...

  7. EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- Battery Workshop Thursday,

  8. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrective ActionHybrid Wind andA

  9. Buying an Energy-Efficient Electric Motor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing atGreenhouse GasesRespond to anSpecifiersBuying

  10. Selected Bibliography on Electric Motor Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle|Security Enforcement Documentsis NotSelect

  11. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF|OffInfrastructureGroup Report |

  12. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration826Vehicles and Fuels

  13. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MN Impact HouseDepartmentDepartment

  14. DOE Issues Notice of Proposed Rulemaking for Electric Motors Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor Energy DeliveryConservation

  15. Optimizing Electric Motor Systems at a Corporate Campus Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * October

  16. Optimizing Electric Motor Systems at a Corporate Campus Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * OctoberDepartment of Energy

  17. Replacing an Oversized and Underloaded Electric Motor | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergy V-Belts with Notched orEnergy Replacing

  18. United States Industrial Electric Motor Systems Market Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresident Obama's FYof EnergyAssessment

  19. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIsland GasItronJM E3JPJV

  20. Determining Electric Motor Load and Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and Coverageandthe Cost

  1. EV Everywhere Workshop: Electric Motors and Critical Materials Breakout

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report | Department of Energy ¬Ö

  2. Advanced Power Electronics and Electric Motors R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment ofDepartment ofMachines Advanced|| Vehicle

  3. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethods forEnergy

  4. Improved Organics for Power Electronics and Electric Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethods

  5. Next Generation Electric Machines: Megawatt Class Motors FOA Informational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter Newsletter Better BuildingsAttics andWebinar

  6. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01T23:59:59.000Z

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  7. Physical model of a hybrid electric drive train

    E-Print Network [OSTI]

    Young, Brady W. (Brady William)

    2006-01-01T23:59:59.000Z

    A motor and flywheel system was designed to simulate the dynamics of the electric drive train and inertial mass of a hybrid electric vehicle. The model will serve as a test bed for students in 2.672 to study the energy ...

  8. LEARN MORE @ HYBRID ELECTRIC SAVING FUEL = SAVING MONEY = CLEANER AIR

    E-Print Network [OSTI]

    . PROJECT PARTNERS Hybrid Electric Vehicles (HEVs) combine the benefits of an internal combustion engine the combustion engine is assisted by the electric motor, allowing the engine to run at more optimal operating. Diesel engines are more efficient and diesel fuel has more energy per gallon than gasoline. www

  9. Analysis of production line motor failure. CRADA final report for CRADA number Y-1293-0215

    SciTech Connect (OSTI)

    Kueck, J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Talbott, C. [M& M Mars, Inc., Chicago, IL (United States)

    1995-02-10T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) was approached by a Food Products Manufacturer (FPM) to investigate the rapid failure of motors in a manufacturing facility. It was reported that some motors or their bearings were being replaced after as little as four months of service. The deciding symptom for replacement was always high motor vibration. To protect against unscheduled downtime in the middle of a process run, the FPM`s maintenance team removes a motor from service when its vibration level reaches a conservative threshold of approximately 0.4 inches per second. In their experience, motors left in service after reaching this vibration threshold can fail at any time within the time span of the next process run causing significant losses of raw material and production capacity. A peculiar finding of vibration level trend analysis was that at least one motor exhibited cyclic variations with 24-hour periodicity. The vibration level reached a maximum at about 4:00 a.m., ramped down during the day, and then rose again during the night. Another peculiarity was that most of the vibration energy in the affected motors was at the 120 Hz frequency. Since this is twice the 60 Hz line frequency the FPM suspected the vibration was electrically induced. The electric loads at the FPMs plant remain constant during the five days of a continuous production run. Thus, the periodicity of the vibration observed, with its daily peaking at about four am, suggested the possibility of being driven by changes in the electrical power grid external to the plant.

  10. INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS

    E-Print Network [OSTI]

    Povinelli, Richard J.

    INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

  11. ABOUT SPEECH MOTOR CONTROL COMPLEXITY Pascal Perrier

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    20/07/2005 ABOUT SPEECH MOTOR CONTROL COMPLEXITY Pascal Perrier Institut de la Communication Parlťe ABSTRACT A key issue in research about speech motor control is the one of the level of complexity of the speech motor system, including the complex tongue-jaw biomechanics? Or would more simple internal

  12. Electricity Reliability

    E-Print Network [OSTI]

    electric power equipment with more energy efficiency and higher capacity than today's systems of modernizing the electric grid to meet the nations's need for reliable, electric power, enhancing security continues to increase within the electricity infrastructure. DOE is conducting research, development

  13. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-08-27T23:59:59.000Z

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  14. Energy control strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

    2002-01-01T23:59:59.000Z

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  15. Method and apparatus for monitoring motor operated valve motor output torque and power at valve seating

    DOE Patents [OSTI]

    Casada, Donald A. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    A method and apparatus are provided for monitoring a motor operated valve during the brief period when the valve seats and the torque switch trips to deenergize the valve motor. The method uses voltage measurements on the load side of a deenergizing switch that opens to deenergize the motor to determine, among other things, final motor rotational speed and the decelerating torque at motor deenergization.

  16. Mechanism and kinetics of a sodium-driven bacterial flagellar motor

    E-Print Network [OSTI]

    Berry, Richard

    Mechanism and kinetics of a sodium-driven bacterial flagellar motor Chien-Jung Loa,b , Yoshiyuki potential difference. It consists of an 50-nm rotor and up to 10 independent stators anchored to the cell of electrical and chemical potential. All 25 torque­speed curves had the same concave-down shape as fully

  17. DISCOVER --Economic and societal benefit through research and collaboration The ground breaking motor

    E-Print Network [OSTI]

    Leeds, University of

    of fundamental problems facing policy makers ≠ these include global warming, the impending energy crisis ≠ whether globally in terms of products and services, or more locally and regionally in terms of employment breaking motor technology being commercialised by Magnomatics originated in the Department of Electrical

  18. Voltage control of emerging distribution systems with induction motor loads using robust LQG approach

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , electricity is mainly produced by large generation plants, generally located near the primary energy sources has significant performance to improve the voltage profile of the distributed generation system & Sons, Ltd. key words: distributed generation; eigenvalue; H1 norm; induction motor; linear quadratic

  19. DOE Hybrid Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31T23:59:59.000Z

    Based on the contract NT-42790 to the Department of Energy, ďPlug-in Hybrid Ethanol Research PlatformĒ, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  20. !"$#%'&)(01(024357698A@B&)CDCEGFIH PRQS#UTU)&)V6U&$W XYa`cbc`edgf9hiYapiqrqAhsq

    E-Print Network [OSTI]

    Choi, Byron "Koon Kau"

    ¬¨¬ę√?¬ģ¬į¬Į¬Ī¬≤¬≥¬°¬Ę¬į¬ī¬ĺ¬Į¬•)¬Ę√™¬ģ$¬∑√?¬ł¬ģo¬Ī¬Ķq¬£x¬ľ√?¬∑s¬°%¬Ķq¬°¬°¬Ę ¬•)¬ĶD¬•√ł√?w√?√Ļ√߬ģ)¬Ļ¬īw¬°C¬•g¬īj¬•$¬∑¬•$¬Ķq¬°C¬ł¬Ę¬Ķ¬īj¬•$¬Ę¬Į¬° √?√ļ ¬ģ$¬ßD¬•$¬£¬£l¬īw¬°¬ĺ¬ßw¬°¬•)¬Ķq¬ģo¬Ę¬Ķ¬¨¬īwi¬•g¬ī ¬°¬Ņ¬≥¬Į¬ł¬°¬Ę¬į¬ī¬ł¬¶¬Ę¬Į¬ßw¬°¬≤¬≥¬°¬Ę¬į¬īj ¬Ę¬°¬§¬£¬¶¬•¬®¬ß¬©¬ß¬°!"$#¬§%'&)(0¬°1(02435¬£76¬§¬ß¬©98A@B&)¬•¬®¬ßC¬£D¬ßCEGFIH PRQS#UTU)&)V6U&$¬°¬§W X¬¶Ya`cbc`edgf9hi$$jdeg{jfgki)hke)f)lk~f qa`zapiq xzyo |guj ~}aoxy${o"trujvxvysxuw fggfojdoqgk~fk~)ike Abstract ¬°¬Ę¬§¬£¬¶¬•)¬ßw

  1. Chemistry in Motion: Tiny Synthetic Motors

    E-Print Network [OSTI]

    Peter H. Colberg; Shang Yik Reigh; Bryan Robertson; Raymond Kapral

    2014-11-03T23:59:59.000Z

    In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.

  2. Traffic by small teams of molecular motors

    E-Print Network [OSTI]

    Melanie J. I. MŁller; Janina Beeg; Rumiana Dimova; Stefan Klumpp; Reinhard Lipowsky

    2008-07-07T23:59:59.000Z

    Molecular motors transport various cargos along cytoskeletal filaments, analogous to trucks on roads. In contrast to vehicles, however, molecular motors do not work alone but in small teams. We describe a simple model for the transport of a cargo by one team of motors and by two teams of motors, which walk into opposite directions. The cooperation of one team of motors generates long-range transport, which we observed experimentally in vitro. Transport by two teams of motors leads to a variety of bidirectional motility behaviour and to dynamic instabilities reminiscent of spontaneous symmetry breaking. We also discuss how cargo transport by teams of motors allows the cell to generate robust long-range bidirectional transport.

  3. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01T23:59:59.000Z

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  4. Single phase four pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, Herbert S. (Asheville, NC)

    1984-01-01T23:59:59.000Z

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils.

  5. Single phase four pole/six pole motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-10-09T23:59:59.000Z

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.

  6. DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains

    E-Print Network [OSTI]

    Brest, Universitť de

    DSP-Based Sensor Fault-Tolerant Control of Electric Vehicle Powertrains BekheÔra Tabbache, Mohamed-tolerant control for a high performance induction motor drive that propels an electrical vehicle. The proposed and simulations on an electric vehicle are carried-out using a European urban and extra urban driving cycle

  7. Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Bocker

    E-Print Network [OSTI]

    Paderborn, Universitšt

    ) for an electric drive, where the control structure, power electronics and motor are modeled in different environ works as a combined system. The system model of the electric drive discussed in this work consists--For the simulation of electrical drives, reduced- order models or simple look-up tables are often used in order

  8. Department of Electrical and Computer Engineering 1982 | FAMU-FSU COLLEGE OF ENGINEERING | 2012

    E-Print Network [OSTI]

    Sura, Philip

    and commercially viable fuel cell. Dr. Zheng has pioneered a fuel cell technology that incorporates a thin membrane made fuel cells too expensive to be widely marketed. Dr. Zheng's technology is based on pioneering, electric vehicles and plug-in hybrid electric vehicles, electric machinery and motor drives, energy storage

  9. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard F

    2014-02-04T23:59:59.000Z

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  10. DOE Fundamentals Handbook: Electrical Science, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  11. Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract This paper presents a comparison of different permanent magnets synchronous motors (PMSM) having three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe in the rotor, PMSM have the highest power density and efficiency among all types of motors. Therefore, PMSM

  12. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06T23:59:59.000Z

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  13. School of Electrical & Computer Engineering -Undergraduate Post Graduate Activities Detail & History

    E-Print Network [OSTI]

    Lipson, Michal

    & Computer Engineering - Undergraduate (continued) 2010 Employment Employer Title City State General Motors2010 School of Electrical & Computer Engineering - Undergraduate Post Graduate Activities Detail Engineering undergraduate students from the Class of 2010. Historical data is provided to allow for comparison

  14. Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    or Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do not refuel at pumps that collect state and Federal highway...

  15. Combustion Tests of Rocket Motor Washout Material: Focus on Air toxics Formation Potential and Asbestos Remediation

    SciTech Connect (OSTI)

    G. C. Sclippa; L. L. Baxter; S. G. Buckley

    1999-02-01T23:59:59.000Z

    The objective of this investigation is to determine the suitability of cofiring as a recycle / reuse option to landfill disposal for solid rocket motor washout residue. Solid rocket motor washout residue (roughly 55% aluminum powder, 40% polybutadiene rubber binder, 5% residual ammonium perchlorate, and 0.2-1% asbestos) has been fired in Sandia's MultiFuel Combustor (MFC). The MFC is a down-fired combustor with electrically heated walls, capable of simulating a wide range of fuel residence times and stoichiometries. This study reports on the fate of AP-based chlorine and asbestos from the residue following combustion.

  16. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamic Switching of theDynein Motor

  17. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDynein Motor Domain Shows

  18. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDynein Motor Domain ShowsDynein

  19. Dynein Motor Domain Shows Ring-Shaped Motor, Buttress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with Jefferson LabDynein Motor Domain

  20. Electrically-Assisted Turbocharger Development for Performance and Emissions

    SciTech Connect (OSTI)

    Bailey, Milton

    2000-08-20T23:59:59.000Z

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

  1. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  2. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  3. System and method for determining stator winding resistance in an AC motor using motor drives

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26T23:59:59.000Z

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  4. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  5. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  6. -UNIT NAME C-728 Motor Cleaning Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNIT NUMBER 33 -UNIT NAME C-728 Motor Cleaning Facility -REGULATORY STATUS--3:.:::.0:..04(--u) -LOCATION North of C-720 (Map...

  7. Permanent Magnet Development for Automotive Traction Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permanent Magnet Development for Automotive Traction Motors Includes: Beyond Rare Earth Magnets (BREM) Iver E. Anderson Ames Laboratory (USDOE) Email: andersoni@ameslab.gov Phone:...

  8. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05T23:59:59.000Z

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  9. Housing assembly for electric vehicle transaxle

    DOE Patents [OSTI]

    Kalns, Ilmars (Northville, MI)

    1981-01-01T23:59:59.000Z

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  10. 3.1. MOTOR SYSTEM 35 3.1 Motor System

    E-Print Network [OSTI]

    Toronto, University of

    3.1. MOTOR SYSTEM 35 3.1 Motor System The motor system comprises the dynamic model of the fish fish's brain. Since our goal is to animate an animal realistically and at reasonable computational cost controllers by gleaning information from the fish biomechanics literature (Blake, 1983; Alexander, 1992

  11. Brandl Motor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,BoyneTennessee:Brandl Motor Jump to:

  12. Mission Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV JumpMotors Jump to:

  13. Motor Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013 V-237: TYPO3LoveMicrosoft2MitigationMotor Energy

  14. Myers Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources Jump to:MuskingumMyers Motors Jump to:

  15. BSA Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSA Motors Jump

  16. Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for

    E-Print Network [OSTI]

    Holliday, Vance T.

    Motor Pool Guidelines for Geosciences ∑ A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf ∑ If the trip be submitted with the Motor Pool Request. ∑ A list of passengers and drivers is for all motor pool travel (this

  17. Abstract--There are two types of drivers in production machine systems: constant velocity (CV) motor and servo-motor.

    E-Print Network [OSTI]

    Zhang, WJ "Chris"

    ) motor and servo-motor. If a system contains two drivers or more, among which some are of the CV motor while the other are the servo-motor, the system has the so-called hybrid driver architecture is stable. A simulation is performed to show verify the proposed controller. The CV motor has the velocity

  18. Motors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept of Energy, Office26,282.1

  19. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24T23:59:59.000Z

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  20. Electrical Engineer

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as an Electrical Engineer in the Strategy and Program Management organization of Transmission Services. The Strategy and Program Management organization is...

  1. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  2. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  3. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electrical stator

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01T23:59:59.000Z

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  5. Permanent magnet assisted synchronous reluctance motor, design and performance improvement

    E-Print Network [OSTI]

    Niazi, Peyman

    2006-04-12T23:59:59.000Z

    Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered as a possible alternative motor drive for high performance applications. In order to have an efficient motor drive, performing of three steps...

  6. Permanent magnet assisted synchronous reluctance motor, design and performance improvement†

    E-Print Network [OSTI]

    Niazi, Peyman

    2006-04-12T23:59:59.000Z

    Recently, permanent magnet assisted (PMa)-synchronous reluctance motors (SynRM) have been considered as a possible alternative motor drive for high performance applications. In order to have an efficient motor drive, ...

  7. What does motor efference copy represent? evidence from speech production

    E-Print Network [OSTI]

    Niziolek, CA; Nagarajan, SS; Houde, JF

    2013-01-01T23:59:59.000Z

    What does motor efference copy represent? Evidence fromAbbreviated title: What does motor efference copy represent?SJ, Wang X (2003) Sensory-Motor Interaction in the Primate

  8. Motor Neurons Controlling Fluid Ingestion in Drosophila melanogaster

    E-Print Network [OSTI]

    Manzo, Andrea

    2011-01-01T23:59:59.000Z

    coordination of rhythmic motor patterns. J Neurophysiol 90:Figure 3.5. Individual motor neurons project to eitherGraphs as in (C-D) for MN12 motor neurons. n=10-13 flies per

  9. Influence of direct motor-motor interaction in models for cargo transport by a single team of motors

    E-Print Network [OSTI]

    Sebastian Bouzat; Fernando Falo

    2010-12-14T23:59:59.000Z

    We analyze theoretically the effects of excluded-volume interactions between motors on the dynamics of a cargo driven by multiple motors. The model considered shares many commons with other recently proposed in the literature, with the addition of direct interaction between motors and motor back steps. The cargo is assumed to follow a continuum Langevin dynamics, while individual motors evolve following a Monte Carlo algorithm based on experimentally accessible probabilities for discrete forward and backward jumps, and attachment and detachment rates. The links between cargo and motors are considered as non linear springs. By means of numerical simulations we compute the relevant quantities characterizing the dynamical properties of the system, and we compare the results to those for non interacting motors. We find that interactions lead to quite relevant changes in the force-velocity relation for cargo, with a considerable reduction of the stall force, and cause also a notable decrease of the run length. These effects are mainly due to traffic-like phenomena in the microtubule. The consideration of several parallel tracks for motors reduces such effects. However, we find that for realistic values of the number of motors and the number of tracks, the influence of interactions on the global parameters of transport of cargo are far from being negligible. Our studies provide also an analysis of the relevance of motor back steps on the modeling, and of the influence of different assumptions for the detachment rates. In particular, we discuss these two aspects in connection with the possibility of observing processive back motion of cargo at large load forces.

  10. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  11. Writing Motor Specifications - How to Include Efficiency†

    E-Print Network [OSTI]

    Quartermaine, B. J.

    1980-01-01T23:59:59.000Z

    be as low as 50% load. EFFICIENCY EVALUATION Unless advised otherwise, a motor manufacturer will not know that effiency is to be evaluated and as a result is likely to offer the least cost motor when tendering for a specific application. Hence...

  12. Performance improvement of permanent magnet ac motors

    E-Print Network [OSTI]

    Parsa, Leila

    2005-08-29T23:59:59.000Z

    .????????????????....????.. 19 B. Background............??..?????.??.?????...?.?.... 20 C. Comparing BLDC Motor and PMSM???????????... 24 D. Harmonic Spectrum of MMF in Machines with Non-sinusoidal Winding Distribution??????????????????.. 26 ix TABLE............................................................................ 58 H. Conclusion??????????????????????. 68 III FAULT TOLERANT OPERATION OF PERMANENT MAGNET MOTOR DRIVES?????????????????????? 69 A. Introduction.????????????????....???.?. 69 B. Fault Tolerant Operation of Five-Phase PMSM...

  13. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  14. Superconducting electric power applications

    SciTech Connect (OSTI)

    Blaugher, R.D. [National Renewable Energy Lab., Golden, CO (United States)

    1997-06-01T23:59:59.000Z

    The application of superconductors to electric power systems has been actively pursued over the past 30 years. Following the realization of high-field, high-current superconductors in 1961, researchers applied these type II materials, such as Nb-Ti and Nb{sub 3}Sn, to laboratory magnets, followed by generators, motors, and transmission cables. Successful prototypes for the latter were constructed and tested by the mid-1980s. It is fair to assume that widespread utility acceptance of these low-temperature superconducting (LTS) power applications was compromised by the necessity for liquid helium cooling. The discovery of the high-temperature superconductors (HTS) in 1986, which offered the prospect for liquid nitrogen cooling, provided renewed interest and impetus and spurred the development of HTS power components. The expectations for HTS power components are, in fact, near realization, as a result of the rapid worldwide progress in HTS wire and tape development. This paper will review the history and present status of superconducting power-system-related applications. The major problems facing this technology and the prospects for commercialization and eventual integration into the utility sector will be discussed. General acceptance for superconducting power equipment by the electric utilities and other end-users will ultimately be based on the respective system performance, efficiency, reliability and maintenance, operational lifetime, and installed cost compared to conventional technologies.

  15. Best Practices in Non-Motorized Transport Planning, Implementation...

    Open Energy Info (EERE)

    Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices in Non-Motorized...

  16. ameliorate motor performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the presently available methods... Ahmed, Shehab 2000-01-01 2 Stereotype lift in motor performance 1 Running head: STEREOTYPE LIFT IN MOTOR PERFORMANCE Physics...

  17. New rocket propellant and motor design offer high-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested...

  18. Premium Efficiency Motor Selection and Application Guide - A...

    Broader source: Energy.gov (indexed) [DOE]

    handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an...

  19. United States Industrial Motor-Driven Systems Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to...

  20. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors Clean Combustion Engines Advanced with Predictive Simulation Tools Sandia National Laboratories (SNL) has been working with General Motors (GM) for over 30 years. In the...

  1. Sandia National Laboratories: Sandia and General Motors: Advancing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECAbout ECFacilitiesCRFSandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools Sandia and General Motors: Advancing Clean Combustion...

  2. Improving Motor and Drive System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    This is one in a series of sourcebooks to assist industrial personnel in understanding and optimizing motors and motor-driven systems

  3. axial motor circuits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamentals of electromechanical energy conversion. Motors and generators, transformers, single and three- phase power circuits, three-phase induction motor including...

  4. Improving Motor and Drive System Performance - A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities. Improving Motor and Drive System Performance - A...

  5. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving...

  6. Continuous Energy Improvement in Motor Driven Systems - A Guidebook...

    Energy Savers [EERE]

    Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry Continuous Energy Improvement in Motor Driven Systems - A Guidebook for Industry This guidebook...

  7. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17T23:59:59.000Z

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  8. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  9. ECE alumnus Martin Eberhard and his all-electric Tesla Roadster NEWS FOR ECE ILLINOIS ALUMNI AND FRIENDS

    E-Print Network [OSTI]

    Liu, Gang "Logan"

    lighting that may have just as great an impact. Read more on page 4. Likewise, an all-electric car could change the world, too. The most attractive all-electric car I've ever seen is preparing to roll off Ford. When Tesla Motors is successful, as I predict it will be, many of us may drive an electric car

  10. Insulation assembly for electric machine

    SciTech Connect (OSTI)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15T23:59:59.000Z

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  11. Electrical and Computer Engineering

    E-Print Network [OSTI]

    Weber, Rodney

    COE 1000 Electrical and Computer Engineering Jennifer Michaels Professor and Interim Associate Chair for Undergraduate Affairs School of Electrical and Computer Engineering Fall 2011 #12;Defining Electrical and Computer Engineering Electrical Engineering: Electrical engineers explore electrical phenomena

  12. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard Freeman

    2012-09-11T23:59:59.000Z

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  13. Maximization of No-Load Flux Density in Surface Mounted Permanent Magnet Motors Frdric DUBAS, Christophe ESPANET & Abdellatif MIRAOUI.

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Maximization of No-Load Flux Density in Surface Mounted Permanent Magnet Motors Frťdťric DUBAS, Christophe ESPANET & Abdellatif MIRAOUI. Research Laboratory in Electronics, Electrical engineering expression of the optimal thickness of the magnet which make it possible to maximize the no-load flux density

  14. Abstract--This paper addresses the impact of load dynamics, and in particular induction motor loads, on voltage recovery

    E-Print Network [OSTI]

    load flow techniques or with full scale dynamic simulations. Studies are performed usually off-scale dynamic simulations. The approach uses load flow techniques with advanced modeling capabilities that allow from several classes of electric loads, such as induction motors. It is well known that the voltage

  15. Condition Monitoring of Squirrel-Cage Induction Motors Fed by PWM -based Drives Using a Parameter Estimation Approach

    E-Print Network [OSTI]

    Povinelli, Richard J.

    to the fact that in a no-load situation only the electrical circuits of the stator windings carry the currents estimation approach. In this technique, the stator currents, voltages and motor speed are used as the input detection [1-6]. Some of these works have mainly used the frequency spectrum of the stator current for rotor

  16. 0-7803-9280-9/05/$20.00 2005 IEEE. 603 Design of a High-Speed Permanent Magnet Motor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    energy. Consequently, it highly decreases the efficiency of the FCS. Among the whole ancillaries, the air-compressor). The authors focus on the optimization of the motor efficiency in order to minimize the energy consumption of the air-compressor which can represent up to 30 % of the electrical energy delivered by the FC

  17. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner coreócoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  18. A comparison of two energy efficient motors

    SciTech Connect (OSTI)

    Kueck, J.D.; Casada, D.A.; Otaduy, P.J. [Oak Ridge National Lab., TN (United States)

    1998-06-01T23:59:59.000Z

    Limited testing provides evidence that a particular energy efficient motor (EEM) appears to have a unique susceptibility to reduced negative sequence impedance. The effect of the reduction in negative sequence impedance is to allow a higher negative sequence current flow under conditions of voltage unbalance or negative sequence harmonic distortion in the bus voltage. This higher current flow results in additional heating of the rotor and 120 Hz vibration, and may combine with other conditions to cause premature failure. In addition, energy efficient motors operate at slightly higher speeds, and may sometimes cause the driven loads to require more horsepower from the motor causing further overheating. Existing industry guidance for the application of three phase motors in poor power quality environments may be inadequate because this guidance does not consider the combined effect of such conditions as voltage unbalance, harmonic distortion and over voltage. A specific application of an EEM is studied in this paper; the motor may be failing due to a combination of over voltage, voltage unbalance, harmonic distortion and loading the motor to full rated load, while the motor has a Service Factor of 1.0.

  19. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21T23:59:59.000Z

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  20. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01T23:59:59.000Z

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  1. The efficiency of the molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2009-02-12T23:59:59.000Z

    Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either $N$ or infinite chemical states, we find that the energy efficiency of the molecular motors, whether the Stokes efficiency or the usual thermodynamic efficiency, is strictly bounded by 1, because of the dissipation of the energy in both the overdamped surroundings and in the process of the chemical reaction.

  2. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2005-05-10T23:59:59.000Z

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  3. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2006-08-22T23:59:59.000Z

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  4. Optimization of induction motor efficiency. Volume 3. Experimental comparison of three-phase standard motors with Wanlass motors. Final report

    SciTech Connect (OSTI)

    Fuchs, E.F.

    1985-12-01T23:59:59.000Z

    Researchers conducted comprehensive laboratory tests to evaluate the effectiveness of the Wanlass connection in improving motor efficiency. On the basis of these tests, they found no reason to conclude that such a connection is more efficient than the standard connection.

  5. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  6. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  7. Integrated Inverter For Driving Multiple Electric Machines

    SciTech Connect (OSTI)

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04T23:59:59.000Z

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  8. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    DOE Patents [OSTI]

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28T23:59:59.000Z

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  9. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  10. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  11. Convective Cooling and Passive Stack Improvements in Motors (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-06-01T23:59:59.000Z

    This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

  12. Motor transport of self-assembled cargos in crowded environments

    E-Print Network [OSTI]

    Ross, Jennifer

    Motor transport of self-assembled cargos in crowded environments Leslie Conwaya , Derek Woodb is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how

  13. Inferring Motor Programs from Images of Handwritten Digits

    E-Print Network [OSTI]

    Hinton, Geoffrey E.

    Inferring Motor Programs from Images of Handwritten Digits Geoffrey Hinton and Vinod Nair whose stiffnesses are controlled by a motor program. We show how neural networks can be trained to infer the motor programs required to accurately reconstruct the MNIST digits. The inferred motor programs can

  14. CASE REPORT Open Access Prognostic value of cortically induced motor

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    CASE REPORT Open Access Prognostic value of cortically induced motor evoked activity by TMS) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand

  15. A microbial fuel cell built by the researchers produces electricity

    E-Print Network [OSTI]

    discussed Penn State's progress with direct methanol fuel cells for portable applications and fuel cell cold Yoshizawa and Hideyuki Tamura discussed Nissan Motor Co. Ltd.'s strides in fuel cell vehicle development, this hybrid electric EV1 is being converted to a fuel cell vehicle. top ^ A graduate student explains her

  16. Scaling Reinforcement Learning Paradigms for Motor Control†

    E-Print Network [OSTI]

    Vijayakumar, Sethu; Peters, Jan; Schaal, Stefan

    Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems ...

  17. Method and apparatus for large motor control

    DOE Patents [OSTI]

    Rose, Chris R. (Santa Fe, NM); Nelson, Ronald O. (White Rock, NM)

    2003-08-12T23:59:59.000Z

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  18. Total Energy Management in General Motors

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01T23:59:59.000Z

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  19. High speed linear induction motor efficiency optimization

    E-Print Network [OSTI]

    Johnson, Andrew P. (Andrew Peter)

    2005-01-01T23:59:59.000Z

    One of the reasons linear motors, a technology nearly a century old, have not been adopted for a large number of linear motion applications is that they have historically had poor efficiencies. This has restricted the ...

  20. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External (plume / contamination) · Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;

  1. Torquespeed relationship of the bacterial flagellar motor

    E-Print Network [OSTI]

    Oster, George

    the cyto- plasmic membrane into the cell. The ions are typically H (protons) in Escherichia coli and Na in alkalophiles and marine Vibrio species. For convenience of discussion, we will focus on the proton motor

  2. SENSORLESS INDUCTION MOTOR CONTROL USING STATISTICAL

    E-Print Network [OSTI]

    is replaced by npM so that the dynamic model of the induction motor is then uSa = RSiSa + LS d dtiSa + M d dti

  3. Six pole/eight pole single-phase motor

    DOE Patents [OSTI]

    Kirschbaum, H.S.

    1984-07-31T23:59:59.000Z

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  4. Loose mechanochemical coupling of molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2011-05-05T23:59:59.000Z

    In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is dissipated into environment during substeps without contributions to the macro scale unidirectional movement.

  5. Trapped field internal dipole superconducting motor generator

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    2001-01-01T23:59:59.000Z

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  6. ac-driven atomic quantum motor

    E-Print Network [OSTI]

    A. V. Ponomarev; S. Denisov; P. Hanggi

    2009-06-09T23:59:59.000Z

    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.

  7. Equivalent Circuit Modeling of Hysteresis Motors

    SciTech Connect (OSTI)

    Nitao, J J; Scharlemann, E T; Kirkendall, B A

    2009-08-31T23:59:59.000Z

    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  8. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01T23:59:59.000Z

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  9. Are motor proteins power strokers, Brownian motors or Brian Geislingera, Erin Darnellb, Kimberly Farrisc, and Ryoichi Kawaia

    E-Print Network [OSTI]

    Kawai, Ryoichi

    Are motor proteins power strokers, Brownian motors or both? Brian Geislingera, Erin Darnellb Baccalaureate, Birmingham, AL 35210 ABSTRACT About a decade ago Brownian motors were introduced as a possible mechanism for motor protein mobility. Since then many theoretical and experimental papers have been

  10. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16T23:59:59.000Z

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  11. Molecular motors: design, mechanism and control

    E-Print Network [OSTI]

    Debashish Chowdhury

    2008-01-10T23:59:59.000Z

    Biological functions in each animal cell depend on coordinated operations of a wide variety of molecular motors. Some of the these motors transport cargo to their respective destinations whereas some others are mobile workshops which synthesize macromolecules while moving on their tracks. Some other motors are designed to function as packers and movers. All these motors require input energy for performing their mechanical works and operate under conditions far from thermodynamic equilibrium. The typical size of these motors and the forces they generate are of the order of nano-meters and pico-Newtons, respectively. They are subjected to random bombardments by the molecules of the surrounding aqueous medium and, therefore, follow noisy trajectories. Because of their small inertia, their movements in the viscous intracellular space exhibits features that are characteristics of hydrodynamics at low Reynold's number. In this article we discuss how theoretical modeling and computer simulations of these machines by physicists are providing insight into their mechanisms which engineers can exploit to design and control artificial nano-motors.

  12. Finished Motor Gasoline Net Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second QuarterThe

  13. Aptera Motors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricIncAbout

  14. ELECTRICAL & INFORMATION

    E-Print Network [OSTI]

    Wagner, Stephan

    focuses on. ∑ Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. ∑ Bioinformatics

  15. Motor Response Selection in Overt Sentence Production: A Functional MRI Study

    E-Print Network [OSTI]

    Tremblay, Pascale; Small, Steven L.

    2011-01-01T23:59:59.000Z

    The development of oral motor control and language. DownsRelative www.frontiersin.org Motor response selection instruc- tures participating in motor prepa- ration in humans:

  16. Descriptions of Motor Vehicle Collisions by Participants in Emergency DepartmentĖBased Studies: Are They Accurate?

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    reports in determining motor vehicle crash characteristics.R ESEARCH Descriptions of Motor Vehicle Collisions byThe immediate aftermath of motor vehicle collisions. In:

  17. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

  18. Filament-Filament Switching Can Be Regulated by Separation Between Filaments Together with Cargo Motor Number

    E-Print Network [OSTI]

    Erickson, Robert P; Gross, Steven P; Yu, Clare C; Kabla, Alexandre J

    2013-01-01T23:59:59.000Z

    that a single engaged motor cannot switch between filaments.EL, Goldman YE (2010) Motor number controls cargo switchingtransport: molecular motors navigate a complex cytoskeleton.

  19. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  20. Force-velocity relations for multiple molecular motor transportation

    E-Print Network [OSTI]

    Wang, Ziqing

    2009-01-01T23:59:59.000Z

    A transition rate model of cargo transportation by N effective molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor number, which is dependent on the single motor force-velocity curve. And most commonly, the velocity decreases. This gives a possible explanation to some recent experimental observations.

  1. Force-velocity relations for multiple-molecular-motor transport

    E-Print Network [OSTI]

    Ziqing Wang; Ming Li

    2009-10-01T23:59:59.000Z

    A transition rate model of cargo transport by $N$ molecular motors is proposed. Under the assumption of steady state, the force-velocity curve of multi-motor system can be derived from the force-velocity curve of single motor. Our work shows, in the case of low load, the velocity of multi-motor system can decrease or increase with increasing motor number, which is dependent on the single motor force-velocity curve. And most commonly, the velocity decreases. This gives a possible explanation to some recent

  2. Iterative Solution of Maxwell's Equations for an Induction Motor

    E-Print Network [OSTI]

    Shayak Bhattacharjee

    2014-07-29T23:59:59.000Z

    In this work we use classical electromagnetism to analyse a three-phase induction motor. We first cast the motor as a boundary value problem involving two phenomenological time-constants. These are derived from the widely used equivalent circuit model of the induction motor. We then use an iterative procedure to evaluate these constants and obtain the motor performance equations. Our results depend only on the geometrical parameters of the motor and can be used to derive precise expressions for the excitation frequency and applied voltage needed to extract maximum performance from a given motor at any rotation speed.

  3. Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive

    E-Print Network [OSTI]

    Tolbert, Leon M.

    system, additional heat, audible noise, mechanical stress, and vibration [1]. DC bus harmonic current- powered three-phase inverter is used to drive the traction motor. Due to the switching behavior combustion engine, electric motor, and energy storage device (for example, batteries and ultracapacitors

  4. 912 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 2, MARCH/APRIL 2011 Impact of SiC Devices on Hybrid Electric and

    E-Print Network [OSTI]

    Tolbert, Leon M.

    ; in particular, the size of the battery bank can be reduced for optimum design. Index Terms--Efficiency, hybrid (SiC) devices as battery interface, motor controller, etc., in a hybrid electric vehicle (HEV]≠[5]. The application of SiC devices (as battery interface, motor controller, etc.) in a HEV has merit because

  5. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity MarketĒ, Power WorkingFelder (1996), ďShould Electricity Markets Have a Capacity

  6. Retail Electricity Competition

    E-Print Network [OSTI]

    Joskow, Paul; Tirole, Jean

    2004-01-01T23:59:59.000Z

    Reliability and Competitive Electricity MarketsĒ mimeo, MITCSEM WP 130 Retail Electricity Competition * Paul Joskow andwww.ucei.org Retail Electricity Competition ? Paul Joskow Ü

  7. Designing Electricity Auctions

    E-Print Network [OSTI]

    Fabra, Natalia; von der Fehr, Nils-Henrik; Harbord, David

    2004-01-01T23:59:59.000Z

    market performance in electricity auctions, it appears thatMcSorely (2001) ďRegulating Electricity Markets: Experiencethe United Kingdom,Ē The Electricity Journal, December, 81-

  8. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  9. Electrical system architecture having high voltage bus

    DOE Patents [OSTI]

    Hoff, Brian Douglas (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL)

    2011-03-22T23:59:59.000Z

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  10. Severe environment turbine powered steerable motors

    SciTech Connect (OSTI)

    Gaynor, T.M. [Neyrfor-Weir Ltd., Aberdeen (United Kingdom). Dept. of Operations

    1995-12-31T23:59:59.000Z

    Turbine powered downhole motors have advantages for high temperature, high pressure, sour gas or hard formation drilling which stem from turbodrill construction rather than metallurgy, and from their power characteristics. The first part of the paper will discuss this, and compare turbine and Moineau powered motors in this context. The introduction in the last three years of new bearing materials, hydraulic thrust balancing devices and high performance flexible couplings have extended turbodrill performance and reliability margins in severe environment drilling. It is perfecting feasible to build steerable motors capable of drilling for 250 hours in 6-in. hole at 200 degrees Celsius (392 degrees Fahrenheit) in a deviated high pressure well since the individual problems in this ``Well from Hell`` have successfully been overcome. The second part of the paper will illustrate this through field examples.

  11. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system components. In this vein, NEMA developed, as part of a coalition known as the Motor Coalition representing diverse stakeholders, is presented as finding ways to improve...

  12. Soft-commutated direct current motor

    DOE Patents [OSTI]

    Hsu, J.S.

    1999-07-27T23:59:59.000Z

    A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.

  13. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

    2009-06-02T23:59:59.000Z

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  14. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

    2010-08-24T23:59:59.000Z

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  15. Electrical installations in oil shale mines. Open file report 21 Sep 81-13 Aug 83

    SciTech Connect (OSTI)

    Gillenwater, B.B.; Kline, R.J.; Paas, N.

    1983-08-01T23:59:59.000Z

    This report presents recommended guidelines and regulatory changes applicable to electrical installations in underground oil shale mines. These recommendations are based on information gathered from oil shale operators, government agencies, and other knowledgeable sources familiar with existing plans for mining systems and electrical installations, and on present understanding of the problems and hazards associated with oil shale mining. Additional discussions of specific electrical problems related to oil shale mining include ground fault current levels, permissible electric wheel motors, permissible batteries and electric starting systems, intrinsically safe instrumentation, and applicability of existing test standards.

  16. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  17. An Examination of Motor Skills in Children who Stutter

    E-Print Network [OSTI]

    2012-10-19T23:59:59.000Z

    Recently, research has postulated that stuttering is a motor disorder that results from brain abnormalities within the central nervous system. Based on evidence of numerous irregularities within various motor systems, it has been suggested...

  18. Secrets of the Motor That Drives Archaea Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secrets of the Motor That Drives Archaea Revealed Secrets of the Motor That Drives Archaea Revealed Print Thursday, 14 February 2013 00:00 An international team led by John Tainer...

  19. 38 CHAPTER 1. ASSEMBLY MANUAL BiDirectional Motor

    E-Print Network [OSTI]

    38 CHAPTER 1. ASSEMBLY MANUAL Bi≠Directional Motor and Infrared Beacon Uni≠Directional Motor, LED, Incandescent Lamp Sensor, Polarized Sensor, Non≠polarized Figure 1.26: Standard Connector Plug Configurations

  20. 9.373 Somatosensory and Motor Systems, Spring 2002

    E-Print Network [OSTI]

    Bizzi, Emilio

    General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor ...