Powered by Deep Web Technologies
Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Gas utilities to increase outlays  

Science Conference Proceedings (OSTI)

Despite rising natural gas prices and falling consumer demand for gas, experts predict a 16% increase in US gas transmission and distribution expenditures for 1983. Production and storage outlays will probably decrease because of the current gas surplus. The demand for natural gas has been below production levels since 1981. Increases in residential and commercial requirements have been offset by a drop in industrial use, which represents 50% of total gas demand.

O'Donnell, J.P.

1983-02-01T23:59:59.000Z

2

Solar energy: some variables influencing increased utilization  

SciTech Connect

The mid 1970s energy crisis encouraged the growth of alternative fuels. Through the late 1970s and 1980s, solar energy was the primary alternative fuel. Federal and state programs encouraged the growth of residential solar installations through the use of tax credits. This dissertation used data from the eleven western states to assess tax credits' influence on residential solar installations. A Spearman's r was used to evaluate the role of tax credits on the percent increase in solar systems from 1980 to 1984. The r/sub s/ was .93. The second portion of the analysis used contingency tables to see if variables other than tax credits influence solar installations; the results showed tax credits + solar radiation and fuel mix are the significant variables. The final chapter looks at municipal solar utilities, tax on excessive energy use, a public/private solar research lab, and building rating system as means to supplement solar energy tax credits.

Born, B.E.

1986-01-01T23:59:59.000Z

3

Evaluation of higher distribution and/or utilization voltages. First interim report (December 1978): literature search and problem definition  

Science Conference Proceedings (OSTI)

A literature search has been conducted on the economics and technical problems associated with the use of higher voltages in both the primary distribution and secondary utilization systems. After a literature review and evaluation, an assessment of the state-of-the-art with regard to high voltage has been made and is presented for the primary and secondary distribution systems, end use elements, and economics and system analysis or optimization. An annotated bibliography is provided for each of the three categories. A comprehensive list of potential advantages and disadvantages of higher primary distribution and utilization voltages has also been prepared and is presented.

Not Available

1981-04-01T23:59:59.000Z

4

Evaluation of higher distribution and/or utilization voltages. Final report  

SciTech Connect

An electric energy distribution/utilization system cost analysis model is presented for exploring cost tradeoffs (capital investment, operation and maintenance and cost of losses) and optimizing system configuration. The model focuses on the treatment of residential and light commercial service areas with time-varying load characteristics, including customer load profile changes, per customer load growth and service area population growth. Applications of the model are discussed. These include providing insight on: the selection of primary and secondary voltages; conductor sizing; distribution transformer sizing, change out policies and copper-to-core-loss ratio; and limits on allowable voltage variation at the service entrance. Examples are provided to illustrate model capabilities.

1980-09-10T23:59:59.000Z

5

Increasing Confidence of LC-MS Identifications by Utilizing Ion Mobility Spectrometry  

SciTech Connect

Ion mobility spectrometry in conjunction with liquid chromatography separations and mass spectrometry offers a range of new possibilities for analyzing complex biological samples. To fully utilize the information obtained from these three measurement dimensions, informatics tools based on the accurate mass and time tag methodology were modified to incorporate ion mobility spectrometry drift times for peptides observed in human serum. A reference human serum database was created using 12,139 peptides, tracking the monoisotopic mass, liquid chromatography normalized elution time, and ion mobility spectrometry drift time(s) for each peptide. We demonstrate that the use of three dimensions for peak matching during the peptide identification process resulted in increased numbers of identifications and lower false discovery rates relative to the use of only the mass and normalized elution time dimensions.

Crowell, Kevin L.; Baker, Erin Shammel; Payne, Samuel H.; Ibrahim, Yehia M.; Monroe, Matthew E.; Slysz, Gordon W.; Lamarche, Brian L.; Petyuk, Vladislav A.; Piehowski, Paul D.; Danielson, William F.; Anderson, Gordon A.; Smith, Richard D.

2013-09-05T23:59:59.000Z

6

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

DOE Green Energy (OSTI)

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

Not Available

1981-12-10T23:59:59.000Z

7

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

8

Planar fuel cell utilizing nail current collectors for increased active surface area  

DOE Patents (OSTI)

A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

George, Thomas J. (Star City, WV); Meacham, G. B. Kirby (Shaker Heights, OH)

2002-03-26T23:59:59.000Z

9

Planar fuel cell utilizing nail current collectors for increased active surface area  

DOE Patents (OSTI)

A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

George, Thomas J.; Meacham, G.B. Kirby

1999-11-26T23:59:59.000Z

10

Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998  

SciTech Connect

The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled ''Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

1999-07-01T23:59:59.000Z

11

C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle  

SciTech Connect

The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained compensated function could provide useful information for developing metabolic therapies to treat heart failure. The molecular signaling for this metabolic change may occur through O-GlcNAcylation.

Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

2013-02-01T23:59:59.000Z

12

High Resolution Ion Mobility Spectrometry with Increased Ion Transmission: Exploring the Analytical Utility of Periodic-Focusing DC Ion Guide Drift Cells  

E-Print Network (OSTI)

Drift tube ion mobility spectrometry (IMS) is a powerful, post-ionization separation that yields structural information of ions through an ion-neutral collision cross section. The ion-neutral collision cross section is governed by the collision frequency of the ion with the neutral drift gas. Consequently, ions of different size will have different collision frequencies with the gas and be separated in the drift cell. A significant challenge for IMS, however, is to separate ions with very similar collision cross sections, requiring higher resolution ion mobility spectrometers. Resolution in IMS is of utmost importance for the separation of complex mixtures, e.g. crude oil samples, proteolytic digests, positional isomers, and ion conformers. However, most methods employed to increase mobility resolution significantly decrease ion transmission through the mobility device. Herein, a periodic-focusing DC ion guide drift cell (PDC IG) is presented to display its potential capabilities for higher mobility resolution with increased ion transmission. The PDC IG utilizes unique electrode geometry compared to the conventional uniform field electrode design. Electrode geometry can be defined by the electrode inner diameter (d), thickness (t), and spacing (s). Specifically, the ratio of d : t : s is equal to, or very near, 1:1:1. The PDC IG electrode design creates a non-uniform (fringing) electric field-especially near the electrode walls. The design also causes variations in the radial electric field which provides an effective RF as ions move through the device and a radially confining effective potential that improves ion transmission through the device. In this dissertation the analytical utility of the PDC IG drift cell for ion mobility separations will be explored. The radial focusing properties of the device will be presented along with studies of electrode geometry and its effect on ion mobility resolution and ion transmission through the drift cell. PDC IG drift cell length is also examined to determine its effect on mobility resolution and ion transmission. Finally, the PDC IG drift cell device is coupled to an orthogonal-acceleration time-of-flight mass spectrometer as well as a modular, PDC IG drift cell being adapted to a commercial qTOF mass spectrometer for IM-MS experiments.

Blase, Ryan Christopher

2010-12-01T23:59:59.000Z

13

Observations of Co4+ in a Higher Spin State and the Increase in the Seebeck Coefficient of Thermoelectric Ca3Co4O9  

SciTech Connect

Ca{sub 3}Co{sub 4}O{sub 9} has a unique structure that leads to exceptionally high thermoelectric transport. Here we report the achievement of a 27% increase in the room-temperature in-plane Seebeck coefficient of Ca{sub 3}Co{sub 4}O{sub 9} thin films. We combine aberration-corrected Z-contrast imaging, atomic-column resolved electron energy-loss spectroscopy, and density-functional calculations to show that the increase is caused by stacking faults with Co4+-ions in a higher spin state compared to that of bulk Ca{sub 3}Co{sub 4}O{sub 9}. The higher Seebeck coefficient makes the Ca{sub 3}Co{sub 4}O{sub 9} system suitable for many high temperature waste-heat-recovery applications.

Klie, Robert F [University of Illinois, Chicago; Qiao, Q. [University of Illinois, Chicago; Paulauskas, T. [University of Illinois, Chicago; Gulec, A. [University of Illinois, Chicago; Rebola, A. [University of Illinois, Chicago; Ogut, Serdar [University of Illinois, Chicago; Prange, Micah P [Vanderbilt University; Idrobo Tapia, Juan C [ORNL; Pantelides, Sokrates T. [Vanderbilt University; Kolesnik, S. [Northern Illinois University; Dabrowski, B. [Argonne National Laboratory (ANL); Ozdemir, M. [University of Alabama, Tuscaloosa; Boyraz, C. [University of Alabama, Tuscaloosa; Mazumdar, Dipanjan [University of Alabama, Tuscaloosa; Gupta, Dr. Arunava [University of Alabama, Tuscaloosa

2012-01-01T23:59:59.000Z

14

Barriers to the increased utilization of coal combustion/desulfurization by-products by government & commercial sectors - update 1998,7/99,3268845  

NLE Websites -- All DOE Office Websites (Extended Search)

BARRIERS TO THE INCREASED UTILIZATION BARRIERS TO THE INCREASED UTILIZATION OF COAL COMBUSTION/DESULFURIZATION BY-PRODUCTS BY GOVERNMENT AND COMMERCIAL SECTORS - UPDATE 1998 EERC Topical Report DE-FC21-93MC-30097--79 Submitted by: Debra F. Pflughoeft-Hassett Everett A. Sondreal Edward N. Steadman Kurt E. Eylands Bruce A. Dockter Energy & Environmental Research Center PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-07-08 July 1999 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii TERMINOLOGY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

SciTech Connect

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

1981-12-10T23:59:59.000Z

16

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

17

INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

Thomas C. Chidsey, Jr.

2002-11-01T23:59:59.000Z

18

Higher Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Higher Education Higher Education Explore the multiple dimensions of a career at LANL: work with brilliant minds in an inclusive environment rich in intellectual vitality and...

19

Higher Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Education » Education » Higher Education Higher Education Explore the multiple dimensions of a career at LANL: work with brilliant minds in an inclusive environment rich in intellectual vitality and opportunities for growth. Contact Education Janelle Vigil-Maestas Community Programs Office (505) 665-4329 Email "The partnership between LANL and regional colleges creates opportunities for students like me to attain challenging and rewarding careers." - Sherry Salas Bachicha Higher Education Resources for Undergraduates, Graduates & Postdocs Opportunities LANL Foundation Scholarships LANL Post Doc Program Programs Certificate in Environmental Monitoring (pdf) Community College Institute (CCI) (pdf) Computer Science and Information Technology Pipeline Program (ADIT/HPC Division) (pdf)

20

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

DOE Green Energy (OSTI)

The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zone of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique.

Brown, Lewis R.; Stephens, James O.; Vadie, Alex A.

1999-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

DOE Green Energy (OSTI)

The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zone of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique. Results from work under DOE Contract No. DE-AC22-90BC14665 will be incorporated as appropriate.

Brown, Lewis R.; Vadie, Alex A.

1996-10-20T23:59:59.000Z

22

Utility Stack Opacity Troubleshooting Guidelines  

Science Conference Proceedings (OSTI)

Utilities have become increasingly concerned about stack plume visibility, and some have been cited for excess plume opacity. This troubleshooting guide enables utilities to characterize plume opacity problems at full-scale utility sites and evaluate possible solutions.

1991-03-01T23:59:59.000Z

23

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

24

Science Taking Higher  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 1997 4, 1997 Number 7 f Science Taking Higher Profile in Capital continued on page 8 INSIDE 2 Computers and Accelerators 4 Inventions 6 Sloan Digital Sky Survey upon the Clinton Administration and the 105th Congress to increase the nation's investment in scientific research and education. This awareness of science issues emanating from the nation's capital has heartened many of those toiling in the country's laboratories and universities; however, researchers interviewed for this article also said they are closely observing how the rhetoric translates into increased funding as the appropriations process plays out. "I see these [initiatives] as demonstrations of the underlying support of basic science in the community and in Congress," said Jeffrey Photo courtesy

25

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

26

Performance of Transmission Line Components at Increasing Operating Temperatures  

Science Conference Proceedings (OSTI)

In today's competitive and regulatory environment, utilities are required to maximize power transfer over existing right-of-ways (ROWs). Rather than investing in the expense of upgrading to larger conductors, most utilities are pursuing the lower capital-expense (cost) option of increasing thermal operating limits and pushing more current through existing conductors and associated hardware. As a result, conductors and associated hardware and attachments may be subjected to higher temperatures more freque...

2003-12-08T23:59:59.000Z

27

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and are added to the utilitys rate base. Large-scale EE2009a, 2009b, 2009c). utilitys rate base, and the utilityto the grid at a higher rate if the utility does not face

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

28

XYLOSE UTILIZATION IN RECOMBINANT ZYMOMONAS - Energy ...  

Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, ...

29

Utility solar water heating workshops  

DOE Green Energy (OSTI)

The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

Barrett, L.B. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

1992-01-01T23:59:59.000Z

30

Wind forecasting objectives for utility schedulers and energy traders  

DOE Green Energy (OSTI)

The wind energy industry and electricity producers can benefit in a number of ways from increased wind forecast accuracy. Higher confidence in the reliability of wind forecasts can help persuade an electric utility to increase the penetration of wind energy into its operating system and to augment the capacity value of wind electric generation. Reliable forecasts can also assist daily energy traders employed by utilities in marketing the available and anticipated wind energy to power pools and other energy users. As the number of utilities with wind energy experience grows, and wind energy penetration levels increase, the need for reliable wind forecasts will likely grow as well. This period of wind energy growth also coincides with advances in computer weather prediction technology that could lead to more accurate wind forecasts. Thus, it is important to identify the type of forecast information needed by utility schedulers and energy traders. This step will help develop approaches to the challenge of wind forecasting that will result in useful products being supplied to utilities or other energy generating entities. This paper presents the objectives, approach, and current findings of a US Department of Energy National Renewable Energy Laboratory (DOE/NREL) initiative to develop useful wind forecasting tools for utilities involved with wind energy generation. The focus of this initiative thus far has been to learn about the needs of prospective utility users. NREL representatives conducted a series of onsite interviews with key utility staff, usually schedulers and research planners, at seven US utilities. The purpose was to ascertain information on actual scheduling and trading procedures, and how utilities could integrate wind forecasting into these activities.

Schwartz, M.N. [National Renewable Energy Lab., Golden, CO (United States); Bailey, B.H. [AWS Scientific, Inc., Albany, NY (United States)

1998-05-01T23:59:59.000Z

31

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

32

Strategy for the practical utilization of thorium fuel cycles  

SciTech Connect

There has been increasing interest in the utilization of thorium fuel cycles in nuclear power reactors for the past few years. This is due to a number of factors, the chief being the recent emphasis given to increasing the proliferation resistance of reactor fuel cycles and the thorium cycle characteristic that bred /sup 233/U can be denatured with /sup 238/U (further, a high radioactivity is associated with recycle /sup 233/U, which increases fuel diversion resistance). Another important factor influencing interest in thorium fuel cycles is the increasing cost of U/sub 3/O/sub 8/ ores leading to more emphasis being placed on obtaining higher fuel conversion ratios in thermal reactor systems, and the fact that thorium fuel cycles have higher fuel conversion ratios in thermal reactors than do uranium fuel cycles. Finally, there is increasing information which indicates that fast breeder reactors have significantly higher capital costs than do thermal reactors, such that there is an economic advantage in the long term to have combinations of fast breeder reactors and high-conversion thermal reactors operating together. Overall, it appears that the practical, early utilization of thorium fuel cycles in power reactors requires commercialization of HTGRs operating first on stowaway fuel cycles, followed by thorium fuel recycle. In the longer term, thorium utilization involves use of thorium blankets in fast breeder reactors, in combination with recycling the bred /sup 233/U to HTGRs (preferably), or to other thermal reactors.

Kasten, P.R.

1978-01-01T23:59:59.000Z

33

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

34

Higher Yields Can Be Achieved  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: While the current forecast is showing higher distillate production than last year, there is room for yet more volume through refiners switching to higher yields than those being forecast. This will only happen if economic incentives evolve to encourage this change. Current high spreads indicate those incentives may occur. This graph shows the distillate yield pattern over the last few years. Generally yields rise in the fall to build stocks for winter distillate use. On average, the yield increase during the fourth quarter is about 2% higher than the yield average of the lowest yield months of June, July and August. (Recognize that a 1% change in yield is about a 150 MB/D change in distillate production, which is about 4% of winter demand.) During the fall of 1996, the winter season began with very low

35

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

36

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

37

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

38

Higher powers in gravitation  

SciTech Connect

We consider the Friedmann-Robertson-Walker cosmologies of theories of gravity that generalize the Einstein-Hilbert action by replacing the Ricci scalar R with some function f(R). The general asymptotic behavior of these cosmologies is found, at both early and late times, and the effects of adding higher and lower powers of R to the Einstein-Hilbert action is investigated. The assumption that the highest powers of R should dominate the Universe's early history, and that the lowest powers should dominate its future is found to be inaccurate. The behavior of the general solution is complicated, and while it can be the case that single powers of R dominate the dynamics at late times, it can be either the higher or lower powers that do so. It is also shown that it is often the lowest powers of R that dominate at early times, when approach to a bounce or a Tolman solution are generic possibilities. Various examples are considered, and both vacuum and perfect fluid solutions are investigated.

Clifton, Timothy [Department of Astrophysics, University of Oxford, Oxford, OX1 3RH (United Kingdom)

2008-10-15T23:59:59.000Z

39

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1  

Science Conference Proceedings (OSTI)

The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.

Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

2000-02-02T23:59:59.000Z

40

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding. Technical progress report, January 1, 1997--December 31, 1997  

SciTech Connect

This project is a field demonstration of the ability of in-situ indigenous microorganisms in the North Blowhorn Creek Oil Field to reduce the flow of injection water in the more permeable zones of the reservoir, thereby diverting flow to other areas thus increasing the efficiency of the waterflood. The project is divided into three phases: Planning and Analysis (9 months), Implementation (45 months), and Technology Transfer (12 months). This report covers the fourth year of work on the project. Twenty-two months after the injection of nutrients into the reservoir began, three wells were drilled and cores taken therefrom were analyzed. Oil production volumes and water:oil ratios (WOR) of produced fluids have shown clearly that the MEOR treatment being demonstrated in this project is improving oil recovery. Of the 15 producer wells in the test patterns, seven have responded positively to the injection of microbial nutrients into the reservoir, while all eight of the producer wells only in control patterns have continued their natural decline in oil production, although one well did have some improvement in oil production due to increased water injection into a nearby injector well. In light of these positive findings and with DOE`s approval, the scope of the field demonstration was expanded in July 1997 to include six new injector wells. Of interest has been the performance of two wells in what was formerly a control pattern. Since the injector in this pattern (formerly Control Pattern 2) began receiving nutrients, two of the wells in the pattern have shown improved oil production for the last three months. While it would be premature to definitely characterize these two wells as yielding a positive response, these early results are certainly encouraging.

Stephens, J.O.

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding. Sixteenth quarterly progress report, October 1--December 31, 1997  

SciTech Connect

There are ten injection wells receiving nutrients and twenty producing wells in test patterns are being monitoring for responses. Petrophysical studies of recovered core sample from the 3 newly drilled wells are still in progress. Monthly collection of produced fluids from the test and control wells in all patterns continued with the following tasks being performed: aliphatic profile (gas chromatographic analysis); API gravity and absolute viscosity under reservoir temperature; pH of produced water; surface tension (ST) of produced water (water-air); interfacial tension (IFT) for produced oil-water system; microbiological population; and inorganic analyses (nitrate, phosphate, sulfate, sulfide, chloride, potassium, and hardness). Production data on all wells in all patterns continues to be evaluated. Increased gas production that has been noted in some wells could be the result of microbial activity or from previous unswept areas of the reservoir. Samples of gas were collected from selected production wells and analyzed by gas chromatography using a Fisher Model No. 12 Gas Partitioner. The results of analyses from four sets of samples are given.

Brown, L.R.; Vadie, A.A. [Mississippi State Univ., MS (United States)

1998-01-20T23:59:59.000Z

42

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-05-01T23:59:59.000Z

43

Electric Utility Marketing Guide to Foodservice  

Science Conference Proceedings (OSTI)

Business groups apply rigorous evaluation standards to guide them toward increased efficiency. Utility foodservice programs are not immune to this same sort of scrutiny. Designed to address key issues facing utility foodservice programs, this marketing guide is essentially a set of crucial guidelines and advice. This information can assist utilities servicing the foodservice industry to become more profitable.

1998-11-09T23:59:59.000Z

44

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or...

45

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

46

Waste Heat Utilization to Increase Energy Efficiency in the Metals ...  

Science Conference Proceedings (OSTI)

This system will produce electricity, and/or process steam. Low grade: ... or Save Conflict]. Waste Heat Reduction and Recovery Options for Metals Industry.

47

Utilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

48

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

49

Zymomonas with improved xylose utilization  

DOE Patents (OSTI)

Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

Viitanen, Paul V. (West Chester, PA); Tao, Luan (Havertown, PA); Zhang, Yuying (New Hope, PA); Caimi, Perry G. (Kennett Square, PA); McCutchen, Carol M. (Wilmington, DE); McCole, Laura (East Fallowfield, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

2011-08-16T23:59:59.000Z

50

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

51

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

52

By-Products Utilization  

E-Print Network (OSTI)

for rapid identification of buried utilities, blended coal ash, and non-spec./off-spec. aggregates and fly

Wisconsin-Milwaukee, University of

53

Higher Education Tuition Assistance And  

E-Print Network (OSTI)

of Tables 1. Summary Statistics for W.Va. Public Higher Education Graduates Receiving PROMISE and HEGP .................................................................................................1 Summary Data For PROMISE Scholarship And West Virginia Higher Education Grant Recipients................................................................................................................13 Appendix I: Detailed Description Of Employment Data .........................................14

Mohaghegh, Shahab

54

HIGHER EDUCATION AND DEVELOPMENT The Evolving Role of Higher Education  

E-Print Network (OSTI)

Higher, especially university level, education has a distinctly important role in the education system and in the knowledge acquisition system in general. However, the deteriorating state of higher education in Arab countries, particularly in quality, has become one of the hallmarks of underdevelopment by contemporary criteria. If such deterioration were to continue, it is feared that higher education would become a mechanism for perpetuating the backwardness of Arab countries in the 21 st century.

Nader Fergany

2000-01-01T23:59:59.000Z

55

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

56

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

57

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

58

Carrots for Utilities: Providing Financial Returns for Utility...  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Name Carrots for Utilities: Providing Financial Returns...

59

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

60

Utilities weather the storm  

SciTech Connect

Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

Lihach, N.

1984-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

62

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

63

Utility-affiliated cogeneration developer perspective  

SciTech Connect

The ability of the cogeneration industry to address electric power market requirements, some market observations and forecasts, and changes in the cogeneration industry are discussed. It is concluded that utility planning will increasingly need to account for the noted changing power market characteristics. Effective planning for electric utilities will require recognition of the competitive nature of the power business.

Ferrar, T.A.

1985-11-01T23:59:59.000Z

64

Survey of utility lighting programs: Final report  

SciTech Connect

Reshaping loads is a major goal of utility lighting efforts. Nearly 60% of the utilities in this survey use lighting for demand-side management. The most popular programs promote lighting efficiency to reduce daytime peaks and outdoor security lighting to increase off-peak loads.

Isaksen, L.

1987-02-01T23:59:59.000Z

65

Utilities expand baseload power plant plans  

Science Conference Proceedings (OSTI)

This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

Smock, R.

1993-04-01T23:59:59.000Z

66

Utility+Utility Access Map | OpenEI Community  

Open Energy Info (EERE)

the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248...

67

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: developer Type Term Title Author Replies Last Post sort icon Blog entry developer Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Discussion developer Utility rate change propagation is now much faster Rmckeel 1 21 Mar 2013 - 09:11 Blog entry developer OpenEI maintenance March 8-9, 2013 Rmckeel 8 Mar 2013 - 14:23 Blog entry developer Semantic Mediawiki Semantic Forms update Rmckeel 22 Oct 2012 - 07:23 Discussion developer Increasing ask query limit Rmckeel 1 28 Jun 2012 - 14:35 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank...

68

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

69

Reevaluation of IEEE and IEC Substation Design, Operations, and Maintenance Standards Considering Increased Fault Currents  

Science Conference Proceedings (OSTI)

The ever-increasing demand for utility substations to pass higher and higher levels of throughput power has the consequence of driving up levels of short circuit (SC) currents from 63 kA to as high as 100 kA. Knowing whether substation bus structures and electrical equipment are capable of safely passing these higher levels of currents is a pressing need of substation personnel responsible for design, operation, and maintenance of station assets. This report presents results of a preliminary study ...

2012-12-04T23:59:59.000Z

70

NETL: IEP - Coal Utilization By-Products - Utilization Projects -  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota, EERC - Table of Contents University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in Soil Stabilization Coal Ash Resources Research Consortium Background CAEEC is a cooperation among industry, government, and the research community to work together to solve CCB- related problems and promote the environmentally safe, technically sound, and economically viable utilization and disposal of CCBs. Objectives To improve the technical and economic aspects of coal combustion by-product (CCB) management. Description CARRC tasks fall into three general categories: Member-prioritized research tasks, Technical and administrative tasks, and Special projects that support CARRC objectives and strengthen and increase the availability of sound technical data for CARRC use.

71

West Virginia Higher Education Graduate  

E-Print Network (OSTI)

1. Work Participation And Annualized Wages Of West Virginia Public Higher Education Graduates From This report analyzes the West Virginia industry of employment (and wages) of graduates from state public .................................................................................................1 Results By Industry And Summary Degree

Mohaghegh, Shahab

72

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

73

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

74

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

75

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

76

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

77

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system. (4) Pilot-scale testing in the grate-fired system. The resulting data were used to elucidate ash-related problems during coal-biomass cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2002-09-01T23:59:59.000Z

78

Complex higher order derivative theories  

SciTech Connect

In this work is considered a complex scalar field theory with higher order derivative terms and interactions. A procedure is developed to quantize consistently this system avoiding the presence of negative norm states. In order to achieve this goal the original real scalar high order field theory is extended to a complex space attaching a complex total derivative to the theory. Next, by imposing reality conditions the complex theory is mapped to a pair of interacting real scalar field theories without the presence of higher derivative terms.

Margalli, Carlos A.; Vergara, J. David [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico 04510 DF (Mexico)

2012-08-24T23:59:59.000Z

79

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

80

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

82

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

83

Increased Power Flow Guidebook - Underground Cables  

Science Conference Proceedings (OSTI)

Utilities must consider a number of factors when evaluating uprating and upgrading options for underground transmission cables. This comprehensive guidebook documents the state-of-science for increasing power flow capacities of underground transmission cables. It provides an overview of underground transmission cable ratings and uprating techniques so that the maximum utilization can be obtained from the existing underground transmission infrastructure.

2003-12-01T23:59:59.000Z

84

Utility Marketing Strategies & Pricing Trends  

E-Print Network (OSTI)

Marketing seems to have come out of the utility closet once again, but it is a far sight different from that of the 1970s. While some are still on a sell, Sell, SELL! campaign, most are soberly looking at their customers from a different perspective. They are concerned about losing them to other service territories or seeing them vanish to domestic and foreign competition. There is a sense of a strategic alliance being sought by the most proactive of utilities in which they become allies of their customers. In this sense, the issue of how much these customers purchased from them vanishes into the shadows of the more important elements of the relationships. Oh sure, there still are some pushing technology as the customers answer. And there are others using incentive and other rate gambits to develop strategic load building. But there is a definite trend emerging toward building the relationship for the long haul and putting short range profit or number game objectives on the back burner. This paper investigates the most successful current utility marketing postures, how they are changing, where pricing fits in and what we are likely to see within the next few years. We will also illustrate the potential traps in competitive marketing and customer service that still lie in wait. We still see a major number of current marketing efforts that are unbalanced, unfairly reward luck, are wasteful and counterproductive. As many of you know, we strongly believe marketing must move from technology-based, silver bullet competition, frenetic non-competitive load retention dissipation and load claiming to relational-based marketing in which absolute integrity and service and their consequent trust become paramount. We believe utilities must build honest relationships with all their customers, not merely their energy purchasers. These include their fuel suppliers and regulators. When a utility is not trusted, the competitive situation is reduced to that of a commodity supplier in which price and terms constitute the whole of the relationship. Utilities reduced to this level of inadequate customer service ultimately will lose to those that recognize the alternative of adding value. As the nature and consequences of competition increase, so does the importance of breaking from the methods of the past.

Gilbert, J. S.

1989-09-01T23:59:59.000Z

85

BARRIER ISSUES TO THE UTILIZATION OF BIOMASS  

DOE Green Energy (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash formation and potential fouling mechanisms and to optimize activities in the modified pilot-scale system; and Pilot-scale testing in the grate-fired system. The resulting data will be collected, analyzed, and reported to elucidate ash-related problems during biomass-coal cofiring and offer a range of potential solutions.

Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

2001-10-01T23:59:59.000Z

86

Utility spot pricing, California  

E-Print Network (OSTI)

The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

Schweppe, Fred C.

1982-01-01T23:59:59.000Z

87

By-Products Utilization  

E-Print Network (OSTI)

was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc of sufficient strength to withstand handling, transfer and long term exposure. The final phase (4) was designed

Wisconsin-Milwaukee, University of

88

By-Products Utilization  

E-Print Network (OSTI)

investigation. Two additional ash samples were prepared by blending these selected conventional and clean coalCenter for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce

Wisconsin-Milwaukee, University of

89

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST by blending these selected conventional and clean coal ashes. Using these sixdifferent ash samples, eleven of 0 and60 percent by high-sulfurcoal ashes (Class F and clean-coal ashes) andcoal ash blends (Class F

Wisconsin-Milwaukee, University of

90

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST CONCRETE PRODUCTS Authors: Tarun R. Naik, Director investigation. Two additional ash samples were prepared by blending these selected conventional and clean coal

Wisconsin-Milwaukee, University of

91

By-Products Utilization  

E-Print Network (OSTI)

as the coal ash derived from SOx control technology. Up to 80% of CCA was blended with ground portland cement: blended cement, clean coal ash, sulfate resistance, time of setting #12;3 Zichao Wu is Structural EngineerCenter for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND

Wisconsin-Milwaukee, University of

92

By-Products Utilization  

E-Print Network (OSTI)

and clean-coal ashes) andcoal ash blends (Class F plus clean-coal ash blends) in the range of 0 to 60Center for By-Products Utilization CHARACTERIZATION AND APPLICATION OF CLASSF FLY ASHCOAL AND CLEAN-COAL,and Bruce W. Ramme CBU-1996-08 REP-283 July 1996 Presented andPublished at the American Coal Ash Association

Wisconsin-Milwaukee, University of

93

By-Products Utilization  

E-Print Network (OSTI)

. Test results indicated that all the blends with coal ash had lower expansion than the control mixtureCenter for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;USE OF CLEAN-COAL ASH

Wisconsin-Milwaukee, University of

94

By-Products Utilization  

E-Print Network (OSTI)

mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash of concrete. Blending of wood FA with Class C coal FA improved performance of wood FA to a significant extentCenter for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R

Wisconsin-Milwaukee, University of

95

Utility Baghouse Survey 2009  

Science Conference Proceedings (OSTI)

EPRI conducted comprehensive surveys of utility baghouse installations in 1981, 1991, and 2005 to summarize the state of the technology. The current survey focuses on nine selected pulse-jet baghouses to provide a better understanding of the design, performance, and operation of recent installations.

2009-12-14T23:59:59.000Z

96

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

97

Launching Agency and Utility Participation and Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching Agency and Utility Launching Agency and Utility Participation and Projects (UESC Lessons Learned & Breaking Down the Barriers) [Direct Assistance] Working Session: Facilitated Group Discussion Cape Canaveral, Florida May 1, 2007 Objectives of this Working Session Outcomes of the San Francisco working session * Increase awareness of UESC vehicles * Better promote FUPWG * Improve communication among partners and stakeholders * Educate key stakeholders * Provide technical assistance to kick-start projects * Reach out to new partners * Make UESC website easier to find Overview of FEMP UESC Assistance Utility Energy Services Contract (UESC) Direct Assistance provides guidance, training and direct support to agencies so that they may accomplish cost effective, sensible, and comprehensive

98

Evaluatoni of Automated Utility Bill Calibration Methods  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Evaluation of Automated Utility Bill Calibration Methods BA Technical Update Meeting Ben Polly, Joe Robertson 04/30/13 Utility Bill Calibration * "Calibrate" or "true-up" building energy models to utility bill data to increase the accuracy of retrofit savings predictions * Calibration methods typically involve adjusting input parameters * Predict retrofit savings using the adjusted (calibrated) model 2 Background: BESTEST-EX * BESTEST-EX is a suite for testing calibration methods and retrofit savings predictions associated with audit software * Field trials showed that:

99

Substation Equipment Asset Management: Utility Experience Sharing  

Science Conference Proceedings (OSTI)

Utilities have been maintaining substation equipment reliably since the industrys inception, but now many are facing increased challenges to reduce operating and maintenance costs without adversely affecting service levels. In this setting, utilities may benefit from knowing which programs and techniques their peers have implemented. To that end, the Electric Power Research Institute (EPRI) conducted a series of industry surveys assessing key substation equipment maintenance practices. As ...

2013-12-18T23:59:59.000Z

100

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

102

Utility Line Inspections and Audits  

Science Conference Proceedings (OSTI)

Utility Line Inspections and Audits provides utility engineers with a concise reference for the pros, cons, and how to related to performing various line inspections and audits.

2007-03-21T23:59:59.000Z

103

Sourcebook for Utility Communications on EMF: Final Report  

Science Conference Proceedings (OSTI)

Increasing public concern that exposure to 60-Hz electric and magnetic fields (EMF) may cause adverse human health effects poses difficult communications problems for utilities. This sourcebook will assist utilities in clearly conveying the current scientific understanding of EMF and explaining corporate positions on the issue. Moreover, the sourcebook should help utilities achieve appropriate levels of public involvement in EMF issues.

1992-08-01T23:59:59.000Z

104

EbAT: online methods for detecting utility cloud anomalies  

Science Conference Proceedings (OSTI)

The online detection of anomalies is a vital element of operations in datacenters and in utility clouds like Amazon EC2. Given ever-increasing data center sizes coupled with the complexities of systems software, applications, and workload patterns, such ... Keywords: anomaly detection, entropy, utility cloud, utility datacenter

Chengwei Wang

2009-11-01T23:59:59.000Z

105

ENERGY AND UTILITIES ORNL-2219 Microorganisms Having Enhanced ...  

increases the ethanol cost due to both ethanol production rate and total ... ENERGY AND UTILITIES ... (Related Compositions and Methods of Use) ORNL-2219 Contact:

106

Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

107

NREL Webinar: Treatment of Solar Generation in Electric Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their...

108

City of Palo Alto Utilities- Smart Energy Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

City of Palo Alto Utilities offers incentives to residential customers to increase the energy efficiency of homes through the Smart Energy Rebate Program. Rebates are offered for qualifying...

109

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

110

RE-IMAGINING CALIFORNIA HIGHER EDUCATION  

E-Print Network (OSTI)

Re-Imagining California Higher Education * October 2010 Johnfamed Master Plan for Higher Education, arguably the singlethe future of a system of higher education in the annals of

John Aubrey Douglass

2010-01-01T23:59:59.000Z

111

Essays on the Economics of Higher Education  

E-Print Network (OSTI)

3 Does Higher Education Cause Political Participation? 3.1on enrolling into higher education and college. Using 2measures of higher education on the instrument . . . . . .

SOLIS VIVALLOS, ALEX

2012-01-01T23:59:59.000Z

112

Class, Race, and Higher Education in America  

E-Print Network (OSTI)

many more questions for higher education, but at the leastthey overcome. But higher education in America has already1989), Review of Higher Education Policy In California,

Trow, Martin

2006-01-01T23:59:59.000Z

113

WHAT FUTURE FOR UK HIGHER EDUCATION?  

E-Print Network (OSTI)

2009) Students ask if higher education is really worth itrising social costs of higher education are not matched bystandards? Times Higher Education 17 July. Alderman, G.

Roger Brown

2010-01-01T23:59:59.000Z

114

pine (mail utility info)  

NLE Websites -- All DOE Office Websites (Extended Search)

pine (mail utility info) pine (mail utility info) Basics, FAQ, etc, On our UNIX machines, module load pine The line module load pine should ALSO be in the file ~/.rc/user_modules (The pine module also includes pico) pine usage with IMAP4 (UNIX) Moving pine email files into IMAP4 LBNL UNIX info on pine links to Pine Information Center Pine 4.2.1/Solaris: Forwarding as attachment; the following procedure has proved successful for at least some users: Check the option "enable-full-header-cmd". To get to this option, 1. M (Main Menu) 2. S (Setup) "Choose a setup task from the menu below :" 3. C (Configure) 4. Scroll down to "Advanced Command Preferences", and press "X" to set "enable-full-header-cmd". It looks like this: ================================================================

115

PDSF Utilization Graphs  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphs Graphs Utilization Graphs This page contains a series of graphs that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated approximately every 15 minutes. This graph shows the aggregate cluster CPU availablity and usage according to sgeload: 24 hour rolling usage graph (click to see long term averages) This graph shows the number of jobs being run by each group: Rolling 24 Running Jobs by Group (click to see long term averages) This is the same graph as above weighted by the clockspeed (GHz) of the node used for the job: Rolling 24 Running Jobs by Group (click to see long term averages) This graph show the number of pending jobs by group: Rolling 24 Pending Jobs

116

NREL: Wind Research - Utility Grid Integration Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

117

CAST STONE FORMULATION AT HIGHER SODIUM CONCENTRATIONS  

SciTech Connect

A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

Fox, K.; Edwards, T.; Roberts, K.

2013-10-02T23:59:59.000Z

118

CAST STONE FORMULATION AT HIGHER SODIUM CONCENTRATIONS  

SciTech Connect

A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

Fox, K.; Roberts, K.; Edwards, T.

2013-09-17T23:59:59.000Z

119

Tribal Utility Feasibility Study  

SciTech Connect

The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: Demand-side management This refers to efforts to reduce energy use through energy efficiency and conservation measures. Off-grid, facility and household scale renewable energy systems These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. Medium to large scale renewable energy development for sale to the grid In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

120

An Update on Ethanol Production and Utilization in Thailand  

DOE Green Energy (OSTI)

Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

Bloyd, Cary N.

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

122

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

123

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Utilities See All Rankings x Renewable Energy Sales Total Customer Participants...

124

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Utility PARS II Extraction Utility PARS II Extraction Utility v8020130510.zip More Documents & Publications PARS II Extraction Utility Release Notes PARS II CPP...

125

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

126

Energy efficiency and electric utilities  

SciTech Connect

Twenty years have now elapsed since the energy crisis irrevocably changed world energy priorities. The energy crisis banished all apparitions of cheap and almost limitless energy and made the public keenly aware of its scarcity. The sharp rise in energy prices that followed the Arab oil embargo created strong market incentives to conserve energy. Most users have substantially improved the efficiency with which they use energy, although one might lament that the gains have not been larger. In contrast to the increased efficiency with which electricity and other forms of energy are used, electric utilities themselves have singularly failed to improve their heat efficiency in generating electricity. This failure can be attributed to regulation preventing market forces from creating incentive to improve efficiency.

Studness, C.M.

1994-03-15T23:59:59.000Z

127

An evaluation framework for higher education ERP systems  

Science Conference Proceedings (OSTI)

A Higher Education ERP system can be used as a solution to integrate and increase the efficiency of the Romanian university processes. This paper examines the application of ERP software in Romanian Universities. We made an SWOT analysis for implementing ... Keywords: ERP systems, evaluation framework, higher education, integration, quality services, university management

Gheorghe Sabau; Mihaela Munten; Ana-Ramona Bologa; Razvan Bologa; Traian Surcel

2009-11-01T23:59:59.000Z

128

Utility Data Collection Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

129

EM Utility Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

130

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

131

Extraction Utility Design Specification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

132

Utility spot pricing study : Wisconsin  

E-Print Network (OSTI)

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

133

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

134

Current Transformations in Norwegian Higher Education  

E-Print Network (OSTI)

from Thatcher's higher education reforms in the early 1980'Idea and American Higher Education: 1850 to the 1960 MasterIN NORWEGIAN HIGHER EDUCATION 1 March 2002 Kim Gunnar

Helsvig, Kim Gunnar

2002-01-01T23:59:59.000Z

135

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

Science Conference Proceedings (OSTI)

Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

Abhyankar, Nikit; Phadke, Amol

2011-01-20T23:59:59.000Z

136

Cogeneration Assessment Methodology for Utilities  

E-Print Network (OSTI)

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic assessment model, and a data base to track customers over time. A case study is presented describing the background, procedures, and results of a cogeneration investigation for Northeast Utilities.

Sedlik, B.

1983-01-01T23:59:59.000Z

137

College Station Utilities - Residential Energy Back II Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Station Utilities - Residential Energy Back II Rebate College Station Utilities - Residential Energy Back II Rebate Program College Station Utilities - Residential Energy Back II Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central A/C, Heat Pumps: $200 - $600, varies by efficiency rating Provider College Station Utilities College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system must be a minimum of 14 SEER or higher. Both the evaporator coil (inside unit) and the condensing unit (outside unit) must be replaced as a matching system as rated in the

138

National Utility Rate Database: Preprint  

DOE Green Energy (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

139

Confidential data in a competitive utility environment: A regulatory perspective  

SciTech Connect

Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

Vine, E.

1996-08-01T23:59:59.000Z

140

Utility Connection | Open Energy Information  

Open Energy Info (EERE)

Utility Connection Utility Connection Jump to: navigation, search Return to Connections to Energy Use Data and Information Page Please tell us how connected you are to your customers Thank you for taking the time to complete this questionnaire! As you know, utility data is very important and, if used correctly, can educate consumers and change their behavior to save money and energy. First select your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be shown on the Utility Data Accessibility Map. If the questionnaire has already been completed for your utility and you think the answers need to be changed, or if you are having trouble accessing your questionnaire, please contact the .

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pelican Utility | Open Energy Information  

Open Energy Info (EERE)

Pelican Utility Pelican Utility Jump to: navigation, search Name Pelican Utility Place Alaska Utility Id 29297 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4450/kWh Industrial: $0.3890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pelican_Utility&oldid=411348

142

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

143

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

144

Public Utility Commission in the year 2000  

Science Conference Proceedings (OSTI)

This article is about What is and What ought to be as we look to the institution of public utility commission regulation at the turn of the century. To signal my own view at the outset, I find the prospects somewhat worrisome in light of the nature and direction of much of the response to real and imaginary changes in the regulated sectors. I surely do not call for standing in place, but I strongly believe we should leave the place standing. The following items are discernable trends that will shape the PUC at the turn-of-the century: (1) dichotomy of customers into core and noncore groups, (2) unbundling and new service offerings with a menu of prices, (3) relaxed regulation and increased reliance on market solutions instead of command and control, (4) increased use of market-based pricing and incentive ratemaking, (5) large users seeking lowest-cost generation and supply services, (6) shift from old regulatory bargains regarding exclusive territorial franchises and assured recovery of costs and investments, (7) utility diversification, (8) increasing business risk for utilities, amd (9) uncertainty as to continued utility attention to social goals and a changing obligation to serve. For each of these, the author focuses on: (1) changing missions and roles of the PUC, (2) the strategies for achieving them, and (3) the implementation requirements that operationalize the strategies.

Jones, D.N.

1995-12-31T23:59:59.000Z

145

PFBC Utility Demonstration Project  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

146

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

147

By-Products Utilization  

E-Print Network (OSTI)

and durability of concrete made with high volume fly ash blended cements", Fly Ash, Silica Fume, Slag blast furnace slag, fly ash, and silica fume. These mineral additives not only yield concrete additives are: reduced early strength, increased water demand of concrete mixtures, and reduced freezing

Wisconsin-Milwaukee, University of

148

By-Products Utilization  

E-Print Network (OSTI)

-burning power plant. As a developing country, China's economic growth is expected to continue rapidly in this country is mostly generated by coal-fired electric power plants. These plants produce huge amounts of ash (slag) produced from coal-fired power plants increases yearly along with the development and huge demand

Wisconsin-Milwaukee, University of

149

Avoided Gigawatts Through Utility Capital Recovery Fees  

E-Print Network (OSTI)

Electric rate structures can be used to provide customers with the proper pricing signals as well as provide economic incentives for increased market penetration for energy efficient new buildings. An innovative, marginal (replacement cost) rate structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving credit for the more efficient loads placed on an electric utility system, a utility could rapidly advance the market penetration of commercially available, highly efficient building systems and equipment resulting in potential gigawatts of conserved energy. Simultaneously, the capital costs of new generating plants could be shifted to the end-user from the already debt-burdened electric utility industry. This paper will explore this pricing option and analyze its potential on future electric load growth and the design of efficient new buildings.

Frosenfeld, A. N.; Verdict, M. E.

1985-01-01T23:59:59.000Z

150

How Responsive is Higher Education? The Linkages between Higher Education and the Labor Market  

E-Print Network (OSTI)

establishment (at the higher education level). Our analysisEconomic Value of Higher Education in Developed Economies: AWeiss. 2008. From Higher Education to Work: Patterns of

Bardhan, Ashok Deo; Hicks, Daniel; Jaffee, Dwight M.

2010-01-01T23:59:59.000Z

151

Front-end utility rate updates | OpenEI Community  

Open Energy Info (EERE)

Front-end utility rate updates Front-end utility rate updates Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 13 February, 2013 - 14:28 Utility Rates A few utility rate updates worth noting. We used to have a limit of 100 for results returned on the utility gateway. That has been increased, along with a few UI updates. There is now a 15em height window (sorry if that's too technical) to browse results, so all the hundreds of results don't extend the page. For the naming page however, perhaps the long list is preferred? I'm willing to tweak these heights, as well as have separate heights if it is requested for the public view and the editor view. Improvement to have results show within the block instead of outside of. Minor increase in results width on editor page.

152

NETL: IEP - Coal Utilization By-Products - Utilization Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in...

153

Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency, thereby helping to reduce green house gas emissions, increase energy sustainability, and improve overall growth in the economy. In addition, our ability to encourage more efficient consumption through real-time feedback, control technology, and pricing is better and less costly than it has e...

2012-02-07T23:59:59.000Z

154

Potential Effects of Climate Change on Electric Utilities  

Science Conference Proceedings (OSTI)

In recent years, increasing attention has been focused on the potential for greenhouse gas emissions to modify the global climate system. Significant climate change could affect utility operations and costs through impacts on electricity demand and on generation and delivery systems. Utilities, moreover, may be called upon to take actions to reduce their emissions of CO2, an important greenhouse gas. This report summarizes an assessment of the long-term risks to individual utilities posed by the potentia...

1995-03-17T23:59:59.000Z

155

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

156

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

157

Decatur Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Decatur Utilities Place Alabama Utility Id 4958 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - BILL CODE 50 Commercial Commercial - Bill Code 40 Commercial Residential - Bill Code 22 Residential Security Light 100 W HPS (No Pole) Lighting Security Light 100 W HPS (With Pole) Lighting Security Light 250 W HPS (No Pole) Lighting Security Light 250 W HPS (With Pole) Lighting

158

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

159

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

160

Maryville Utilities | Open Energy Information  

Open Energy Info (EERE)

Maryville Utilities Maryville Utilities Jump to: navigation, search Name Maryville Utilities Place Tennessee Utility Id 11789 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule GSA-1 Commercial Commercial- Schedule GSA-2 Commercial Commercial- Schedule GSA-3 Commercial Outdoor Light- 100W HP Sodium Security Light Lighting Outdoor Light- 175W Mercury Vapor Lighting Outdoor Light- 250W HP Sodium Flood Light Lighting Outdoor Light- 250W HP Sodium Security Light Lighting Outdoor Light- 400W Mercury Vapor Lighting

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sheffield Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Sheffield Utilities Place Alabama Utility Id 17033 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 W HPS Openbottom Lighting Security Light 150 W HPS Cobrahead Lighting Security Light 150 W HPS Decorative Light Lighting Security Light 1500 W MH Floodlight Lighting Security Light 175 W MV Openbottom Lighting Security Light 250 W HPS Cobrahead Lighting Security Light 250 W HPS Decorative Light Lighting Security Light 250 W HPS Floodlight Lighting

162

Cannelton Utilities | Open Energy Information  

Open Energy Info (EERE)

Cannelton Utilities Cannelton Utilities Jump to: navigation, search Name Cannelton Utilities Place Indiana Utility Id 2964 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: Murcury Vapor Light, 175 Watt Lighting Rate 1: Residential Residential Rate 2: Multi-Phase Commercial Rate 2: Single Phase Commercial Rate 3: Industrial Phase II Residential Rate 3: Industrial phase I Industrial Street Lighting: Decorative Metal Halide, 175 Watt Lighting Street Lighting: High Pressure Sodium, 100 Watt Lighting

163

Polymers with increased order  

DOE Patents (OSTI)

The invention features polymers with increased order, and methods of making them featuring a dense gas.

Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

1998-08-25T23:59:59.000Z

164

Advanced Manufacturing Office: Utility Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Save Energy Now Utility Partnerships In order to reduce industrial energy intensity and use, the Industrial Technologies Program (ITP) is forming...

165

APS sector layout: Utilities, etc  

SciTech Connect

This bulletin describes the general physical layout of the APS Experiment Hall and the utilities that will be available for the beamlines.

Davey, S.

1993-02-01T23:59:59.000Z

166

APS sector layout: Utilities, etc.  

SciTech Connect

This bulletin describes the general physical layout of the APS Experiment Hall and the utilities that will be available for the beamlines.

Davey, S.

1993-02-01T23:59:59.000Z

167

ESP: A system utilization benchmark  

E-Print Network (OSTI)

ESP: A System Utilization Benchmark Adrian T. Wong, LeonidEffective System Performance (ESP) test, which is designedEffective System Performance (ESP) benchmark, which measures

Wong, Adrian T.; Oliker, Leonid; Kramer, William T.C.; Kaltz, Teresa L.; Bailey, David H.

2000-01-01T23:59:59.000Z

168

Utility Partnerships Program Overview (Brochure)  

Science Conference Proceedings (OSTI)

Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

Not Available

2011-07-01T23:59:59.000Z

169

Mandatory Utility Green Power Option  

Energy.gov (U.S. Department of Energy (DOE))

In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

170

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

171

Case against private utility involvement in solar/insulation programs  

SciTech Connect

The arguments against private utility involvement are arranged under the following headings: excessive profit-taking, monopolization/favoritism, increased cost to consumers, homeowners would pay twice, the lack of accountability, the lack of commitment to solar by utilities, solar/political/ethical considerations, solar/conservation technologies are inherently decentralized, and the other alternatives. (MHR)

Bossong, K.

1977-06-08T23:59:59.000Z

172

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Scale Solar Inc Jump to: navigation, search Name Utility Scale Solar Inc Place Palo Alto, California Zip 94301 Product California-based PV tracker maker. References Utility...

173

Columbia Utilities Electricity | Open Energy Information  

Open Energy Info (EERE)

Utilities Electricity Place New York Utility Id 55814 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861...

174

2012 Green Utility Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2012 Green Utility Leaders 2012 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top...

175

Higher Power Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Higher Power Energy LLC Higher Power Energy LLC Jump to: navigation, search Name Higher Power Energy, LLC Place Flower Mound, Texas Zip 78028 Sector Renewable Energy, Wind energy Product Higher Power Energy is focused on the development and management of renewable wind energy across North America. References Higher Power Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Higher Power Energy, LLC is a company located in Flower Mound, Texas . References ↑ "Higher Power Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Higher_Power_Energy_LLC&oldid=346535" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

176

Carbon dioxide utilization and seaweed production  

NLE Websites -- All DOE Office Websites (Extended Search)

dioxide utilization and seaweed production dioxide utilization and seaweed production V.R.P.Sinha World Bank Project Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh e-mails; vrpsinha@ mymensingh.net, vidyut_s@hotmail.com Lowell Fraley L.D. Fraley & Associates, LLC, P.O. Box 1525, Sugarland, TX 77487, USA, e-mail idf@hia.net BS Chowdhry ISS Consultants, Inc. 13111 Westheimer, Suite 303, Houston, Texas 77077, USA, e-mail bsc@issci.com Abstract: Stronger growth in many plants stimulated by increased CO 2 concentration should lead to greater biological productivity with an expected increase in the photosynthetic storage of carbon. Thus, the biosphere will serve as a sink for CO 2 , though it will also act as a source too, because of respiration. Normally net photosynthesis dominates in summer and

177

Feedstocks with Reduced Acetylation for Higher Product ...  

Biomass and Biofuels Feedstocks with Reduced Acetylation for Higher Product Yields and Improved Properties Lawrence Berkeley National Laboratory.

178

Higher order invariants, cohomology, and automorphic forms  

E-Print Network (OSTI)

A general structure theorem on higher order invariants is proven. For an arithmetic group, the structure of the corresponding Hecke module is determined. It is shown that the module does not contain any irreducible submodule. This explains the fact that L-functions of higher order forms have no Euler-product. Higher order cohomology is introduced, classical results of Borel are generalized and a higher order version of Borel's conjecture is stated.

Deitmar, Anton

2008-01-01T23:59:59.000Z

179

Higher-order symbolic execution via contracts  

Science Conference Proceedings (OSTI)

We present a new approach to automated reasoning about higher-order programs by extending symbolic execution to use behavioral contracts as symbolic values, thus enabling symbolic approximation of higher-order behavior. Our approach is based on the idea ... Keywords: higher-order contracts, reduction semantics, symbolic execution

Sam Tobin-Hochstadt; David Van Horn

2012-11-01T23:59:59.000Z

180

Designing ontologies for higher level fusion  

Science Conference Proceedings (OSTI)

The purpose of higher level fusion is to produce contextual understanding of the states of the environment and prediction of their impact in relation to specific goals of decision makers. One of the main challenges of designing higher level fusion processes ... Keywords: Basic formal ontology (BFO), Higher level fusion, Mereotopology, Ontology, Postdisaster environment, Relations

Eric G. Little; Galina L. Rogova

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PRELIMINARY UTILITY SERVICE CONNECTION APPLICATION  

E-Print Network (OSTI)

SERVICES: WATER, SANITARY, STORM, GAS, and DISTRICT HEATING Part 3 (a). Water Distribution. Water service.5.7 and Section 02730, Clause 2.5.6). #12;Page 2 of 2 Revised 4 October 2011 Part 3 (c). Gas and District Heating) and Section (TBA-District Heating ­ contact UBC Utilities. · Fax or mail request to UBC Utilities (address

Vellend, Mark

182

Property:OpenEI/UtilityRate/Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Utility Jump to: navigation, search This is a property of type Page. Name: Utility Subproperties This property has the following 1 subproperty: A Data:Add4bb7f-e6bd-4427-a614-3a92bd5ba15d Pages using the property "OpenEI/UtilityRate/Utility" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + Prairie Land Electric Coop Inc + 000086db-7a5e-4356-9c57-c912f7d1622e + Talquin Electric Coop, Inc + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + Central Electric Membership Corporation + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + New London Electric&Water Util + 000b6dfa-a541-428a-9029-423006e22a34 + City of Plymouth, Wisconsin (Utility Company) + 000db36e-b548-43e7-a283-d37ecc77cef1 + Surprise Valley Electrification Corp. +

183

GSA-Utility Interconnection Agreements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Property Asset Management Office of General Counsel Real Property Division Richard R. Butterworth Senior Assistant General Counsel (202) 501-4436 richard.butterworth@gsa.gov The Problem: * Most agreements require indemnity clauses - usually either by tariff or by the submission of standard contracts to PSCs * Federal Government precluded from providing indemnity by: * Anti-deficiency Act - 31 U.S.C. 665(a) * Adequacy of Appropriations Act - 41 U.S.C. 11 GSA - Utility Interconnection Agreements GSA - Utility Interconnection Agreements Exception: Utility Contracts * GAO decision sets the foundation for exception for utility contracts - 59 Comp. Gen. 705 * But it's a narrow exception - B-197583, January 19, 1981 GSA - Utility Interconnection Agreements

184

U.S. Electric Utility Demand-Side Management 2000  

U.S. Energy Information Administration (EIA)

Energy Savings for the 516 large electric utilities increased to 53.7 billion kilowatthours (kWh), 3.1 billion kWh more than in 1999. These energy savings

185

Port Angeles Public Works & Utilities- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Port Angeles Public Works and Utilities offers a rebate program to encourage residential customers to increase the energy efficiency of their homes. The rebates apply to qualifying installations in...

186

The death spiral: An assessment of its likelihood in electric utilities  

SciTech Connect

First, we present the death spiral hypothesis (high rate increases leading to bankruptcy), providing a historical background on its inception and discussing the observations provided in other industries of its occurrence through the years. Then we provide a discussion of the conditions necessary for the spiral effect. In doing this we provide insight into the assumptions implied by those who forecast such doom. Based on this discussion, we then provide the reader with a discussion of the implications such a concept has for regulatory policy. In addition, we conclude that given the structure of the regulatory process, the chances of a spiral effect for the electric utility industry have probably been overstated. It is shown that the occurrence of a death spiral is based on unrealistic conditions about the response of a utility's customers to higher rates, the incentives of and constraints facing regulators regarding pricing and permitting a utility to experience permanent financial distress, and the intense actions of a utility's management to avoid financial disaster.

Hemphill, R.C.; Costello, K.W.

1987-01-01T23:59:59.000Z

187

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

188

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

189

Generalized structure of higher order nonclassicality  

E-Print Network (OSTI)

A generalized notion of higher order nonclassicality (in terms of higher order moments) is introduced. Under this generalized framework of higher order nonclassicality, conditions of higher order squeezing and higher order subpoissonian photon statistics are derived. A simpler form of the Hong-Mandel higher order squeezing criterion is derived under this framework by using an operator ordering theorem introduced by us in [J. Phys. A. 33 (2000) 5607]. It is also generalized for multi-photon Bose operators of Brandt and Greenberg. Similarly, condition for higher order subpoissonian photon statistics is derived by normal ordering of higher powers of number operator. Further, with the help of simple density matrices, it is shown that the higher order antibunching (HOA) and higher order subpoissonian photon statistics (HOSPS) are not the manifestation of the same phenomenon and consequently it is incorrect to use the condition of HOA as a test of HOSPS. It is also shown that the HOA and HOSPS may exist even in absence of the corresponding lower order phenomenon. Binomial state, nonlinear first order excited squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS) are used as examples of quantum state and it is shown that these states may show higher order nonclssical characteristics. It is observed that the Binomial state which is always antibunched, is not always higher order squeezed and NLVSS which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed in NLESS and consequently it is established that the HOSPS and HOS are two independent signatures of higher order nonclassicality

Amit Verma; Anirban Pathak

2009-01-21T23:59:59.000Z

190

NETL: Coal Utilization By-Products (CUB)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Coal Utilization Byproducts Innovations for Existing Plants Solid Waste (Coal Utilization...

191

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

192

Energy Crossroads: Utility Energy Efficiency Programs Delaware...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Chesapeake Utilities Information for Businesses Delmarva Power...

193

Technology Utilization Program (Newfoundland and Labrador, Canada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilization Program (Newfoundland and Labrador, Canada) Technology Utilization Program (Newfoundland and Labrador, Canada) Eligibility Agricultural Commercial Construction Fuel...

194

Increased Water Use Efficeincy Through Trickle Irrigation  

E-Print Network (OSTI)

The gap between supply and demand of water for agricultural and municipal uses is rapidly closing at a time when world food requirements are increasing at an alarming rate. To meet the demand for agricultural products, new lands must be brought into production or higher yields must be realized from existing lands. In either case, more efficient use of water is prerequisite. Trickle irrigation is an approach to obtain increased water use efficiencies (ratio of weight of grain harvested to weight of total crop water use) and therefore a way to increase food production with our limited water resources. The ultimate goal of this investigation was the development of required crop inputs for selected crops to optimize the design of trickle irrigation systems and obtain an optimum water balance for living plants. Specific objectives were as follows: 1. To quantitatively determine optimum irrigation timing and necessary water application amounts for selected crops when using trickle irrigation; and 2. To develop a general method for the hydraulic design of trickle irrigation systems using inputs from the first objective for optimizing the system. To achieve these objectives, experiments were conducted in field lysimeters and in a well-instrumented field plot installation for evaluating the crop inputs. Complete control of the soil water balance can be achieved by the use of these facilities. By knowing the required crop inputs and utilizing known principles of fluid mechanics proper design procedures were developed to provide optimum design for trickle irrigation systems. To achieve the first objective, three research experiments were conducted at the research lysimeters of the Department of Agricultural Engineering at Texas A&M University for which grain sorghum was selected as the experimental crop. The first two experiments were designed to study the response of grain sorghum to trickle and subsurface irrigation. A comparison of water use efficiencies under well-watered conditions using both intensified and conventional water application methods and the evaluation of water use efficiencies with trickle irrigation applications designed to limit the availability of water were the specific objectives. The results indicated higher water use efficiencies and better crop response when the trickle method of application was used. Also, the results showed that higher water use efficiencies can be obtained by applying sparing amounts. An additional investigation carried out under a different research project of the Texas Water Resources Institute (TWRI Project No. A024TEX) was designed to develop a computer model to simulate grain sorghum yield and water use under high frequency irrigation. The simulation methods used in this study can be used to simulate a complete irrigation experiment greatly reducing research costs and allowing the determination of water requirements for many crops under many different soil and climatic conditions. The objective of the third research experiment conducted in 1974 was to determine if different irrigation frequencies would influence the growth and water use efficiency of grain sorghum when irrigated at optimum levels. Results indicated that frequency of application had no significant effect on the water use efficiency of grain sorghum for irrigation intervals up to 7 days. To attain the second goal of this investigation two trickle irrigation lateral design methods were developed. With the first method the pressure loss and emitter flow ratio for trickle irrigation laterals can be determined. The design method is based upon known principles of fluid mechanics. A computer program was written to determine the lateral pressure loss and emitter flow ratio at a given design length as function of pipe size, tree spacing, number of emitters per tree, emitter spacing, downstream lateral pressure and lateral slope. For a given set of design inputs, the program can be used to determine if the given pipe size will be adequate to li

Hiler, E. A.

1975-06-01T23:59:59.000Z

195

Michalis Nikiforos On the Desired Rate of Capacity Utilization  

E-Print Network (OSTI)

This paper examines the endogeneity (or lack thereof) of the rate of capacity utilization in the long run within the context of the controversy surrounding the Kaleckian model of growth and distribution. We argue that the proposed long-run dynamic adjustment, proposed by Kaleckian scholars, lacks a coherent economic rationale. We provide economic justification for the adjustment of the desired rate of utilization towards the actual rate on behalf of a cost-minimizing firm, after examining the factors that determine the utilization of resources. The cost minimizing firm has an incentive to increase the utilization of its capital if the rate of the returns to scale decreases as its production increases. We show that there are evidence in the theory and the empirical research that justify this behavior of returns to scale. In that way the desired rate of utilization becomes endogenous.

Michalis Nikiforos; Laura Barbosa De Carvalho; Christian Schoder; Jonathan Cogliano For Useful

2011-01-01T23:59:59.000Z

196

Increased Power Flow Guidebook  

Science Conference Proceedings (OSTI)

The Increased Power Flow (IPF) Guidebook is a state-of-the-art and best practices guidebook on increasing power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates alternatives with case studies, and analyzes costs and benefits of differe...

2005-11-16T23:59:59.000Z

197

Higher Spin Black Holes from CFT  

E-Print Network (OSTI)

Higher spin gravity in three dimensions has explicit black holes solutions, carrying higher spin charge. We compute the free energy of a charged black hole from the holographic dual, a 2d CFT with extended conformal symmetry, and find exact agreement with the bulk thermodynamics. In the CFT, higher spin corrections to the free energy can be calculated at high temperature from correlation functions of W-algebra currents.

Gaberdiel, Matthias R; Jin, Kewang

2012-01-01T23:59:59.000Z

198

Higher Spin Black Holes from CFT  

E-Print Network (OSTI)

Higher spin gravity in three dimensions has explicit black holes solutions, carrying higher spin charge. We compute the free energy of a charged black hole from the holographic dual, a 2d CFT with extended conformal symmetry, and find exact agreement with the bulk thermodynamics. In the CFT, higher spin corrections to the free energy can be calculated at high temperature from correlation functions of W-algebra currents.

Matthias R. Gaberdiel; Thomas Hartman; Kewang Jin

2012-02-29T23:59:59.000Z

199

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

200

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

OpenEI Community - utility  

Open Energy Info (EERE)

60 en Utility Rates API Version 2 is Live http:en.openei.orgcommunityblogutility-rates-api-version-2-live

202

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

203

Utility Lines and Facilities (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

204

DOE Connects with Higher Education Community  

Energy.gov (U.S. Department of Energy (DOE))

EDUconnections is a year old project, and through it we celebrate our university partners, spotlighting a different higher education institution every month.

205

FCT Education: Competitions for Higher Education Students  

NLE Websites -- All DOE Office Websites (Extended Search)

& Educators Grades 5-12 Higher Education Energy Education Links Careers in Hydrogen & Fuel Cells Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells...

206

Photovoltaics: New opportunities for utilities  

SciTech Connect

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

207

Hustisford Utilities | Open Energy Information  

Open Energy Info (EERE)

Hustisford Utilities Hustisford Utilities Jump to: navigation, search Name Hustisford Utilities Place Wisconsin Utility Id 9124 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

208

Cost Avoidance vs. Utility Bill Accounting - Explaining theDiscrepancy Between Guaranteed Savings in ESPC Projects and UtilityBills  

SciTech Connect

Federal agencies often ask if Energy Savings PerformanceContracts (ESPCs) result in the energy and cost savings projected duringthe project development phase. After investing in ESPCs, federal agenciesexpect a reduction in the total energy use and energy cost at the agencylevel. Such questions about the program are common when implementing anESPC project. But is this a fair or accurate perception? Moreimportantly, should the federal agencies evaluate the success or failureof ESPCs by comparing the utility costs before and after projectimplementation?In fact, ESPC contracts employ measurement andverification (M&V) protocols to measure and ensure kilowatt-hour orBTU savings at the project level. In most cases, the translation toenergy cost savings is not based on actual utility rate structure, but acontracted utility rate that takes the existing utility rate at the timethe contract is signed with a clause to escalate the utility rate by afixed percentage for the duration of the contract. Reporting mechanisms,which advertise these savings in dollars, may imply an impact to budgetsat a much higher level depending on actual utility rate structure. FEMPhas prepared the following analysis to explain why the utility billreduction may not materialize, demonstrate its larger implication onagency s energy reduction goals, and advocate setting the rightexpectations at the outset to preempt the often asked question why I amnot seeing the savings in my utility bill?

Kumar, S.; Sartor, D.

2005-08-15T23:59:59.000Z

209

FEASIBILITY OF INCREASING THE ENERGY OF RHIC.  

SciTech Connect

In this paper we discuss the possibility of increasing the energy of beams in RHIC by as much as 30% with a modest trade-off in luminosity. The arc dipoles and quadrupoles were designed with considerable margin. For higher energies (>100 GeV/nucleon) the minimum {beta}* may be required to increase as the interaction region triplets saturate. The separator magnets (DX) have the least margin for increased field, so we consider three scenarios: allowing for a small crossing angle with the present DX magnets, upgrading the DX magnets to higher strength, and permitting a crossing angle of {approximately}1{degree} by removing the DX magnets altogether.

MACKAY,W.W.; JAIN,A.; LUCCIO,A.U.; PILAT,F.; ROSER,T.; TEPIKIAN,S.; TROBOJEVIC,D.

2001-06-18T23:59:59.000Z

210

Utility DSM Programs from 1989 through 1998: Continuation or cross roads?  

SciTech Connect

Over the past five years, the Energy Information Administration (EIA) has been collecting data annually from U.S. electric utilities on their demand-side management (DSM) programs, both current and projected. The latest data cover activities for 1993 and projections for 1994 and 1998. In 1993, 991 utilities operated DSM programs. That year, they spent $2.8 billion, a 13% increase over 1992 expenditures. These and earlier DSM programs saved 44,000 GWh of energy and reduced potential peak demand by 40,000 MW, 30% and 22% increases over the 1992 values, respectively. While some people predict the demise of electric-utility DSM programs, the data do not paint so bleak a picture. In most parts of the country, DSM programs grew in 1993 and utilities (as of Spring 1994) projected continued growth through 1998. Expenditures grew from 1.3% of revenues in 1992 to 1.5% in 1993, and are expected to grow 2.5% per year faster than inflation, which is equivalent to revenue growth. Thus, DSM spending is expected to stay constant at 1.5% of revenues through 1998. Because of the cumulative effect of DSM programs, energy savings are expected to grow from 1.2% of sales in 1992 to 1.6% in 1993 and 3.0% in 1998. Potential-peak reductions are expected to increase from 5.9% of peak demand in 1992 to 6.8% in 1993 and 8.9% in 1998. However, the growth in spending is not as rapid as the 8% annual real growth projected a year earlier. Actual expenditures in 1993 were 6.5% lower than projected early that year. Energy savings, on the other hand, were the same as projected earlier. Potential peak reductions were actually 9% higher than previously projected.

Hadley, S.; Hirst, E.

1995-02-01T23:59:59.000Z

211

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

212

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

213

Diesel prices increase nationally  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase nationally The U.S. average retail price for on-highway diesel fuel rose to 3.91 a gallon on Monday. That's up 1.3 cents from a week ago, based on the...

214

Diesel prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

Diesel prices increase The U.S. average retail price for on-highway diesel fuel rose to 3.84 a gallon on Monday. That's up 2.2 cents from a week ago, based on the weekly price...

215

Delivering energy services: the emerging role of California's municipal utilities  

SciTech Connect

The financial circumstances and energy service opportunities for California's municipal electric utilities are explored. The structure and financial operation of municipal utilities, including the new role of joint powers agency financing, are analyzed. The advantages which conservation and alternative energy resources can offer municipal utilities are discussed: reduced capital requirements, increased cash flow, oil displacement, improved air quality, reduced risk of large plant outages, and matching new capacity to uncertain load growth. Recommendations are presented for removing the existing barriers which discourage prospects for municipal utility energy service investments, such as wholesale rate design reflecting flat or declining block rates and high demand charges, control of bulk power transmission lines by investor-owned utilities, failure of federal power-marketing agencies to provide conservation incentives to their municipal utility customers, and tax credit provisions of the Crude Oil Windfall Profit Tax Act of 1980. Appendices include the municipal utilities' current resource plans, the history and process of the formation of new municipal utilities, and the energy service role of municipal agencies in cities which may not have municipal utilities.

Dawson, M.H.; Praul, C.G.; Marcus, W.B.

1982-11-01T23:59:59.000Z

216

Cogeneration: The Need for Utility-Industry Cooperation  

E-Print Network (OSTI)

Cogeneration is receiving increasing attention because of its potential for efficient utilization of energy. Many recent cogeneration studies, however, have concentrated on the benefits and costs of cogeneration to industry, giving little consideration to utility roles and perspectives. This paper provides an overview of a project sponsored by the Electric Power Research Institute to evaluate industrial cogeneration applications, taking into account utility interactions and impacts. Recent changes in federal legislation, particularly the enactment of the Public Utility Regulatory Policies Act (PURPA), have attempted to remove many of the institutional barriers which in the past made industry hesitant to invest in cogeneration. However, to implement the most attractive cogeneration systems industry must consider the changing economics of utility power generation. Also, despite the attractiveness of cogeneration, many industrial managers are reluctant to invest scarce capital in an area which they do not consider a natural extension of their business. At the same time, many utilities facing slower load growth and economic/environmental /institutional constraints on capacity expansion are willing to consider cogeneration as an option. Cogeneration projects can be highly complementary to the traditional utility business and possibly offer an attractive profit potential. Also, utilities can offer industry the needed expertise to implement and operate cogeneration systems. Considerable benefits may therefore be derived from cooperative cogeneration ventures among utilities and industrial firms. Many different organizational and financial arrangements can be structured, including third party financing. The, paper will briefly discuss the need for and benefits of cooperative efforts and provide illustrative examples of different institutional arrangements.

Limaye, D. R.

1982-01-01T23:59:59.000Z

217

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

218

Managing Carbon Regulatory Risk in Utility Resource Planning: Current  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Carbon Regulatory Risk in Utility Resource Planning: Current Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Title Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Publication Type Report Year of Publication 2009 Authors Barbose, Galen L., Ryan H. Wiser, Amol Phadke, and Charles A. Goldman Pagination 28 Date Published 03/2009 Publisher LBNL City Berkeley Keywords carbon emissions, electric utilities, electricity markets and policy group, energy analysis and environmental impacts department, power system planning Abstract Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demandside resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers

219

Utilization of solar thermal sources for thermochemical hydrogen production  

DOE Green Energy (OSTI)

The utilization of high temperature solar heat for the production of electricity and/or fuels is a popular concept. However, since solar concentrator systems are expensive and solar radiation intermittent, practical utilization requires processes that exhibit high conversion efficiencies and also incorporate energy storage. The production of hydrogen fulfills the requirement for energy storage and can fulfill the requirement for efficient heat utilization if thermochemical cycles are developed where the temperature and heat requirements of the process match the heat delivery characteristics of the solar receiver system. Cycles based on solid sulfate decomposition reactions may lead to efficient utilization of solar heat at practical temperatures. Higher temperature cycles involving oxide decomposition may also become feasible.

Bowman, M.G.

1980-01-01T23:59:59.000Z

220

Utility Solar Generation Valuation Methods  

DOE Green Energy (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

222

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

223

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

224

PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS  

E-Print Network (OSTI)

.g., wholesale, has members, wholesale with retail), number of customers, description of supply sources, and solid waste utilities, as well as engineering and customer services. SPU's Director reports to the Mayor wholesale customers created the Seattle Water Supply Operating Board. The board works on policy

225

Recent content in Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Recent content in Utility Rate Recent content in Utility Rate Home Name Post date sort icon Type How do I Build Apps with Utility Rate Data (that is continuously updating)? Kch 23 Apr 2012 - 10:31 Discussion Town Hall Meeting Rmckeel 12 Jun 2012 - 09:01 Event "Ghost" entries Rmckeel 19 Jun 2012 - 08:04 Discussion How do I Build Apps with Utility Rate Data (that is continuously updating)? Kch 22 Jun 2012 - 07:44 Question With the developer in mind,... Rmckeel 22 Jun 2012 - 07:45 Answer NREL does have an existing web... Sfomail 22 Jun 2012 - 07:46 Answer List of utility company aliases Ewilson 22 Jun 2012 - 09:05 Question Increasing ask query limit Rmckeel 22 Jun 2012 - 09:30 Discussion Hey Ewilson, great question. ... Rmckeel 22 Jun 2012 - 09:47 Answer

226

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

227

Class, Race, and Higher Education in America  

E-Print Network (OSTI)

Century New England, St. Martin's Press, New York Fay, J.S.Higher Education in America Martin Trow Goldman School ofH.M. Laslett and Seymour Martin Lipset, eds (1974). provided

Trow, Martin

2006-01-01T23:59:59.000Z

228

From Higher Education To Work In West  

E-Print Network (OSTI)

1. Work Participation And Average Annualized Wages Of Graduates From West Virginia Public Higher .................................................................................................1 Results By Year And Residency ........................................................................................22 Appendix I: Detailed Description Of Employment Data .........................................29

Mohaghegh, Shahab

229

Firm Size And Higher Education Graduate  

E-Print Network (OSTI)

of Tables 1. West Virginia Public Higher Education Graduate Work Participation By Area Of Concentration .................................................................................................1 Employment And Annualized Wages By West Virginia Firm Employment Size.....................................................18 Appendix I: Detailed Description Of Employment Data .........................................19

Mohaghegh, Shahab

230

From Higher Education To Work In West  

E-Print Network (OSTI)

1. Number Of Graduates By Area Of Concentration And Degree From W.Va. Public Higher Education .................................................................................................1 Results By Year, Experience, Residency, And Degree............................................4.....................................................34 Appendix I: Detailed Description Of Employment Data .........................................36

Mohaghegh, Shahab

231

Modelling higher-order dual nondeterminacy  

Science Conference Proceedings (OSTI)

We investigate models for programming and specifying in which higher-order functions and nondeterminacy (both demonic and angelic) coexist. The models are built using predicate transformers, binary multirelations, state transformers, and free lattices ...

Joseph M. Morris; Malcolm Tyrrell

2008-07-01T23:59:59.000Z

232

Refinement of higher-order logic programs  

Science Conference Proceedings (OSTI)

A refinement calculus provides a method for transforming specifications to executable code, maintaining the correctness of the code with respect to its specification. In this paper we extend the refinement calculus for logic programs to include higher-order ...

Robert Colvin; Ian Hayes; David Hemer; Paul Strooper

2002-09-01T23:59:59.000Z

233

Canola: Chemistry, Production, Processing and Utilization Chapter 10 Meal Nutrition and Utilization  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 10 Meal Nutrition and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 10 Meal Nutrition and Utilization,

234

Rotating Black Holes in Higher Dimensions  

E-Print Network (OSTI)

The properties of higher-dimensional black holes can differ significantly from those of black holes in four dimensions, since neither the uniqueness theorem, nor the staticity theorem or the topological censorship theorem generalize to higher dimensions. We first discuss black holes of Einstein-Maxwell theory and Einstein-Maxwell-Chern-Simons theory with spherical horizon topology. Here new types of stationary black holes are encountered. We then discuss nonuniform black strings and present evidence for a horizon topology changing transition.

Burkhard Kleihaus; Jutta Kunz; Francisco Navarro-Lerida

2007-10-11T23:59:59.000Z

235

Industrial Utilization of Coal-Oil Mixtures  

E-Print Network (OSTI)

Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM:. Economics and details of industrial conversion to COM are discussed. CoaLiquid, Inc. of Louisville, KY, which uses ultrasonic emulsification to stabilize the cm:, has been a leader in commercial demonstration in industrial equipment. Some of these demonstrations are discussed, along with implications for the future use of COM.

Dunn, J. E.; Hawkins, G. T.

1982-01-01T23:59:59.000Z

236

The Industry/Utility Interface - An Overview  

E-Print Network (OSTI)

For many years, starting in the Jate forties, a number of different factors combined to make self-generation of electrical energy cost-prohibitive except for a few very large users of electrical service. The nation's utilities were virtually a true monopoly. An annual growth rate of electrical energy consumption of 8-9% per year, the continuing availability of increasingly larger and larger, more efficient generating units, coupled with fuel prices of less than 25c per million BTU'S, perpetuated this monopoly up into the mid-seventies.

Hamilton, D. E.

1990-06-01T23:59:59.000Z

237

Origin of higher temperatures in multidipolar plasma devices  

Science Conference Proceedings (OSTI)

Hot-filament discharge devices with multidipolar surface magnetic fields have densities and temperatures higher than in these devices without multidipolar fields. Probe data show a much higher density of secondary electrons from the wall with multidipolar fields that is best explained by the wall secondaries being confined by the magnetic mirror effect. A relatively simple mathematical model for energy balance shows that the heating of the bulk plasma electrons by collisions with the greater number of secondaries from the wall accounts quantitatively for the increased temperature.

Knappmiller, Scott [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309-0392 (United States); Robertson, Scott [Center for Integrated Plasma Studies, University of Colorado, Boulder, Colorado 80309-0390 (United States)

2011-10-15T23:59:59.000Z

238

FY12 Quarter 3 Computing Utilization Report LANL  

Science Conference Proceedings (OSTI)

DSW continues to dominate the capacity workload, with a focus in Q3 on common model baselining runs in preparation for the Annual Assessment Review (AAR) of the weapon systems. There remains unmet demand for higher fidelity simulations, and for increased throughput of simulations. Common model baselining activities would benefit from doubling the resolution of the models and running twice as many simulations. Capacity systems were also utilized during the quarter to prepare for upcoming Level 2 milestones. Other notable DSW activities include validation of new physics models and safety studies. The safety team used the capacity resources extensively for projects involving 3D computer simulations for the Furrow series of experiments at DARHT (a Level 2 milestone), fragment impact, surety theme, PANTEX assessments, and the 120-day study. With the more than tripling of classified capacity computing resources with the addition of the Luna system and the safety team's imminent access to the Cielo system, demand has been met for current needs. The safety team has performed successful scaling studies on Luna up to 16K PE size-jobs with linear scaling, running the large 3D simulations required for the analysis of Furrow. They will be investigating scaling studies on the Cielo system with the Lustre file system in Q4. Overall average capacity utilization was impacted by negative effects of the LANL Voluntary Separation Program (VSP) at the beginning of Q3, in which programmatic staffing was reduced by 6%, with further losses due to management backfills and attrition, resulting in about 10% fewer users. All classified systems were impacted in April by a planned 2 day red network outage. ASC capacity workload continues to focus on code development, regression testing, and verification and validation (V&V) studies. Significant capacity cycles were used in preparation for a JOWOG in May and several upcoming L2 milestones due in Q4. A network transition has been underway on the unclassified networks to increase access of all ASC users to the unclassified systems through the Yellow Turquoise Integration (YeTI) project. This will help to alleviate the longstanding shortage of resources for ASC unclassified code development and regression testing, and also make a broader palette of machines available to unclassified ASC users, including PSAAP Alliance users. The Moonlight system will be the first capacity resource to be made available through the YETI project, and will make available a significant increase in cycles, as well as GPGPU accelerator technology. The Turing and Lobo machines will be decommissioned in the next quarter. ASC projects running on Cielo as part of the CCC-3 include turbulence, hydrodynamics, burn, asteroids, polycrystals, capability and runtime performance improvements, and materials including carbon and silicone.

Wampler, Cheryl L. [Los Alamos National Laboratory; McClellan, Laura Ann [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

239

Gov. King's stance against utilities upsets both camps  

Science Conference Proceedings (OSTI)

Massachusetts utilities and utility detractors all object to Governor King's position stated at a March press conference and urging regulators to deny rate increases that he claimed would be paying for utility mistakes. Boston Edison's request for a $291 million rate increase would recover the money lost when the utility abandoned its Pilgrim II nuclear plant. Boston Gas is seeking $46 million to recover money lost during last winter's shortage of natural gas. The governor's timing and mode of intervention prompted most of the criticism because of their political ramifications during an election year. Most of his statements drew upon materials from a consumer group called Fair Share, but were stated in a way that the governor's re-election is necessary to secure the desired effects. (DCK)

Not Available

1982-04-19T23:59:59.000Z

240

Utility Companies | OpenEI Community  

Open Energy Info (EERE)

Utility Companies Utility Companies Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy OpenEI outages storm United States Utility Companies As Hurricane Sandy continues to track towards the coast of the Eastern

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EERC Center for Biomass Utilization 2005  

DOE Green Energy (OSTI)

Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

242

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

243

Improved accounting of emissions from utility energy storage system operation  

Science Conference Proceedings (OSTI)

Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO{sub 2} and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions 'accounting' might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation. 35 refs., 5 figs., 2 tabs.

Paul Denholm; Tracey Holloway [University of Wisconsin-Madison, Madison, WI (United States)

2005-12-01T23:59:59.000Z

244

Disk Quota Increase Request  

NLE Websites -- All DOE Office Websites (Extended Search)

Disk Disk Quota Increase Disk Quota Increase Request NERSC will consider reasonable requests for changes in disk space and inode limits. Please submit a request through the "Request Forms" section at the NERSC help portal. If you select "Hopper scratch directory" from the "File System" menu below, the quota value requested applies to the combined contents of $SCRATCH and $SCRATCH2. Please ask for the least amount of resources you need, since the sum of disk space and inodes allocated to users already exceeds system capacity. In other words, system resources would be exhausted before all users could use their existing quotas. You can find out the current quotas and usage of disk space and inodes for your home and scratch file systems with the myquota command. You can find

245

Pemex increasing offshore activity  

SciTech Connect

Although austere by boom-year standards, Mexico's National Energy Program for 1984-1988 calls for forty wildcats and 90 to 144 development wells off the coast, primarily in the prolific Campeche Bay area. Platform additions will include nine drilling platforms, each for twelve wells, and eight eight platforms to drill injection wells. Additionally, 7 production, 6 accomodation, 6 linkage and 8 compression platforms and 13 tetrapods will be installed. The main objectives of the plan are energy self-sufficiency through the turn of the century, and energy diversification, savings and productivity. The most controversial portion of Mexico's energy program is that calling for nuclear energy development. The energy program lists three basic goals in hydrocarbon production: continuing research on better techniques of secondary recovery; increasing capacity for refining primary and secondary crude products and improving production of heavy crudes; and increasing storage capacity and installing pipelines capable of carrying a greater volume of crude.

Beachy, D.

1985-05-01T23:59:59.000Z

246

Utilization ROLE OF COAL COMBUSTION  

E-Print Network (OSTI)

Center for Products Utilization ROLE OF COAL COMBUSTION PRODUCTS IN SUSTAINABLE CONSTRUCTION and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;ROLE OF COAL COMBUSTION PRODUCTS, Federal Highway Administration, Washington, DC., U.S.A. SYNOPSIS Over one hundred million tonnes of coal

Wisconsin-Milwaukee, University of

247

Electrochemical Capacitors for Utility Applications  

Science Conference Proceedings (OSTI)

Electrochemical capacitors have over 100 times the energy density of conventional electrolytic capacitors, while retaining the high-power, high-life-cycle properties of conventional capacitors. This report presents a summary of the technical trends, commercialization status, and feasibility of electrochemical capacitor (ECC) technology in utility applications.

2005-08-31T23:59:59.000Z

248

Module Utilization Committee. Final report  

DOE Green Energy (OSTI)

Photovoltaic collector modules were declared surplus to the needs of the US Department of Energy. The Module Utilization Committee was formed to make appropriate disposition of the surplus modules. The final report of that committee accounts for that disposition. The membership and activities of the committee are set forth and the results of its activities are reported.

None

1984-03-01T23:59:59.000Z

249

Homeowners survey: gas utilities and the residential solar market  

Science Conference Proceedings (OSTI)

The market potential for a gas/solar energy market in the residential sector prompted the American Gas Association's Solar Energy Committee to analyze national homeowner data collected by Gallup for the Solar Energy Research Institute to see if it applies to gas-utility diversification. The survey results show that the public is interested in utility involvement. Key findings in the survey cover not only attitudes, but profile potential buyers, project market shares, and note regional-attitude differences. The utilities that diversify in this way could improve their relations with both customers and regulators as well as increasing their profits. 4 figures, 17 tables. (DCK)

Pilgrim, B.F.

1982-04-01T23:59:59.000Z

250

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

251

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

252

Non-utility power generation continues to grow  

SciTech Connect

This article examines why the number of non-utility power plants is increasing. The topics include the impact of the changes to the Public Utility Holding Company Act, and bidding for capacity. It includes a look at Texaco's Puget Sound oil refinery and how its efficiency problems were solved using cogeneration including the need to improve energy balance and engineering of the plant. Grayling generating station (wood waste) and Kalaeloa cogeneration power plant (low sulfur fuel oil) are also discussed.

Smith, D.J.

1993-05-01T23:59:59.000Z

253

Energy Crossroads: Utility Energy Efficiency Programs California...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Businesses Southwest Gas Corporation Information for Businesses Truckee Donner Public Utility District Information for Businesses Sacramento Municipal Utility District (SMUD...

254

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

255

Mississippi Public Utility Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

256

Aligning Utility Interests with Energy Efficiency Objectives...  

Open Energy Info (EERE)

Aligning Utility Interests with Energy Efficiency Objectives: A Review of Recent Efforts at Decoupling and Performance Incentives Jump to: navigation, search Name Aligning Utility...

257

Partnering with Utilities and Other Program Administrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering with Utilities and Other Ratepayer-Funded Energy Efficiency Program Administrators May 2013 1 Partnering with Utilities and Other Ratepayer-Funded Energy Efficiency...

258

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Savings Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting...

259

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

260

PARS II Extraction Utility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Extraction Utility DEC1387487110111DekkerPMISExtractionUtilityv8020101217.zip More Documents & Publications Dekker PMIS Extraction Utility Release Notes for the PARS...

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

262

Energy Crossroads: Utility Energy Efficiency Programs Colorado...  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Colorado Springs Utilities Information for Businesses Nebraska Municipal Power Pool...

263

Form:Utility Rate | Open Energy Information  

Open Energy Info (EERE)

Form Edit History Facebook icon Twitter icon Form:Utility Rate Jump to: navigation, search Add or Update Utility Rate Information Retrieved from "http:en.openei.orgw...

264

Federal Energy Efficiency through Utility Partnerships  

SciTech Connect

Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

2007-08-01T23:59:59.000Z

265

Studying the Communications Requirements of Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

266

Americium separation from nuclear fuel dissolution using higher oxidation states.  

Science Conference Proceedings (OSTI)

Much of the complexity in current AFCI proposals is driven by the need to separate the minor actinides from the lanthanides. Partitioning and recycling Am, but not Cm, would allow for significant simplification because Am has redox chemistry that may be exploited while Cm does not. Here, we have explored methods based on higher oxidation states of Am (AmV and AmVI) to partition Am from the lanthanides. In a separate but related approach we have also initiated an investigation of the utility of TRUEX Am extraction from thiocyanate solution. The stripping of loaded TRUEX by Am oxidation or SCN- has not yet proved successful; however, the partitioning of inextractable AmV by TRUEX shows promise.

Bruce J. Mincher

2009-09-01T23:59:59.000Z

267

Port Angeles Public Works & Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Port Angeles Public Works and Utilities provides incentives for business customers to increase the energy efficiency of eligible facilities. Rebates are offered for a variety of improvements...

268

Effect of energy supply on amino acid utilization by growing steers.  

E-Print Network (OSTI)

??Effects of energy supply on the efficiency of methionine and leucine utilization in growing steers were evaluated in 3 studies. We hypothesized that increased energy (more)

Schroeder, Guillermo Fernando

2006-01-01T23:59:59.000Z

269

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and thus total electricity bills. A utility typically facesreduce consumers electricity bills significantly. However,ceteris paribus, their electricity bills would increase if

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

270

A higher limit approach to homology theories.  

E-Print Network (OSTI)

A lot of well-known functors such as group homology, cyclic homology of algebras can be described as limits of certain simply defined functors over categories of presentations. In this paper, we develop technique for the description of the higher limits over categories of presentations and show that certain homological functors can be described in this way. In particular, we give a description of Hochschild homology and the derived functors of tensor, symmetric and exterior powers in the sense of Dold and Puppe as higher limits.

Sergei O. Ivanov; Roman Mikhailov

271

QSO hosts and companions at higher redshifts  

E-Print Network (OSTI)

This review presents the current state of work on QSO hosts and companions at redshifts above 1. This includes the properties of QSO host galaxies, such as size, scale length, and luminosity, and morphology, as they appear to change with redshift and radio activity. This leads to a view of how the properties of galaxies that host QSOs change with cosmic time. I also review studies of the galaxy companions to QSOs at higher redshifts, and studies of the emission line gas in and around higher redshift QSOs. These topics should see great progress in the next decade.

J. B. Hutchings

2001-07-09T23:59:59.000Z

272

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

273

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

274

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become increasing difficult for electric utilities to install new generating capacity due to public concerns about nuclear energy and environmental issues. In many areas of the country, utilities now find themselves capacity short during their peak periods, and have concerns about providing a reliable supply of electricity. These utilities have initiated programs which encourage their customers to conserve electric energy, and shift or lower use during the utility's peak periods. In other areas of the country there are utilities which have more than adequate electric supplies. These utilities have developed programs which ensure that costs of electricity are such that existing customers are maintained. Programs which address demand issues of an energy utility are referred to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient lighting, electric motors and packaged air conditioning systems. More recently, however, many utilities have implemented very innovative programs, which indicates an increased commitment towards demand planning, and requires a substantial financial investment in new equipment and engineering services. Some programs have addressed such areas as thermal storage and industrial processes, and others have included comprehensive facility energy studies where greater than fifty percent of the cost of energy retrofits may be covered by the utility. Progressive pricing strategies have included real-time pricing and aggressive curtailable rates for commercial and industrial buildings. Further, new standards are being established by electric utilities which promote energy efficient new construct ion. All of these programs can have considerable impacts on both the customer's and utility's energy use patterns and load shapes. This paper will discuss a number of more significant and innovative DSM programs, and will explain the potential load and energy impacts.

Epstein, G. J.; Fuller, W. H.

1989-09-01T23:59:59.000Z

275

Price and cost impacts of utility DSM programs  

Science Conference Proceedings (OSTI)

More US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. In particular, should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity Most of the debates about the appropriate economic tests to use in assessing utility programs do not address the magnitude of the impacts. As a result, questions remain about the relationships among utility DSM programs and acquisition of supply resources and the effects of these choices on electricity prices and costs. This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. A dynamic model is used to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios for three utilities: a base that is typical of US utilities; a surplus utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. Model results show that DSM programs generally reduce electricity costs and increase electricity prices. However, the percentage reduction in costs is usually greater than the percentage increase in prices. On the other hand, most of the cost benefits of DSM programs can be obtained without raising electricity prices.

Hirst, E. (Oak Ridge National Lab., TN (United States))

1992-01-01T23:59:59.000Z

276

Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990  

Science Conference Proceedings (OSTI)

Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

1994-01-01T23:59:59.000Z

277

INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS  

Science Conference Proceedings (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.

D.O. Hitzman; A.K. Stepp; D.M. Dennis; L.R. Graumann

2003-09-01T23:59:59.000Z

278

Higher Order Differential Attack of Camellia (II)  

Science Conference Proceedings (OSTI)

Camellia is a 128-bit block cipher, proposed by NTT and Mitsubishi in 2000. It has been shown that 10 round variant without FL function under a 256-bit secret key is attackable by Higher Order Differential Attack and even if FL function is included, ...

Yasuo Hatano; Hiroki Sekine; Toshinobu Kaneko

2002-08-01T23:59:59.000Z

279

General quantum key distribution in higher dimension  

E-Print Network (OSTI)

We study a general quantum key distribution protocol in higher dimension. In this protocol, quantum states in arbitrary g+1 (1?g?d) out of all d+1 mutually unbiased bases in a d-dimensional system can be used for the key ...

Shi, Han-Duo

280

Complexity of the higher order matching  

Science Conference Proceedings (OSTI)

We use the standard encoding of Boolean values in simply typed lambda calculus to develop a method of translating SAT problems for various logics into higher order matching. We obtain this way already known NP-hardness bounds for the order two and three ...

Tomasz Wierzbicki

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric utility system master plan  

SciTech Connect

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

282

FFTF utilization for irradiation testing  

SciTech Connect

FFTF utilization for irradiation testing is beginning. Two Fuels Open Test Assemblies and one Vibration Open Test Assembly, both containing in-core contact instrumentation, are installed in the reactor. These assemblies will be used to confirm plant design performance predictions. Some 100 additional experiments are currently planned to follow these three. This will result in an average core loading of about 50 test assemblies throughout the early FFTF operating cycles.

Corrigan, D.C.; Julyk, L.J.; Hoth, C.W.; McGuire, J.C.; Sloan, W.R.

1980-01-01T23:59:59.000Z

283

Device for monitoring utility usage  

SciTech Connect

A device for monitoring utility usage for installation and use by homeowners and consumers with existing public utility meters having a disk that is mounted inside a transparent case and that rotates in response to electrical current usage, the device is described comprising: a disk rotation monitoring assembly for mounting on the exterior of the transparent case, said monitoring assembly comprising: (a) a sensor for sensing disk rotation speed and generating a signal in response thereto; and (b) means for mounting said sensor on the transparent case, said mounting means further comprising means for holding said sensor, means for attaching said holding means to the transparent case, and means for adjusting the position of said holding means to enable precise alignment of said sensor with the plane of the disk such that said sensor is in optical communication with the edge of said disk; one or more remote display terminals in electrical communication with said monitoring assembly, each of said one or more remote terminals comprising: (a) means for receiving said signal and processing said signal into utility consumption data; (b) an electronic memory for storing said data; (c) a visual display for displaying data in a reader-usable format about consumption; and (d) a display controller that enables selective displaying of any of said data on said visual display.

Green, R.G.

1993-05-25T23:59:59.000Z

284

Energy Crossroads: Utility Energy Efficiency Programs Tennessee...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tennessee Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Tennessee Valley Authority (TVA...

285

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

286

Public Utility Regulation (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

287

Federal Energy Management Program: Utility Contract Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

288

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

289

Higher order harmonic detection for exploring nonlinear interactions  

SciTech Connect

Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.

Vasudevan, Rama K [ORNL; Okatan, M. B. [University of New South Wales; Rajapaksa, Indrajit [Oak Ridge National Laboratory (ORNL); Kim, Yunseok [ORNL; Marincel, Dan [Materials Science and Engineering, Pennsylvania State University; Trolier-McKinstry, Susan [Pennsylvania State University; Jesse, Stephen [ORNL; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL

2013-01-01T23:59:59.000Z

290

Price impacts of electric-utility DSM programs  

Science Conference Proceedings (OSTI)

As competition in the electricity industry increases, utilities (and others) worry more about the upward pressure on electricity prices that demand-side management (DSM) programs often impose. Because of these concerns, several utilities have recently reduced the scope of their DSM programs or focused these programs more on customer service and peak-demand reductions and less on improving energy efficiency. This study uses the Oak Ridge Financial Model (ORFIN) to calculate the rate impacts of DSM. The authors use ORFIN to examine the two factors that contribute to DSM`s upward pressure on prices: the cost of the programs themselves and the loss of revenue associated with fixed-cost recovery. This second factor reflects the reduction in revenues caused by the DSM-induced energy and demand savings that exceed the reduction in utility costs. This analysis examines DSM price impacts as functions of the following factors: the DSM program itself (cost, conservation load factor, geographic focus on deferral of transmission and distribution investments, and mix across customer classes); the utility`s cost and pricing structures (factors at least partly under the utility`s control, such as retail tariffs, fixed vs variable operating costs, and capital costs not related to kW or kWh growth); and external economic and regulatory factors (the level and temporal pattern of avoided energy and capacity costs; ratebasing vs expensing of DSM-program costs; shareholder incentives for DSM programs; load growth; and the rates for income, property, and revenue taxes).

Hirst, E.; Hadley, S.

1994-11-01T23:59:59.000Z

291

Science, engineering and technical service capabilities of Nevada higher education organizations  

Science Conference Proceedings (OSTI)

The objective of this document is to increase the current dialogue between members of Nevada`s higher education system and the leadership of the federal scientific community in Nevada in order to start and expand collaborative relationships. This section provides introductory material on Nevada institutions of higher education and research together with background information on the need for increased federal collaboration with Nevada higher education institutions.

Not Available

1994-09-01T23:59:59.000Z

292

Lower Cost, Higher Performance Carbon Fiber  

NLE Websites -- All DOE Office Websites (Extended Search)

David (Dave) Warren David (Dave) Warren Field Technical Manager Transportation Materials Research Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV Lower Cost, Higher Performance Carbon Fiber 14 February 2011 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Questions for Today Materials How can the cost of carbon fiber suitable for higher performance applications (H 2 Storage) be developed? H 2 Storage requirements implies Aerospace grade fibers. Can we build off of work previously done for more modest structural applications? To accurately answer: We need to know the minimum performance and maximum cost requirements of the fiber not simply the properties of current fiber.

293

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA); Bagheri, Reza (Bethlehem, PA)

1997-12-02T23:59:59.000Z

294

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.

McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.

1995-01-17T23:59:59.000Z

295

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

Bauman, B.D.; Williams, M.A.; Bagheri, R.

1997-12-02T23:59:59.000Z

296

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1996-04-09T23:59:59.000Z

297

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.

McInnis, E.L.; Bauman, B.D.; Williams, M.A.

1996-04-09T23:59:59.000Z

298

Higher modulus compositions incorporating particulate rubber  

DOE Patents (OSTI)

Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles.

McInnis, Edwin L. (Allentown, PA); Scharff, Robert P. (Louisville, KY); Bauman, Bernard D. (Emmaus, PA); Williams, Mark A. (Souderton, PA)

1995-01-01T23:59:59.000Z

299

City of College Station, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Station College Station Place Texas Utility Id 3940 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Rider - HED (Higher Education Discount) Commercial Industrial Industrial Industrial - Primary Service Industrial Industrial - Time of use Industrial Large Commercial - Schedule LP -2 - On-Peak/Off-Peak rider Commercial Large Commercial - Schedule LP -2 - Primary Service Commercial

300

DOE announces price increase for fiscal year 1990  

SciTech Connect

The central question for current USEC holders is the extent to which DOE`s prices will increase in the future and whether those prices will be competitive with other sources available at the time of delivery. DOE`s current point of view (as expressed to the US Congress) is that prices will be kept at the ceiling price under the contract. Speculation on the future of DOE`s enrichment enterprise is on the agenda of many utilities this month, as USEC customers must provide notice to DOE on April 1, 1989 if they wish to reduce their contractual commitment in FY 1999 to below 70 percent of their requirements without penalty. The USEC also allows customers to adjust between 70 and 100 percent of their requirements with five years` notice. Based on projected prices for deliveries under the IP2 offer, customers which previously rejected IP2 will probably elect to take only 70 percent of their requirements from DOE in FY 1994. If firm notification is not given for the base SWU requirements, a USEC holder is not rules out as a DOE customer for that year, but DOE cannot guarantee to have the production capacity available. On the other hand, DOE has very aggressively pursued utilities with unfilled requirements in the short term. Given the expected glut of enrichment capacity well into the next decade, the potential for higher DOE prices due to environmental and decommissioning costs at their diffusion plants, and the potential for other suppliers to provide advanced technology, it may prove difficult for DOE to continue to convince its customers that ten-year contracts are in their best interests.

NONE

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Higher Education: Who Benefits? WHAT IS THE  

E-Print Network (OSTI)

Little argument exists about the societal and personal value of education. The more complicated question is who benefits from, and therefore who pays for, higher education. Both the community and the individual benefit from education; this complicates the funding equation as to how much society and the individual should pay. If students had to pay the full price of education, too few would be able or willing to pay because the immediate personal

unknown authors

2003-01-01T23:59:59.000Z

302

Diversifying Project Portfolios for Utility Energy Service Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diversifying Project Portfolios for Utility Energy Service Diversifying Project Portfolios for Utility Energy Service Contracts Diversifying Project Portfolios for Utility Energy Service Contracts October 7, 2013 - 2:28pm Addthis Building a diversified project portfolio enhances utility energy service contracts (UESCs) to ensure Federal agencies get the best value possible. Energy efficiency measures are inherent in UESC projects. However, do not overlook the possibility for renewable energy and water efficiency and other conservation measures. Building a portfolio of energy service projects lowers overall contracting costs while increasing energy cost savings. This portfolio approach offers additional benefits by reducing contract and administrative burdens and optimizing energy savings. Renewable Energy Multiple laws and regulations require agencies to implement and use

303

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

304

Public Utilities Tax Rebate (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Tax Rebate (Delaware) Utilities Tax Rebate (Delaware) Public Utilities Tax Rebate (Delaware) < Back Eligibility Commercial Agricultural Industrial Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Corporate Tax Incentive Provider Department of Finance This rebate is part of the Blue Collar Jobs Act, which establishes tax breaks for businesses that have sustainable jobs and make significant investments in the state. Firms meeting the criteria for targeted industry tax credits are eligible for a rebate of 50 percent of the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The

305

Cleveland, Toledo utilities merge to aid N-projects  

SciTech Connect

A decision by the Cleveland Electric Illuminating Co. and Toledo Edison to merge was spurred by the need to strengthen their access to capital markets in order to complete several nuclear power plants now under construction and to possibly mitigate the impact of large rate increases on Ohio ratepayers. The two utilities will continue as local companies. If they obtain approval from the Securities and Exchange, the Ohio Public Utilities, and the Nuclear Regulatory Commissions for the $8 million affiliation, the new holding company will be among the 20 largest electric utilities in terms of the market value of its common stock. Some industry observers see this as a harbinger of more utility mergers. 1 figure.

Utroska, D.

1985-08-01T23:59:59.000Z

306

Utility Partnerships Program Overview (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agencies in meeting energy efficiency, agencies in meeting energy efficiency, renewable energy, and water conser- vation goals. Laws and Regulations The following legislative and execu- tive authorities support contracting for utility services: * Energy Policy Act (EPAct) of 1992 (42 U.S.C. Section 8256): Agencies are authorized and encouraged to participate in programs to increase energy efficiency and water con- servation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities. Agencies may accept any financial incentive, good, or service generally available from any utility. * 10 U.S.C. Section 2913: Outlines energy savings contracts and related activities, shared energy savings contracts, participation in gas or

307

How Spineless Prickly Pear Cactus Utilize Selenium  

NLE Websites -- All DOE Office Websites (Extended Search)

How Spineless Prickly Pear Cactus How Spineless Prickly Pear Cactus Utilize Selenium How Spineless Prickly Pear Cactus Utilize Selenium Print Monday, 12 March 2012 13:50 Due to drought and limited freshwater supplies, the increased accumulation of naturally occurring salts, boron (B), and selenium (Se) has worsened in some agricultural areas, such as in the west side of the San Joaquin Valley, California. Growing Se-biofortified crops is an emerging method for utilizing these "semiretired lands" because the nutraceutical benefits of enhancing organic Se, an essential micronutrient in crops, is concomitant with the phytoremediation of inorganic Se pollutants. Researchers from the U.S. Department of Agriculture used ALS Beamline 10.3.2 to study the chemical forms and distribution of Se in the attractive alternative crop Opuntia ficus-indica, an edible spineless prickly pear cactus that tolerates both drought and adverse saline- and B-impacted soil conditions while accumulating and volatilizing organic Se. Micro x-ray fluorescence (mXRF) mapping showed Se concentrated in the tips of the plant's cladodes (edible pads), cladode vasculature, and seed embryos. Se K-edge x-ray absorption near edge structure (XANES) spectroscopy demonstrated that >90% of total Se in cladodes, fruit juice, fruit pulp, and seeds is in organic form (C-Se-C). Cladode tips contain both inorganic selenate (SeO42-) and C-Se-C. Enzymatic digestion confirmed that Se was mainly present in a "free," non-proteinaceous form inside cladode and fruit, whereas in the seed, Se was incorporated into proteins associated with lipids.

308

Program on Technology Innovation: Utility Scale of Use of Biomass  

Science Conference Proceedings (OSTI)

The report introduces the main aspects of co-firing biomass with coal, briefly focusing on the main problems and constraints related to utilizing biomass together with coal for power generation and the potential of the torrefaction + pelleting (ToP) preprocessing treatment in mitigating many of these constraints. Torrefaction combined with a pelletization process makes the logistics of transporting and storing bulky biomass more efficient due to its significantly higher energy. Torrefaction is a technol...

2009-03-31T23:59:59.000Z

309

Partners for Progress- A Utility Perspective  

E-Print Network (OSTI)

Central Power and Light Company, an Investor Owned Utility serving the greater part of South Texas, got the largest setback of its 75 year life during the 1980's when cogeneration hit home. It's no secret that the Texas Gulf Coast in 1980 was one of the greenest pastures in the country for the integration of cogeneration. Scattered throughout our coastal service area was a concentration of petrochemical plants and refineries placed like a row of dominoes waiting to be knocked over. These plants while operating in Texas were really doing business in a world market. If one company took advantage of a technology that could reduce its operation costs significantly, then very definite pressure was placed on all its competitors to follow suit in quick order or lose a share in the market. To make the story short, CPL lost over 250 MWs and eight of its largest customers in about a six year period to the implementation of cogeneration technology. By CPL I mean the stockholders who expected a dividend, the employees who faced possible layoffs and the remaining customers who faced the possibility of increased rates necessary to pick up embedded costs of the system. All these groups had a stake in turning the situation around. I have to add that even the customers who began to serve their own load had a stake in tile health of the utility with which they remained interconnected with and purchased standby and maintenance service from.

Pierce, C. S.

1990-06-01T23:59:59.000Z

310

Avista Utilities - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

311

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric

312

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge

313

Trust, Markets and Accountability in Higher Education: A Comparative Perspective  

E-Print Network (OSTI)

that European and American higher education are currentlyfor Studies in Higher Education UNIVERSITY OF CALIFORNIA,AND ACCOUNTABILITY IN HIGHER EDUCATION: A COMPARATIVE

Trow, Martin

1996-01-01T23:59:59.000Z

314

The Carnegie Commission and Council on Higher Education: A Retrospective  

E-Print Network (OSTI)

AND COUNCIL ON HIGHER EDUCATION: A RETROSPECTIVE * Novemberfor Studies in Higher Education, UC Berkeley Copyright 2005Carnegie Commission on Higher Education under the auspices

Douglass, John Aubrey

2005-01-01T23:59:59.000Z

315

Recent Racial Incidents in Higher Education: A Contemporary Perspective  

E-Print Network (OSTI)

Racial Incidents in Higher Education 1987b. "King Wants1988. "Hispanics Higher Education's Missing People." Change12-65. Chronicle of Higher Education. 1987. "Racial Brawl

Farrell, Walter C. Jr.; Jones, Cloyzelle K.

1988-01-01T23:59:59.000Z

316

AFTER BROWNE: The New Competitive Regime for English Higher Education  

E-Print Network (OSTI)

s Proposals for Higher Education Funding and StudentAn Analysis Oxford: Higher Education Policy Institute.and Medow, J. (2010) Global Higher Education Rankings 2010:

Roger Brown

2011-01-01T23:59:59.000Z

317

An Emerging View on Accountability in American Higher Education  

E-Print Network (OSTI)

Accountability in Higher Education: Lessons from the PastStates and Public Higher Education Policy: Affordability,and Privatization in Public Higher Education. Washington,

Leveille, David E.

2005-01-01T23:59:59.000Z

318

International Trends in Higher Education and the Indian Scenario  

E-Print Network (OSTI)

International Higher Education, Spring. CSHE Research &Dynamics of Private Higher Education in the United States:and Public Policy. Higher Education Policy 3(2): 9-12.

Gupta, Asha

2005-01-01T23:59:59.000Z

319

European Responses to Global Competitiveness in Higher Education  

E-Print Network (OSTI)

Adaptations of European Higher Education Systems in theDiversity in Higher Education. Jossey-Bass Publishers,2005). The European Higher Education and Research Landscape

Marijk van der Wende

2009-01-01T23:59:59.000Z

320

From Mass Higher Education to Universal Access: The American Advantage  

E-Print Network (OSTI)

Transition from Elite to Mass Higher Education, op. cit.impact of mass on elite higher education, see Trow, M. , Elite Higher Education: An Endangered Species? , Minerva,

Trow, Martin A

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Disruptive Dialogue Project: Crafting Critical Space in Higher Education  

E-Print Network (OSTI)

faculty work: Higher educations strategic imperative. Sanfor the Study of Higher Education, Anaheim, CA. *Carducci,the public agenda for higher education. Symposium presented

Carducci, Rozana; Kuntz, Aaron M.; Gildersleeve, Ryan Evely; Pasque, Penny A.

2011-01-01T23:59:59.000Z

322

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

323

Utility Energy Services Contracts: Enabling Documents Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents Documents Update San Diego, CA November 28, 2007 Deb Beattie & Karen Thomas Overview  Legislative & Executive Actions  Legal Opinions  Agency Guidance  Contracts  Sample Documents  Resources www.eere.energy.gov/femp/pdfs/28792.pdf Enabling Legislation for Utility Programs Energy Policy Act of 1992 Section 152(f) - Utility Incentive Programs Section 152(f) - Utility Incentive Programs Agencies:  Are authorized and encouraged to participate in utility programs generally available to customers  May accept utility financial incentives, goods, and services generally available to customers  Are encouraged to enter into negotiations with utilities to design cost effective programs to address unique needs of facilities used by agency

324

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

325

Utility Conservation Programs: Opportunities and Strategies  

E-Print Network (OSTI)

This paper examines the use of conservation programs to achieve utility goals in an electric industry environment subject to change. First, the importance of articulating clear goals for the mission of a utility is discussed. Second, a strategic framework for analysis of utility promotion of conservation investment is presented. Third, the rationale, design and marketing of basic conservation strategies based on differences in utility capacity and cost situations are examined. Particular attention is given to evaluating the establishment of a subsidiary by a utility to offer energy management services -- a relatively new concept that: may present great opportunities for many utilities.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

326

City of Marshall, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Michigan Michigan Utility Id 11713 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Secondary Service B Commercial Commercial Secondary Service B1 Commercial Commercial Secondary Service C Commercial Economic Development Rate E Commercial Industrial Primary Rate D-2 Less than 12,470 Nominal Voltage 3% Increase Industrial Industrial Primary Service D Industrial Industrial Primary Service D Less than 12,470 Nominal Voltage 3% Increase

327

The Strong Case for Thermal Energy Storage and Utility Incentives  

E-Print Network (OSTI)

With the general increase in electricity rates, commercial and industrial customers have become strongly motivated to seek innovative methods of achieving reductions of their electric bills. At the same time, utilities have been faced with rising construction costs, more stringent regulations, and increasing environmental constraints regarding development of new generating facilities. As the thermal cooling storage technology has matured, more and more utilities are recognizing that widespread use of cool storage will provide an inexpensive alternative to new generating capacity. Every megawatt of load shift from peak to off-peak hours is equivalent to a megawatt of new generating capacity. This paper will review the state-of-the-art of cool storage technology, the economic benefits and utility programs designed to encourage the application of cool storage systems.

McCannon, L. W.

1986-06-01T23:59:59.000Z

328

Changes in hydrogen utilization with temperature during direct coal liquefaction  

Science Conference Proceedings (OSTI)

A reliable means of monitoring the major pathways of hydrogen utilization, in contrast to only measuring net hydrogen comsumption, would be very useful for process optimization. The goal of this work was to develop an analytical approach for quantitatively distinguishing hydrogen consumed in hydrogenation from that utilized to stabilize thermolysis fragments. The approach outlined yields a rather detailed description of the net utilization of hydrogen during direct liquefaction, partitioning it into contributions from gas generation, heteroatom removal, hydrogenation, and matrix breakdown. Preliminary results indicate that internal hydrogen reorganization, with little consumption, predominates at low temperatures, with hydrogenation being compensated for by the hydrogen liberated in condensations. As the temperature is increased, bond cleavage reactions and aromatization reactions appear to become more important, and the net hydrogen consumption increases. (3 tables 1 figs., 11 refs.)

Finseth, D.H.; Bockrath, B.C.; Cillo, D.L.; Illig, E.G.; Sprecher, R.F., Retcofsky, H.L.; Lett, R.G.

1983-01-01T23:59:59.000Z

329

ADVANCED GASIFICATION BY-PRODUCT UTILIZATION  

SciTech Connect

The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

2005-04-01T23:59:59.000Z

330

Utilities look skeptically at rail derequlation  

SciTech Connect

Concern about the Staggers Rail Act of 1980, which deregulates rates, prompted the Tennessee Valley Authority to insert a protective clause allowing it to cancel coal contracts if rail rates go too high. Railroads will be allowed to charge an increasing amount, up to 175% of variable costs by 1984. Legislators were hoping to pass a slurry-pipeline bill to provide the competition that will protect consumers. Pipelines would carry less tha 20% of the freight, but they would provide an efficiency and cost comparison. The Interstate Commerce Commission (ICC) has not been able to protect utilities, especially those relying on coal from the Powder River Basin. The new law could relieve railroads of enough regulatory cost burdens and promote competitive lines to hold down rates. (DCK)

Not Available

1981-01-01T23:59:59.000Z

331

Increasing ask query limit | OpenEI Community  

Open Energy Info (EERE)

Increasing ask query limit Increasing ask query limit Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries: http://en.openei.org/services/rest/utility_rates?version=latest&format=json_plain&offset=9998&limit=30&detail=basic". Twong mentioned "It looks like there's a default total max limit of 10000 results retrieved, even for special query pages in SemanticMediawiki. $smwgQMaxLimit Maximal number of results ever retrieved, even when using special query pages. Default: 10000"

332

Advanced Gasification By-Product Utilization  

Science Conference Proceedings (OSTI)

With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

2006-02-01T23:59:59.000Z

333

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

334

Finding Utility Companies Under a Given Utility ID | OpenEI Community  

Open Energy Info (EERE)

Finding Utility Companies Under a Given Utility ID Finding Utility Companies Under a Given Utility ID Home > Groups > Developer Jayhuggins's picture Submitted by Jayhuggins(15) Member 22 June, 2012 - 09:39 Utility+Utility Access Map Here's a quick way to find all the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". Groups: Developer Login to post comments Jayhuggins's blog Latest blog posts Rmckeel The utility rate database version 1 API is now deprecated Posted: 6 Sep 2013 - 14:00 by Rmckeel Jweers New Robust References! Posted: 7 Aug 2013 - 18:23 by Jweers 1 comment(s) 1 of 10 ›› Groups Menu You must login in order to post into this group.

335

Practical Handbook of Soybean Processing and Utilization Chapter 7 Soybean Meal Processing and Utilization  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 7 Soybean Meal Processing and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 7 Soybean Meal Processing and Util

336

Canola: Chemistry, Production, Processing and UtilizationChapter 9 Oil Nutrition and Utilization  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 9 Oil Nutrition and Utilization Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 9 Oil Nutrition and Utilization from ...

337

Practical Handbook of Soybean Processing and UtilizationChapter 20 Soybean Oil Products Utilization: Shortenings  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 20 Soybean Oil Products Utilization: Shortenings Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 20 Soybean Oil Products Util

338

Electric Utility Measurement & Verification Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Measurement and Verification (M&V) of applicable Power Smart Industrial projects is the process of verifying the results of the implementation of energy conservation measures (ECMs) at industrial customer facilities. Power Smart M&V activities are based on the International Performance Measurement & Verification Protocol (IPMVP); a consensus document produced with the international support of industry and government. This paper discusses BC Hydros M&V program and the M&V results from industrial projects. Several case history studies will also be reviewed. The case studies reviewed involve aeration motor speed controls upgrade, steam turbine controls upgrade and natural gas liquid pump speed controls upgrade.

Lau, K.; Henderson, G.; Hebert, D.

2007-05-01T23:59:59.000Z

339

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

340

Spectral utilization in thermophotovoltaic devices  

DOE Green Energy (OSTI)

Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

Clevenger, M.B.; Murray, C.S.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Utility Service Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

342

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API The utility rate database version 1 API is now deprecated Rmckeel 6 Sep 2013 - 14:00 Blog entry API Lighting Electricity Rates on OpenEI Sfomail 31 May 2013 - 12:04 Blog entry API Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis

343

Clarksdale Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Clarksdale Public Utilities Clarksdale Public Utilities Jump to: navigation, search Name Clarksdale Public Utilities Place Mississippi Utility Id 3702 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church and Fraternal Commercial Church and Fraternal-All Electric Commercial Commercial All Electric/Governmental All Electric/Utility All Electric Commercial Commercial Small/Governmental Small/Utility Small\ Commercial

344

Utility Contract Competition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Competition Utility Contract Competition October 7, 2013 - 2:26pm Addthis Opening utility energy service contracts to competing franchised utility companies ensures Federal agencies get the best value for their projects. Federal agencies are not legally required to compete for utility incentive services provided by the "established source" utility in the utility's franchised service territory. If services are available, the Energy Policy Act of 1992 states that there should be no restriction on Federal facilities directly benefiting from the services the same as any other customer. The exception is if there is more than one serving utility offering utility energy services (e.g., a gas company and an electric company). In this case, the Federal Acquisition Regulations and good fiscal management

345

Keewatin Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Keewatin Public Utilities Keewatin Public Utilities Jump to: navigation, search Name Keewatin Public Utilities Place Minnesota Utility Id 10089 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Average Rates Residential: $0.0883/kWh Commercial: $0.0889/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Keewatin_Public_Utilities&oldid=410929" Categories: EIA Utility Companies and Aliases

346

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

347

Spot pricing of public utility services  

E-Print Network (OSTI)

This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

348

Practical Handbook of Soybean Processing and Utilization  

Science Conference Proceedings (OSTI)

This new Practical Handbook of Soybean Processing and Utilization is intended to provide a single source of practical information on the subject to an international audience. Practical Handbook of Soybean Processing and Utilization Processing agricultura

349

Liberty Utilities (Electric) - Commercial New Construction Rebate...  

Open Energy Info (EERE)

Service Department Liberty Utilities Address PO Box 960 Place Northborough, Massachusetts ZipPostal Code 1532-0960 Phone (800) 375-7413 Website http:liberty-utilities.comeast...

350

* Canola: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

Volume 4 in the AOCS Monograph Series on Oilseeds. * Canola: Chemistry, Production, Processing, and Utilization Processing agricultural algae algal analytical aocs articles biomass biotechnology By-product Utilization courses detergents division division

351

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

Not Available

2009-07-01T23:59:59.000Z

352

Form:Utility Company | Open Energy Information  

Open Energy Info (EERE)

Form Edit History Facebook icon Twitter icon Form:Utility Company Jump to: navigation, search Input your utility company name below to add to the registry. If the company is...

353

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

2009-07-01T23:59:59.000Z

354

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

355

Federal Energy Management Program: Federal Utility Partnership Working  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Utility Federal Utility Partnership Working Group Utility Partners to someone by E-mail Share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Facebook Tweet about Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Twitter Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Google Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Delicious Rank Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Digg Find More places to share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on AddThis.com...

356

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

357

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate Program Eligibility Agricultural Commercial Fed. Government Industrial Local...

358

Energy Crossroads: Utility Energy Efficiency Programs Minnesota...  

NLE Websites -- All DOE Office Websites (Extended Search)

Minnesota Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Minnesota Power Information for Businesses Xcel Energy (Minnesota...

359

Utility Rebates and Incentive Programs (Fact Sheet)  

SciTech Connect

Fact sheet overview of the Federal Utility Partnership Working Group (FUPWG), including group objectives, activities, and services.

Not Available

2009-07-01T23:59:59.000Z

360

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Crossroads: Utility Energy Efficiency Programs Indiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Duke Energy Information for Businesses VECTREN...

362

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

363

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

364

Energy Crossroads: Utility Energy Efficiency Programs District...  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Pepco Information for Businesses Washington Gas...

365

Energy Crossroads: Utility Energy Efficiency Programs Mississippi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Entergy Corporation (Mississippi) Information for Businesses Mississippi Power...

366

Energy Crossroads: Utility Energy Efficiency Programs Hawaii...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Hawaiian Electric Company, Inc. (HECO...

367

HIGHER EDUCATION FACILITIES MANAGEMENT: READY FOR INTERNATIONALIZATION?  

E-Print Network (OSTI)

The last ten years has seen dramatic growth in Facilities Management (FM) activities worldwide, including Malaysia. Facilities Management is responsible for coordinating all efforts related to planning, designing and managing physical structure and it equipment, furniture and fixtures to improve the organizations ability to compete successfully in a fast changing world. The facilities of a Higher Education Institution (HEI) like Universiti Teknologi Malaysia are one of its most valuable assets and must be manage properly in order to meet the need of the Institutions end-user (Local and International students). This research provides essential concept on the application of facility management in general and specific emphasis on Higher Education facilities like library, class rooms, transportation services, catering services among others. The purpose of this study is to identify and assess whether the facilities provided in Universiti Teknologi Malaysia (UTM) meet the International students requirement and recommend measure necessary to meet the shortfalls of these requirements. 210 questionnaires were administered to seven colleges and quantitative analysis technique was used in the analysis of the result. The finding shows 70% of the respondents (male and female) are satisfied and comfortable with the academic facilities which include (Library, class rooms) however, 30% were not. Similarly, 65% of the respondents said the transportation service (bus) on campus is inefficient. Finding also shows that 55% and 85% of the respondents complained on road signage and catering services. On college facilities, between 58% and 70% of the respondents are satisfied with the college facilities (rooms, desk, bed, sport facilities, parking space). Results indicate that 70% of the respondents complained of the chair provided in their rooms (not to ergonomic standards). Overall result shows that 65% of the respondents are satisfied with the campus facilities while 35% are not satisfied.

Aizuddin, N.; Yahya, M.

2009-11-01T23:59:59.000Z

368

Utility Energy Service Contracts - Lessons Learned  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

369

Utility Energy Service Contracts - Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

370

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

371

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

372

Utilization Technology Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Utilization Technology Institute Place Des Plaines, IL References Utilization Technology Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utilization Technology Institute is a company located in Des Plaines, IL. References ↑ "Utilization Technology Institute" Retrieved from "http://en.openei.org/w/index.php?title=Utilization_Technology_Institute&oldid=381738" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

373

A utility`s perspective of the market for IGCC  

SciTech Connect

I believe, in the short-term U. S. market that IGCC`s primary competition is, natural gas-fired combined cycle technology. I believe that in order for IGCC to compete on a commercial basis, that natural gas prices have to rise relative to coal prices, and that the capital cost of the technology must come down. While this statement may seem to be somewhat obvious, it raises two interesting points. The first is that while the relative pricing of natural gas and coal is not generally within the technology supplier`s control, the capital cost is. The reduction of capital cost represents a major challenge for the technology suppliers in order for this technology to become commercialized. The second point is that the improvements being achieved with IGCC efficiencies probably won`t help it outperform the effects of natural gas pricing. This is due to the fact that the combined cycle portion of the IGCC technology is experiencing the most significant improvements in efficiency. I do see, however, a significant advantage for IGCC technology compared to conventional pulverized coal-fired units. As IGCC efficiencies continue to improve, combined with their environmentally superior performance, I believe that IGCC will be the ``technology of choice`` for utilities that install new coal-fired generation. We have achieved economic justification of our project by virtue of the DOE`s funding of $120 million awarded in Round III of their Clean Coal Technology Program. This program provides the bridge between current technology economics and those of the future. And Tampa Electric is pleased to be taking a leadership position in furthering the IGCC knowledge base.

Black, C.R. [Tampa Electric Co., FL (United States)

1993-08-01T23:59:59.000Z

374

Building a Holographic Superconductor with Higher-derivative Couplings  

E-Print Network (OSTI)

We discuss the gravitational dual of a holographic superconductor consisting of a U(1) gauge field, a complex scalar field coupled to a charged AdS black hole and a higher-derivative coupling between the U(1) gauge field and the scalar with coupling constant \\eta. In the presence of a magnetic field, the system possesses localized spatially dependent droplet solutions which, in the low temperature limit, have smaller critical temperature for \\eta>0 than the droplet solutions without the interaction term (\\eta=0). In the weak magnetic field limit, the opposite behavior is observed: the critical temperature increases as we increase \\eta. We also calculate the energy gap in the probe limit and find that it is larger for \\etaenergy gap in the conventional case (\\eta=0).

Xiao-Mei Kuang; Eleftherios Papantonopoulos; George Siopsis; Bin Wang

2013-03-11T23:59:59.000Z

375

Additions to natural gas in underground storage to be nearly 50% higher this summer  

U.S. Energy Information Administration (EIA) Indexed Site

Additions to natural gas in underground storage to be nearly Additions to natural gas in underground storage to be nearly 50% higher this summer Although it's still spring, natural gas supply companies and utilities are already preparing for next winter and are building their inventories of natural gas to meet future heating demand. About 2.1 trillion cubic feet of natural gas will be added to gas inventories in underground storage over the summer months to get ready for the winter heating season, which starts November 1. That is significantly higher than the roughly 1.5 trillion cubic feet of gas added during last summer, according to the U.S. Energy Information Administration's new monthly forecast. Higher natural prices this year will lead to lower gas use by power plants to generate electricity, which will contribute to the higher build in gas inventories

376

Domestic utility attitudes toward foreign uranium supply  

SciTech Connect

The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

1981-06-01T23:59:59.000Z

377

band density of states whereas the higher energy side is deter-mined by the thermal distribution. With increasing tem-  

E-Print Network (OSTI)

. wavelength, pm ~ Fig. 4 Demonstration ofthe application ofan InAs, -.Sb, light emitting diode as a CO, sensor light emitting diodes on GaAs or Si substrates. The devices readily result in a new generation of infra

Chen, Sheng

378

Environmental implications of increased biomass energy use  

DOE Green Energy (OSTI)

This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

Miles, T.R. Sr.; Miles, T.R. Jr. (Miles (Thomas R.), Portland, OR (United States))

1992-03-01T23:59:59.000Z

379

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

380

Utility Easements (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Easements (Indiana) Utility Easements (Indiana) Utility Easements (Indiana) < Back Eligibility Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Natural Resources A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set aside as a scenic or historic place, or the portion of a public highway passing through one of the aforementioned types of places

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cairo Public Utility Company | Open Energy Information  

Open Energy Info (EERE)

Cairo Public Utility Company Cairo Public Utility Company Jump to: navigation, search Name Cairo Public Utility Company Place Illinois Utility Id 2776 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1140/kWh Industrial: $0.0654/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Cairo_Public_Utility_Company&oldid=409150

382

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

383

Building Energy Software Tools Directory: Utility Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Manager Utility Manager Utility Manager logo Utility Manager™ captures data from historical and current utility bills every month into its centralized database, helping clients measure and energy costs and usage. Utility Manager™ provides energy, operational and financial managers with a series of customizable reports to help shape future decisions regarding energy costs and usage. Screen Shots Keywords Central capture of utility data for cost and energy usage reporting and reduction Validation/Testing Software has been rigorously tested internally throughout the course of its development and ongoing maintenance and enhancement (more than 15 years). Expertise Required Basic computer skills and understanding of energy accounting principles. Users 400-500 U.S. and Canada (primarily U.S.).

384

Knoxville Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Knoxville Utilities Board Knoxville Utilities Board (Redirected from KUB) Jump to: navigation, search Name Knoxville Utilities Board Place Knoxville, Tennessee Utility Id 10421 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Knoxville Utilities Board Smart Grid Project was awarded $3,585,022 Recovery Act Funding with a total project value of $9,356,989. Utility Rate Schedules Grid-background.png FIVE-MINUTE RESPONSE (5 MR) INTERRUPTIBLE POWER Commercial GSA (1) 0KW-50KW Commercial OUTDOOR LIGHTING Part B- Mercury Vapor 1000W Lighting

385

UGI Utilities, Inc | Open Energy Information  

Open Energy Info (EERE)

Utilities, Inc Utilities, Inc Jump to: navigation, search Name UGI Utilities, Inc Place Pennsylvania Utility Id 19390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0204/kWh Industrial: $0.0373/kWh The following table contains monthly sales and revenue data for UGI Utilities, Inc (Pennsylvania).

386

Foley Board of Utilities | Open Energy Information  

Open Energy Info (EERE)

Foley Board of Utilities Foley Board of Utilities Jump to: navigation, search Name Foley Board of Utilities Place Alabama Utility Id 6491 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Electric- Option A Commercial Athletic Field Electric- Option B Commercial General Service -Three-Phase Commercial General Service- Single-Phase Commercial Public Highway Lighting- Special Lighting Public Street and Highway Lighting- Customer Owned Fixtures Lighting Public Street and Highway Lighting- Utility-Owned Fixtures- 20,000 Lumen

387

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

388

Gwitchyaa Zhee Utility Co | Open Energy Information  

Open Energy Info (EERE)

Gwitchyaa Zhee Utility Co Gwitchyaa Zhee Utility Co Jump to: navigation, search Name Gwitchyaa Zhee Utility Co Place Alaska Utility Id 7833 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.2730/kWh Commercial: $0.5010/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gwitchyaa_Zhee_Utility_Co&oldid=410787

389

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

390

Utility Rates | OpenEI Community  

Open Energy Info (EERE)

Utility Rates Utility Rates Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 6 September, 2013 - 14:00 The utility rate database version 1 API is now deprecated API Utility Rates There comes a time in every API version's lifecycle when it needs to be deprecated. OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010. As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data. Rmckeel's picture Submitted by Rmckeel(297) Contributor 11 June, 2013 - 09:33 Tip for working with approvals on OpenEI EZFeed Utility Rates The "ApprovedRevs" extension is the feature on OpenEI that allows

391

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Utility Authority Utility Authority (Redirected from Navajo Tribal Utility Association) Jump to: navigation, search Name Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849.

392

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

393

Removing Barriers to Utility Interconnected Photovoltaic Inverters  

SciTech Connect

The Million Solar Roofs Initiative has motivated a renewed interest in the development of utility interconnected photovoltaic (UIPV) inverters. Government-sponsored programs (PVMaT, PVBONUS) and competition among utility interconnected inverter manufacturers have stimulated innovations and improved the performance of existing technologies. With this resurgence, Sandia National Laboratories (SNL) has developed a program to assist industry initiatives to overcome barriers to UIPV inverters. In accordance with newly adopted IEEE 929-2000, the utility interconnected PV inverters are required to cease energizing the utility grid when either a significant disturbance occurs or the utility experiences an interruption in service. Compliance with IEEE 929-2000 is being widely adopted by utilities as a minimum requirement for utility interconnection. This report summarizes work done at the SNL balance-of-systems laboratory to support the development of IEEE 929-2000 and to assist manufacturers in meeting its requirements.

Gonzalez, S.; Bonn, R.H.; Ginn, J.W.

2000-10-03T23:59:59.000Z

394

Lanesboro Public Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Lanesboro Public Utility Comm Lanesboro Public Utility Comm Jump to: navigation, search Name Lanesboro Public Utility Comm Place Minnesota Utility Id 10685 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Phase 2 Commercial Commercial- Three Phase Commercial Residential Residential Average Rates Residential: $0.1140/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lanesboro_Public_Utility_Comm&oldid=410975

395

Mohegan Tribal Utility Auth | Open Energy Information  

Open Energy Info (EERE)

Mohegan Tribal Utility Auth Mohegan Tribal Utility Auth Jump to: navigation, search Name Mohegan Tribal Utility Auth Place Connecticut Utility Id 49826 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Mohegan_Tribal_Utility_Auth&oldid=411113" Categories:

396

Truman Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Truman Public Utilities Comm Truman Public Utilities Comm Jump to: navigation, search Name Truman Public Utilities Comm Place Minnesota Utility Id 19237 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1360/kWh Commercial: $0.1410/kWh Industrial: $0.1150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Truman_Public_Utilities_Comm&oldid=411881"

397

Public Utilities Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Act (Illinois) Public Utilities Act (Illinois) Public Utilities Act (Illinois) < Back Eligibility Commercial Industrial Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Safety and Operational Guidelines Provider Illinois Commerce Commission This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports. Every public utility shall furnish to the Commission all information required by it to carry into effect the provisions of this Act, and shall make specific answers to

398

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

399

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

400

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Survey of Utility Experience with Real Time Pricing  

E-Print Network (OSTI)

RTP tariffs, like most utility rates, impose restrictions onreturned to the utilitys standard, fixed-rate tariff. 25were below the utilitys standard tariff rates, and large

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2004-01-01T23:59:59.000Z

402

Wind Energy for Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy for Municipal Utilities Jump to: navigation, search Four 1.8-MW Vestas turbines owned by AMP-Ohio in Bowling Green, Ohio. Photo from Ohio Office of Energy Efficiency, NREL 14070 In the face of new and emerging market conditions, municipal utilities across the country find themselves at a crossroads. Load requirements are expected to continue increasing, while in many cases, existing supply contracts will end within the next few years. Further, customers throughout municipal utility service territories express consistently high levels of interest in renewable energy alternatives. In most cases, the preferred

403

Management Skills and Attitudes of Principals Toward Energy Utilization  

E-Print Network (OSTI)

The purpose of this study was to compare several factors in the management skills of principals which affected energy utilization and, therefore, increased or decreased energy consumption in the school plant. This study provided districts with information to differentiate between management skills exhibited by school principals in meeting their energy utilization goals. This information could be used to design in service programs on energy utilization for principals to define the role of administrators in energy conservation and to alert certification institutions of any facility management deficiencies in administrative training. This study provided baseline data for the energy management systems companies involved in districts' conservation efforts during the late 1980s to educate principals in energy conservation.

Huntington, P.; Mayfield, E.

1987-01-01T23:59:59.000Z

404

Identifying critical success factors of ERP systems at the higher education sector  

Science Conference Proceedings (OSTI)

In response to a range of contextual drivers, the worldwide adoption of ERP Systems in Higher Education Institutions (HEIs) has increased substantially over the past decade. Though the difficulties and high failure rate in implementing ERP systems at ... Keywords: CSFs, ERP implementation success, ERP systems, critical success factors, higher education

Ahmad A. Rabaa

2009-12-01T23:59:59.000Z

405

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

406

A primer on incentive regulation for electric utilities  

SciTech Connect

In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

Hill, L.J.

1995-10-01T23:59:59.000Z

407

Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch  

DOE Green Energy (OSTI)

The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

Coddington, M.; Margolis, R.M.; Aabakken, J.

2008-01-01T23:59:59.000Z

408

ESS 2012 Peer Review - Higher Power Motor for ARPA-E Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Higher Power Motor for ARPA-E Flywheel Limitations of ARPA-E Flywheel * 1 Hour of Storage Program Tasks * Add Back-Iron to Stator to Increase Magnet Flux g * Limited to Longer Term...

409

Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators  

SciTech Connect

Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

1993-08-01T23:59:59.000Z

410

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

411

Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System  

SciTech Connect

In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

Allgood, Glenn O [ORNL; Olama, Mohammed M [ORNL; Lake, Joe E [ORNL; Brumback, Daryl L [ORNL

2010-01-01T23:59:59.000Z

412

Survey of Instrumentation and Control Practices in the Process Industries for Application to the Power Utilities  

Science Conference Proceedings (OSTI)

With impending deregulation and ever-tightening environmental constraints, utilities are increasing their emphasis on maximizing operating efficiency and reducing maintenance and operational costs. It is likely that utilities can use the capabilities of modern control and information management systems more effectively than they currently do. This report documents lessons learned over many years by experts in the process industries that might benefit the utility industry as it transitions to a competitiv...

1999-04-08T23:59:59.000Z

413

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

414

Fairmont Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Fairmont Public Utilities Comm Place Minnesota Utility Id 6151 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ALL ELECTRIC RATE Industrial COMMERCIAL SERVICE Commercial GENERAL SERVICE Industrial INDUSTRIAL SERVICE Industrial INDUSTRIAL SERVICE - PRIMARY VOLTAGE Industrial RESIDENTIAL HEAT Residential RESIDENTIAL SERVICE Residential RURAL SERVICE Residential

415

Emerald People's Utility Dist | Open Energy Information  

Open Energy Info (EERE)

Utility Dist Utility Dist Jump to: navigation, search Name Emerald People's Utility Dist Place Oregon Utility Id 40437 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AGRICULTURAL PUMPING Poly-Phase 30.1 hp to 60 hp Commercial AGRICULTURAL PUMPING Poly-Phase 30hp or less Commercial AGRICULTURAL PUMPING Poly-Phase 60.1 hp & over Commercial AGRICULTURAL PUMPING Single Phase Commercial

416

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

417

Trenton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Trenton Municipal Utilities Trenton Municipal Utilities Jump to: navigation, search Name Trenton Municipal Utilities Place Missouri Utility Id 19150 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Rate Commercial Commercial All Electric Rate Commercial Commercial General Electric Rate Commercial Commercial Power Rate Commercial Grundy Electric Rate for City Line Usage Commercial

418

Tecumseh Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Tecumseh Utility Authority Tecumseh Utility Authority Jump to: navigation, search Name Tecumseh Utility Authority Place Oklahoma Utility Id 18524 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Bright Light Service- (Any Kind) Lighting General Commercial Service Commercial High Pressure Sodium Light Lighting Large Commercial Rate Commercial Residential Rate Residential Residential Total Electric Residential Average Rates Residential: $0.1590/kWh Commercial: $0.1460/kWh References

419

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Navajo Tribal Utility Authority Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849. Utility Rate Schedules Grid-background.png

420

Rancho Cucamonga Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rancho Cucamonga Municipal Utility Rancho Cucamonga Municipal Utility Jump to: navigation, search Name Rancho Cucamonga Municipal Utility Place California Utility Id 56224 Utility Location Yes Ownership M NERC WECC Yes ISO CA Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Systems Commercial Large Commercial Commercial Medium Commercial Commercial Medium Commercial (Time-Of-Use) Commercial Net Energy Metering Commercial Outdoor Area Lighting Lighting Small Comercial Commercial Small Commercial Three Phase Commercial

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

422

Williamstown Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Williamstown Utility Comm Williamstown Utility Comm Jump to: navigation, search Name Williamstown Utility Comm Place Kentucky Utility Id 20731 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Area Light Lighting 150 Watt High Pressure Sodium Floodlight Lighting 175 Watt Mercury Vapor Area Light Lighting 250 Watt High Pressure Sodium Area Light Lighting 250 Watt High Pressure Sodium Floodlight Lighting 400 Watt High Pressure Sodium Area Light Lighting

423

Concept:Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Description of concept "Utility Companies"RDF feed [[Category:Utility Companies]] [[EiaUtilityId::+]] Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages of concept "Utility Companies" Showing 200 pages belonging to that concept. (previous 200) (next 200) 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP AGC Division of APG Inc AP Holdings LLC AP Holdings LLC (New York) APN Starfirst, L.P. APN Starfirst, L.P. (Illinois) APN Starfirst, L.P. (Ohio) APN Starfirst, L.P. (Texas) APNA Energy ARCO Products Co-Watson Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York)

424

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

425

Manitowoc Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Manitowoc Public Utilities Place Wisconsin Utility Id 11571 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

426

Easley Combined Utility System | Open Energy Information  

Open Energy Info (EERE)

Easley Combined Utility System Easley Combined Utility System Jump to: navigation, search Name Easley Combined Utility System Place South Carolina Utility Id 6709 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church electric service rate (Inside city limits) Commercial Church electric service rate (Outside city limits) Commercial Residential service rate (Inside city limits) Residential Residential service rate (Outside city limits) Residential

427

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: American Clean Skies Foundation Type Term Title Author Replies Last Post sort icon Blog entry American Clean Skies Foundation Nominations open for $250,000 Multimedia Clean Energy prizes Graham7781 2 Oct 2012 - 13:01 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman

428

Hibbing Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hibbing Public Utilities Comm Hibbing Public Utilities Comm Jump to: navigation, search Name Hibbing Public Utilities Comm Place Minnesota Utility Id 8543 Utility Location Yes Ownership M NERC Location MRO NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png -POWER SERVICE Commercial Commercial Security Lighting Rate - 100 Watt H.P.S Lighting Commercial Security Lighting Rate - 250 Watt H.P.S Lighting General Service - Single Phase Commercial General Service - Three Phase Commercial

429

La Porte City Utilities | Open Energy Information  

Open Energy Info (EERE)

Porte City Utilities Porte City Utilities Jump to: navigation, search Name La Porte City Utilities Place Iowa Utility Id 10542 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Horsepower Commercial Municipal Electric Service Commercial Residential Electric Service Charge Residential Average Rates Residential: $0.1010/kWh Commercial: $0.0964/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

430

Stillwater Utilities Authority | Open Energy Information  

Open Energy Info (EERE)

Stillwater Utilities Authority Stillwater Utilities Authority Jump to: navigation, search Name Stillwater Utilities Authority Place Oklahoma Utility Id 18125 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELECTRIC RATE BLOCK BILLING SERVICE Residential ELECTRIC RATE ENERGY EFFICIENT RESIDENTIAL SERVICES Residential ELECTRIC RATE GENERAL SERVICE Commercial ELECTRIC RATE GROUND SOURCE HEAT PUMP RATE Commercial

431

Using consensus building to improve utility regulation  

Science Conference Proceedings (OSTI)

The utility industry and its regulatory environment are at a crossroads. Utilities, intervenors and even public utility commissions are no longer able to initiate and sustain changes unilaterally. Traditional approaches to regulation are often contentious and costly, producing results that are not perceived as legitimate or practical. Consensus building and alternative dispute resolution have the potential to help utilities, intervenors and regulators resolve a host of regulatory issues. This book traces the decline of consensus in utility regulation and delineates current controversies. It presents the theory and practice of alternative dispute resolution in utility regulation and offers a framework for evaluating the successes and failures of attempts to employ these processes. Four regulatory cases are analyzed in detail: the Pilgrim nuclear power plant outage settlement, the use of DSM collaboratives, the New Jersey resource bidding policy and the formation of integrated resource management rules in Massachusetts.

Raab, J.

1994-12-31T23:59:59.000Z

432

Adrian Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Adrian Public Utilities Comm Place Minnesota Utility Id 150 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial - LC Commercial Residential - RL Residential Residential Electric Heat Residential Security Lights - SL Commercial Small Commercial - SC Single-Phase Commercial Small Commercial - SC Three-Phase Commercial Average Rates Residential: $0.0955/kWh Commercial: $0.0980/kWh Industrial: $0.1120/kWh References

433

Canton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Canton Municipal Utilities Canton Municipal Utilities Jump to: navigation, search Name Canton Municipal Utilities Place Mississippi Utility Id 2974 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E01 RESIDENTIAL ALL ELECTRIC Residential E04 COMMERCIAL ELECTRIC Commercial E08 LARGE INDUSTRIAL ELECTRIC Industrial E09 RESIDENTIAL ELECTRIC Residential E12 SMALL INDUSTRIAL ELECTRIC Industrial E13 ELECTRIC WATER HEATER Commercial Average Rates Residential: $0.0978/kWh

434

Bristol Virginia Utilities | Open Energy Information  

Open Energy Info (EERE)

Bristol Virginia Utilities Bristol Virginia Utilities Jump to: navigation, search Name Bristol Virginia Utilities Place Virginia Utility Id 2248 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - Schedule GSA1-(<50 kW and <15,000 kWh) Commercial General Power Rate - Schedule GSA2-(>50 kW & 15,000 kWh) Industrial General Power Rate - Schedule GSA2-(>50 kW &

435

Utility Data Accessibility Map | Open Energy Information  

Open Energy Info (EERE)

Utility Data Accessibility Map Utility Data Accessibility Map Jump to: navigation, search Residential Commercial Benchmarking Energy Efficiency Delivery of Data Time Period Frequency of Data Access to Data Residential frequency of data access Ua Utility Data Access Map Having access to your electricity use data is a very important step in understanding your overall energy usage. Comparing historical data to your current usage is one way to see trends and determine ways for reducing electricity costs and improving overall efficiency. We asked all U.S. electric utility companies to tell us how accessible their electricity use data is for both residential and commercial customers. The results are updated live based on the responses we have to date. As more utilities provide information, the utility boundaries will be automatically colored

436

Hawley Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hawley Public Utilities Comm Hawley Public Utilities Comm Jump to: navigation, search Name Hawley Public Utilities Comm Place Minnesota Utility Id 8307 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 3 PHASE COMMERCIAL ELECTRIC Commercial COMMERCIAL ELECTRIC Commercial ELECTRIC VARIANCE Commercial GENERATOR RATE Commercial GROUND SOURCE HEAT PUMP - RESIDENTIAL Residential LARGE COMMERCIAL ELECTRIC Commercial MINNKOTA WIND SURCHARGE - COMMERCIAL Commercial MINNKOTA WIND SURCHARGE - RESIDENTIAL Residential

437

Barbourville Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Barbourville Utility Comm Barbourville Utility Comm Jump to: navigation, search Name Barbourville Utility Comm Place Kentucky Utility Id 1201 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Large Power Electric Commercial Residential Electric Service Residential Average Rates Residential: $0.0778/kWh Commercial: $0.0757/kWh Industrial: $0.0626/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

438

Delano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Delano Municipal Utilities Place Minnesota Utility Id 5015 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commerical Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1060/kWh Commercial: $0.0995/kWh Industrial: $0.0854/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

439

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

440

Shakopee Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Shakopee Public Utilities Comm Shakopee Public Utilities Comm Jump to: navigation, search Name Shakopee Public Utilities Comm Place Minnesota Website www.ci.shakopee.mn.us/ind Utility Id 16971 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate Commercial Large general service rate Industrial Large industrial service rate Industrial Residential service rate Residential Residential service rate - senior citizens Residential Average Rates Residential: $0.1080/kWh Commercial: $0.0946/kWh Industrial: $0.0805/kWh

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

442

Springfield Public Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Springfield Public Utils Comm Springfield Public Utils Comm Place Minnesota Utility Id 17836 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Power Commercial Residential Residential Residential with Electric Heating Residential Street Lighting Lighting Average Rates Residential: $0.1180/kWh Commercial: $0.0998/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Springfield_Public_Utils_Comm&oldid=411601

443

Bancroft Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Bancroft Municipal Utilities Bancroft Municipal Utilities Jump to: navigation, search Name Bancroft Municipal Utilities Place Iowa Utility Id 1172 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rates Commercial Schedule 1 Residential Schedule 2 Commercial Schedule 3 Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0990/kWh Industrial: $0.0932/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

444

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

445

Sharyland Utilities LP | Open Energy Information  

Open Energy Info (EERE)

Sharyland Utilities LP Sharyland Utilities LP Jump to: navigation, search Name Sharyland Utilities LP Place Texas Utility Id 17008 Utility Location Yes Ownership I NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (Rate Codes 550, 552, and 559) Commercial Competitive Service Rider Commercial Cotton Gin (Rate Codes 671 and 672) Commercial General Service Bundled Service (Rate Codes 110, 111, 112, 113, 114, and 115) Commercial Irrigation (Rate Code 440) Commercial Large Power Primary (Rate Codes 660 and 668) Commercial

446

Hutchinson Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hutchinson Utilities Comm Hutchinson Utilities Comm Jump to: navigation, search Name Hutchinson Utilities Comm Place Minnesota Utility Id 9130 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL ELECTRIC SERVICE Industrial LARGE GENERAL ELECTRIC SERVICE - PRIMARY VOLTAGE (CUSTOMER OWNED) Industrial

447

Utility Rebate Program | Open Energy Information  

Open Energy Info (EERE)

Utility Rebate Program Utility Rebate Program Jump to: navigation, search States, local governments and utilities offer rebates to promote the installation of renewable energy systems and energy efficiency measures. The majority of rebate programs that support renewable energy are administered by states, municipal utilities and electric cooperatives; these programs commonly provide funding for solar water heating and/or photovoltaic (PV) systems. Most rebate programs that support energy efficiency are administered by utilities. Rebate amounts vary widely based on technology and program administrator. [1] Utility Rebate Program Incentives CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1718) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

448

Corbin City Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Corbin City Utilities Comm Corbin City Utilities Comm Jump to: navigation, search Name Corbin City Utilities Comm Place Kentucky Utility Id 4341 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS-1 Large General Service Industrial LGS-2 Large General Srvice V2 Industrial RS-1 Residential Service Residential SGS-1 Small General Service Commercial SLS-1 Security Lighting Service-100 Watt Open Bottom Lighting SLS-1 Security Lighting Service-250 Watt Cobra Lighting SLS-1 Security Lighting Service-250 Watt Directional Flood Lighting

449

Ketchikan Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Ketchikan Public Utilities Ketchikan Public Utilities Jump to: navigation, search Name Ketchikan Public Utilities Place Alaska Utility Id 10210 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential and Community Facilities Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0974/kWh Industrial: $0.0877/kWh

450

Cascade Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Cascade Municipal Utilities Cascade Municipal Utilities Jump to: navigation, search Name Cascade Municipal Utilities Place Iowa Utility Id 3137 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Rate Residential City/Interdept. Rate Commercial Commercial Rate 3-phase Commercial Commercial Rate Single-phase Commercial Demand Rate Industrial Residential Rates Residential Average Rates Residential: $0.1040/kWh

451

Category:Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Category containing Utility Companies. Add a new Utility Company Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Subcategories This category has only the following subcategory. G [×] Green Button Utility Companies‎ 80 pages Pages in category "Utility Companies" The following 200 pages are in this category, out of 3,832 total. (previous 200) (next 200) 3 3 Phases Energy Services 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York) Accent Energy Holdings, LLC (Texas) Access Energy Coop Adams Electric Coop Adams Electric Cooperative Inc Adams Rural Electric Coop, Inc Adams-Columbia Electric Coop

452

Indianola Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Indianola Municipal Utilities Indianola Municipal Utilities Jump to: navigation, search Name Indianola Municipal Utilities Place Iowa Utility Id 9275 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates Commercial Electric Heat Source Commercial Government Commercial Large Industrial Industrial Outside City Limits Residential Residential Rates Residential Small Industrial Industrial

453

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

454

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

455

Melrose Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Melrose Public Utilities Place Minnesota Utility Id 12286 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large Commercial Commercial OFF-PEAK(Heat Sink) Commercial Residential(Elec Heat Customers) Residential Rural Service Residential Security Light-150 watt Lighting Security Light-70 watt Lighting Security Lighting-250 Watt Lighting

456

Florida Public Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Florida Public Utilities Co Florida Public Utilities Co Jump to: navigation, search Name Florida Public Utilities Co Place Florida Utility Id 6457 Utility Location Yes Ownership I NERC Location FRCC NERC FRCC Yes NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSLDT:General Service-Large Demand TOU(Experimental) Industrial General Service - Demand (GSD)-Northeast Florida Industrial General Service - Demand (GSD)-Northwest Florida Commercial General Service - Large Demand (GSLD)-Northeast Florida Industrial

457

Litchfield Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Litchfield Public Utilities Place Minnesota Utility Id 11064 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase General Service- Three Phase Commercial Large Power Commercial Residential Residential Rural Residential Small Power Commercial Wind Power Commercial Average Rates Residential: $0.0876/kWh Commercial: $0.0932/kWh Industrial: $0.0686/kWh

458

Easton Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Easton Utilities Comm Place Maryland Utility Id 5625 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE(Primary Metering) Commercial PRIMARY GENERAL SERVICE Commercial RESIDENTIAL RATE Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE(Primary Metering) Commercial

459

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: challenge Type Term Title Author Replies Last Post sort icon Discussion challenge 2013 Civic Hacking Day Ideas Rmckeel 1 22 May 2013 - 08:23 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne

460

Pascoag Utility District | Open Energy Information  

Open Energy Info (EERE)

Pascoag Utility District Pascoag Utility District Jump to: navigation, search Name Pascoag Utility District Place Rhode Island Utility Id 14537 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial and Industrial (unbundled service) Large Commercial and Industrial - Standard Offer (bundled) Large Commercial and Industrial Seasonal (unbundled) Large Commercial and Industrial Seasonal Standard Offer (bundled) Public and Private Lighting - Mercury - 175 watt Lighting

Note: This page contains sample records for the topic "utilization increases higher" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Brainerd Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Brainerd Public Utilities Brainerd Public Utilities Jump to: navigation, search Name Brainerd Public Utilities Place Minnesota Utility Id 2138 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel (Space Heating) Commercial Commercial Dual Fuel (Space Heating) Industrial Industrial Dual Fuel (Space Heating) Residential Residential General Service Demand Commercial General Service Rate Commercial Industrial Power Industrial Industrial Power 2% Discount Industrial

462

Reedsburg Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Reedsburg Utility Comm Reedsburg Utility Comm Jump to: navigation, search Name Reedsburg Utility Comm Place Wisconsin Utility Id 15804 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

463

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

464

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

465

Kerrville Public Utility Board | Open Energy Information  

Open Energy Info (EERE)

Kerrville Public Utility Board Kerrville Public Utility Board Jump to: navigation, search Name Kerrville Public Utility Board Place Texas Utility Id 28604 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial-for Energy greater than 2500 kWh Commercial Commercial-for Energy greater than 2500 kWh-Distributed generation Rider Commercial Commercial-for Energy less or equal to 2500 kWh Commercial Commercial-for Energy less orequal to 2500 kWh-Distributed generation rider

466

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

467

Aitkin Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Aitkin Public Utilities Comm Aitkin Public Utilities Comm Jump to: navigation, search Name Aitkin Public Utilities Comm Place Minnesota Utility Id 174 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential (Peak 08:00 a.m. - 12:00 p.m.) Residential Residential (Peak 12:00 p.m. - 5:00 p.m.) Residential Residential (Peak 5:00 p.m. - 9:00 p.m.) Residential Residential Dual Fuel Residential Security Lights 150 Watt Lighting Security Lights 250 Watt Lighting

468

Winner Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Winner Municipal Utility Winner Municipal Utility Jump to: navigation, search Name Winner Municipal Utility Place South Dakota Utility Id 20823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Mutiple Dwelling Rate Residential Residential Rate Residential Security Lighting Rate Lighting Small Commercial Rate Commercial Average Rates Residential: $0.0929/kWh Commercial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

469

Bagley Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Bagley Public Utilities Comm Bagley Public Utilities Comm Jump to: navigation, search Name Bagley Public Utilities Comm Place Minnesota Utility Id 1101 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Commercial Electric Demand Commercial Commercial Electric Demand Three Phase Commercial Commercial Electric Three Phase Commercial Electric Heat Non Ripple New Residential Electric Heat Non Ripple Old Residential Electric Heat Ripple Plan 1 Residential Electric Heat Ripple Plan 2 Residential

470

Greenville Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Greenville Utilities Comm Place North Carolina Utility Id 7639 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png County, Municipal, or Housing Authority Outdoor Lighting- 175W Mercury Vapor Lighting County, Municipal, or Housing Authority Outdoor Lighting- 250W Mercury Vapor Lighting County, Municipal, or Housing Authority Outdoor Lighting- 250W Sodium Vapor

471

Clinton Combined Utility Sys | Open Energy Information  

Open Energy Info (EERE)

Clinton Combined Utility Sys Clinton Combined Utility Sys Jump to: navigation, search Name Clinton Combined Utility Sys Place South Carolina Utility Id 3804 Utility Location Yes Ownership