National Library of Energy BETA

Sample records for utility solar water

  1. Clark Public Utilities- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    In addition, Clark Public Utilities offers a loan program for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

  2. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  3. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  4. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Through a partnership with the Orlando Federal Credit Union (OFCU), OUC also offers a Residential Solar Loan Program to finance the solar hot water system. Customers who choose to finance through...

  5. City of Tallahassee Utilities- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order to make a preliminary assessment of sun exposure and to provide program guidance. All solar water...

  6. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  7. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  8. Fort Pierce Utilities Authority- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    Note: Fort Pierce Utilities Authority has completed its rebate program for 2015. Check the website for updates.

  9. Santa Clara Water & Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

  10. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for

  11. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  12. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  13. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  14. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  15. Portable solar water heater

    SciTech Connect (OSTI)

    Borodulin, G.; Baron, R.; Shkolnik, A.

    1985-11-12

    A combined table and portable solar water heater comprises a suitcase-like rigid casing molded from a rigid plastic material which contains a pair of solar collector panels and connected in series. The panels can be exposed to solar radiation when the casing is opened. Each collector panel or is formed by a copper plate with the solar radiation absorbing surface and copper pipe coil or in heat-transferring relationship with said copper plate. The casing is provided with compartments for accessories, such as adjustable legs for supporting the casing, adjusting its angle to incident sunlight, and for converting the casing into a table; containers for feeding cold water to the solar collector and for receiving hot water from the collector; and a tripod stand for supporting the feeding container at the level above the collector and for arranging a shower set. Temperature-insulating layers of the collectors are formed by separate pieces of rigid material which can be removed from the casing and assembled into a box-shaped container which can be utilized for maintaining water heated by means of the solar water heater at an elevated temperature.

  16. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  17. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity The Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) program is helping utilities develop adaptable and replicable practices, long-term strategic plans, and technical solutions to sustain reliable operations with large proportions of solar

  18. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  19. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  20. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Energy Savers [EERE]

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR PDF icon SOLAR: UTILITY-SCALE PHOTOVOLTAIC SOLAR POSTER More Documents & Publications UTILITY-SCALE PHOTOVOLTAIC SOLAR Download LPO's Illustrated Poster Series ANTELOPE VALLEY SOLAR RANCH MESQUITE

  1. Clark Public Utilities- Solar Energy Equipment Loan

    Broader source: Energy.gov [DOE]

    Solar water heater loans, solar pool heater loans and solar PV loans under $10,000 have repayment terms of up to 5 years, but a minimum monthly payment of $25 is required. Solar PV loans over $10...

  2. Powering New Markets: Utility-scale Photovoltaic Solar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar PDF icon ...

  3. City of Tallahassee Utilities- Solar Loans

    Broader source: Energy.gov [DOE]

    Solar water heating systems must be Florida Solar Energy Center (FSEC) certified indirect or drain-back systems. Loans will not be awarded if the system is replacing a natural gas water heater. P...

  4. Utility Scale Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Scale Solar Inc Place: Palo Alto, California Zip: 94301 Product: California-based PV tracker maker. References: Utility Scale Solar Inc1 This article is a stub. You can help...

  5. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  6. NREL: Solar Research - New Partnerships Help Utilities Break Down Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barriers New Partnerships Help Utilities Break Down Solar Barriers May 11, 2016 The Solar Technical Assistance Team (STAT) Network launched its first program of technical assistance to electric utilities and announced three new efforts to provide direct support to utility partners. The activities range from providing interconnection training to conducting detailed techno-economic modeling to leveraging community solar finance tools. The National Renewable Energy Laboratory (NREL), a member

  7. Solar Utility SpA | Open Energy Information

    Open Energy Info (EERE)

    Utility SpA Jump to: navigation, search Name: Solar Utility SpA Place: Italy Sector: Solar Product: Italy-based solar PV project developer. References: Solar Utility SpA1 This...

  8. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin ... from two Arizona utilities that have implemented utility owned rooftop solar programs. ...

  9. The Flexible Solar Utility. Preparing for Solar's Impacts to...

    Office of Scientific and Technical Information (OSTI)

    Preparing for Solar's Impacts to Utility Planning and Operations This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the ...

  10. Entech Solar Inc formerly WorldWater Solar Technologies | Open...

    Open Energy Info (EERE)

    Solar Inc formerly WorldWater Solar Technologies Jump to: navigation, search Name: Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place: Fort Worth, Texas Zip: 76177...

  11. Piedmont EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  12. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  13. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water ...

  14. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Austin Utilities. An energy audit must be performed prior to system installation and...

  15. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) program is helping utilities develop adaptable and replicable practices, long-term strategic plans, and technical...

  16. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; James, Darryl L.

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  17. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  18. Molded polymer solar water heater

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  19. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

  20. Utility-Scale Power Tower Solar Systems: Performance Acceptance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David ... DE-AC36-08GO28308 Utility-Scale Power Tower Solar Systems: Performance Acceptance Test ...

  1. Solar Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  2. Utility-Scale Solar through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility-Scale Solar through the Years Utility-Scale Solar through the Years 1984 Start Slow Stop Year Solar Plants Homes Powered 682 Solar Plants Online. Enough to Power 1.7 M Homes Source: Preliminary data from the 2013 EIA-860 report.

  3. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  4. Solar Water Heaters | Department of Energy

    Energy Savers [EERE]

    Heat & Cool » Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in

  5. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the

  6. Columbia Water & Light- Solar Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water & Light electric customers are eligible for a $400 rebate for the purchase of a new solar water heater. To apply for this rebate, a customer submits a pre-approval application to...

  7. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  8. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    Solar water heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)1...

  9. Solar water heaters | Open Energy Information

    Open Energy Info (EERE)

    Solar water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of...

  10. Solar: A Clean Energy Source for Utilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  11. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  12. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  13. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.

  14. Utilities Bringing More Solar Energy to Families and Businesses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utilities Bringing More Solar Energy to Families and Businesses Utilities Bringing More Solar Energy to Families and Businesses January 26, 2016 - 12:26pm Addthis This two megawatt installation at Denver International Airport is owned by Constellation Energy, a utility based in Baltimore, MD. (Photo Courtesy: Denver International Airport) This two megawatt installation at Denver International Airport is owned by Constellation Energy, a utility based in Baltimore, MD.

  15. Solar Water Heat | Open Energy Information

    Open Energy Info (EERE)

    Water Heat Jump to: navigation, search TODO: Add description List of Solar Water Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarWaterHeat&oldid26719...

  16. Do You Have a Solar Water Heater?

    Broader source: Energy.gov [DOE]

    Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

  17. Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Residential utility customers in Hawaii, Honolulu, and Maui counties can choose between a direct upfront rebate of $1,000 or a $1,000 interest rate buydown. They cannot receive both. The upfront...

  18. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  19. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  20. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential solar hot water systems through the Commonwealth Solar Hot Water Prog...

  1. Turbidity study of solar ponds utilizing seawater as salt source

    SciTech Connect (OSTI)

    Li, Nan; Sun, Wence; Shi, Yufeng; Yin, Fang; Zhang, Caihong

    2010-02-15

    A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

  2. Assessment of Unglazed Solar Domestic Water Heaters

    SciTech Connect (OSTI)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-12-01

    Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

  3. Columbia Water & Light- Solar Energy Loans

    Broader source: Energy.gov [DOE]

    Columbia Water & Light (CWL) offers electric residential and commercial customers low-interest loans for photovoltaic (PV) systems and solar water heaters.

  4. Can Solar PV Rebates Be Funded with Utility Cost Savings?

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

  5. Best Practices in the Design of Utility Solar Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Best Practices in the Design of Utility Solar Programs Webinar audio call in number: Toll: +1 (314) 627-1519 Access Code: 519-655-755 September 27, 2012 2 Webinar Presenters * ...

  6. Antitrust aspects of involvement by utilities in residential solar energy

    SciTech Connect (OSTI)

    Hurst, T.R.

    1983-01-01

    A utility that merely engages in the sale of solar units produced by independent manufacturers on a nonexclusive basis appears to run little risk of violating federal antitrust laws, but virtually every other unregulated activity would involve enough significant exposure to antitrust liability to preclude a prudent utility from engaging in them on any basis other than one where the state-action exemption clearly shields the utility. The case cited in this review indicates that municipal utilities must be equally cautious when engaging in pro-solar activities that may have an anticompetitive impact on various parties who could become plaintiffs in a private antitrust action. 47 references.

  7. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  8. Solar water heating: FEMP fact sheet

    SciTech Connect (OSTI)

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  9. Solar Technical Assistance for Tribal Utilities

    Broader source: Energy.gov [DOE]

    Under the U.S. Department of Energy (DOE) SunShot Program, the National Renewable Energy Laboratory is offering support to tribally owned utilities.

  10. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy ...

  11. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  12. New proposal for photovoltaic-thermal solar energy utilization method

    SciTech Connect (OSTI)

    Takashima, Takumi; Tanaka, Tadayoshi; Doi, Takuya ); Kamoshida, Junji ); Tani, Tatsuo ); Horigome, Takashi )

    1994-03-01

    One of the most effective methods of utilizing solar energy is to use the sunlight and solar thermal energy such as a photovoltaic-thermal panel (PV/T panel) simultaneously. From such a viewpoint, systems using various kinds of PV panels were constructed in the world. In these panels, solar cells are set up at an absorber collecting solar thermal energy. Therefore, temperature of solar cell increases up to the prescribed temperature of thermal energy use, although it is lower than the cell temperature when using only solar cell panel. For maintaining cell conversion efficiency at the standard conditions, it is necessary to keep the cell at lower temperature. In this paper, electric and thermal energy obtained form a PV/T panel is evaluated in terms of energy. BAsed on this evaluation, the method of not to decrease cell conversion efficiency with collecting solar thermal energy was proposed.

  13. The Flexible Solar Utility: Preparing for Solar's Impacts to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchased resources Natural gas (NG ) pipeline expansion limits and NG fracking environmental restrictions Utility Business Models Evolved business models...

  14. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  15. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  16. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Water and Power LLC Jump to: navigation, search Name: Affordable Solar Hot Water and Power LLC Place: Dothan, Alabama Zip: 36305 Sector: Solar Product: Solar and Energy Efficiency...

  17. Owatanna Public Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Owatanna Public Utilities. An energy audit must be performed prior to system installation...

  18. Commonwealth Solar Hot Water Commercial Program

    Broader source: Energy.gov [DOE]

    Beginning in August 2011, the Massachusetts Clean Energy Center (MassCEC) will provide grants* for feasibility studies of commercial solar hot water systems through the Commonwealth Solar Hot Wat...

  19. Siting Your Solar Water Heating System | Department of Energy

    Energy Savers [EERE]

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar ...

  20. Siting Your Solar Water Heating System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Your Solar Water Heating System Siting Your Solar Water Heating System Before you buy and install a solar water heating system, you need to first consider your site's solar...

  1. Solar Water Heating Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Assistance Program » Pilot Projects » Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 16, 2010, presentation about residential solar water heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for Consumers Grants. You can also read a transcript of the Webinar. More Information For

  2. Valley Electric Association- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  3. Solar Water Heating System Maintenance and Repair | Department...

    Energy Savers [EERE]

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | ...

  4. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

  5. Pueblo of Laguna Utility Authority - Community Solar Plan

    Energy Savers [EERE]

    Amanda J. Benavidez Graduate Student Intern University of New Mexico DOE Program Review Meeting November 19, 2008 Pueblo of Laguna Utility Authority Community Solar Plan Renewable Energy Project Development Pueblo of Laguna Utility Authority Mission Statement The Pueblo of Laguna is committed to working toward its energy goals while actively remaining as environmentally responsible as is practical. Laguna Pueblo seeks to improve the overall quality and reliability of electric service within its

  6. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  7. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  8. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments [OSTI]

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  9. List of Solar Water Heat Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Solar Water Heat Ground Source Heat Pumps Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Colorado Commercial...

  10. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  11. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  12. Expansion and Improvement of Solar Water Heating Technology in...

    Open Energy Info (EERE)

    and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating Technology...

  13. Sustainable Energy Resources for Consumers Webinar on Solar Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about ...

  14. Extremely stable bare hematite photoanode for solar water splitting...

    Office of Scientific and Technical Information (OSTI)

    Extremely stable bare hematite photoanode for solar water splitting Prev Next Title: Extremely stable bare hematite photoanode for solar water splitting Authors: Dias, Paula ; ...

  15. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  16. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  17. Solar Hot Water Market Development in Knoxville, TN

    Broader source: Energy.gov [DOE]

    Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

  18. A Guide to Community Solar: Utility, Private and Non-Profit Project Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Guide to Community Solar: Utility, Private and Non-Profit Project Development provides information on various community solar project models, state policies that support community solar projects, and tax policies and incentives.

  19. A Guide to Community Solar: Utility, Private, and Non-profit...

    Open Energy Info (EERE)

    Utility, Private, and Non-profit Project Development Jump to: navigation, search Name A Guide to Community Solar: Utility, Private, and Non-profit Project Development Agency...

  20. Best Practices in the Design of Utility Solar Programs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Best Practices in the Design of Utility Solar Programs Best Practices in the Design of Utility Solar Programs This presentation summarizes the introductory information provided by NREL during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. PDF icon utility_design_intro_nrel.pdf More Documents & Publications Residential Solar Valuation Rates text_alternative_stat_webinar_2012_7_18.docx Designing Effective Renewables Programs

  1. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  2. Report on Solar Water Heating Quantitative Survey

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  3. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  4. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  5. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  6. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating

    Energy Savers [EERE]

    Transcript | Department of Energy Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications PDF icon solar_water_heating_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters Sustainable

  7. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to obtain one of these specialty licenses, installers must meet the following criteria. The applicant for a Restricted Solar Mechanic license must provide the Arkansas Department of...

  8. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  9. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  10. New London Electric&Water Util | Open Energy Information

    Open Energy Info (EERE)

    Electric&Water Util Jump to: navigation, search Name: New London Electric&Water Util Place: Wisconsin Phone Number: (920) 982-8516 Website: newlondonutilities.org Outage Hotline:...

  11. Utility Regulation and Business Model Reforms for Advancing the Financial Impacts of Distributed Solar on Utilities

    Broader source: Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without inordinately harming PV economics and growth.

  12. Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Broader source: Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without inordinately harming PV economics and growth.

  13. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  14. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  15. Implementation of solar-reflective surfaces: Materials and utility programs

    SciTech Connect (OSTI)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  16. Solar Water Heating System Maintenance and Repair | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to...

  17. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  18. Heat Exchangers for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar...

  19. A Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    2011-01-25

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  20. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  1. Federal and State Structures to Support Financing Utility-Scale Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects and the Business Models Designed to Utilize Them | Department of Energy and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Evaluates policies regarding new renewable energy development based on industry literature, publically available data and questionnaires. Author: Michael Mendelsohn

  2. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  3. Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

  4. U.S. Virgin Islands- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    A household can receive a maximum of two solar water heater rebates. Rebate amounts vary slightly based upon installed equipment. Rebates will be $1,250 for solar water heaters with an OG-300 rat...

  5. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  6. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  7. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  8. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  9. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the U.S. Environmental Protection Agency (EPA) PDF icon rerh_swh_guide.pdf More Documents & Publications Renewable Energy Ready Home Solar Photovoltaic Specifications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist

  10. Solar Domestic Water Heating: a Roof-Integrated Evaluation

    SciTech Connect (OSTI)

    2009-09-03

    This fact sheet describes an evaluation of the performance of a roof-integrated solar water heating system.

  11. U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that the U.S. solar industry is more than 60 percent of the way to achieving cost-competitive utility-scale solar photovoltaic (PV) electricity - only three years into the Department's decade-long SunShot Initiative. To help

  12. Inverted amorphous silicon solar cell utilizing cermet layers

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  13. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  14. California Solar Initiative- Low-Income Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The California Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential properties....

  15. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C.

    1995-11-01

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  16. What to expect from a batch solar water heater

    SciTech Connect (OSTI)

    Stickney, B.

    1984-01-01

    Batch solar water heaters are becoming more popular because of their low initial cost and simplicity of operation. Batch type water heaters have the following features in common: a water tank or tanks, an insulated tank enclosure, a glazed collecter surface, and a reflector system. The advantages of this type of solar water heater are discussed.

  17. Everything You Wanted to Know About Solar Water Heating Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Everything You Wanted to Know About Solar Water Heating Systems Everything You Wanted to Know About Solar Water Heating Systems October 7, 2014 - 2:39pm Q&A What do you want to know about solar at home? Tell Us Addthis Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank. | Photo courtesy of David Springer, National Renewable

  18. Sacramento Utility to Launch Concentrating Solar Power-Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    test cost-competitive CSP-fossil fuel power generating systems in the United States. "Responsible development of America's solar energy resources is a critical part of our ...

  19. NREL: State and Local Governments - Utility Solar Technical Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    design of community solar Strategies for implementing advanced inverter protocols Deployment considerations for photovoltaic (PV)-enabling technologies such as storage, grid...

  20. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Tucson Electric Power (TEP) The Real ... Context TEP Residential Solar Program Value to TEP and customer Tariff & bill Program Highlights ...

  1. South River EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

  2. Lumbee River EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  3. Lumbee River EMC- Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering 6% loans to residential customers for the installation of solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  4. Siting Your Solar Water Heating System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Photovoltaic Modules. North Carolina Solar Center Heat Your Water with the Sun (PDF). U.S. Department of Energy Addthis Related Articles An example of a solar pool...

  5. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  6. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heaters » Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional

  7. Utilities for Solar Blog Post 2016-1-26 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities for Solar Blog Post 2016-1-26 Utilities for Solar Blog Post 2016-1-26 Addthis 1 of 3 This 2 megawatt installation at Denver International Airport is owned by Constellation Energy, a utility based in Baltimore, MD. Image: Denver International Airport 2 of 3 This 25 megawatt installation is owned by Florida Power & Light and was built to meet the state's renewable energy targets. Image: SunPower 3 of 3 Exelon's City Solar power plant is located in Chicago's Far South Side and is the

  8. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  9. Monitoring SERC Technologies - Solar Hot Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Monitoring SERC Technologies - Solar Hot Water On October 27, 2011, Eliza Hotchkiss, an analyst at the National Renewable Energy Laboratory, presented a Webinar about Solar Hot Water systems and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Database for State Incentives for Renewables and Efficiency NREL Solar Technology Analysis Models and Tools SunShot

  10. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May ...

  11. Austin Energy - Solar Water Heating Rebate | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Federal Government Multifamily Residential Institutional Savings Category Solar Water Heat Maximum Rebate Rebate: 2,000 Loan: 10,000 for duplex; 5,000 for single family...

  12. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  13. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  14. Duquesne Light Company - Residential Solar Water Heating Program...

    Broader source: Energy.gov (indexed) [DOE]

    rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of 286 per qualifying...

  15. Solar Hot Water Creates Savings for Homeless Shelters

    Broader source: Energy.gov [DOE]

    The state of Arizona and the House of Refuge Sunnyslope are partnering to install solar hot water systems at five Phoenix-area housing sites for homeless men.

  16. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  17. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  18. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa

    SciTech Connect (OSTI)

    Wang, X.D.; Zhao, L.; Wang, J.L.; Zhang, W.Z.; Zhao, X.Z.; Wu, W.

    2010-03-15

    A low-temperature solar Rankine system utilizing R245fa as the working fluid is proposed and an experimental system is designed, constructed and tested. Both the evacuated solar collectors and the flat plate solar collectors are used in the experimental system; meanwhile, a rolling-piston R245fa expander is also mounted in the system. The new designed R245fa expander works stably in the experiment, with an average expansion power output of 1.73 kW and an average isentropic efficiency of 45.2%. The overall power generation efficiency estimated is 4.2%, when the evacuated solar collector is utilized in the system, and with the condition of flat plate solar collector, it is about 3.2%. The experimental results show that using R245fa as working fluid in the low-temperature solar power Rankine cycle system is feasible and the performance is acceptable. (author)

  19. Utility-Scale Wind & Solar Power in the U.S.: Where it stands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility-Scale Wind & Solar Power in the U.S.: Where it stands in 2014 and its future going ... renewable generation - Over 10,000 MW of wind capacity * Nearly 20,000 MW in operation ...

  20. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  1. Attaching solar collectors to a structural framework utilizing a flexible clip

    DOE Patents [OSTI]

    Kruse, John S

    2014-03-25

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

  2. Comparative performance indices for solar batch water heaters

    SciTech Connect (OSTI)

    Stickney, B.L.; Aaboe, E.H.

    1981-01-01

    A simple method is developed to allow direct comparison of various solar batch water heaters. Certain system variables must be determined by calculation or measurement which may vary with season. These include Thermal Efficiency of Collection, Tank R value, Collector Surface to Tank Volume Ratio, Clear Day Collection Period in Hours, System Cost, and Installed Solar Heatings Fraction (optional). These variables are used to compute any one of four performance indices. This method allows a valid comparison not only between various solar batch water heaters but between other types of solar water heaters as well. This system may be used by consumers or designers to choose the most cost and performance effective options.

  3. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. PDF icon solar_thermal_presentation.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Success Story: Montana Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat

  4. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  5. Port Angeles Public Works & Utilities- Solar Energy Loan Program

    Broader source: Energy.gov [DOE]

    The City of Port Angeles Public Works & Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for...

  6. Estimating the Cost and Energy Efficiency of a Solar Water Heater |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can usually save you

  7. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  8. Utilization of Heat Pump Water Heaters for Load Management

    SciTech Connect (OSTI)

    Boudreaux, Philip R; Jackson, Roderick K; Munk, Jeffrey D; Gehl, Anthony C; Lyne, Christopher T

    2014-01-01

    The Energy Conservation Standards for Residential Water Heaters require residential electric storage water heaters with volumes larger than 55 gallons to have an energy factor greater than 2.0 after April 2015. While this standard will significantly increase the energy efficiency of water heaters, large electric storage water heaters that do not use heat pump technologies may no longer be available. Since utilities utilize conventional large-volume electric storage water heaters for thermal storage in demand response programs, there is a concern that the amended standard will significantly limit demand response capacity. To this end, Oak Ridge National Laboratory partnered with the Tennessee Valley Authority to investigate the load management capability of heat pump water heaters that meet or exceed the forthcoming water heater standard. Energy consumption reduction during peak periods was successfully demonstrated, while still meeting other performance criteria. However, to minimize energy consumption, it is important to design load management strategies that consider the home s hourly hot water demand so that the homeowner has sufficient hot water.

  9. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater March 2, 2015 - 3:09pm Addthis Solar water...

  10. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  11. Inland Empire Utilities Agency IEUA | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Water utility that also offers renewable energy services through methane gas and solar generation. Coordinates: 34.012811, -117.689328 Show Map Loading...

  12. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Broader source: Energy.gov (indexed) [DOE]

    Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit...

  13. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly Water-Resistant Solar ...

  14. Low Cost Solar Water Heating R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for ... More Documents & Publications Atmospheric Pressure Deposition for Electrochromic Windows ...

  15. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  16. Balancing Autonomy and Utilization of Solar Power and Battery Storage for Demand Based Microgrids.

    SciTech Connect (OSTI)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  17. Outdoor Outfitter Gets Greener With Solar Water Heater

    Broader source: Energy.gov [DOE]

    Using Recovery Act funding, L.L. Bean, the popular outdoor apparel company, recently installed a 180-tube solar hot water collector array on the roof of their flagship store in Freeport, Maine. Find out some how much energy and money they're saving thanks to the new solar installation.

  18. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  19. Pasadena Water and Power- Solar Power Installation Rebate

    Broader source: Energy.gov [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

  20. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  1. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) on their newly-constructed homes. Rebates of...

  2. GreyStone Power- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  3. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    City Water, Light and Power  (CWLP) is offering residential and commercial customers a $500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems with a maximum rebate of up to $2...

  4. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    SciTech Connect (OSTI)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  5. Glendale Water and Power- Solar Solutions Program

    Broader source: Energy.gov [DOE]

    The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate levels will decrease over time on an annual...

  6. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  7. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect (OSTI)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  8. KIUC- Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Through a partnership with Kauai Community Federal Credit Union (KCFCU) and Kauai County Housing Agency (KCHA), the Kauai Island Utility Cooperative (KIUC) provides qualifying members with zero...

  9. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  10. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect (OSTI)

    Harder, J.E.

    1981-04-01

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  11. Support for solar energy: Examining sense of place and utility-scale development in California

    SciTech Connect (OSTI)

    Juliet E. Carlisle; Stephanie L. Kane; David Solan; Jeffrey C. Joe

    2015-07-01

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N = 594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.

  12. Support for solar energy: Examining sense of place and utility-scale development in California

    SciTech Connect (OSTI)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Joe, Jeffrey C.

    2014-08-20

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N=594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.

  13. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  14. Solar Water Heaters | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The batch collector is a large box holding a tank and covered with a glaze that faces the sun. Water is heated in this tank, and another pipe takes the heated water from the batch...

  15. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  16. New Braunfels Utilities- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Funding is limited and is awarded on a first-come, first-served basis. Applications are located on the program web site.

  17. Mountain Association for Community Economic Development- Solar Water Heater Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans...

  18. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  19. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  20. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect (OSTI)

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  1. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  2. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  3. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  4. Solar Hot Water Heater Industry in Barbados | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Hot Water Heater Industry in Barbados Solar Hot Water Heater Industry in Barbados Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. <em>Photo from iStock 6923507</em> Rooftop SWHs are being successfully used in Barbados as a result of effective financial incentives and government support. Photo from iStock 6923507 Barbados is addressing the challenge of offsetting high fossil fuel costs by using its

  5. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  6. Support for solar energy: Examining sense of place and utility-scale development in California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Joe, Jeffrey C.

    2014-08-20

    As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N=594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solarmore » energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.« less

  7. Development of a Solar-Thermal ZnO/Zn Water-Splitting Thermochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Solar-thermal ZnOZn Water-splitting Thermochemical Cycle Final Report ... Combining this with annual average solar efficiencies, the overall solar to hydrogen LHV ...

  8. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  9. Salem Electric- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

  10. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  11. New Braunfels Utilities - Energy Efficiency and Water Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers Heat Pumps Air conditioners Other EE LED Lighting Program Info Sector Name Utility Administrator New Braunfels Utilities Website http:nbutexas.com...

  12. Utility Rebate Program | Open Energy Information

    Open Energy Info (EERE)

    utilities and electric cooperatives; these programs commonly provide funding for solar water heating andor photovoltaic (PV) systems. Most rebate programs that support energy...

  13. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  14. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    SciTech Connect (OSTI)

    Burpo, Rob

    2012-02-29

    To??Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the Ca??oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  15. Mexico-GTZ Support for the Programme to Promote Solar Water Heating...

    Open Energy Info (EERE)

    Support for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ...

  16. Colorado Springs Utilities- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (photovoltaic, or PV) systems and solar water ...

  17. Cost, Design, and Performance of Solar Hot Water in Cold-Climate Homes

    SciTech Connect (OSTI)

    2006-05-03

    This paper examines long-term performance of two solar hot water heating systems in the northern climate zone.

  18. Florida Sunshine -- Natural Source for Heating Water

    SciTech Connect (OSTI)

    Not Available

    2002-05-01

    This brochure, part of the State Energy Program (SEP) Stellar Project series, describes a utility solar hot water program in Lakeland, Florida. It is the first such utility-run solar hot water program in the country.

  19. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    SciTech Connect (OSTI)

    Quinn, John J.; Greer, Christopher B.; Carr, Adrianne E.

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  20. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word Cloud More Like This Full Text ...

  1. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

  2. Impact of Federal Tax Policy on Utility-Scale Solar Deployment Given Financing Interactions

    SciTech Connect (OSTI)

    Mai, Trieu; Cole, Wesley; Krishnan, Venkat; Bolinger, Mark

    2015-09-28

    In this study, the authors conducted a literature review of approaches and assumptions used by other modeling teams and consultants with respect to solar project financing; developed and incorporated an ability to model the likely financing shift away from more expensive sources of capital and toward cheaper sources as the investment tax credit declines in the ReEDS model; and used the 'before and after' versions of the ReEDS model to isolate and analyze the deployment impact of the financing shift under a range of conditions. Using ReEDS scenarios with this improved capability, we find that this 'financing' shift would soften the blow of the ITC reversion; however, the overall impacts of such a shift in capital structure are estimated to be small and near-term utility-scale PV deployment is found to be much more sensitive to other factors that might drive down utility-scale PV prices.

  3. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    SciTech Connect (OSTI)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Mike, Heaney

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.

  4. Towards a Design of a Complete Solar Water Splitting System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards a Design of a Complete Solar Water Splitting System 1 Feb 2013 BISfuel© : A team of Bisfuel researchers led by Devens Gust, Ana Moore and Tom Moore has designed and characterized an artificial photosynthetic reaction center inspired by natural Photosystem II and comprising a highly oxidizing porphyrin linked to a biomimetic electron transfer relay and a porphyrin electron acceptor. Two articles with the results of the study have appeared in September special issue of PNAS "Chemical

  5. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet), Highlights in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace. Researchers in the Residential Buildings group at the National Renewable Energy Laboratory (NREL) have developed an R&D roadmap outlining a path for innovative, cost-effective solar water heating solutions for the U.S. market. Solar water heaters (SWHs) currently make up less than 1% of the U.S. residential water heating market, leaving a significant

  6. Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Request for Proposals (RFP) for Energy Efficiency program is designed to encourage investment by large commercial and industrial utility customers in energy efficient improvements. Up to $2...

  7. New Braunfels Utilities- Energy Efficiency and Water Conservation Rebate Programs

    Broader source: Energy.gov [DOE]

    New Braunfels Utilities offer a variety of programs encouraging its customers to make their homes more energy efficiency. Rebates are available for washing machines, air conditioners, heat pumps,...

  8. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  9. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  10. Solar Water Heaters and the Economy | Department of Energy

    Energy Savers [EERE]

    Soft Costs » Solar Training Solar Training Solar Business Innovation Networking and Solar Technical Assistance Solar Training Solar DATA ANALYSIS Solar jobs have risen rapidly since the start of the SunShot Initiative. Training a prepared and skilled workforce that enables the solar industry to meet growing deployment demands is a high priority. The SunShot Initiative addresses the critical need for high-quality, local, accessible training in solar energy system design, installation, sales, and

  11. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect (OSTI)

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  12. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect (OSTI)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  13. The clean water act -- (Federal Water Pollution Control Act), what it means to utilities

    SciTech Connect (OSTI)

    Talt, L.A.

    1996-10-01

    Departing from previous policy, in August 1993 the USEPA`s Water Office recommended that the agency regulate a proposed electric power plant`s cooling pond as a water of the US. At issue was a proposal by Florida Power corp. to build a new electric power plant in Polk County, Florida. A 2,600 acre cooling pond to collect heated and discharged water was included in the proposal. Region 4 USEPA staff asked USEPA Headquarters in Washington, DC to decide whether the pond was exempt from the CWA or a water of the US. The pond could be a habitat for migratory birds according to a memo prepared by Region 4 staff. The USEPA Water Office used the presence of migratory birds to claim a nexus to interstate commerce and therefore concluded that the pond should be regulated under the CWA. Electric power industry proponents have argued that an overly expansive definition of waters of the US may result in any new power plant being required to construct cooling towers. Cooling towers are said to be a more expensive and wasteful method to cool heated water. Region 4 ultimately recanted its earlier position after considerable discussions with various other Environmental Protection Agency offices and, no doubt industry pressure. Florida Power Corp. was not required to obtain an NPDES permit for the cooling pond. The lesson of Florida Power Corp. is that the regulatory environment for utilities can be uncertain under the Clean Water Act even in the face of a relatively straightforward exemption from regulation.

  14. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  15. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  16. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.

  17. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  18. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  19. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Broader source: Energy.gov [DOE]

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in 2013 and is expected to continue for at least the next few years.

  20. A Guide to Community Solar: Utility, Private, and Non-profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program; NREL

    2011-03-23

    A publication that provides options, examples, and legal and financial considerations for community solar projects.

  1. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  2. Cedarburg Light & Water Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cedarburg Light & Water (CL&W) offers rebates to residential customers for a variety of energy-efficient equipment and upgrades.  Through Wisconsin Focus on Energy, CL&W provides...

  3. Utility-Scale Solar 2014. An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Seel, Joachim

    2015-09-01

    Other than the nine Solar Energy Generation Systems (“SEGS”) parabolic trough projects built in the 1980s, virtually no large-scale or “utility-scale” solar projects – defined here to include any groundmounted photovoltaic (“PV”), concentrating photovoltaic (“CPV”), or concentrating solar thermal power (“CSP”) project larger than 5 MWAC – existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in both 2013 and 2014 and that is expected to continue for at least the next few years. Over this same short period, CSP also experienced a bit of a renaissance in the United States, with a number of large new parabolic trough and power tower systems – some including thermal storage – achieving commercial operation. With this critical mass of new utility-scale projects now online and in some cases having operated for a number of years (generating not only electricity, but also empirical data that can be mined), the rapidly growing utility-scale sector is ripe for analysis. This report, the third edition in an ongoing annual series, meets this need through in-depth, annually updated, data-driven analysis of not just installed project costs or prices – i.e., the traditional realm of solar economics analyses – but also operating costs, capacity factors, and power purchase agreement (“PPA”) prices from a large sample of utility-scale solar projects in the United States. Given its current dominance in the market, utility-scale PV also dominates much of this report, though data from CPV and CSP projects are presented where appropriate.

  4. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  5. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checklist. PDF icon SHW-Ready Checklists.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist ...

  6. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  7. Break-Even Cost for Residential Solar Water Heating in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Break-even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities Hannah Cassard, Paul Denholm, and Sean Ong Technical Report NREL...

  8. SRP - Solar Water Heating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on SRCC rating) Summary NOTE: SRP no longer provides incentives for solar electric photovoltaic systems. SRP's Solar Electric Program provides incentives to its residential...

  9. Two New Reports on Utility-Scale Solar from NREL | OpenEI Community

    Open Energy Info (EERE)

    on First Solar projects). A full quarter of the 16,043 MW were from concentrated solar thermal power projects: 9% parabolic troughs and 16% tower systems. Tower technology...

  10. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. |

  11. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Realistic Hot Water Draw Specification for Rating Solar Water Heaters Preprint J. Burch National Renewable Energy Laboratory J. Thornton Thermal Energy System Specialists, Inc. Presented at the 2012 World Renewable Energy Forum Denver, Colorado May 13-17, 2012 Conference Paper NREL/CP-5500-54539 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308.

  12. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  13. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  14. Final Report - DEVELOPMENT OF AN OPEN SOURCE UTILITY-SCALE SOLAR...

    Broader source: Energy.gov (indexed) [DOE]

    Costs Funding Program: Solar Projects to Reduce Market ... of weights for specific data layers, distance, and ... More Documents & Publications PVMapper: A Tool for Energy ...

  15. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  18. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  19. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  20. Water Pollution Control Plant Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  1. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  2. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Energy Savers [EERE]

    Department of Energy PDF icon solar_thermal_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps SERC Photovoltaics for Residential Buildings Webinar Transcript Recording of SERC Monitoring Technologies - Solar Photovoltaics

  3. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  4. Central Lincoln People's Utility District - Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    (Small) Maximum Rebate PV (Residential): 2,000 PV (Commercial): 5,000 Solar Water Heating: 800 Wind: 5,000 Hydro Electric: 5,000 Program Info Sector Name Utility...

  5. Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

  6. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly ...

  7. Duke Energy Florida- SunSense Solar Water Heating with EnergyWise

    Broader source: Energy.gov [DOE]

    Duke Energy Florida (DEF) launched the Solar Water Heating with EnergyWise Program in February 2007 to encourage its residential customers to participate in its load control program and install a...

  8. Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners

    Broader source: Energy.gov [DOE]

    The water and energy sectors have traditionally been studied independently, regulated by separate oversight agencies, and delivered to customers by separate utilities. Yet it is undeniable that there are strong interdependencies between the sectors. Water, in its many forms, has a direct relationship with energy production. Conversely, it takes energy to treat, convey, and purify water. Mapping out the potential next steps for California and the southwestern U.S. to respond to this dynamic was the primary focus of the joint University of California/Department of Energy Water-Energy Workshop, held on May 28-29, 2015 at the University of California, Irvine. This workshop brought together experts including university researchers, utility providers, state agency representatives from California and the southwestern states, and Federal energy advisors to discuss pressing issues regarding the interactions between water and energy sustainability, with a particular focus on water and electric utilities and related policymaking. This report summarizes discussion at the workshop and provides additional contextual information and discussion.

  9. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  10. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  11. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  12. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  13. Low-cost Batch Solar Water Heater research and development project. Final report

    SciTech Connect (OSTI)

    Stickney, B.L.

    1983-06-01

    This report presents a summary of the development and testing of Batch Solar Water Heaters. Batch Heaters tested include several kinds of tank-under-glass (Breadbox) models and several types of Inverted Batch Solar Water Heaters with both fixed and moveable reflector systems. Temperature graphs and tables of performance indices are presented for each water heater tested. An Inverted Batch Water Heater was developed based upon the test results called the Bottomgainer. Two prototypes of the Bottomgainer model were installed and monitored in use on residences. The Bottomgainer concept could be adapted to commercial production.

  14. Solar Water Splitting: Putting an Extra "Eye" on Surface Reactions...

    Office of Science (SC) Website

    ... Science, Geosciences, and Biosciences Division, Solar Photochemistry Program, under Grant DE-FG02-12ER16323. S.W.B. acknowledges support from the DuPont Young Professor Program. ...

  15. Texas Gas Service- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Only active systems with panels (or collectors) that are certified OG-100 by the Solar Rating Certification Corporation (SRCC) qualify for this rebate. Work must be completed by a licensed contra...

  16. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    SciTech Connect (OSTI)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  17. Community Water Pump and Treatment Facility PV Solar Power Project

    Energy Savers [EERE]

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  18. Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Cassard, H.; Denholm, P.; Ong, S.

    2011-02-01

    This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

  19. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  20. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Sigmon, Thomas W. (Beaverton, OR)

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  1. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Sigmon, T.W.

    1995-10-10

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  2. Flat-plate solar collectors utilizing polymeric film for high performance and very low cost

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-01-01

    Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

  3. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  4. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  5. Sandia Energy - Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Operations and Programs Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Utility Operations and Programs Utility...

  6. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  7. A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Community Shared Solar: Utility, Private, and Nonpro t Project Development ACKNOWLEDGEMENTS This guide is an updated version of the original Guide to Community Solar, published November 2010 (see www.nrel.gov/docs/fy11osti/49930.pdf), which was developed for the National Renewable Energy Laboratory by Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, and the Bonneville Environmental Foundation. This guide builds on the research and writing from the Northwest

  8. Enhancing User Customization through Novel Software Architecture for Utility Scale Solar Siting Software

    SciTech Connect (OSTI)

    Brant Peery; Sam Alessi; Randy Lee; Leng Vang; Scott Brown; David Solan; Dan Ames

    2014-06-01

    There is a need for a spatial decision support application that allows users to create customized metrics for comparing proposed locations of a new solar installation. This document discusses how PVMapper was designed to overcome the customization problem through the development of loosely coupled spatial and decision components in a JavaScript plugin architecture. This allows the user to easily add functionality and data to the system. The paper also explains how PVMapper provides the user with a dynamic and customizable decision tool that enables them to visually modify the formulas that are used in the decision algorithms that convert data to comparable metrics. The technologies that make up the presentation and calculation software stack are outlined. This document also explains the architecture that allows the tool to grow through custom plugins created by the software users. Some discussion is given on the difficulties encountered while designing the system.

  9. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  10. Utilization of solid wastes from the gasification of coal-water slurries

    SciTech Connect (OSTI)

    M.Y. Shpirt; N.P. Goryunova

    2009-07-01

    It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

  11. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  12. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References: Scaled Solar1 This...

  13. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  14. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    Water Calculator AgencyCompany Organization: Federal Energy Management Program Sector: Energy Focus Area: Buildings Phase: Determine Baseline Topics: Baseline projection...

  15. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  16. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  17. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  18. Characteristics and experiences of applicants for HUD grants for solar water heaters

    SciTech Connect (OSTI)

    Jones, W.H.

    1980-01-01

    Thirty-eight winners and 45 losers of HUD solar water heater grants in the Florida panhandle were interviewed in 1978 concerning their experiences, and their solar installations were inspected. Operational problems were mostly attributable to control system failure. Grantees were generally pleased with the subsidy program. Grant recipients were not typical of the general public, in that they were mostly middle-aged, well-educated, reasonably affluent people who had a technical background, liked to do things on their own, and were fairly sophisticated so far as energy problems were concerned. It may be that the grant program is not having a great effect on solar energy commercialization, except perhaps in terms of publicity; the recipients generally would have installed systems without a grant, and most of the losers had gone ahead with a solar installation or were planning to do so.

  19. Burbank Water and Power- Residential and Commercial Solar Support Program

    Broader source: Energy.gov [DOE]

    Burbank Water and Power (BWP) offers customers an up-front capacity-based rebate for photovoltaic (PV) systems up to 30 kW. These incentives decline over time as defined capacity goals are met, e...

  20. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  1. DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting

    Broader source: Energy.gov [DOE]

    EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

  2. Performance comparison of several passive solar water heaters

    SciTech Connect (OSTI)

    Stickney, B.L.; Nagy, C.

    1980-01-01

    Three .076 m/sup 3/ (20 gal.) batch water heaters were constructed for the purpose of side by side testing. The test models included an Inverted Batch Water Heater, a Greenhouse Integrated Skylight Heater, and a typical Breadbox Batch Heater. These designs were chosen because of their low initial cost, simple construction, ease of freeze protection, uncomplicated operation and heating effectiveness. The results of our testing show that our test models produced 35 to 70/sup 0/C (95 to 158/sup 0/F) average water temperatures with average collection efficiencies of about 34%. Materials costs for each of these systems were $200 to $400. These systems were tested side by side during periods of both low and high thermal demand, both with and without a selective surface foil on the absorber surfaces.

  3. A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  4. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  5. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect (OSTI)

    Korecko, J.; Jirka, V.; Sourek, B.; Cerveny, J.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  6. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. California Solar Initiative- Low-Income Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The program is only available to customers who currently heat their water with natural gas in the service territories of Pacific Gas and Electric Company (PG&E), San Diego Gas & Electric ...

  8. Knox County Detention Facility Goes Solar for Heating Water

    Broader source: Energy.gov [DOE]

    Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily—and don't forget the laundry.

  9. Pyron Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    92037 Product: Developing a high-concentration CPV system targetted at the utility-scale market, in which Fresnel lenses are floated on water. References: Pyron Solar Inc1 This...

  10. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  11. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  12. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect (OSTI)

    Ashdown, BG

    2004-08-04

    This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of the technology to these sales venues. The HPWH is an excellent example of a technology that would have benefited from the implementation of a market research program run in parallel with the technology R&D program. Understanding consumer values and ''willingness to pay'' for product attributes and recognizing the corresponding influences those values have on purchase decisions are crucial. This knowledge should be incorporated into the R&D process with continuous dialogue between the market research and the R&D programs. Partnerships among stakeholders to gather consumer feedback and market analysis during R&D will facilitate a strong framework for successful market penetration of energy-efficient technologies.

  13. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David; Mammoli, Andrea A.; Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

  14. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting

    SciTech Connect (OSTI)

    Liu, Chong; Tang, Jinyao; Chen, HaoMing; Liu, Bin; Yang, Peidong

    2013-02-21

    Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.

  15. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  16. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  17. Solar Utility Procurement Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Renewable Energy Procurement Associate; Renewable Energy Transactions Specialist;

  18. Vaillant Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92075 Sector: Solar Product: California-based solar company specializing in solar water heating, solar pool heating and solar space heating systems for residential and...

  19. Solar and Wind Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name State State...

  20. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process...

  1. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  2. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing that

  3. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  4. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  5. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  6. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  7. Agua Caliente Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Agua Caliente Solar Project Facility 290-megawatt photovoltaic solar generating facility Sector Solar Facility Type Utility scale solar Owner...

  8. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  9. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    SciTech Connect (OSTI)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  10. National Solar Water Heater Workshop Present at DOE Region V meeting for managers of State Energy Extension Service and State Energy Conservation Plan, March 18-19, 1981

    SciTech Connect (OSTI)

    Mumma, S.A.; Marinello, M.G.

    1981-01-01

    After a brief description of the National Solar Water Heater Workshop and some comments by users of the solar water heater, the hardware supplier handbook is presented. The performance expected of a hardware supplier is described, solar system components and their specifications are listed, and information is provided to assist the hardware supplier in obtaining necessary materials. (LEW)

  11. Tessera Solar | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Tessera Solar Name: Tessera Solar Address: 2600 10th Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar Product: Developer of utility...

  12. Comparison of natural convection heat exchangers for solar water heating systems

    SciTech Connect (OSTI)

    Davidson, J.; Liu, W.

    1998-09-15

    Thermosyphon heat exchangers are used in indirect solar water heating systems to avoid using a pump to circulate water from the storage tank to the heat exchanger. In this study, the authors consider the effect of heat exchanger design on system performance. They also compare performance of a system with thermosyphon flow to the same system with a 40W pump in the water loop. In the first part of the study, the authors consider the impact of heat exchanger design on the thermal performance of both one- and two-collector solar water heaters. The comparison is based on Solar Rating and Certification Corporation (SRCC) OG300 simulations. The thermosyphon heat exchangers considered are (1) a one-pass, double wall, 0.22 m{sup 2}, four tube-in-shell heat exchanger manufactured by AAA Service and Supply, Inc., (the Quad-Rod); (2) a two-pass, double wall, 0.2 m{sup 2}, tube-in-shell made by Heliodyne, Inc., but not intended for commercial development; (3) a one-pass, single wall, 0.28 m{sup 2}, 31 tube-in-shell heat exchanger from Young Radiator Company, and (4) a one-pass single-wall, 0.61 m{sup 2}, four coil-in-shell heat exchanger made by ThermoDynamics Ltd. The authors compare performance of the systems with thermosyphon heat exchangers to a system with a 40 W pump used with the Quad-Rod heat exchanger. In the second part of the study, the effects of reducing frictional losses through the heat exchanger and/or the pipes connecting the heat exchanger to the storage tank, and increasing heat transfer area are evaluated in terms of OG300 ratings.

  13. Solar space- and water-heating system at Stanford University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  14. Solar Mapper

    Broader source: Energy.gov [DOE]

    Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

  15. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

  16. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  17. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  18. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  19. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  20. Microsoft PowerPoint - DOE Tribal Leader Solar Energy Forum.ppt [Compatibility Mode]

    Energy Savers [EERE]

    Current Utility-Scale Solar Efforts at SRP Stephen Mellentine Senior Planning Analyst, Resource Planning l i j Salt River Project * Third largest public power tilit i th ti utility in the nation * Over 940,000 electric customers in Phoenix area customers in Phoenix area * 7,400 MW generation portfolio p * Largest water provider in Phoenix area * Delivers nearly 1 million acre- feet annually 2 DOE Tribal Leader Solar Energy Forum Mellentine SRP & Arizona Perspective of Utility Solar SRP &

  1. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  2. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  3. Environmental Evaluation for Installation of Solar Arrays at San Jose/Santa Clara Water Pollution Control Plant

    Broader source: Energy.gov [DOE]

    The purpose of this technical memorandum (TM) is to review the options to develop a potential solar array development (Project) within or adjacent to western burrowing owl (Athene cunicularia) habitat in the buffer lands that surround the San José/Santa Clara Water Pollution Control Plant (WPCP) and to determine if there is a ground-mounted solar photovoltaic (PV) configuration that would enable a workable co-existence between the burrowing owl habitat and the PV arrays.

  4. Modeling the performance of small capacity lithium bromide-water absorption chiller operated by solar energy

    SciTech Connect (OSTI)

    Saman, N.F.; Sa`id, W.A.D.K.

    1996-12-31

    An analysis of the performance of a solar operated small capacity (two-ton) Lithium Bromide-Water (LiBr-H{sub 2}O) absorption system is conducted. The analysis is based on the first law of thermodynamics with lithium bromide as the absorbent and water as the refrigerant. The effect of various parameters affecting the machine coefficient of performance under various operating conditions is reported. Coefficient of performance of up to 0.8 can be obtained using flat plate solar collectors with generator temperatures in the range of 80--95 C (176--203 F). Liquid heat exchangers with effectiveness based on an NTU of the order of one would be a good design choice. The chiller can save approximately 3,456 kWh/yr per a two-ton unit, and it will reduce emissions by 19 lb of NO{sub x}, 5,870 lb of CO{sub 2}, and 16 lb of SO{sub x} per year per machine.

  5. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  6. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    SciTech Connect (OSTI)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ? 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ? 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ?2.5-10 10{sup 4}, are achieved within ?2-6 AU and ?2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  7. Utility Rate Discounts | Open Energy Information

    Open Energy Info (EERE)

    Residential Comprehensive MeasuresWhole Building Daylighting Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Water Heat Wind Yes PSNC Energy (Gas) - Residential...

  8. Utility Rate Discount | Open Energy Information

    Open Energy Info (EERE)

    Residential Comprehensive MeasuresWhole Building Daylighting Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Water Heat Wind Yes PSNC Energy (Gas) - Residential...

  9. Demonstration of an advanced solar garden with a water ceiling. Final technical report, July 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Maes, R.; Riseng, C.; Thomas, G.; Mandeville, M.

    1980-09-01

    A history of the solar garden with the addition of the transparent water ceiling is presented, and a statement of the overall goals of the program is given. The objectives of the water ceiling grant are detailed. The rationale of the transparent water ceiling is developed and its implementation in the solar garden is described. The experimental procedures for evaluating the water ceiling as an integral part of an ongoing garden agricultural experiment are discussed and the results presented. The water ceiling has proven useful in providing extra thermal capacity to the solar garden. It provides heat at night after the water has been warmed during the day and retards overheating in the daytime by absorbing infrared energy into the water. In growing non-flowering plants, such as lettuce and Chinese cabbage, the water ceiling showed no noticeable degradation in yield or maturation rate. In flowering plants, such as tomatoes, the reduced light levels delayed yields by a couple of weeks but the total yield was only slightly diminished. In geographic areas where there is less cloud cover than in Michigan the water ceiling could be much more effective.

  10. Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Benemann, J.R.

    1998-03-31

    This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

  11. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.

  12. Acro Solar Lasers | Open Energy Information

    Open Energy Info (EERE)

    Acro Solar Lasers Place: El Paso, Texas Zip: 79936 Sector: Solar Product: Makes solar water heating devices based on parabolic dish concentrators. References: Acro Solar...

  13. Residential Solar Energy Property Tax Exemption | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Property Tax Exemption Residential Solar Energy Property Tax Exemption < Back Eligibility Residential Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics...

  14. Beijing Sijimicoe Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Sijimicoe Solar Energy Jump to: navigation, search Name: Beijing Sijimicoe Solar Energy Place: Beijing, China Zip: 102200 Sector: Solar Product: Beijing-based solar water heating...

  15. Matla Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Matla Solar Energy Jump to: navigation, search Name: Matla Solar Energy Place: East London, South Africa Sector: Solar Product: East London-based solar water geyser manufacturer....

  16. Solar and Wind Easements, Local Options, and Severability | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  17. City of Boulder - Solar Access Ordinance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Construction Local Government Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Photovoltaics Program Info Sector Name...

  18. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect (OSTI)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  19. U.S. Solar Market Trends

    SciTech Connect (OSTI)

    Larry Sherwood

    2011-04-01

    2010 marked the emergence of the utility sector photovoltaic market. Utility sector photovoltaic installations quadrupled over 2009 installations. The share of utility sector installations of all U.S. grid-connected PV installations grew from virtually none in 2006 to 15 percent in 2009 and 32 percent in 2010. In addition, 2010 saw installation of a 75 MWAC concentrating solar power plant, the largest installed in the U.S. since 1991. In 2010, annual distributed grid-connected PV installations in the United States grew by 62 percent, to 606 MWDC. Photovoltaic arrays were installed at more than 50,000 sites in 2010, a 45 percent increase over the number of installations in 2009. Solar water heating installations increased by 6 percent in 2010, compared with 2009. Solar water heating has shown only two years of higher growth in the last 10 years. Solar pool heating installations increased by 13 percent in 2010, the largest growth in five years.

  20. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  1. SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology...

    Open Energy Info (EERE)

    China Zip: 271000 Sector: Solar Product: Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References:...

  2. Aztec Solar | Open Energy Information

    Open Energy Info (EERE)

    Rancho Cordova, California Zip: 95742 Sector: Solar Product: Installer of solar hot water and pool heating systems. References: Aztec Solar1 This article is a stub. You can...

  3. ESPEE Solar | Open Energy Information

    Open Energy Info (EERE)

    Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article is a stub....

  4. Sereno Solar | Open Energy Information

    Open Energy Info (EERE)

    Name: Sereno Solar Place: Monte Sereno, California Sector: Solar Product: Has developed a solar passive water heating panel to be installed under current roofing or siding...

  5. Low-Cost Batch Solar Water Heater Research and Development Project: results from extended field monitoring. Final report, January 1, 1983-May 15, 1983

    SciTech Connect (OSTI)

    Stickney, B.L.

    1984-02-01

    This report contains the results of a four month field test and evaluation of a 30 gallon inverted batch solar water heater known as the Bottomgainer. It was installed on a residence in Santa Fe and monitored with automatic data recorders including solar radiation meter, dual channel Btu meters, water meter and 16 channel strip chart temperature recorder. Average values of heat gain, heat loss, collection efficiency, solar heating fraction and cash benefits are presented and discussed.

  6. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  7. Method and apparatus for the in situ decontamination of underground water with the aid of solar energy

    DOE Patents [OSTI]

    Bench, Thomas R.; McCann, Larry D.

    1989-01-01

    A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.

  8. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  9. Project Profile: The Sacramento Municipal Utility District Consumnes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar ...

  10. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  11. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antelope Valley Solar Ranch 1, a 242-MW photovoltaic (PV) solar generation project. ... Portfolio Projects TITLE XVII Powering New Markets: Utility-scale Photovoltaic Solar ...

  12. Helio Micro Utility Inc | Open Energy Information

    Open Energy Info (EERE)

    Helio Micro Utility Inc Address: 1827A Fifth Street Place: Berkeley, California Zip: 94710 Region: Bay Area Sector: Solar Product: Contracts with solar installers to build and...

  13. DEMEC Member Utilities- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  14. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Location, based on zip code has at least 5 kWhm 2 day average daily solar radiation based on annual solar insolation using PVWatts online tool: http:...

  15. Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide

    DOE Patents [OSTI]

    Feng, Tom; Ghosh, Amal K.

    1979-01-01

    In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

  16. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  17. MULTIFUNCTIONAL SOLAR ENERGY SYSTEMS RESEARCH PROJECT

    SciTech Connect (OSTI)

    Byard Wood, Lance Seefeldt, Ronald Sims, Bradley Wahlen, and Dan Dye

    2012-06-29

    The solar energy available within the visible portion of the solar spectrum is about 300 W/m2 (43%) and that available in the UV and IR portion is about 400 W/m2 (57%). This provides opportunities for developing integrated energy systems that capture and use specific wavelengths of the solar spectrum for different purposes. For example: biofuels from photosynthetic microbes use only the visible light; solar cells use a narrow band of the solar spectrum that could be either mostly in the visible or in the IR regions of the solar spectrum, depending on the photovoltaic materials, e.g., gallium antimonide (GaSb) cells utilize predominately IR radiation; and finally, solar panels that heat water utilize a broad range of wavelengths (visible plus IR). The basic idea of this research is that sunlight has many possible end-use applications including both direct use and energy conversion schemes; it is technically feasible to develop multifunctional solar energy systems capable of addressing several end-use needs while increasing the overall solar energy utilization efficiency when compared to single-purpose solar technologies. Such a combination of technologies could lead to more cost-competitive ?multifunctional? systems that add value and broaden opportunities for integrated energy systems. The goal of this research is to increase the overall energy efficacy and cost competitiveness of solar systems. The specific objectives of this research were: 1) Evaluate the efficacy of a combined photobioreactor and electric power system; 2) Improve the reliability and cost effectiveness of hybrid solar lighting systems ? a technology in which sunlight is collected and distributed via optical fibers into the interior of a building; 3) Evaluate the efficacy of using filtered light to increase the production of biomass in photobioreactors and provide more solar energy for other uses; 4) Evaluates several concepts for wavelength shifting such that a greater percentage of the solar spectrum energy can be used for photosynthesis.

  18. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  19. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  20. Sunbiz Solar | Open Energy Information

    Open Energy Info (EERE)

    Address: 6207 Bayshore Blvd Place: Tampa, Florida Zip: 33611 Sector: Solar Product: Solar ThermalElectric, Energy & Water Conservation through building envelope and water...

  1. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seattle, Washington Includes case studies on: * "Solar Works in Seattle" Workshops * Interconnection Training for Utility Staff * "Community Solar" Financing Program Implementation ...

  2. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  3. Assembly and comparison of available solar hot water system reliability databases and information.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2009-05-01

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  4. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  5. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    SciTech Connect (OSTI)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  6. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect (OSTI)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  7. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  8. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  9. EcoSolar Systems India Ltd | Open Energy Information

    Open Energy Info (EERE)

    India Zip: 411030 Sector: Solar Product: Manufactures and distributes own-brand solar water heating systems, solar PV lanterns and a solar cooker. Coordinates: 18.52671,...

  10. Solar Energy Sales Tax Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sales Tax Exemption Solar Energy Sales Tax Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar - Passive Solar Water Heat Solar Space Heat...

  11. Solar and Wind Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Wind (Small) Program Info Sector Name...

  12. City of San Jose - Solar Access Design Guidelines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Program Info Sector Name Local Website http:www.sanjoseca.govindex.aspx?NID1725 State California Program...

  13. Sustainable Energy Utility (SEU) - Revolving Loan Fund (Delaware...

    Open Energy Info (EERE)

    Agricultural, Institutional Eligible Technologies Solar Water Heat, Solar Space Heat, Photovoltaics, Wind, Biomass, Geothermal Heat Pumps, Other Distributed Generation...

  14. U.S. Virgin Islands- Solar Water Heating Requirement for New Construction

    Broader source: Energy.gov [DOE]

    In July 2009 the U.S. Virgin Islands enacted legislation creating Act 7075. This legislation requires that all new developments and substantial building modifications install energy efficient solar...

  15. Utilities Offering Federal Utility Energy Service Contracts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utilities Offering Federal Utility Energy Service Contracts Utilities Offering Federal Utility Energy Service Contracts The Energy Policy Act of 1992 (codified as 42 USC Section 8256 (c) Utility Incentive Programs) authorizes and encourages agencies to participate in generally available utility programs to increase energy efficiency; conserve water; or manage electricity demand conducted by gas, water, or electric utilities. The following maps show utility service territories

  16. SolarWorld Korea | Open Energy Information

    Open Energy Info (EERE)

    Korea-based JV set up by SolarWorld AG and SolarPark Engineering Co Ltd aimed at manufacturing solar modules and installing utility-scale PV projects. References: SolarWorld...

  17. Navajo Tribal Utility Authority Moves Forward with First Utility-Scale

    Energy Savers [EERE]

    Solar Plant | Department of Energy Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, 2016 - 10:29am Addthis A residential solar hybrid unit. Photo from NTUA A residential solar hybrid unit. Photo from NTUA NTUA has the largest residential solar fleet in Indian Country. Photo from NTUA NTUA has the largest residential solar fleet in Indian Country. Photo from NTUA A

  18. V K Solar | Open Energy Information

    Open Energy Info (EERE)

    Delhi (NCT), India Zip: 110 048 Sector: Solar Product: Manufactures PV modules, inverters and systems, plus solar thermal water heaters. References: V-K Solar1 This article...

  19. Think Solar USA | Open Energy Information

    Open Energy Info (EERE)

    Solar USA Jump to: navigation, search Name: Think Solar USA Product: Maker, installer and distributor of parabolic trough STEG power and hot water systems. References: Think Solar...

  20. Shanghai Solar Watt Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 200040 Sector: Renewable Energy, Solar, Wind energy Product: Providing photovoltaic systems, solar air heating systems, solar water pumping systems, wind energy...

  1. Southern Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Southern Solar Ltd Place: Offham, East Sussex, United Kingdom Sector: Solar Product: Installer of PV and solar passive hot water systems in the UK. References:...

  2. Shut-off of a geopressured water channel behind casing via coiled tubing utilizing a dual slurry cement system: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Lange, K.J.; Grant, W.H.; Patout, T.S.

    1995-12-31

    This paper presents a case history involving a unique dual cement system to shut off a geopressured water channel behind casing utilizing coiled tubing. The channeling problem was identified and documented using water flow logging techniques. Logging indicated the lower gravel packed selective could produce salt water if perforated without eliminating the suspected water channel. Reserves did not warrant a major rig workover, making a non-rig workover via coiled tubing the only viable option to repair the well. A unique dual cement system tested on a hesitation squeeze schedule pumped through coiled tubing with extremely limited thickening time was necessary to repair the primary cement job.

  3. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, ... to record the following data: Water temperature before: ...

  4. Premier Solar Systems Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Manufactures PV cells, modules, systems, solar water pumping systems, solar water heating systems and solar garden lights. Coordinates: 17.6726, 77.5971 Show Map...

  5. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    SciTech Connect (OSTI)

    Marshalkin, V. E. Povyshev, V. M.

    2015-12-15

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  6. 2014-10-14 Issuance: Test Procedures and Energy Conservation Standards for Residential Solar Water Heaters; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures and energy conservation standards for residential solar water heaters, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 14, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. NREL: Solar Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News The following news stories highlight solar research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS. May 11, 2016 New Partnerships Help Utilities Break Down Solar Barriers The Solar Technical Assistance Team (STAT) Network launched its first program of technical assistance to electric utilities and announced three new efforts to provide direct support to utility partners. The activities range from providing interconnection training to conducting detailed

  8. Support for Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles

    Broader source: Energy.gov [DOE]

    This report summarizes the application of chemical process flowsheet analyses and cash flow analyses using DOE's H2A methodology to develop near-term (2015) and longer-term (2025) cost projections for eight solar thermochemical hydrogen production reaction cycles.

  9. Cost reduction of the Sun Challenger batch solar water heater: Final report

    SciTech Connect (OSTI)

    Stickney, B.L.

    1987-05-01

    A variety of materials and methods were investigated as a means to reduce the cost of the Sun Challenger Solar Collector. Three prototypes were constructed and tested using lower-cost methods. Test results are summarized, including heat gain, heat loss, and collection efficiency. Costs and benefits are also presented and summarized.

  10. On the Path to SunShot: Utility Regulatory and Business Model...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY SunShot; solar; PV; photovoltaic; DPV; distributed; regulation; regulatory; utility; utilities; business model; ...

  11. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  12. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  13. Aquate Solar | Open Energy Information

    Open Energy Info (EERE)

    Aquate Solar Jump to: navigation, search Name: Aquate Solar Place: Tzur Igal, Israel Zip: 44862 Product: Developing a water-integrated PV (WIPV) platform. References: Aquate...

  14. Lumos Solar | Open Energy Information

    Open Energy Info (EERE)

    Place: Boulder, Colorado Zip: 80301 Sector: Solar Product: A supplier of solar passive water heating systems and small PV systems. Coordinates: 42.74962, -109.714163 Show...

  15. Radiant Solar | Open Energy Information

    Open Energy Info (EERE)

    India Zip: 500009 Sector: Solar Product: Solar products company focused on lanterns, lighting systems and water heaters. Coordinates: 17.46071, 78.49298 Show Map Loading...

  16. Sandia defines solar variability zones

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    defines solar variability zones - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  17. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  18. Atomic layer deposition grown MO{sub x} thin films for solar water splitting: Prospects and challenges

    SciTech Connect (OSTI)

    Singh, Trilok; Lehnen, Thomas; Leuning, Tessa; Mathur, Sanjay

    2015-01-15

    The magnitude of energy challenge not only calls for efficient devices but also for abundant, inexpensive, and stable photoactive materials that can enable efficient light harvesting, charge separation and collection, as well as chemical transformations. Photoelectrochemical systems based on semiconductor materials have the possibility to transform solar energy directly into chemical energy the so-called “solar hydrogen.” The current challenge lies in the harvesting of a larger fraction of electromagnetic spectrum by enhancing the absorbance of electrode materials. In this context, atomically precise thin films of metal oxide semiconductors and their multilayered junctions are promising candidates to integrate high surface areas with well-defined electrode–substrate interface. Given its self-limited growth mechanism, the atomic layer deposition (ALD) technique offers a wide range of capabilities to deposit and modify materials at the nanoscale. In addition, it opens new frontiers for developing precursor chemistry that is inevitable to design new processes. Herein, the authors review the properties and potential of metal oxide thin films deposited by ALD for their application in photoelectrochemical water splitting application. The first part of the review covers the basics of ALD processes followed by a brief discussion on the electrochemistry of water splitting reaction. The second part focuses on different MO{sub x} films deposited by atomic layer deposition for water splitting applications; in this section, The authors discuss the most explored MO{sub x} semiconductors, namely, Fe{sub 2}O{sub 3}, TiO{sub 2}, WO{sub 3}, and ZnO, as active materials and refer to their application as protective coatings, conductive scaffolds, or in heterojunctions. The third part deals with the current challenges and future prospects of ALD processed MO{sub x} thin films for water splitting reactions.

  19. NREL Demonstrates Efficient Solar Water Splitting by Metal Oxide Photoabsorber (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    New development demonstrates that inexpensive and robust metal oxide photoabsorbers hold great promise as photoanodes for water oxidation.

  20. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  1. Profiles in Renewable Energy: Case Studies of Successful Utility...

    Office of Scientific and Technical Information (OSTI)

    New England Electric System Solar Thermal Solar ... (PURPA), which created a class of non-utility power ... However, a recent change in state regulations now requires ...

  2. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  3. ANTELOPE VALLEY SOLAR RANCH | Department of Energy

    Energy Savers [EERE]

    More Documents & Publications CRESCENT DUNES ANTELOPE VALLEY SOLAR RANCH Powering New Markets: Utility-scale Photovoltaic Solar REFF West PresentationPrepared Remarks...

  4. Tessera Solar (Texas) | Open Energy Information

    Open Energy Info (EERE)

    77002 Region: Texas Area Sector: Solar Product: Developer of utility scale solar power plants based on dish-Stirling engine designs Website: www.tesserasolar.com Coordinates:...

  5. A general framework for the assessment of solar fuel technologies

    SciTech Connect (OSTI)

    Herron, JA; Kim, J; Upadhye, AA; Huber, GW; Maravelias, CT

    2015-01-01

    The conversion of carbon dioxide and water into fuels in a solar refinery presents a potential solution for reducing greenhouse gas emissions, while providing a sustainable source of fuels and chemicals. Towards realizing such a solar refinery, there are many technological advances that must be met in terms of capturing and sourcing the feedstocks (namely CO2, H2O, and solar energy) and in catalytically converting CO2 and H2O. In the first part of this paper, we review the state-of-the-art in solar energy collection and conversion to solar utilities (heat, electricity, and as a photon source for photo-chemical reactions), CO2 capture and separation technology, and non-biological methods for converting CO2 and H2O to fuels. The two principal methods for CO2 conversion include (1) catalytic conversion using solar-derived hydrogen and (2) direct reduction of CO2 using H2O and solar energy. Both hydrogen production and direct CO2 reduction can be performed electro-catalytically, photo-electrochemically, photo-catalytically, and thermochemically. All four of these methods are discussed. In the second part of this paper, we utilize process modeling to assess the energy efficiency and economic feasibility of a generic solar refinery. The analysis demonstrates that the realization of a solar refinery is contingent upon significant technological improvements in all areas described above (solar energy capture and conversion, CO2 capture, and catalytic conversion processes).

  6. Homebuilder's Guide to Going Solar

    DOE R&D Accomplishments [OSTI]

    2008-12-00

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  7. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    SciTech Connect (OSTI)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  8. Solar Success Story at Moanalua Terrace

    SciTech Connect (OSTI)

    Not Available

    1999-03-01

    Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American Energy Technologies, Ltd., and an 80-gallon (302-liter) Rheem tank containing an electric backup element.

  9. WO3/TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.

    SciTech Connect (OSTI)

    Reyes, Karla Rosa; Robinson, David B.

    2013-05-01

    Nanostructured WO3/TiO2 nanotubes with properties that enhance solar photoconversion reactions were developed, characterized and tested. The TiO2 nanotubes were prepared by anodization of Ti foil, and WO3 was electrodeposited on top of the nanotubes. SEM images show that these materials have the same ordered structure as TiO2 nanotubes, with an external nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes, and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency increased from 30% (for bare WO3) to 50% (for WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work indicate that the unique structure and composition of these composite materials enhance the charge carrier transport and optical properties compared with the parent materials.

  10. Solar Equipment Certification Requirement

    Broader source: Energy.gov [DOE]

    All active solar space-heating and water-heating systems that are sold, offered for sale, or installed on residential and commercial buildings in Minnesota must meet Solar Rating and Certification...

  11. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued...

  12. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  13. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  14. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  15. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  16. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  17. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  18. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  19. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  20. Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  1. Federal and State Structures to Support Financing Utility-Scale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal and State Structures to Support Financing Utility-Scale Solar Projects and the ... DE-AC36-08GO28308 Federal and State Structures to Support Financing Utility-Scale Solar ...

  2. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  3. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  4. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Program Overview The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) Utility Partnerships Program fosters effective partnerships between federal agencies and their local serving utility. FEMP works to reduce the cost and environmental impact of the government by advancing energy and water efficiency, promoting the use of renewable and distributed energy, and improving utility management decisions. Federal energy managers must identify the most

  5. Solar Webinar Presentation Slides | Department of Energy

    Energy Savers [EERE]

    Energy Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the U.S. Environmental Protection Agency (EPA) PDF icon rerh_swh_guide.pdf More Documents & Publications Renewable Energy Ready Home Solar Photovoltaic Specifications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist

    Presentation Slides Solar Webinar

  6. U.S. Solar Market Trends

    SciTech Connect (OSTI)

    Larry Sherwood

    2010-04-01

    Grid-connected photovoltaic installations grew by 40% in 2009 compared with installations in 2008. California and New Jersey have the largest markets. Growth occurred in the residential and utility markets, but non-residential customer-sited installations did not change compared with the installations in 2008. Two small solar thermal electric plants were connected to the grid in 2009 with a combined capacity of 7 MW. The future prospects for solar thermal electric plants look bright, although developers are not expected to complete any new large plants until at least 2011. Solar water heating and solar space heating annual installations grew by 40% in 2008 compared with 2007. Hawaii, California, Puerto Rico, and Florida dominate this market. Solar pool heating annual installation capacity fell by 1% in 2008 following a dramatic decline of 15% in solar pool heating capacity in 2007 compared with 2006. Florida and California are the largest markets for solar pool heating. The economic decline in the real estate markets in Florida and California likely led to the decrease in pool installations and thus the dramatic decline in capacity installed of solar pool systems in 2007.

  7. EECBG Success Story: Knox County Detention Facility Goes Solar for Heating Water

    Broader source: Energy.gov [DOE]

    Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily—and don't forget the laundry. Learn more.

  8. Sandia Energy - Glitter-Sized Photovoltaic Cells in Utility-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Home Renewable Energy Energy News Photovoltaic Solar Glitter-Sized Photovoltaic Cells in Utility-Scale Solar...

  9. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In 2015, H.B. 2941 expanded this requirement to include a rate option with a specific renewable energy resource, such as solar photovoltaics, if the Public Utilities Commission finds there is...

  10. Chesapeake Solar LLC a groSolar company | Open Energy Information

    Open Energy Info (EERE)

    Maryland Zip: 20794 Sector: Solar Product: Maryland-based company that installs solar electricity and solar hot water systems, which was acquired by groSolar in July 2008....

  11. Solar/Wind Contractor Licensing | Open Energy Information

    Open Energy Info (EERE)

    Licensing Louisiana InstallerContractor Photovoltaics Solar Water Heat Yes Tennessee Solar Panel Installation Specialty and Solar Thermal-Geothermal Licensing (Tennessee)...

  12. Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation...

    Open Energy Info (EERE)

    China Zip: 518055 Sector: Solar Product: Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems....

  13. Residential Solar and Wind Energy Systems Tax Credit

    Broader source: Energy.gov [DOE]

    Qualifying technologies include solar domestic water heating systems, solar swimming pool and spa heating systems, photovoltaic systems, photovoltaic phones and street lights, passive solar...

  14. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  15. Solar | OpenEI Community

    Open Energy Info (EERE)

    Solar Home Jweers's picture Submitted by Jweers(88) Contributor 10 February, 2015 - 12:22 Desert Sunlight goes online 550 MW Desert Sunlight DOE power plant PV Solar utility scale...

  16. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design of Utility Solar Programs Webinar on Sept. 27, 2012. PDF icon utility_design_rabago_energy.pdf More Documents & Publications Austin Energy's Residential Solar Rate QER - Comment of Energy Innovation 1 QER - Comment of Energy Innovation 8

  17. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  18. TVA - Solar Solutions Initiative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Commercial Industrial Local Government Nonprofit Schools Retail Supplier Agricultural Savings Category Solar Photovoltaics Program Info Sector Name Utility...

  19. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  20. Subtask 2: Water oxidation complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production 2: Water oxidation complex All papers by year Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Brenda, Reeder; Raymond, G. Sierra; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.;

  1. Housing standards: change to HUD 4930. 2 Intermediate Minimum Property Standard (IMPS) supplement for solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1982-08-17

    This rule is made to provide an updating, clarification, and improvement of requirements contained in HUD Handbook 4930.2, Intermediate Minimum Property Standards (IMPS) Supplement concerning solar heating and domestic hot water systems. Changes pertain to fire protection, penetration, roof covering, conditions of use, thermal stability, rain resistance, ultraviolet stability, and compatibility with transfer medium. Additional changes cover applicable standards, labeling, flash point, chemical and physical commpatibility, flame spread classification, lightening protection, and parts of a solar energy system. Altogether, there are over 50 changes, some of which apply to tables and worksheets. Footnotes are included.

  2. Solar | Department of Energy

    Energy Savers [EERE]

    Weatherization Assistance Program » Pilot Projects » Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 16, 2010, presentation about residential solar water heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for Consumers Grants. You can also read a transcript of the Webinar. More Information For

  3. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  4. Semiconductor-electrocatalyst contacts: theory, experiment, and applications to solar water photoelectrolysis

    SciTech Connect (OSTI)

    Boettcher, Shannon W.

    2015-10-21

    Semiconductor photoelectrodes coated with electrocatalysts are key components of photoelectrochemical (PEC) energy conversion and storage systems. Such systems could provide a way to convert the energy in sunlight directly into energy stored in a fuel like hydrogen gas to power our modern society without using fossil fuels. Despite an intense effort aimed at optimizing these materials, there has been little systematic work focused on the semiconductor-electrocatalyst (SC|EC) interface. The SC|EC interface is important because it is responsible for collecting the photoexcited electron-hole pairs generated in the semiconductor. During the performance period we initiated a fundamental effort to understand interfacial electron transfer between electrocatalysts and bulk semiconductors. We developed an experimental technique, dual-working-electrode (DWE) photoelectrochemistry, allowing for direct electrical measurement of the SC-EC interface in situ. We also developed the first theory of the SC|EC interface and applied the theory through numerical simulation to explain the measured interfacial charge transfer properties of the SC|EC junction. We discovered that porous, ion-permeable, redox-active catalysts such as Ni-(Fe) oxyhydroxides form so-called “adaptive” junctions where the effective interfacial barrier height for electron transfer depends on the charge state of the catalyst. This is in sharp contrast to interface properties of dense ion-impermeable catalysts, which we found form buried junctions that could be described by simple equivalent electrical circuits. These results elucidated a design principle for catalyzed photoelectrodes - high-performance photoelectrodes with direct SC|EC junctions use soft deposition techniques that yield ion-permeable catalysts. This work thus provides a foundation for the development of improved photoelectrodes that are practically relevant because they provide a mechanism to directly convert and store solar energy in the form of hydrogen gas, a renewable chemical fuel.

  5. PROJECT PROFILE: UtilityAPI (Incubator 10)

    Broader source: Energy.gov [DOE]

    UtilityAPI is automating the process of authorizing, collecting, and cleaning electricity data from utilities. Access to standardized data means a larger sales funnel, a frictionless customer journey, and easy data verification for financing for solar.

  6. Solar Contractor Licensing

    Broader source: Energy.gov [DOE]

    The Arizona Registrar of Contractors does have a specific plumbing license which includes solar water heaters. R-37 is required for contractors installing or performing maintenance on residential...

  7. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  8. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  9. Could Solar Energy Storage be Key for Residential Solar? | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The utility will study how those homeowners generate and use the residential solar energy, says Mark Rawson, senior project manager for SMUD's storage and distributed generation ...

  10. Commercial & Industrial Solar Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

  11. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    SciTech Connect (OSTI)

    Chen, Dongcheng; Zhou, Hu; Cai, Ping; Sun, Shi; Ye, Hua; Su, Shi-Jian Cao, Yong

    2014-02-03

    A triazine- and pyridinium-containing water-soluble material of 1,1?,1?-(4,4?,4?-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on the TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.

  12. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  13. LaSolar | Open Energy Information

    Open Energy Info (EERE)

    Place: Argentina Sector: Solar Product: Manufactures and distributes solar passive water heating systems and PV systems in Spain, South America and Israel References:...

  14. Swiss Solar Tech Ltd | Open Energy Information

    Open Energy Info (EERE)

    energy, Solar Product: the comapny develops, manufactures and constructs solar passive water heating systems combined with geothermal sources through underground heat pumps and...

  15. N2Solar | Open Energy Information

    Open Energy Info (EERE)

    Utah Zip: 84093 Region: Rockies Area Sector: Solar Product: HOE Solar performance optics for PV, CSP, Desal and UV water treatment Year Founded: 2003 Phone Number: 801 608...

  16. Korea Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Seoul, Korea (Republic) Sector: Solar Product: Manufacturer of solar collectors, modules, and water heaters. Coordinates: 37.557121, 126.977379 Show Map Loading...

  17. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  18. AWWA Utility Management Conference

    Broader source: Energy.gov [DOE]

    Hosted by the American Water Works Association (AWWA), the Utility Management Conference is one of the leading management conferences to share experiences and learn from others in similar situations to the most pressing management issues of the day.

  19. NREL Demonstrates Efficient Solar Water Splitting by Metal Oxide Photoabsorber (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New development demonstrates that inexpensive and robust metal oxide photoabsorbers hold great promise as photoanodes for water oxidation. The production of solar fuels (e.g., H 2 from H 2 O, hydrocarbons from CO 2 ) via direct photoelectrochemical reactions is a promising approach in the pursuit of renewable energy sources. Production of O 2 is the only scalable and renewable oxidation that can balance these fuel-forming reduction reactions. However, few materials have the necessary properties

  20. Solar Installations – Experience and Recommendations City of Madison

    Broader source: Energy.gov [DOE]

    Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

  1. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with knowledge to construct better water oxidation catalysts for solar fuel production. ... Designing an artificial leaf that uses solar energy to convert water cheaply and ...

  2. Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions

    SciTech Connect (OSTI)

    Icenhower, Jonathan P.

    2015-06-23

    Transition-state theory (TST) is a successful theory for understanding many different types of reactions, but its application to mineralwater systems has not been successful, especially as the system approaches saturation with respect to a rate-limiting phase. A number of investigators have proposed alternate frameworks for using the kinetic rate data to construct models of dissolution, including Truesdale (Aquat Geochem, 2015; this issue). This alternate approach has been resisted, in spite of self-evident discrepancies between TST expectations and the data. The failure of TST under certain circumstances is a result of the presence of metastable intermediaries or reaction layers that form on the surface of reacting solids, and these phenomena are not anticipated by the current theory. Furthermore, alternate approaches, such as the shrinking object model advocated by Truesdale, represent a potentially important avenue for advancing the science of dissolution kinetics.

  3. Empirical kinetics and their role in elucidating the utility of transition-state theory to mineral-water reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Icenhower, Jonathan P.

    2015-06-23

    Transition-state theory (TST) is a successful theory for understanding many different types of reactions, but its application to mineralwater systems has not been successful, especially as the system approaches saturation with respect to a rate-limiting phase. A number of investigators have proposed alternate frameworks for using the kinetic rate data to construct models of dissolution, including Truesdale (Aquat Geochem, 2015; this issue). This alternate approach has been resisted, in spite of self-evident discrepancies between TST expectations and the data. The failure of TST under certain circumstances is a result of the presence of metastable intermediaries or reaction layers that formmoreon the surface of reacting solids, and these phenomena are not anticipated by the current theory. Furthermore, alternate approaches, such as the shrinking object model advocated by Truesdale, represent a potentially important avenue for advancing the science of dissolution kinetics.less

  4. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    DOE Patents [OSTI]

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  5. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOE Patents [OSTI]

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  6. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M.

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  7. Solar energy legal bibliography update

    SciTech Connect (OSTI)

    Seeley, D.

    1980-06-01

    The Solar Energy Legal Bibliography Update is a compilation of approximately 100 solar publications abstracted for their legal and policy content (covering the period October 1978 to August 1979). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  8. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  9. Solar DATA ANALYSIS

    Broader source: Energy.gov [DOE]

    To meet the goals of the SunShot Initiative, the industry must innovate new ways to automate and speed processes that make it easier for consumers, businesses, utilities, solar companies, and...

  10. Value of Solar Tariff

    Broader source: Energy.gov [DOE]

    Note: This program is only available to customers of one of the state's investor-owned utilities (Alliant, Minnesota Power, Otter Tail Power Company, Xcel Energy) in the Community Solar Gardens...

  11. Solar energy education. Renewable energy activities for general science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy and Wind Easements & Rights Laws & Local Option Solar Rights Law Solar and Wind Easements & Rights Laws & Local Option Solar Rights Law < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Wind (All) Solar Pool Heating

  12. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  13. How are Homeowners and Businesses Paying for Solar Energy Systems?

    Broader source: Energy.gov [DOE]

    Upfront cash requirements can place solar energy systems out of reach for many utility customers. How are those who have solar power paying for it?

  14. Green Tech Solar Inc GTS | Open Energy Information

    Open Energy Info (EERE)

    British Columbia-based firm involved in the development of utility-scale solar and bio energy projects in the southwestern United States. References: Green Tech Solar Inc...

  15. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particularly solar power, and how they will contribute to the future electricity system. ... Utility-scale solar and wind power plants are conceptually similar to conventional ...

  16. DOE Announces $87 Million in Funding to Support Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 47 projects with universities, electric power utilities, ... with the electrical grid, and train a new generation of solar workers to install and maintain solar energy systems. ...

  17. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  18. ZEN Eaga Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    upon Tyne, United Kingdom Zip: NE2 1DB Sector: Solar Product: Distributes solar thermal water heating and PV products. References: ZEN Eaga Solar Ltd1 This article is a stub....

  19. SolarRoofs com | Open Energy Information

    Open Energy Info (EERE)

    95608 Sector: Solar Product: California-based manufacturer of the patented Skyline solar water heating systems. References: SolarRoofs.com1 This article is a stub. You can help...

  20. Homebuilder's Guide to Going Solar (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.