National Library of Energy BETA

Sample records for utility-scale electric generating

  1. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  2. Updated Capital Cost Estimates for Utility Scale Electricity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... update, the assumed characteristics of a coal plant with CCS in NEMS were assumed to be ... which is a nominal 650 MW coal-fired supercritical steam-electric generating ...

  3. Assessing the Economic Value of New Utility-Scale Generation Projects

    Gasoline and Diesel Fuel Update (EIA)

    LCOE/LACE Workshop July 25, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering "unconventional"

  4. WINDExchange: Utility-Scale Wind

    Wind Powering America (EERE)

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  5. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators Ryan Schkoda, Curtiss Fox, and Ramtin Hadidi Clemson University Vahan Gevorgian, Robb Wallen, and Scott Lambert National Renewable Energy Laboratory Technical Report NREL/TP-5000-64787 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  6. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  7. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    SciTech Connect (OSTI)

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A.

    1996-12-31

    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  8. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  9. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  10. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  11. Assessing the Economic Value of New Utility - Scale Electricity Generation Projects

    Gasoline and Diesel Fuel Update (EIA)

    Institute of Transportation Studies University of California, Davis Energy & Transportation Science Division Oak Ridge National Laboratory Transportation's Energy Transition The 2009 Energy Conference Energy Information Administration April 7, 2009 Petroleum, petroleum and petroleum. Transportation Energy Use, 1950-2008 0 5 10 15 20 25 30 1950 1960 1970 1980 1990 2000 Source: USDOE/EIA, AER 2007 table 2.1e, MER March, 2009 table 2.5 Quads Other Petroleum Depletion of conventional oil outside

  12. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  13. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  14. The Utility-Scale Joint-Venture Program

    SciTech Connect (OSTI)

    Gallup, D.R.; Mancini, T.R.

    1994-06-01

    The Department of Energy`s Utility-Scale Joint-Venture (USJV) Program was developed to help industry commercialize dish/engine electric systems. Sandia National Laboratories developed this program and has placed two contracts, one with Science Applications International Corporation`s Energy Projects Division and one with the Cummins Power Generation Company. In this paper we present the designs for the two dish/Stirling systems that are being developed through the USJV Program.

  15. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy...

  16. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  17. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  18. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  19. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  20. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  1. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  2. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  3. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  4. Electrical pulse generator

    DOE Patents [OSTI]

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  5. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  6. Generation of electrical power

    DOE Patents [OSTI]

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  7. ELECTRIC PULSE GENERATOR

    DOE Patents [OSTI]

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  8. Property:PotentialUrbanUtilityScalePVGeneration | Open Energy...

    Open Energy Info (EERE)

    Quantity Description The estimated potential energy generation from utility-scale PV in urban areas of a particular place. Use this type to express a quantity of energy. The...

  9. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  10. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  11. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA). Progress report

    SciTech Connect (OSTI)

    1995-06-01

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1994, summarizes key accomplishments and conclusions for the year, and outlines future work. The PVUSA project has five objectives. These are designed to narrow the gap between a large utility industry that is unfamiliar with PV and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: Evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side by side at a single location; Assess PV system operation and maintenance in a utility setting; Compare US utilities hands-on experience in designing, procuring, and operating PV systems; and, Document and disseminate knowledge gained from the project.

  12. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  13. THERMO-ELECTRIC GENERATOR

    DOE Patents [OSTI]

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  14. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. Electricity Generating Portfolios with Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the ...

  16. Policy Makers' Guidebook for Geothermal Electricity Generation...

    Open Energy Info (EERE)

    Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation AgencyCompany Organization:...

  17. Liupanshui Shuiliandong Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Liupanshui Shuiliandong Electricity Generation Co Ltd Jump to: navigation, search Name: Liupanshui Shuiliandong Electricity Generation Co.Ltd. Place: Liupanshui City, Guizhou...

  18. Solar energy electric generating system

    SciTech Connect (OSTI)

    Anthony, J.

    1988-03-01

    A solar energy electric generating system is described comprising in combination: (a) an array of photocells; (b) means for gating the electrical direct current energy produced by the array of photocells; (c) means for transforming the electrical direct current energy at an output of the array of photocells whereby an alternating current at the output of the transforming means is produced, and which is controlled by a control device for controlling the rate and duty cycle of the gating means; and (d) a photosensitive sampler which samples light incident upon the photocell array and outputs a proportional signal.

  19. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR SOLAR: UTILITY-SCALE PHOTOVOLTAIC SOLAR POSTER (1.07 MB) More Documents & Publications UTILITY-SCALE PHOTOVOLTAIC SOLAR Download LPO's Illustrated Poster Series ANTELOPE VALLEY SOLAR RANCH MESQUITE

  20. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  1. Advancing Solar Technologies at the Utility Scale

    Broader source: Energy.gov [DOE]

    This video provides an overview of the utility-scale solar inverter testing capabilities at the U.S. Department of Energy’s new Energy Systems Integration Facility (ESIF) at the National Renewable...

  2. Utility Scale Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Scale Solar Inc Place: Palo Alto, California Zip: 94301 Product: California-based PV tracker maker. References: Utility Scale Solar Inc1 This article is a stub. You can help...

  3. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  4. Electricity Generation, Transmission and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and reliable before it is permitted on the grid. However, energy storage manufacturers and integrators are often unable to afford or provide the logistics necessary for this long-term testing and monitoring. The Energy Storage Test Pad (ESTP) in conjunction with the Energy Storage Analysis Laboratory (ESAL) provides trusted,

  5. Mini-biomass electric generation

    SciTech Connect (OSTI)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  6. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  7. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  8. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Installment Electricity: Generation to End-Use ... Power Generation and Transmission: How Can We Plan, ... recent announcement represents a 3.6 billion investment. ...

  9. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrennial Energy Review Second Installment Electricity: Generation to End Use ... Midwest and Florida Regions, Duke Energy Corporation * Mike Langford, National ...

  10. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick ...

  11. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Seel, Joachim

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  12. Renewable Electricity Generation (Fact Sheet) (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    electricity generation technologies including solar, water, wind, and geothermal. ... Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 24 POWER ...

  13. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  14. Economic Dispatch of Electric Generation Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 ...

  15. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  16. Quadrennial Energy Review - Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Second Installment Electricity: Generation to End-Use Stakeholder Meeting Number 3: ... ancillary service, day-ahead energy, and unit commitment markets while becoming the balancing ...

  17. Renewable Energy: Utility-Scale Policies and Programs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are typically defined as those 10 megawatts or larger. Utility-scale renewable energy projects can benefit from state and local policies and programs that help to address and overcome potential barriers to implementation. Resources related to different types of utility-scale renewable energy policies and programs are available below. Feed-in Tariffs A

  18. NAFTA opportunities: Electrical equipment and power generation

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

  19. A Minnesota Blizzard Provides Insight into Utility-Scale Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes September 12, 2014 - 11:22am ...

  20. Utility-Scale Power Tower Solar Systems: Performance Acceptance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David ... DE-AC36-08GO28308 Utility-Scale Power Tower Solar Systems: Performance Acceptance Test ...

  1. Federal and State Structures to Support Financing Utility-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal and State Structures to Support Financing Utility-Scale Solar Projects and the ... DE-AC36-08GO28308 Federal and State Structures to Support Financing Utility-Scale Solar ...

  2. Electricity market design for generator revenue sufficiency with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity market design for generator revenue sufficiency with increased variable generation Title Electricity market design for generator revenue sufficiency with increased...

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  4. electric generation | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Graham7781(2017) Super contributor 2 August, 2012 - 13:30 The Transparent Cost Database (TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This...

  5. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  6. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this ...

  7. EERE FY 2016 Budget Overview -- Renewable Electricity Generation...

    Office of Environmental Management (EM)

    Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview --...

  8. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal ... Electric Power Generation from Coproduced Fluids from Oil and Gas Wells 3 | US DOE ...

  9. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), ...

  10. New Zealand Interactive Electricity Generation Cost Model 2010...

    Open Energy Info (EERE)

    Interactive Electricity Generation Cost Model 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: New Zealand Interactive Electricity Generation Cost Model 2010 Agency...

  11. Yun Xingfu Electricity Generation and Supply Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xingfu Electricity Generation and Supply Co Ltd Jump to: navigation, search Name: Yun Xingfu Electricity Generation and Supply Co., Ltd Place: Lincang City, Yunnan Province, China...

  12. Yancheng Chuangneng Straw Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Yancheng Chuangneng Straw Electricity Generation Co Ltd Jump to: navigation, search Name: Yancheng Chuangneng Straw Electricity Generation Co Ltd Place: Yancheng, Jiangsu Province,...

  13. Category:Electricity Generating Technologies | Open Energy Information

    Open Energy Info (EERE)

    Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

  14. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhenkang County Jineng Electricity Generation Co Ltd Jump to: navigation, search Name: Zhenkang County Jineng Electricity Generation Co., Ltd Place: Lincang, Yunnan Province, China...

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  16. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Final Environmental Impact Statement EIS-0476: ...

  17. Yangbi Puping Electric Power Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Puping Electric Power Generation Co Ltd Jump to: navigation, search Name: Yangbi Puping Electric Power Generation Co., Ltd Place: Yunnan Province, China Zip: 672500 Sector: Hydro...

  18. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Nuclear Generation and Generating Capacity Data Released: August 25, 2016 Data for: June 2016 Next Release: September 2016 Year Capacity and Generation by State and Reactor 2016 P XLS 2015 P XLS 2014 P XLS 2013 XLS 2012 XLS 2011 XLS 2010 XLS 2009 XLS 2008 XLS 2007 XLS 2006 XLS 2005 XLS 2004 XLS 2003 XLS P = Preliminary U.S. Nuclear Generation: 1957 to latest available EIA final data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity

  19. Utility-Scale Financial Incentives and Programs Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Financial Incentives and Programs Resources Utility-Scale Financial Incentives and Programs Resources Incentive programs for utility-scale projects are highly individualized. The most effective states have coupled renewable portfolio standards (RPS) with financial mechanisms such as tax benefits, clean energy fund grants, etc. to encourage and support development of large-scale projects within their borders. Find financial incentives and programs resources below. Federal

  20. Powering New Markets: Utility-scale Photovoltaic Solar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar DOE_LPO_Utility-Scale_PV_Solar_Markets_February2015.pdf (464.52 KB) More Documents & Publications Financing Innovation to Address Global Climate Change LPO_BROCHURE_CSP DOE-LPO_Email-Update_014_Final_2-Mar-2016 LPO Loan Portfolio Financial Performance Report As of September 2014, more than $810 million of interest has

  1. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Informatio...

    Open Energy Info (EERE)

    express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and...

  2. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  3. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    Fired Electricity Generation Market Home There are currently no posts in this category. Syndicate...

  4. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  5. Utility-Scale Solar through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility-Scale Solar through the Years Utility-Scale Solar through the Years 1984 Start Slow Stop Year Solar Plants Homes Powered 682 Solar Plants Online. Enough to Power 1.7 M Homes Source: Preliminary data from the 2013 EIA-860 report

  6. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generated from Coal has Declined while Generation from Natural Gas has Grown - Dataset Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  7. Electrical power systems for distributed generation

    SciTech Connect (OSTI)

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  8. Fatal Flaw Analysis of Utility-Scale Wind Turbine Generators at the West Haymarket Joint Public Agency. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-08-01

    Fatal flaw analysis of utility-scale wind turbines at the West Haymarket Joint Public Agency brownfields site in Lincoln, Nebraska, funded by EPA.

  9. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  10. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  11. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments [OSTI]

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  12. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Energy Savers [EERE]

    Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino ...

  13. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  14. Fact #885: August 10, 2015 Electricity Generation - Planned Additions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retirements - Dataset | Department of Energy 5: August 10, 2015 Electricity Generation - Planned Additions and Retirements - Dataset Fact #885: August 10, 2015 Electricity Generation - Planned Additions and Retirements - Dataset Excel file and dataset for Electricity Generation - Planned Additions and Retirements fotw#885_web.xlsx (429.24 KB) More Documents & Publications Fact #874: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing - Dataset Fact #886:

  15. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas ...

  16. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar ... benefits and challenges of incorporating solar generation into the resource planning ...

  17. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  18. Optimized Hydrogen and Electricity Generation from Wind

    Broader source: Energy.gov [DOE]

    Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

  19. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect (OSTI)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  20. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, CA | Department of Energy 6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino

  1. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  2. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  3. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation ...

  4. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  5. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  6. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  7. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes Solid Oxide Fuel Cell and Power System Development at PNNL Proton Exchange Membrane Fuel Cells for Electrical Power ...

  8. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  9. Notice of Intent (NOI): Next Generation of Electric Machines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Notice of Intent (NOI): Next Generation of Electric Machines Notice of Intent (NOI): Next Generation of Electric Machines February 4, 2015 - 12:20pm Addthis The purpose of this Notice of Intent is to provide potential applicants advance notice that the Advanced Manufacturing Office (AMO), on behalf of the DOE Office of Energy Efficiency and Renewable Energy (EERE), intends to issue a Funding Opportunity Announcement (FOA) entitled "Next Generation of Electric Machines"

  10. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this

  11. Monthly Electric Generator data - EIA-860M data file

    U.S. Energy Information Administration (EIA) Indexed Site

    Preliminary Monthly Electric Generator Inventory (based on Form EIA-860M as a supplement to Form EIA-860) Release Date: August 24, 2016 Next Release Date: September 2016 The monthly survey Form EIA-860M, ‘Monthly Update to Annual Electric Generator Report’ supplements the annual survey form EIA-860 data with monthly information that monitors the current status of existing and proposed generating units at electric power plants with 1 megawatt or greater of combined nameplate capacity. EIA

  12. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coproduced from Oil and/or Gas Wells | Department of Energy Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells Chena Hot Springs Resort project presentation at the 2013 peer review meeting in Colorado. chenahotsprings_peerreview2013.pdf (798.26 KB) More Documents & Publications Electrical Power Generation Using

  13. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting...

  14. Perry Wyoming manure to electricity generation plant | Open Energy...

    Open Energy Info (EERE)

    will build and operate anaerobic digestion systems to convert animal manure into methane for electricity generation. Coordinates: 42.895849, -89.760231 Show Map Loading...

  15. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  16. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  17. Adapting On-site Electrical Generation Platforms for Producer Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  18. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  19. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  20. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Environmental Management (EM)

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable ... change, is captured and destroyed Manure wastes are stabilized, reducing odor and flies ...

  1. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota ...

  2. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  3. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  4. Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest Moniz Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered February 20, 2014 - 2:00pm Addthis Dr. Ernest Moniz Dr. ...

  5. EERE FY 2016 Budget Overview-- Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Renewable Electricity Generation, a presentation with Doug Hollett, Deputy Assistant Secretary, March 2015.

  6. DOE Announces Webinars on Next Generation Electric Machines,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Next Generation Electric ... energy efficiency and renewable energy technologies, to training ... highlight the process for site registration and ...

  7. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  8. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  9. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speed, direct drive, megawatt (MW) class electric motors for efficiency and power density improvements in three primary areas: (1) chemical and petroleum refining industries; (2) ...

  10. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... North America with a wide array of strategic and ... Northwestern University. 6 Panel 2: Electricity Distribution ... largest distributed solar installation project and ...

  11. Next Generation Electric Machines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In 2013, electricity accounted for approximately 40% of primary energy consumption in the United States and ... manufacturing was responsible for more than a quarter of end-use. ...

  12. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Denton Municipal Electric * Jennifer Smith, Executive Director, Congregation Beth Israel * Tonya Baer, Public Counsel, Texas Office of Public Utility Counsel * Michelle Foss, ...

  13. Energy Intensity Indicators: Electricity Generation Energy Intensity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As shown in the figure, in 1950, central power plants producing only electricity required ... decade the overall performance of the plants in this sector has steadily improved and ...

  14. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    by this Institute of Electrical and Electronics Engineers paper handle high power density winds, and are theoretically capable of delivering a constant 30 MW to the grid. At...

  15. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  16. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  17. Table 8.2c Electricity Net Generation: Electric Power Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electricity Net Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table ... Total Conventional Hydroelectric Power 6 Biomass Geo- thermal Solar PV 9 Wind Total ...

  18. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today I would like to address, at a high level, the scope, pace, opportunities and challenges of the expected evolution of an electric utility system with high levels of DER ...

  19. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Today, our member cooperatives provide electricity to over 42 million people in 47 states, many of whom are in "persistent poverty" counties, and they do so in an environment of ...

  20. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1:30 - 2:45 PM Panel 3 Cyber- and Physical Security and Resilience Utilities and other owners and operators of electricity sector assets must provide reliable service in the face ...

  1. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... demand response; distributed generation; digital communications, sensors and control ... Product Management and Product Marketing, Energy Management, Smart Grid Solutions ...

  2. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... demand response; distributed generation; digital communications, sensors and control ... Cheryl Roberto, Partner, Utility Transformation & Regulation, Twenty First Century ...

  3. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  4. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  5. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Mr. Kelley became an Eagle Scout in 1990. Panel 1: Bulk Power Generation and Transmission: ... He also helped develop a new method for assessing the economic benefits of proposed ...

  6. Quadrennial Energy Review Second Installment Electricity: Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Prior to joining MISO, Ms. Curran was Manager of Power Generation & Supply Strategy for the Mid-Atlantic and Mid-Continent Regions at Reliant Resources. She holds a Bachelor of ...

  7. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  8. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  9. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  10. Proton Exchange Membrane Fuel Cells for Electrical Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Commercial Airplanes | Department of Energy Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes This report, prepared by Sandia National Laboratories, is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft. The report examines whether on-board airplane fuel cell systems are

  11. Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Guarantee Announcement in Waynesboro, GA - As Delivered | Department of Energy Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating Plant Loan Guarantee Announcement in Waynesboro, GA - As Delivered February 20, 2014 - 2:00pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you, Tom [Fanning] and Paul [Bowers], and Buzz [Miller] as well. It's

  12. DOE Announces Webinars on Next Generation Electric Machines, Zero Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings, and More | Department of Energy Next Generation Electric Machines, Zero Energy Buildings, and More DOE Announces Webinars on Next Generation Electric Machines, Zero Energy Buildings, and More March 26, 2015 - 8:44am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  13. Concentrating Solar Power Projects - Palen Solar Electric Generating System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Concentrating Solar Power | NREL Palen Solar Electric Generating System This page provides information on the Palen Solar Power Project, a concentrating solar power (CSP) project, with data organized by background, participants, and power plant configuration. Status Date: April 4, 2013 Project Overview Project Name: Palen Solar Electric Generating System Country: United States Location: Desert Center, California Owner(s): BrightSource Energy (100%) Technology: Power tower Turbine Capacity:

  14. Fact #885: August 10, 2015 Electricity Generation - Planned Additions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retirements | Department of Energy 5: August 10, 2015 Electricity Generation - Planned Additions and Retirements Fact #885: August 10, 2015 Electricity Generation - Planned Additions and Retirements SUBSCRIBE to the Fact of the Week Between April 2015 and March 2016, there is a cumulative total of 88,953 megawatts of new electric utility capacity planned. This new capacity will add to the current U.S. capacity of about 1,071,000 megawatts. Over half (53%) of the new capacity that is planned

  15. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  16. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart

  17. Sandia Energy - Glitter-Sized Photovoltaic Cells in Utility-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Home Renewable Energy Energy News Photovoltaic Solar Glitter-Sized Photovoltaic Cells in Utility-Scale Solar...

  18. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  19. Utility-Scale Smart Meter Deployments, Plans & Proposals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utility-Scale Smart Meter Deployments, Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments. Utility-Scale Smart Meter Deployments, Plans & Proposals (687.9 KB) More Documents & Publications Government Program Briefing: Smart Metering Comments of the New America Foundation's Open Technology Initiative 2014 Smart Grid System Report (August 2014

  20. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  1. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    SciTech Connect (OSTI)

    Burpo, Rob

    2012-02-29

    To??Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the Ca??oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  2. Table 8.4b Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  3. DOE Awards Cooperative Agreement for Innovative Electric Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility with Pre-Combustion CO2 Capture and Storage | Department of Energy Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage DOE Awards Cooperative Agreement for Innovative Electric Generation Facility with Pre-Combustion CO2 Capture and Storage March 12, 2010 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has awarded a cooperative agreement to Summit Texas Clean Energy LLC (STCE) for the Texas Clean

  4. Industrial- and utility-scale coal-water fuel demonstration projects

    SciTech Connect (OSTI)

    Hathi, V.; Ramezan, M.; Winslow, J.

    1993-01-01

    Laboratory-, pilot-, and large-scale CWF combustion work has been performed primarily in Canada, China, Italy, Japan, Korea, Sweden, and the United States, and several projects are still active. Sponsors have included governments, utilities and their research arms, engine manufacturers, equipment suppliers, and other organizations in attempts to show that CWF is a viable alternative to premium fuels, both in cost and performance. The objective of this report is to present brief summaries of past and current industrial- and utility-scale CWF demonstrations in order to determine what lessons can be learned from these important, highly visible projects directed toward the production of steam and electricity. Particular emphasis is placed on identifying the CWF characteristics; boiler type, geometry, size, and location; length of the combustion tests; and the results concerning system performance, including emissions.

  5. Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: September 30, 2013 Electricity Generation by Source, 2003-2012 Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 With the increase in market penetration for electric vehicles, the upstream emissions from electricity generation become important. Those emissions are dependent upon the source of electricity generation. Although the generation of electricity varies greatly by region, the overall use of coal declined by about 24% from 2008 to 2012.

  6. New Switches for Utility-Scale Inverters: First In-Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility-Scale Inverters

    SciTech Connect (OSTI)

    2011-12-31

    Solar ADEPT Project: The SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLABs new power switches can also be used in wind turbines, railways, and other smart grid applications.

  7. Table 11.4 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " ",,,"Renewable Energy" ,,,"(excluding Wood",,"RSE" "Economic","Total Onsite",,"and",,"Row"

  8. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  9. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  10. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  11. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  12. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  13. Utility-scale flat-plate thin film photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The thin-film photovoltaics section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  14. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  15. Table 11.4 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,406 632 Q 746 20-49 2,466 1,907 535 25 50-99 2,593 2,513 45 36 100-249 11,375 10,771

  16. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  17. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Office of Energy Efficiency and Renewable Energy (EERE)

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  19. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect (OSTI)

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  20. NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancillary Services | Energy Systems Integration | NREL and Partners Demonstrate First-of-a-Kind Use of Utility-Scale PV for Ancillary Services Demonstration project shows utility-scale photovoltaic plants that incorporate "grid-friendly" controls can contribute to grid stability and reliability. January 28, 2016 While utility-scale solar photovoltaic (PV) power plants are being increasingly deployed across the country, some believe higher penetrations of PV technologies may

  1. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  2. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  3. The Utility-Scale Future - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL research will enable wind energy to make major contributions to meeting the nation's electrical demand. Leading Solar Expertise-A Launch Pad to the Future 03 Leading Solar ...

  4. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii

    Broader source: Energy.gov [DOE]

    Summarizes analysis of the economic characteristics of the utility-scale wind configuration project that has been referred to as the “Big Wind” project.

  5. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  6. Emerging Issues and Challenges with Integrating High Levels of Solar into the Electrical Generation and Transmission Systems

    Broader source: Energy.gov [DOE]

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  7. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  8. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  9. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  10. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect (OSTI)

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  11. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to

  12. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  13. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  14. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  15. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  16. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature ...

  17. Big drop in coal-fired electricity generation during first half...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Big drop in coal-fired electricity generation during first half of 2016 The amount of U.S. electricity generated by coal continues to decline in 2016, as power plant operators turn ...

  18. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  19. Halbach array motor/generators: A novel generalized electric machine

    SciTech Connect (OSTI)

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A.

    1995-02-01

    For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different, application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.

  20. WINDExchange: Utility-Scale Land-Based 80-Meter Wind Maps

    Wind Powering America (EERE)

    Maps & Data Printable Version Bookmark and Share Land-Based Utility-Scale Maps Potential Capacity Maps Offshore Wind Maps Community-Scale Maps Residential-Scale Maps Installed Capacity Maps Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the

  1. EIS-0476: Vogtle Electric Generating Plant in Burke County, GA | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6: Vogtle Electric Generating Plant in Burke County, GA EIS-0476: Vogtle Electric Generating Plant in Burke County, GA February 8, 2012 EIS-0476: Final Environmental Impact Statement Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA February 25, 2014 EIS-0476: Record of Decision Department of Energy Loan Guarantees for Proposed Units 3 and 4 at the Vogtle Electric Generating Plant, Burke County, GA

  2. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  3. Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Navajo Tribal Utility Authority (NTUA) is preparing to break ground on its first utility-scale solar plant, a 27.5-megawatt (MW) project on 300 acres in a Navajo community south of Monument Valley, Arizona.

  4. Final Report- Development of an Open Source Utility-Scale Solar Project Siting Tool

    Office of Energy Efficiency and Renewable Energy (EERE)

    PVMapper is an open source GIS application for utility-scale PV project siting that optimizes site comparisons for specific users based on their own customizations of weights for specific data layers, distance, and social integration and risk tools.

  5. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  6. Final Report - Development of an Open Source Utility-Scale Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of System Costs PVMapper is an open source GIS application for utility-scale PV project ... From a single application, PVMapper provides the most relevant GIS data layers and a ...

  7. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool

  9. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  10. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  11. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  12. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  13. EIA's Energy in Brief: How much U.S. electricity is generated from

    Gasoline and Diesel Fuel Update (EIA)

    renewable energy? much U.S. electricity is generated from renewable energy? Last Updated: May 5, 2016 U.S. power plants used renewable energy sources, including water, wind, biomass wood and waste, geothermal, and solar, to generate about 13% of the electricity produced in the United States during 2015. Sources of Renewable Electricity Generation, 2013; chart shaped like an outlet. Renewables are 13% of generation. Renewable breakout: hydropower, 52%; wind, 32%; biomass wood, 8%; biomass

  14. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    SciTech Connect (OSTI)

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  15. Table 8.4a Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 ... See Note 3, "Electricity Imports and Exports," at end of section. 3Natural gas, plus a ...

  16. Table 8.5c Consumption of Combustible Fuels for Electricity Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant ... Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum ...

  17. NREL: Energy Analysis - Natural Gas-Fired Generation Results - Life Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment Harmonization Natural Gas-Fired Generation Results - Life Cycle Assessment Harmonization Over the last 30 years, researchers have conducted hundreds of life cycle assessments of environmental impacts associated with natural gas-fired electricity generation technologies. These life cycle assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, natural gas-fired electricity generation systems (based on natural gas-fired

  18. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore » the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  19. Electrical generation using a vertical-axis wind turbine

    SciTech Connect (OSTI)

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  20. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  1. Electric Power Generation from Co-Produced and Other Oil Field Fluids |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature demonstration projects presentation at the 2013 peer review meeting held in Denver, Colorado. coproduced_demoprojects_peerreview2013.pdf (2.47 MB) More Documents & Publications Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil and/or Gas Wells

  2. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  3. Table 8.4c Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial ... Power Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum of ...

  4. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co- Produced and Other Oil Field Fluids William Gosnold ... entrepreneurship in development of oil field geothermal resources and to train ...

  5. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOE Patents [OSTI]

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  6. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high power density and energy efficient megawatt (MW) class electric motors in three primary areas: (1) chemical and petroleum refining industries; (2) natural gas ...

  7. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, ...

  8. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  9. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  10. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    Reports and Publications (EIA)

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  11. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  12. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  13. Annual Electric Generator data - EIA-860 data file

    U.S. Energy Information Administration (EIA) Indexed Site

    for surveyed generators that use solar as an energy source, split into two tabs: The ... in-service date, and installation costs of all the environmental equipment. ...

  14. Electricity generator cost data from survey form EIA-860

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy Comprehensive data ... capacity estimates that use direct current (DC) ratings of PV panels. ...

  15. Impact of Federal Tax Policy on Utility-Scale Solar Deployment Given Financing Interactions

    SciTech Connect (OSTI)

    Mai, Trieu; Cole, Wesley; Krishnan, Venkat; Bolinger, Mark

    2015-09-28

    In this study, the authors conducted a literature review of approaches and assumptions used by other modeling teams and consultants with respect to solar project financing; developed and incorporated an ability to model the likely financing shift away from more expensive sources of capital and toward cheaper sources as the investment tax credit declines in the ReEDS model; and used the 'before and after' versions of the ReEDS model to isolate and analyze the deployment impact of the financing shift under a range of conditions. Using ReEDS scenarios with this improved capability, we find that this 'financing' shift would soften the blow of the ITC reversion; however, the overall impacts of such a shift in capital structure are estimated to be small and near-term utility-scale PV deployment is found to be much more sensitive to other factors that might drive down utility-scale PV prices.

  16. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  17. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. INITIAL ECONOMIC ANALYSIS OF UTILITY-SCALE WIND INTEGRATION IN HAWAII NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informa-

  18. Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study, completed by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology.

  19. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  20. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  1. U.S. electricity generation from renewables to increase in 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. electricity generation from renewables to increase in 2016 The amount of U.S. electricity generated by hydropower, wind, solar, and other renewable energy sources is expected to grow in 2016. In its new monthly forecast, the U.S. Energy Information Administration said hydroelectric generation is expected to increase by 9.2% this year while wind power is forecast to grow by over 16% and solar power by 34%. All renewables combined are expected to account for 15% of total U.S. electricity

  2. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  3. Electric Power Generation from Low to Intermediate Temperature Resources

    SciTech Connect (OSTI)

    Gosnold, William D.

    2015-06-18

    with ORC technology. Average co-produced water for 10,480 wells is 3.2 gallons per minute (gpm). Even excluding the tight formations, Bakken and Three Forks, average co-produced water for the remaining 3,337 is only 5 gpm. The output of the highest producing well is 184 gpm and the average of the top 100 wells is 52 gpm. Due to the depth of the oil producing formations in the Williston Basin, typically 3 km or greater, pumps are operated slowly to prevent watering out thus total fluid production is purposefully maintained at low volumes. There remain potential possibilities for development of geothermal fluids in the Williston Basin. Unitized fields in which water production from several tens of wells is collected at a single site are good possibilities for development. Water production in the unitized fields is greater than 1000 gpm is several areas. A similar possibility occurs where infill-drilling between Bakken and Three Forks horizontal wells has created areas where large volumes of geothermal fluids are available on multi-well pads and in unitized fields. Although the Bakken produces small amounts of water, the water/oil ration is typically less than 1, the oil and water mix produced at the well head can be sent through the heat exchanger on an ORC. It is estimated that several tens of MWh of power could be generated by a distributed system of ORC engines in the areas of high-density drilling in the Bakken Formation. Finally, horizontal drilling in water bearing formations is the other possibility. Several secondary recovery water-flood projects in the basin are producing water above 100 ⁰C at rates of 300 gpm to 850 gpm. Those systems also could produce several tens of MWh of power with ORC technology. Objective 3 of the project was highly successful. The program has produced 5 PhDs, 7 MS, and 3 BS students with theses in geothermal energy. The team has involved 7 faculty in 4 different engineering and science disciplines, ChE, EE, GE, and Geol. The team has

  4. Renewable Generation Inc | Open Energy Information

    Open Energy Info (EERE)

    Generation Inc Jump to: navigation, search Name: Renewable Generation Inc Place: Austin, Texas Sector: Wind energy Product: Developer of utility-scale wind projects. References:...

  5. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  6. EERE Success Story—Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  7. Notice of Intent: Upcoming Funding Opportunity for Next Generation of Electric Machines Projects

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office intends to issue a new funding opportunity for work to develop Next Generation of Electric Machines (NGEM). NGEMs combine high power density, high RPM motors with integrated power electronics.

  8. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  9. Water demands for electricity generation in the U.S.: Modeling...

    Office of Scientific and Technical Information (OSTI)

    Water demands for electricity generation in the U.S.: Modeling different scenarios for the water-energy nexus Citation Details In-Document Search This content will become publicly ...

  10. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...