Powered by Deep Web Technologies
Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utility solar water heating workshops  

DOE Green Energy (OSTI)

The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

Barrett, L.B. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

1992-01-01T23:59:59.000Z

2

Building Technologies Office: Utility Solar Water Heating Initiative  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utility Solar Water Heating Initiative Search Search Help Utility Solar Water Heating Initiative EERE Building Technologies Office Utility Solar Water Heating Initiative...

3

Orlando Utilities Commission - Residential Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Florida) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 1,000 Program Info State Florida Program Type Utility...

4

Fort Pierce Utilities Authority - Solar Water Heating Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) < Back Eligibility Residential Savings...

5

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

6

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

7

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

8

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

9

Opportunities for utility involvement with solar domestic hot water  

SciTech Connect

Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

Carlisle, N.; Christensen, C. [National Renewable Energy Lab., Golden, CO (United States); Barrett, L. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

1992-05-01T23:59:59.000Z

10

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

11

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

12

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

13

Case for utility involvement in solar-domestic water heating  

SciTech Connect

Credibility of system performance over an extended period of time is still a major concern for prospective buyers of solar-collector systems. Although Congress has enacted solar legislation with the intention of assisting homeowners in the adoption of solar energy, it apparently did not consider which organizational entities could best address the concerns of the consumer and accelerate the adoption of solar energy for domestic hot water heating. This article points out that legislation which does not encourage full participation by utilities in the marketing of solar energy has produced very low adoption rates compared to the size of the solar market potential. It also describes some of the empirical results of one utility company's efforts with a large-scale solar demonstration program, and presents some findings for the investor-owned utility industry to consider before Congress takes additional legislative action in this area. 11 references, 2 figures, 2 tables.

Smackey, B.M.

1982-04-01T23:59:59.000Z

14

Gainesville Regional Utilities- Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Gainesville Regional Utilities (GRU) Solar Rebate Program, established in early 1997 as part of GRU's demand-side management initiatives, provides rebates of $500 to residential customers of...

15

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network (OSTI)

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence of residential solar water heating on electric utility demand. The electric demand of solar water hears was found to be approximately 0.39 kW lass than conventional electric water heaters during the late late afternoon, early evening period in the summer months when the Austin utility experiences its peak demand. The annual load factor would be only very slightly reduced if there were a major penetration of solar water heaters in the all electric housing sector. Thus solar water heating represents beneficial load management for utilities experiencing summer peaks.

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

16

City of Tallahassee Utilities - Solar Water Heating Rebate (Florida...  

Open Energy Info (EERE)

certified by the Florida Solar Energy Center (FSEC), and installed by a state-licensed solar or plumbing contractor. For installations arranged by homeowners, the contractor...

17

Water use and supply concerns for utility-scale solar projects in the Southwestern United States.  

SciTech Connect

As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations&maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO

2013-07-01T23:59:59.000Z

18

City of Palo Alto Utilities - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Program Solar Water Heating Program City of Palo Alto Utilities - Solar Water Heating Program < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family residential gas-displacing systems: $2,719 Single-family residential electricity or propane-displacing systems: $1,834 Commercial/Industrial/Multi-family: $100,000 One contractor can have no more than $150,000 in incentive reservations at any given time. Program Info State California Program Type Utility Rebate Program Rebate Amount Single-family residential gas-displacing systems: $18.59 per therm displaced Single-family residential electricity or propane-displacing systems: $$0.54 per kWh displaced Multi-family and commercial gas-displacing systems: $14.53 per therm

19

City of Palo Alto Utilities - Solar Water Heating Program (California...  

Open Energy Info (EERE)

All systems must have a minimum of a 10-year manufacturer's warranty on the solar collector(s), minimum of 1-year and up to 5-years based on manufacturer's warranty...

20

Orlando Utilities Commission - Residential Solar Loan Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Solar PV: 20,000 Solar Thermal: 7,500 Program Information Florida Program Type Utility...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

City of Tallahassee Utilities - Solar Water Heating Rebate |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order...

22

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

23

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

24

Santa Clara Water & Sewer- Solar Water Heating Program  

Energy.gov (U.S. Department of Energy (DOE))

In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

25

FEMP-Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet details solar water heating and how to use the sun to heat domestic water in any climate. Document explains how solar water heating helps to save energy, reduce utility costs, and preserve the environment.

26

Clark Public Utilities - Solar Energy Equipment Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Loan Energy Equipment Loan Clark Public Utilities - Solar Energy Equipment Loan < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $30,000 Solar Pool Heaters and Solar Water Heaters: $10,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Solar PV: up to $30,000 Solar Pool Heaters and Solar Water Heaters: up to $10,000 Provider Clark PUD Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and solar water heaters and up to $30,000 for photovoltaic systems. Solar water heater loans, solar pool heater loans and solar PV loans under

27

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

DOE Green Energy (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

28

Solar Energy Utilization  

E-Print Network (OSTI)

On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solidstate devices — applying the principles of photosynthesis to the production of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide.

unknown authors

2005-01-01T23:59:59.000Z

29

Solar Mining Company - Solar Utility Program (Wisconsin) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

30

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Scale Solar Inc Jump to: navigation, search Name Utility Scale Solar Inc Place Palo Alto, California Zip 94301 Product California-based PV tracker maker. References Utility...

31

Owatanna Public Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Owatanna Public Utilities - Solar Rebate Program Owatanna Public Utilities - Solar Rebate Program Owatanna Public Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: $1,200 Program Info Start Date 09/2010 State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: $15 per square foot of collector area Provider Owatonna Public Utilities Owatanna Public Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt; eligible solar water

32

Rochester Public Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Solar Rebate Program Rochester Public Utilities - Solar Rebate Program Rochester Public Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: 1,200 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: 15 per square foot of collector area Provider Rochester Public Utilities Rochester Public Utilities provides incentives for residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt while eligible solar water heating systems can earn $15 per square foot of collector area.

33

Austin Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities - Solar Rebate Program Austin Utilities - Solar Rebate Program Austin Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: $1,200 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: $15 per square foot of collector area Provider Austin Utilities Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt; eligible solar water heating systems can earn $15 per square foot of collector area. Incentives are

34

Solar Desalination in the Southwest United States: A Thermoeconomic Analysis Utilizing the Sun to Desalt Water in High Irradiance Regions .  

E-Print Network (OSTI)

??Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the Southwest.… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

35

Solar desalination in the southwest United States| A thermoeconomic analysis utilizing the sun to desalt water in high irradiance regions.  

E-Print Network (OSTI)

?? Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

36

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

37

City of Tallahassee Utilities - Solar Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Loans Tallahassee Utilities - Solar Loans City of Tallahassee Utilities - Solar Loans < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $20,000 Other Measures: $10,000 Program Info State Florida Program Type Utility Loan Program Rebate Amount Solar PV: up to $20,000 Other Measures: up to $10,000 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers loans with an interest rate of 5% for a variety of energy-saving measures, including photovoltaic (PV) systems and solar water-heating systems. Under this program, customers may borrow up to $20,000 for PV systems and $10,000 for solar water-heating systems (including pool heating). Loan payments are to be made on monthly

38

Utility water system with a pressureless storage container, particularly for solar installations  

SciTech Connect

A warm water storage system for supplying warm water to a network with water under pressure characterized in that the storage is pressureless and takes place in a ventilated container, and that between the take-off region of the container and the warm water supply network is incorporated a booster pump.

Laing, K.; Laing, N.; Laing, O.; Ludin, L.

1984-03-20T23:59:59.000Z

39

Utility Solar Generation Valuation Methods  

DOE Green Energy (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

40

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

42

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

43

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008: Zerull Location: San Rafael, CA System size: 14 kW Funded by the California Solar Initiative

44

California Public Utilities Commission California Solar Initiative  

E-Print Network (OSTI)

California Public Utilities Commission California Solar Initiative Program Handbook September 2012Power #12;Table of Contents i California Solar Initiative Program Handbook September 2012 1. Introduction: California Solar Initiative Program....................................................................1 1

45

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

46

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

47

Orlando Utilities Commission - Solar Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate No maximum specified Program Info State Florida Program Type Performance-Based Incentive Rebate Amount Solar Thermal (Commercial): 0.03/kWh PV (Commercial and Residential): 0.05/kWh Provider Orlando Utilities Commission (OUC) The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV) and/or solar thermal energy system on their property. Incentive payments are equal to $0.05 per killowatt-hour (kWh) for commercial and residential PV systems and

48

Port Angeles Public Works and Utilities - Solar Energy Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Port Angeles Public Works and Utilities - Solar Energy Loan Program Port Angeles Public Works and Utilities - Solar Energy Loan Program Port Angeles Public Works and Utilities - Solar Energy Loan Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Not specified Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Not specified Provider Port Angeles Public Works and Utilities The City of Port Angeles Public Works and Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for installation of solar water heating and photovoltaic systems. All improvements must be approved by the City in advance of any work performed. All improvements must meet the

49

FEMP--Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

50

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

51

Austin Utilities - Solar Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

52

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

53

Burbank Water and Power - Solar Water Heater Rebate Program (California) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Solar Water Heater Rebate Program Burbank Water and Power - Solar Water Heater Rebate Program (California) Burbank Water and Power - Solar Water Heater Rebate Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount $1,500 Provider Rebates Burbank Water and Power is providing incentives for the purchase of solar water heaters. Incentives are only available to residential customers with electric water heaters. There is a limit of one solar water heater per year per property. Applicants must provide access to their residence for a pre-inspection to verify the existing use of an electric water heater. Customers must comply with all code and permit requirements. More

54

California Solar Initiative - Pilot Solar Water Heating Program...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

55

California Solar Initiative - Low-Income Solar Water Heating...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

56

Columbia Water & Light- Solar Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) offers rebates to its commercial and residential customers for the purchase of solar water heaters and solar photovoltaic systems. These rebates are available for...

57

Energy Basics: Solar Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

solar storage in one tank. Types of Solar Collectors Solar collectors gather the sun's energy, transform its radiation into heat, and then transfer that heat to water or solar...

58

The Sacramento power utility experience in solar  

SciTech Connect

An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

1993-12-31T23:59:59.000Z

59

Commonwealth Solar Hot Water Residential Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

60

Azusa Light & Water - Solar Partnership Program (California)...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Commonwealth Solar Hot Water Commercial Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

62

Solar energy: some variables influencing increased utilization  

SciTech Connect

The mid 1970s energy crisis encouraged the growth of alternative fuels. Through the late 1970s and 1980s, solar energy was the primary alternative fuel. Federal and state programs encouraged the growth of residential solar installations through the use of tax credits. This dissertation used data from the eleven western states to assess tax credits' influence on residential solar installations. A Spearman's r was used to evaluate the role of tax credits on the percent increase in solar systems from 1980 to 1984. The r/sub s/ was .93. The second portion of the analysis used contingency tables to see if variables other than tax credits influence solar installations; the results showed tax credits + solar radiation and fuel mix are the significant variables. The final chapter looks at municipal solar utilities, tax on excessive energy use, a public/private solar research lab, and building rating system as means to supplement solar energy tax credits.

Born, B.E.

1986-01-01T23:59:59.000Z

63

Solar Utility SpA | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Solar Utility SpA Place Italy Sector Solar Product Italy-based solar PV project developer. References Solar Utility SpA1 LinkedIn Connections...

64

Clark Public Utilities - Solar Energy Equipment Loan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: 30,000 Solar Pool Heaters and Solar Water Heaters: 10,000 Program Information...

65

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

66

An Evaluation of Solar Valuation Methods Used in Utility Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Title An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement...

67

Exploring How Municipal Utilities Fund Solar Energy Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring How Municipal Utilities Fund Solar Energy Projects Webinar Exploring How Municipal Utilities Fund Solar Energy Projects Webinar February 19, 2013 1:00PM MST Webinar This...

68

Utility Wind Integration Group Distributed Wind/Solar Interconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed WindSolar Interconnection Workshop Utility Wind Integration Group Distributed WindSolar Interconnection Workshop May 21, 2013 8:00AM...

69

SMUD - Solar Water Heater Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program Solar Water Heater Rebate Program SMUD - Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount 500 - 1,500 per system, depending on energy savings Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the rebate depends on how much electricity the system will offset annually: * 800 - 1,399 kWh: $500 * 1,400 - 2,199 kWh: $1,000 * 2,200 kWh or greater: $1,500 . All solar water-heating units must meet standards set by the Solar Rating

70

Solar hot water heater  

SciTech Connect

A solar hot water heater includes an insulated box having one or more hot water storage tanks contained inside and further having a lid which may be opened to permit solar radiation to heat a supply of water contained within the one or more hot water storage tanks. A heat-actuated control unit is mounted on an external portion of the box, such control unit having a single pole double throw thermostat which selectively activates an electric winch gear motor to either open or close the box lid. The control unit operates to open the lid to a predetermined position when exposed to the sun's rays, and further operates to immediately close the lid in response to any sudden drop in temperature, such as might occur during a rainstorm, clouds moving in front of the sun, or the like.

Melvin, H.A.

1982-12-28T23:59:59.000Z

71

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

72

Walton EMC - Residential Solar Water Heating Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate 200 Program Information Georgia Program Type Utility Rebate Program Rebate Amount Solar Water Heater: 200 per location Walton Electric Membership Corporation (WEMC) is an...

73

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

74

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

75

Cedarburg Light & Water Utility - Commercial Shared Savings Loan...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

76

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

77

Solar Water Heating: What's Hot and What's Not  

E-Print Network (OSTI)

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management program designed to reduce system demand during peak summer hours. Solar hot water has the potential to generate significant savings during periods of high solar intensity. For summer peaking utilities, these periods of high solar intensity coincide with the overall system peak. This paper discusses the basics of analyzing solar water heaters as a demand-side management measure. In addition, four utility solar water heater incentive programs are studied in detail. The paper describes each program and notes the stage of development. Where such information is available, incentive amounts and cost-effectiveness calculations are included.

Stein, J.

1992-05-01T23:59:59.000Z

78

$69 solar water heater  

SciTech Connect

The construction of a batch or breadbox solar water heater is described in which it is assumed that an old refrigerator and used galvanized air compressor tank are available (at no charge). Additional materials required (plumbing, hardware, lumber, and miscellaneous) cost approximately $69. The refrigerator serves as an insulated box as well as a built-in hinged adjustable reflector (the door). The door also provides tight-fitting nighttime insulation. Detailed directions are provided for the construction of the solar water heater; the principal operations involve modification of the refrigerator, plumbing the tank, constructing the glazing section, and tilting the collector properly. Ample illustrations are provided and a complete list of materials needed is included. The project can be completed in one day. (MJJ)

Morris, E.

1980-09-01T23:59:59.000Z

79

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Residential Energy Efficiency Rebate Program Eligibility Low-Income...

80

Innovative solar thermochemical water splitting.  

DOE Green Energy (OSTI)

Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $600 Program Info State Florida Program Type Utility Rebate Program Rebate Amount 0.01 per BTU output Provider Clay Electric Co-op Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per system, or $600. Eligible solar water heaters can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to install solar water heating

82

NREL Webinar: Treatment of Solar Generation in Electric Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their...

83

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

84

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) Coweta-Fayette EMC - Residential Solar Water Heater Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Solar Water Heater: $750 New Homes Solar Water Heater: $1,250 - $1,500 Provider Coweta-Fayette Electric Membership Corporation Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties. Currently, Coweta-Fayette EMC offers rebates on solar water heaters from $750 up to $1,500 as part of the Touchstone Energy Home Program. Solar

85

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

DOE Green Energy (OSTI)

Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

Not Available

2009-07-01T23:59:59.000Z

86

Solar Water Heater Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat...

87

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate...

88

National solar water heater workshop  

Science Conference Proceedings (OSTI)

The National Solar Water Heater Workshop (NSWHW) program directly resolves the major problem inhibiting the widespread application of solar energy for domestic water heating - that of bridging the gap, by an educational program, between well-known solar technology and the application of that technology. This is accomplished by workshop sponsors throughout the nation, conducting workshops to educate homeowners on solar principles, and installation, operation, and maintenance of their solar system. During a workshop, students personally fabricate two or more collectors and complete a plumbing subsystem, all of which have been developed and specified by Arizona State University (ASU). The program appeals to do-it-yourselfers and handyman type persons who by their example become strong solar advocates to their neighbors and acquaintances. A market for the commercial solar industry is thus also generated as other homeowners acquire installed systems from the local solar industry. A central thrust of this program is the establishment of local solar hardware suppliers who can supply the demand of the students for solar hardware kits. This is a DOE program approved for 2 years and is funded at $600,000 for the first year with $400,000 to be funded for the second year. At the end of 2 years, it is envisioned that 50,000 domestic solar water heaters will have been installed throughout the nation and trust territories which will result in savings in the order of 131 million kWh, 447 billion Btu and 8 million dollars.

Mumma, S.A.; Ashland, M.

1981-01-01T23:59:59.000Z

89

Grays Harbor PUD - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $600 Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square feet or more. Only customers who currently use electricity for hot water are eligible. This rebate is available on a case-by-case basis, so you must contact the utility in order to take advantage of it. Customers may choose a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA09F&re=1&ee=1

90

Exploring How Municipal Utilities Fund Solar Energy Projects Webinar |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring How Municipal Utilities Fund Solar Energy Projects Exploring How Municipal Utilities Fund Solar Energy Projects Webinar Exploring How Municipal Utilities Fund Solar Energy Projects Webinar February 19, 2013 1:00PM MST Webinar This free webinar presented by the DOE Office of Energy Efficiency and Renewable Energy will take place on February 19, 2013, from 1-2:15 p.m. MST. It will provide information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy will also discuss their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

91

Low Cost Solar Water Heater  

SciTech Connect

This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

William Bostic

2005-12-16T23:59:59.000Z

92

EWEB - Residential Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program EWEB - Residential Solar Water Heating Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate $7,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Up to 75% of system cost after rebate Provider Eugene Water and Electric Board Eugene Water and Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of solar water heaters and solar pool heating systems. It began in May 1990 as part of a demand-side management initiative. The loans have been offered since May 1995. EWEB provides all funding for both loans and cash discounts. Customers may

93

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate Program Eligibility Agricultural Commercial Fed. Government Industrial Local...

94

Beaches Energy Services - Solar Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program Beaches Energy Services - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per customer Rebates will not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater: $500 Provider Beaches Energy Services Beaches Energy Services offers a solar water heating rebate to their residential customers. This $500 rebate applies to new systems which are properly installed and certified. New construction and solar pool heating systems do not qualify for the rebate payment. Systems must be installed by a licensed Florida contractor and must be FSEC certified. Rebates will not

95

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

96

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy also discussed their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Download the presentations below, watch the webinar (WMV 148 MB), or view the text version. Find more CommRE webinars. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

97

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

98

Case against private utility involvement in solar/insulation programs  

SciTech Connect

The arguments against private utility involvement are arranged under the following headings: excessive profit-taking, monopolization/favoritism, increased cost to consumers, homeowners would pay twice, the lack of accountability, the lack of commitment to solar by utilities, solar/political/ethical considerations, solar/conservation technologies are inherently decentralized, and the other alternatives. (MHR)

Bossong, K.

1977-06-08T23:59:59.000Z

99

Solar-hot-water-heater lease program  

SciTech Connect

Ten domestic hot-water solar systems were installed, leased to homeowners, and monitored for two years. All of the systems were installed as back-ups to electric water heaters. The systems consist of two to four collectors, a solar storage tank (as well as the existing non-solar heater), and a heat exchanger package. Eight are three-collector systems, one is a four-collector and one a two-collector system. The systems were sized according to family size and predicted hot water demand. The monitoring consists of a separate KW reading on the non-solar water heater, a reading of gallons of how water consumed, and hot and cold outlet temperatures. The purpose for the study was fourfold: (1) to determine the level of acceptance by the general public of solar water heaters if available on a lease rather than a purchase basis; (2) to measure the actual energy savings to the average homeowner in central Illinois with a solar water heater; (3) to measure the potential reduction of Cilco's energy production requirements, should there be widespread utilization of these systems; and (4) to determine the feasibility of an entrepreneur making these systems available on a rental basis and remaining a going concern. The results of this study indicate that the leasing of solar equipment to homeowners has a more widespread acceptance than the direct purchase of such systems. Homeowners, however, do not want to spend as much money on monthly lease payments as the supplier of the equipment would deem necessary. This seriously questions the feasibility of an entrepreneurial leasing program.

Rutherford, S.

1983-04-01T23:59:59.000Z

100

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

for solar energy by dramatically reducing the cost of solar. As part of the statewide solar effort, the CPUC of the state's solar offerings, such as the California Energy Commission's (Energy Commission) New Solar Homes Renewable Energy Council (IREC) released Larry Sherwood's U.S. Solar Market Trends for 2007 report

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Solar Buildings: Solar Water Heaters, The Next Generation  

DOE Green Energy (OSTI)

This document explains the U.S. Department of Energy's Solar Buildings Program's efforts regarding the research, development, and deployment of solar water heating technology.

NREL

1998-10-29T23:59:59.000Z

102

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Solar Water Heater Rebate Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program Linn County Rural Electric Cooperative - Solar Water Heater Rebate Program < Back Eligibility Agricultural Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $500 Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial, residential, and agricultural customers. Owners of both new construction and existing buildings are eligible for a $500 rebate for solar water heaters. The water heaters must have an auxiliary tank of at least 40 gallons and the solar water heater

103

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters Solar Water Heaters May 7, 2012 - 9:52am Addthis Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use -- sunshine -- is free. How They Work Solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don't. Active Solar Water Heating Systems There are two types of active solar water heating systems: Direct circulation systems Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes. Indirect circulation systems

104

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

Not Available

2010-09-01T23:59:59.000Z

105

CPS Energy - Solar Hot Water Rebate Program (Texas) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

106

Gulf Power - Solar Thermal Water Heating Pilot Program (Florida...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

107

Orange County - Solar Hot Water Rebate Program (Florida) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

108

Solar Water Heater Rebate Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

109

City Water Light and Power - Solar Rewards Program | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

110

Glendale Water and Power - Solar Solutions Program (California...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

111

Gulf Power - Solar Thermal Water Heating Program (Florida) |...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

112

Solar Water Heating Incentive Program (Oregon) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

113

EWEB - Residential Solar Water Heating Loan Program (Oregon)...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

114

Solar Hot Water Contractor Licensing (Arkansas) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

115

EWEB - Residential Solar Water Heating Rebate (Oregon) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

116

EPUD - Solar Water Heater Loan (Oregon) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

117

Solar Water Heating Requirement for New Residential Construction...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

118

Commercial Solar Hot Water Financing Program | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

119

GreyStone Power - Solar Water Heating Program (Georgia) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

120

Austin Energy - Solar Water Heating Rebate (Texas) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Burbank Water and Power - Residential and Commercial Solar Support...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

122

EPUD - Solar Water Heater Rebate (Oregon) | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

123

Columbia Water & Light - Solar Rebates (Missouri) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

124

Residential Solar Water Heating Rebates (New Hampshire) | Open...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

125

Local Solar Water Heating Rebate Programs (Colorado) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

126

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network (OSTI)

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors, and therefore become multifunctional. In addition, solar collectors can be used to enhance the appearance of the façade when considering aesthetic compatibility. Currently, the feasible approach for integration of solar collectors into buildings is to install collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered integrated energy systems in public buildings. Then suggestions are given. In cities of China, an ideal opportunity to carry out solar renovation with roof-integrated collectors is in combination with the rebuilding of apartment roofs, from flat to inclined. With regard to multi-story residential buildings, a central hot water supply system and central-individual hot water supply system are more appropriate in view of aesthetic compatibility of solar collectors with building roof and convenience of management. As for public buildings, it is highly recommended to design solar-powered integrated energy systems for the purpose of high solar fraction.

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

127

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

water heaters water heaters (Redirected from - Solar Hot Water) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the

128

Grays Harbor PUD - Solar Water Heater Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Loan Solar Water Heater Loan Grays Harbor PUD - Solar Water Heater Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount not specified Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a low-interest loan program (currently 4.0%) for the installation of solar water heaters. Loans are available for the installation of solar collectors of 40 square feet or more. The loans are provided through local lenders, with interest subsidized by the PUD. Only customers who currently use electricity for hot water are eligible. Pre-approval is required for this loan and loan amounts are determined on a case-by-case basis.

129

Azusa Light and Water - Solar Partnership Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Azusa Light and Water - Solar Partnership Program Azusa Light and Water - Solar Partnership Program Azusa Light and Water - Solar Partnership Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of system cost Program Info Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for fiscal year 2013-2014. New applicants will be placed on a wait list. $1.55/W-DC Provider Azusa Light and Water '''''This program is fully subscribed through fiscal year 2013/2014. New applicants will be placed on a wait list in the order they were received. ''''' Azusa Light and Water provides rebates to customers who install photovoltaic (PV) systems through the utility's Solar Partnership Program.

130

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

131

Clark Public Utilities - Solar Energy Equipment Loan (Washington...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Clark Public Utilities - Solar Energy Equipment Loan (Washington) This is the approved revision of this page, as...

132

Solar and Wind Energy Utilization and Project Development Scenarios  

Open Energy Info (EERE)

Utilization and Project Development Scenarios

(Abstract):  Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of...

133

title Utility Scale Solar An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States year month institution LBNL abstract p Berkeley Lab hosted a webinar...

134

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

135

City of Tallahassee Utilities - Solar Loans (Florida) | Open...  

Open Energy Info (EERE)

and send it to the utility Energy Services. A city energy audit is required for all solar technology installations. Installation work should not begin until after a signed...

136

Concentrating solar power technologies offer utility-scale power ...  

U.S. Energy Information Administration (EIA)

Concentrating solar power (CSP) is a utility-scale renewable energy option for generating electricity that is receiving considerable attention in the southwestern ...

137

A Guide to Community Shared Solar: Utility, Private, and Nonprofit...  

NLE Websites -- All DOE Office Websites (Extended Search)

start. First of all, utilities are likely to have the legal, financial, and program management infrastructure to handle organizing and implementing a community shared solar...

138

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

139

The Solar America Initiative (SAI): Role of Utilities  

SciTech Connect

Fact sheet introduces the utility audience to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how utilities can benefit from and contribute to the SAI.

2006-10-01T23:59:59.000Z

140

The Solar America Initiative (SAI): Role of Utilities  

DOE Green Energy (OSTI)

Fact sheet introduces the utility audience to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how utilities can benefit from and contribute to the SAI.

Not Available

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Do You Have a Solar Water Heater?  

Energy.gov (U.S. Department of Energy (DOE))

Earlier this week, Ernie wrote about the economics of getting a solar water heater. As Ernie explained, a solar water heater is more expensive than a normal water heater, but depending on your area...

142

Solar Water Heat | Open Energy Information  

Open Energy Info (EERE)

Water Heat Jump to: navigation, search TODO: Add description List of Solar Water Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarWaterHeat&oldid26719...

143

Residential Solar Water Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates Residential Solar Water Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $1,900 Program Info Funding Source New Hampshire Renewable Energy Fund (REF) Start Date 04/21/2010 Expiration Date When funding is exhausted State New Hampshire Program Type State Rebate Program Rebate Amount $1,500, $1,700 or $1,900, depending on annual estimated system output Provider New Hampshire Public Utilities Commission New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to 19.9 MMBTU; $1,700 for

144

Burbank Water and Power - Residential and Commercial Solar Support Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

145

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

146

Piedmont EMC - Solar Water Heating Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Rebate Program Piedmont EMC - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program...

147

Salem Electric - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Salem Electric - Solar Water Heater Rebate Eligibility Residential Savings For Heating & Cooling Solar Water Heating Program Information Oregon Program...

148

Category:Solar Water Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heating Incentives Jump to: navigation, search Category for Solar Water Heating Incentives. Pages in category "Solar Water Heating Incentives" The following 200 pages...

149

California Solar Initiative - Low-Income Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential...

150

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

151

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

152

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

153

Duquesne Light Company - Residential Solar Water Heating Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program Duquesne Light Company - Residential Solar Water Heating Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 11/30/2009 Expiration Date 03/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount $286/system Provider Duquesne Light Company Duquesne Light provides rebates to its residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a flat rebate of $286 per qualifying system. Various equipment, installation, contractor, and warranty requirements apply, as summarized above and described in more detail in program documents. Customers must

154

Valley Electric Association - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

155

Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Residential Solar Water Heating Program Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) Entergy New Orleans - Residential Solar Water Heating Program (Louisiana) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential Solutions: $1000/improvement Program Info Start Date 1/1/2011 State Louisiana Program Type Utility Rebate Program Rebate Amount kWh savings(annual) x $0.34/kWh Provider Energy Smart Solutions Center Entergy New Orleans offers a Solar Water Heater Rebate pilot program designed to help residential customers make energy efficiency improvements. Rebates will be offered on a first-come, first-served basis and reflected on the invoice as a discount. All systems must be OG 300 rated and incentive amount is based on kWh savings. Walk-through energy assessments

156

Utilization of solar thermal sources for thermochemical hydrogen production  

DOE Green Energy (OSTI)

The utilization of high temperature solar heat for the production of electricity and/or fuels is a popular concept. However, since solar concentrator systems are expensive and solar radiation intermittent, practical utilization requires processes that exhibit high conversion efficiencies and also incorporate energy storage. The production of hydrogen fulfills the requirement for energy storage and can fulfill the requirement for efficient heat utilization if thermochemical cycles are developed where the temperature and heat requirements of the process match the heat delivery characteristics of the solar receiver system. Cycles based on solid sulfate decomposition reactions may lead to efficient utilization of solar heat at practical temperatures. Higher temperature cycles involving oxide decomposition may also become feasible.

Bowman, M.G.

1980-01-01T23:59:59.000Z

157

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

Science Conference Proceedings (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

158

Assessment of Unglazed Solar Domestic Water Heaters  

SciTech Connect

Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

Burch, J.; Salasovich, J.; Hillman, T.

2005-12-01T23:59:59.000Z

159

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

160

Solar Hot Water for Your Home  

DOE Green Energy (OSTI)

A brochure describing the cost-saving and energy-saving benefits of using solar heated water in your home.

American Solar Energy Society

2001-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Plasmonic solar water splitting.  

Science Conference Proceedings (OSTI)

The study of the optoelectronic effects of plasmonic metal nanoparticles on semiconductors has led to compelling evidence for plasmon-enhanced water splitting. We review the relevant physics, device geometries, and research progress in this area. We focus on localized surface plasmons and their effects on semiconductors, particularly in terms of energy transfer, scattering, and hot electron transfer.

Warren, S. C.; Thimsen, E. (Materials Science Division); (Ecole Polytechnique Federale de Lausanne); (Northwestern Univ.)

2012-01-01T23:59:59.000Z

162

California Solar Initiative - Low-Income Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » California Solar Initiative - Low-Income Solar Water Heating Rebate Program California Solar Initiative - Low-Income Solar Water Heating Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-Family Low-Income: $3,750 Multi-Family Low-Income: $500,000 Program Info Funding Source Ratepayer Funds Start Date 3/29/2012 State California Program Type State Rebate Program Rebate Amount Step 1 Incentive Rates (contact utility to determine current incentive levels): Single-Family Low-Income: $25.64 per therm displaced Multi-Family Low-Income: $19.23 per therm displaced The California Public Utilities Commission (CPUC) voted in October 2011 to

163

Turbidity study of solar ponds utilizing seawater as salt source  

Science Conference Proceedings (OSTI)

A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

Li, Nan; Sun, Wence; Shi, Yufeng [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023 (China); Yin, Fang [YLab, 358 South 700 East, Suit B-139, Salt Lake City, UT 84102 (United States); Zhang, Caihong [Dalian Thermoelectric Group Co. Ltd., Dalian 116001 (China)

2010-02-15T23:59:59.000Z

164

Homeowners survey: gas utilities and the residential solar market  

Science Conference Proceedings (OSTI)

The market potential for a gas/solar energy market in the residential sector prompted the American Gas Association's Solar Energy Committee to analyze national homeowner data collected by Gallup for the Solar Energy Research Institute to see if it applies to gas-utility diversification. The survey results show that the public is interested in utility involvement. Key findings in the survey cover not only attitudes, but profile potential buyers, project market shares, and note regional-attitude differences. The utilities that diversify in this way could improve their relations with both customers and regulators as well as increasing their profits. 4 figures, 17 tables. (DCK)

Pilgrim, B.F.

1982-04-01T23:59:59.000Z

165

Solar water heating: FEMP fact sheet  

DOE Green Energy (OSTI)

Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

Clyne, R.

1999-09-30T23:59:59.000Z

166

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

167

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

168

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

169

Municipal solar utilities in California: marketing, financial and legal issues  

Science Conference Proceedings (OSTI)

A Municipal Solar Utility, a municipal-level organization, designed to promote the use of solar technologies within the local marketplace is discussed. Over the past 14 months, the cities of Bakersfield, Oceanside, Palo Alto, San Dimas, Santa Monica and Ukiah have worked on implementation plans to develop MSUs for their respective communities. An analysis of specific marketing, financial, and legal issues associated with the development of Municipal Solar Utilities is presented. Three service delivery packages are analyzed: (1) full service or direct model; (2) low-interest loan; and (3) facilitation or brokerage model. These models represent a variety of potential organizational and program initiatives ranging from consumer education, capitalization and financing methods, to consumer protection from liabilities of owning, installing, and leasing solar equipment. The feasibility of local-level Municipal Solar Utility programs is demonstrated and the capability of communities to successfully initiate total energy programs is addressed.

Sanger, J.M.; Epstein, P.B.

1980-12-01T23:59:59.000Z

170

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

171

TVA Partner Utilities - Energy Right Water Heater Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Program Eligibility InstallerContractor Residential Utility Savings For Appliances & Electronics Water Heating Maximum Rebate Member utility water heater rebate...

172

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

173

Glendale Water and Power - Solar Solutions Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solutions Program Solar Solutions Program Glendale Water and Power - Solar Solutions Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of the gross installed system cost Payment will not exceed $100,000 per customer per fiscal year Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Glendale Water and Power '''''Note: This program is currently closed. Contact the utility for more information or to be put on a wait list for when the program is reopened. ''''' The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate

174

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

175

Gainesville Regional Utilities - Solar Feed-In Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar Feed-In Tariff Gainesville Regional Utilities - Solar Feed-In Tariff Gainesville Regional Utilities - Solar Feed-In Tariff < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2009 State Florida Program Type Performance-Based Incentive Rebate Amount 2013 Contracts: Rooftop- or pavement-mounted systems Ground-mounted systems Rooftop- or pavement-mounted systems >10kW to 300kW: $0.18/kWh Ground-mounted systems >10kW to 25kW: $0.18/kWh Ground-mounted systems >25kW to 1,000kW: $0.15/kWh Provider Gainesville Regional Utilities NOTE: This program will re-open to new applicants from January 4, 2013

176

A Realistic Hot Water Draw Specification for Rating Solar Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

thornton@tess-inc.com ABSTRACT In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. Bias...

177

Corona Department of Water and Power - Solar Partnership Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corona Department of Water and Power - Solar Partnership Rebate Corona Department of Water and Power - Solar Partnership Rebate Program Corona Department of Water and Power - Solar Partnership Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential:$3,660 Commercial: $30,500 Program Info State California Program Type Utility Rebate Program Rebate Amount $1.22 per watt-AC Provider Corona Department of Water and Power Corona Department of Water and Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2013 is $1.22 per watt up to $3,660 for residential systems and $30,500 for commercial systems. Customers must submit an application and receive approval prior to beginning the installation. See website above for

178

Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Solar Water Heater Rebate Solar Water Heater Rebate < Back Eligibility Commercial Fed. Government Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type State Rebate Program Rebate Amount Residential Solar Water Heating: $1,000 upfront, or Residential Solar Water Heating Interest Loan Buy-Down: $1,000 Residential Solar Attic Fans: $50 Commercial: $250 per 12,000 Btu/hr derated capacity Provider Hawaii Energy Hawaii Energy, a third-party administered public benefits fund, provides incentives for energy efficiency and conservation to customers of the Hawaiian Electric Company (HECO) and its subsidiaries, Maui Electric Company (MECO) and Hawaii Electric Light Company (HELCO). This incentive is available for installations on the islands of Oahu, Hawaii, Maui, Lanai and

179

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

180

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program (Arizona) < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate 50% of system cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount $15.00/therm Provider Southwest Gas Corporation '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a rebate in the next program

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

182

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

183

Southwest Gas Corporation - Smarter Greener Better Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Smarter Greener Better Solar Water Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: 30% of system cost or $3,000, whichever is less Small Commercial: 30% of system cost or $7,500, whichever is less Schools, Religious, Non-profit, Public Facilities and Civic and County Facilities: 50% of system cost or $30,000, whichever is less Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Residential and Small Business: $14.50 per therm Schools, Religious, Non-profit, Public Facilities and Civic and County

184

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

185

Solar water heater lease program. Interim report  

SciTech Connect

The Solar Water Heater Lease Program consists of the installation and leasing of ten solar systems to central Illinois homeowners. The measured energy savings to the homeowners and the impact of such systems on energy production requirements are studied. Each homeowner collects data on the gallons of hot water used, electricity used to heat water, and the temperatures of the cold and hot water outlet temperatures at the sink. The data are presented and conclusions are drawn, including the optimum slope of the collector, comparison of the actual hot water consumption and the estimated consumption, evaluation of the effects of temperature settings of the non-solar water heater, and the percentage of the energy provided for hot water by the solar system. The monitoring procedures and results are evaluated. Recommendations for improving the solar hot water systems are presented. (LEW)

1982-01-01T23:59:59.000Z

186

Sacramento Municipal Utility District Solar Array | Open Energy Information  

Open Energy Info (EERE)

Utility District Solar Array Utility District Solar Array Jump to: navigation, search Name Sacramento Municipal Utility District Solar Array Facility Sacramento Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Innovative heat exchangers for solar water heaters.  

E-Print Network (OSTI)

??The performance of two innovative collector-loop heat exchangers used in pumped circulation solar water heaters was investigated experimentally and numerically, and TRNSYS simulation models were… (more)

Soo Too, Yen Chean

2007-01-01T23:59:59.000Z

188

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 City of Tallahassee Utilities - Solar Water Heating Rebate The...

189

Pasadena Water and Power - Solar Power Installation Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate Pasadena Water and Power - Solar Power Installation Rebate < Back Eligibility Commercial Institutional Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Systems up to 30 kW have the option of receiving an expected performance based buydown (EPBB) or a performance based incentive (PBI). Systems larger than 30 kW are only eligible for the PBI. EPBB (effective 6/1/12): Residential: $1.40/watt AC Commercial and all PPAs: $0.85/watt AC Non-profits and Government: $1.60/watt AC Income-qualified residential: $4.00/watt PBI (effective 6/1/12): Residential: $0.212/kWh Commercial and all PPAs: $0.129/kWh

190

Determination of Precipitable Water from Solar Transmission  

Science Conference Proceedings (OSTI)

A method of determining precipitable water to within 10% from solar radiometer data has been developed. The method uses a modified Langley technique to obtain the water vapor optical depth, and a model developed at the University of Arizona is ...

K. J. Thome; B. M. Herman; J. A. Reagan

1992-02-01T23:59:59.000Z

191

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

192

Columbia Water and Light - Solar Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Rebates Columbia Water and Light - Solar Rebates Eligibility Commercial Fed. Government Nonprofit Residential State Government Savings For Solar Buying & Making Electricity...

193

City Water Light and Power - Solar Rewards Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Rewards Program City Water Light and Power - Solar Rewards Program Eligibility Commercial Residential Savings For Solar Buying & Making Electricity Maximum Rebate 15,000 per...

194

Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters  

DOE Green Energy (OSTI)

The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

None

1983-02-01T23:59:59.000Z

195

Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint  

DOE Green Energy (OSTI)

Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

2009-04-01T23:59:59.000Z

196

Treatment of Solar Generation in Electric Utility Resource Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

197

Advanced Light Water Reactor utility requirements document  

SciTech Connect

The ALWR Requirements Document is a primary work product of the EPRI Program. This document is an extensive compilation of the utility requirements for design, construction and performance of advanced light water reactor power plants for the 1990s and beyond. The Requirements Document's primary emphasis is on resolution of significant problems experienced at existing nuclear power plants. It is intended to be used with companion documents, such as utility procurement specifications, which would cover the remaining detailed technical requirements applicable to new plant projects. The ALWR Requirements Document consists of several major parts. This volume is Part I, The Executive Summary. It is intended to serve as a concise, management level synopsis of advanced light water reactors including design objectives and philosophy, overall configuration and features and the steps necessary to proceed from the conceptual design stage to a completed, functioning power plant.

1986-06-01T23:59:59.000Z

198

Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

Ruckman, K.

2011-03-01T23:59:59.000Z

199

Burbank Water and Power - Solar Water Heater Rebate Program ...  

Open Energy Info (EERE)

Burbank Water and Power - Solar Water Heater Rebate Program (California) No revision has been approved for this page. It is currently under review by our subject matter experts. No...

200

Lumbee River EMC - Solar Water Heating Loan Program (North Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Program (North Carolina) Lumbee River EMC - Solar Water Heating Loan Program (North Carolina) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lumbee River EMC - Solar Water Heating Rebate Program (North...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program (North Carolina) Lumbee River EMC - Solar Water Heating Rebate Program (North Carolina) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water...

202

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility...

203

Austin Energy - Solar Water Heating Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Austin Energy - Solar Water Heating Rebate Austin Energy - Solar Water Heating Rebate Eligibility...

204

FirstEnergy (West Penn Power) - Residential Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania) FirstEnergy (West Penn Power) - Residential Solar Water Heating Program (Pennsylvania)...

205

Heat Transfer Fluids for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating Systems Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

206

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Eligibility...

207

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the commercial solar hot water industry in Massachusetts. Commercial and non-profit building owners can use the financing program to install solar hot water systems that heat...

208

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

209

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating...

210

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

211

Entech Solar Inc formerly WorldWater Solar Technologies | Open Energy  

Open Energy Info (EERE)

WorldWater Solar Technologies WorldWater Solar Technologies Jump to: navigation, search Name Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place Fort Worth, Texas Zip 76177 Sector Solar Product Texas-based solar energy systems manufacturer. References Entech Solar Inc. (formerly WorldWater & Solar Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Entech Solar Inc. (formerly WorldWater & Solar Technologies) is a company located in Fort Worth, Texas . References ↑ "Entech Solar Inc. (formerly WorldWater & Solar Technologies)" Retrieved from "http://en.openei.org/w/index.php?title=Entech_Solar_Inc_formerly_WorldWater_Solar_Technologies&oldid=344989

212

Report on Solar Water Heating Quantitative Survey  

DOE Green Energy (OSTI)

This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

Focus Marketing Services

1999-05-06T23:59:59.000Z

213

Austin Energy- Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy offers its residential, commercial, and municipal customers up front rebates or a low interest loan for the purchase and installation of solar hot water heaters. Because the program...

214

CPS Energy- Solar Hot Water Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

215

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

216

Renewable energy technologies for federal facilities: Solar water heating  

SciTech Connect

This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

1996-05-01T23:59:59.000Z

217

Siting Your Solar Water Heating System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Siting Your Solar Water Heating System Siting Your Solar Water Heating System Siting Your Solar Water Heating System May 30, 2012 - 2:46pm Addthis Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Before you buy and install a solar water heating system, you need to first consider your site's solar resource, as well as the optimal orientation and tilt of your solar collector. The efficiency and design of a solar water heating system depends on how much of the sun's energy reaches your building site. Solar water heating systems use both direct and diffuse solar radiation. Even if you don't live in a climate that's warm and sunny most of the time -- like the southwestern United States -- your site still might have an adequate solar resource. If your building site has unshaded areas and

218

Solar and Wind Energy Utilization and Project Development Scenarios |  

Open Energy Info (EERE)

Utilization and Project Development Scenarios Utilization and Project Development Scenarios Dataset Summary Description (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of the primary reasons for under consideration of these resources are lack of awareness of their potential in the country, the role they can have in the overall energy mix and the social benefits associated with them. Knowledge of the exploitable potential of these resources and identification of potential regions for development will help energy planners and developers to incorporate these resources as alternative means of supplying energy by conducting a more accurate techno-economic analysis which leads to more realistic economic projections. (Purpose): The ultimate objective of this study is to produce a document that comprises country background information on solar and wind energy utilization and project scenarios which present solar and wind energy investment opportunities to investors and decision makers. It is an integrated study with specific objectives of resource documentation including analysis of barriers and policies, identification of potential areas for technology promotion, and nationwide aggregation of potentials and benefits of the resource. The

219

Utility market and requirements for a solar thermophotovoltaic system  

Science Conference Proceedings (OSTI)

There is a growing need for clean affordable electric power generation in both the U.S. and internationally and solar thermophotovoltaic (STPV) can meet the needs of this market. This paper investigates the utility grid market applicable to a solar thermophotovoltaic power generating system. It finds that a large international electrical market and a smaller U.S. electrical market exist today but the U.S. market will grow by the year 2005 to a level that would easily support the high production level required for solar systems to be cost effective. Factors which could influence this market and the system characteristics considered by utilities in selecting future power systems such as levelized energy cost, dispatchability, environmental, etc., for both the grid and remote market are discussed. The main competition for this market and the operating performance of this competition are described. A conceptual design of a STPV power system is presented, the operation is described, and how the performance meets the utility requirements is discussed. The relationship between the cost of the TPV conversion unit and the system efficiency of the STPV system is given for both the grid and remote markets that it must meet in order to be competitive. {copyright} {ital 1996 American Institute of Physics.}

Stone, K. [McDonnell Douglas Aerospace, 5301 Bolsa Avenue, Huntington Beach, California 92647 (United States); McLellan, S. [Arizona Public Service, P.O. Box 53999 Phoenix, Arizona (United States)

1996-02-01T23:59:59.000Z

220

Utility load management and solar energy. Study background and preliminary market potential analysis  

DOE Green Energy (OSTI)

The large-scale use of electrically assisted solar heating and hot water (solar/electric HHW) systems can have a substantial effect on electric utilities. Under some conditions, peak loads may be increased causing electricity generation costs to rise. However, with appropriate control and thermal storage equipment tied to the HHW system, the timing of the delivery of electricity to the HHW system can be controlled so that it is accomplished during those times of the day when utility supply costs are lowest. In this study various load management schemes for these applications are being investigated to determine their effect on the cost of generating the back-up electric power and on the cost of the required control and storage system. Solar/electric HHW systems are compared to electric-only systems for several utilities and several HHW system designs. The issues underlying the study, the methods of investigation, and the results of the first phase of the study are described. In this phase a preliminary analysis of the maximum market potential for night-time precharge electric-only hot water systems in either utilities was conducted. This analysis indicated that if about 20 to 40 percent of the residential customers used these appliances in a load managed mode, the 10 PM--8 AM valley in the utility load curve would be filled. For combined electric heating and hot water, the corresponding fraction is 6 to 12 percent. It is estimated that in each case, roughly twice the number of residential customers could be accommodated in the valley if solar/electric systems were used instead.

Davitian, H; Bright, R N; Marcuse, W

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller  

E-Print Network (OSTI)

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over show that both protocols provide significant energy savings when utilizing solar power. The paper shows

Voigt, Thiemo

222

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY Mechanical Engineering Department , Philadelphia University, Amman Jordan, e-mail  

E-Print Network (OSTI)

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY A. Saleh1 A. Badran2 1 Mechanical Engineering dish­type solar cooker was built and tested utilizing satellite dish technology. A common satellite-TV dish was utilized as a solar cooker after covering it with a highly­reflective aluminum foil, which

223

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

224

FirstEnergy (West Penn Power)- Residential Solar Water Heating Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

West Penn Power, a First Energy utility, provides rebates to residential customers for purchasing and installing qualifying solar water heating systems. Eligible systems may receive a rebate of up...

225

Installation package for a domestic solar heating and hot water system  

DOE Green Energy (OSTI)

Fern Engineering Company, Inc. has developed two prototype solar heating and hot water systems. The systems have been installed at Tunkhannock, Pennsylvania, and Lansing, Michigan. The system consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy. General guidelines which may be utilized in development of detailed installation plans and specifications are presented. In addition, instruction on operation, maintenance, and repair of a solar heating and hot water system is provided.

Not Available

1978-08-01T23:59:59.000Z

226

Inexpensive solar water heater you can build. Publication C-188  

SciTech Connect

Directions are given for constructing a home-made solar water heater that is expected to supply over 50% of the hot water for a family of 3 or 4. System cost is estimated at $250.00. The system utilizes three 2 x 8-foot solar panels. Hot water from the panels is pumped through a preheat-storage tank where it heats domestic water. The preheated water is then drawn into the cold water inlet of the regular home water heater. The pump which circulates the fluid is controlled by a differential thermostat which turns it on when the solar panels become hotter than the water in the preheat-storage tank. The collector panel design, construction, assembly, and installation are described in detail, as are the heat exchanger and storage tank. A thermosiphon system design is also briefly outlined. Sources of necessary materials are given as well as a list of needed materials, miscellaneous supplies, and major tools. Finally, the research and experimental work leading to the design is described, including the testing of models. (LEW)

Herndon, L.P.; Hill, G.C.

1982-01-01T23:59:59.000Z

227

Utilization requirements. A Southern California gas company project SAGE report: utilization requirements. [Solar Assisted Gas Energy  

SciTech Connect

Utilization requirements are given and comparisons made of two phase III SAGE (solar assisted gas energy) installations in California: (1) a retrofit installation in an existing apartment building in El Toro, and (2) an installation in a new apartment building in Upland. Such testing in the field revealed the requirements to be met if SAGE-type installations are to become commercially practical on a widespread basis in electric and gas energy usage.

Barbieri, R.; Schoen, R.; Hirshberg, A.S.

1978-01-01T23:59:59.000Z

228

Prototype solar heating and hot water systems  

DOE Green Energy (OSTI)

This document is a collection of two quarterly status reports from Colt, Inc., covering the period from October 1, 1977 through June 30, 1978. Colt is developing two prototype solar heating and hot water systems consisting of the following subsystems: collector, storage, control, transport, hot water, and auxiliary energy. The two systems are being installed at Yosemite, California and Pueblo, Colorado.

Not Available

1978-04-01T23:59:59.000Z

229

New Braunfels Utilities - Energy Efficiency and Water Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unit AC & Heat Pump: 200 - 500 Washing Machine: 100 Solar ScreenFilm: up to 300 LED Exit Sign: 20 Shade Tree: 25 New Braunfels Utilities offer a variety of programs...

230

New and Underutilized Technology: Solar Water Heating | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

231

Practical Solar Thermal Chilled Water  

E-Print Network (OSTI)

With the pressing need for the United States to reduce our dependence upon fossil fuels, it has become a national priority to develop technologies that allow practical use of renewable energy sources. One such energy source is sunlight. It has the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical success. The primary reason for these disappointments is a misunderstanding of solar energy dynamics by air conditioning designers; combined with a similar misunderstanding by solar engineers of how thermally driven chillers react to the loads and energy sources applied to them. With this in mind, a modeling tool has been developed which provides the flexibility to apply a strategy which can be termed, Optimization by Design.

Leavell, B.

2010-01-01T23:59:59.000Z

232

Beaches Energy Services - Solar Water Heating Rebate Program...  

Open Energy Info (EERE)

Incentive Programs Amount Solar Water Heater: 500 Equipment Requirements Must be Florida Solar Energy Center (FSEC) certified All system components must be new Systems must be...

233

Mountain Association for Community Economic Development - Solar Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

234

Implementation of solar-reflective surfaces: Materials and utility programs  

SciTech Connect

This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

1992-06-01T23:59:59.000Z

235

Regulated utilities and solar energy: a legal-economic analysis of the major issues affecting the solar commercialization effort  

DOE Green Energy (OSTI)

The reaction of public utilities to the addition (and competitive) sources of energy supplied by solar technologies will have a significant impact on the commercialization of solar energy. Decentralized applications of solar energy need utility-produced power to back up the energy produced by solar means. The cost and availability of this power will largely determine the acceptance of solar energy. There are three legal issues surrounding the role of utilities in the solar commercialization effort: (1) the extent to which utilities may own, sell, lease, finance, or service solar devices for utility customers; (2) the degree to which solar-powered utilities may be able to compete with existing utilities; and (3) the degree to which various utility rate structures will be allowed to penalize decentralized solar users. The impact of state constitutional and statutory provisions upon these issues is examined, along with relevant federal constitutional doctrines. Finally, the statutes of the National Energy Act, many of which specifically address the above issues, are discussed.

Laitos, J.; Feuerstein, R. J.

1979-06-01T23:59:59.000Z

236

Solar two: Utility-scale power from the sun  

DOE Green Energy (OSTI)

Information is presented on the Solar Two solar-powered electric generating plant located east of Barstow California.

NONE

1996-02-01T23:59:59.000Z

237

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

238

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-08-01T23:59:59.000Z

239

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-01-01T23:59:59.000Z

240

Solar-thermochemical production of hydrogen from water  

SciTech Connect

There is a widespread interest in the development of a ''hydrogen economy'' as an eventual solution to many of the problems associated with the growing energy crisis. Hydrogen is also valuable as a chemical intermediate. As fossil sources become inadequate, large scale hydrogen production must utilize energy sources such as solar energy for the decomposition of water by thermochemical cycles, electrolysis or perhaps, by a hybrid combination of these methods. The potential higher efficiency and lower cost for thermochemical methods, versus the overall electrolysis path has been rather widely recognized. The criteria for the selection of an appropriate thermochemical cycle for matching with a high temperature solar heat source are detailed. Advantages of a thermochemical cycle based on a solid sulfate decomposition that makes use of isothrmal high temperature energy is detailed and a plan for the implementation of such a cycle on a central tower solar receiver is given.

Cox, K.E.; Bowman, M.G.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inexpensive solar-wood water heating combinations  

SciTech Connect

A promising batch heater recently built and now being tested consists of lengths of eight-inch galvanized culvert pipe painted with semiselective black coating, hooked in series and tied in as part of a passive closed loop, unpressurized solar-wood water heating combination. One 10-foot length of eight-inch culvert contains 14.6 gallons of water. Eight-inch culvert provides a near optimum surface area per unit volume ratio, resulting in quicker, more efficient solar water heating. Moreover, the proposed arrangement minimizes the mixing of hot with cold water as warm water is used, often a problem with many types of batch heaters. Details for constructing this type of batch heater are provided. The system is an unpressurized, closed loop set-up, which means that the same liquid circulates continually from solar heater to wood heater to storage tank heat exchanger. The collector design is a variation on the inverted batch heater which takes its inspiration from a number of solar designers of similar units and introduces several additional measures to take advantage of the wood heating connection and to improve the design based on operating experience.

Poitras, R.

1980-01-01T23:59:59.000Z

242

Solar Water Heater Rebate Program (U.S. Virgin Islands) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program (U.S. Virgin Islands) Solar Water Heater Rebate Program (U.S. Virgin Islands) Eligibility Residential Savings For Heating & Cooling Solar Water...

243

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

244

SolarWaterWorld AG | Open Energy Information  

Open Energy Info (EERE)

SolarWaterWorld AG SolarWaterWorld AG Jump to: navigation, search Name SolarWaterWorld AG Place Berlin, Berlin, Germany Zip 10559 Sector Solar Product Berlin-headquartered maker of solar-powered boats. References SolarWaterWorld AG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarWaterWorld AG is a company located in Berlin, Berlin, Germany . References ↑ "SolarWaterWorld AG" Retrieved from "http://en.openei.org/w/index.php?title=SolarWaterWorld_AG&oldid=351441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

245

Guide to Community Solar: Utility, Private, and Non-profit Project Development  

DOE Green Energy (OSTI)

This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

Not Available

2011-01-01T23:59:59.000Z

246

Inherent freeze protection for solar water heaters  

SciTech Connect

Research and development of a method for protection of a solar collector from freezing is described. The method is shown to be technically and economically feasible. A prototype water heating system using the inherent freeze protection method was successfully operated during the winter of 1980 to 1981.

Jeter, S.M.; Leonaitis, L.L.; Leonaitis, L.L.

1981-05-01T23:59:59.000Z

247

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

248

Studies of solar hybrid repowering of utility electric-power plants (interim report)  

DOE Green Energy (OSTI)

A baseline repowering configuration used as a reference is defined, and the potential benefits of repowering are outlined from the programmatic, utility, and national viewpoints. The market size for solar repowering is reviewed with the split by plants and their requirements imposed on solar technology and plant design. Various solar technology implementation options are discussed. Highlights of the key results of studies on the economics of integration of solar repowered plants into utility systems are presented. (LEW)

Not Available

1980-01-01T23:59:59.000Z

249

Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

250

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Contractor Licensing Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Arkansas Program Type Solar/Wind Contractor Licensing Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal installers: a Restricted Solar Mechanic license, a Supervising Solar Mechanic license, and a Solar Mechanic Trainee classification. Installers with a Restricted Solar Mechanic license can install and maintain systems used to heat domestic hot water, but are not allowed to perform any other plumbing work. Individuals holding a Supervising Solar Mechanic license are able to supervise, install

251

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

252

Building Codes and Regulations for Solar Water Heating Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo...

253

KIUC - Solar Water Heating Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with zero-interest loans for solar water heating systems. The loan is available for installations of new systems, or to replace solar water heating systems that are over 15...

254

KIUC - Solar Water Heating Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

800 rebate for each solar water heating system installed. The rebate is available for installations of new systems, or to replace solar water heating systems that are over 15...

255

Solar Water Heating with Low-Cost Plastic Systems (Brochure)  

DOE Green Energy (OSTI)

Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

Not Available

2012-01-01T23:59:59.000Z

256

New Hampshire Electric Co-Op - Solar Hot Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount 20% of installed costs Provider New Hampshire Electric Co-Op New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum award of $1,500. Systems must be pre-approved, and installed in NHEC's service territory by a qualified installer. Program funds are available on a first-come, first-served basis. See the program web site listed above for more information, an application

257

Progress Energy Carolinas - SunSense Commercial Solar Water Heating...  

Open Energy Info (EERE)

Fed. Government, Industrial, Institutional, Local Government, Nonprofit, Schools, State Government Eligible Technologies Solar Water Heat Active Incentive No Implementing...

258

Discovery of an Unexpected Boost for Solar Water-Splitting ...  

Science Conference Proceedings (OSTI)

Discovery of an Unexpected Boost for Solar Water-Splitting Cells. For Immediate Release: April 21, 2009. ...

2012-10-17T23:59:59.000Z

259

Au nanoslit arrays as plasmonic substrates for solar water ...  

Science Conference Proceedings (OSTI)

Au nanoslit arrays as plasmonic substrates for solar water splitting with ?-Fe 2 O 3. Bohn, Christopher; Agrawal, Amit; Lee ...

260

Removing Pollutants from Water, Solar Energy - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 5, 2013 ... B. Materials for the Environment: Removing Pollutants from Water, Solar Energy Program Organizers: Fernand Marquis, Naval Postgraduate ...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TVA Partner Utilities - Energy Right' Water Heater Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Right' Water Heater Program Right&#039; Water Heater Program TVA Partner Utilities - Energy Right' Water Heater Program < Back Eligibility Installer/Contractor Residential Utility Savings Category Appliances & Electronics Water Heating Maximum Rebate Member utility water heater rebate programs can range from $25 to total cost. Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Energy Efficient Water Heater: $50 from TVA Provider Tennessee Valley Authority The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each installation. Power Companies may pass these incentives on to customers. Customers should contact their local power company to see what programs are

262

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network (OSTI)

of advanced concept solar power plants. For conditions offor the operation of a solar power plant is very small.success or failure of the solar thermal power program may be

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

263

AWSWAH - the heat pipe solar water heater  

Science Conference Proceedings (OSTI)

An all weather heat pipe solar water heater (AWSWAH) comprising a collector of 4 m/sup 2/ (43 ft/sup 2/) and a low profile water tank of 160 liters (42 gal.) was developed. A single heat pipe consisting of 30 risers and two manifolds in the evaporator and a spiral condenser was incorporated into the AWSWAH. Condensate metering was done by synthetic fiber wicks. The AWSWAH was tested alongside two conventional solar water heaters of identical dimensions, an open loop system and a closed loop system. It was found that the AWSWAH was an average of 50% more effective than the open system in the temperature range 30-90 /sup 0/C (86-194 /sup 0/F). The closed loop system was the least efficient of the three systems.

Akyurt, M.

1986-01-01T23:59:59.000Z

264

Småhusutformning och solenergiutnyttjande; Villa Design and Solar Energy Utilization.  

E-Print Network (OSTI)

?? This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the… (more)

Olofsson, Martin

2013-01-01T23:59:59.000Z

265

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace. Researchers in the Residential...

266

SOLERAS - Solar Energy Water Desalination Project: Martin Marietta Corporation. Pilot plant final report  

Science Conference Proceedings (OSTI)

This report documents the technical effort of Martin Marietta Corporation, in association with Black and Veatch International as a subcontractor for the trade studies performed to design a Solar Desalination Pilot Plant is documented. The final system configuration utilizes existing technology to convert seawater to potable water. This technology includes the collection of solar energy, storage of this energy in a fluid heat transfer medium, generation of steam and electricity from this stored energy, utilization of low pressure turbine exhaust steam as a source of energy to distill salt water, and also generation of potable water through the use of a reverse osmosis unit.

Not Available

1985-01-01T23:59:59.000Z

267

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

268

City Water Light and Power - Solar Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City Water Light and Power - Solar Rewards Program City Water Light and Power - Solar Rewards Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 per account Program Info Start Date 01/23/2012 State Illinois Program Type Utility Rebate Program Rebate Amount $1,500/kW Provider City Water Light and Power '''''Note: Funding for the Solar Rewards program has been exhausted. Check the program web site for more information regarding additional funding, expected March 2013.''''' City Water, Light and Power (CWLP) is now offering residential and commercial customers a $1,500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems. Rebates are limited to $15,000 per customer

269

NREL: Learning - Student Resources on Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Photo of a school building next to a pond. Roy Lee Walker Elementary School in Texas incorporates many renewable energy design features, including solar hot water heating. The following resources will help you learn more about solar water heating systems. If you are unfamiliar with this technology, see the introduction to solar hot water. Grades 7-12 NREL Educational Resources Educational resources available to students from the National Renewable Energy Laboratory. High School and College Level U.S. Department of Energy's Energy Savers: Solar Water Heaters Features comprehensive basic information and resources. U.S. Department of Energy's Energy Savers: Solar Swimming Pool Heaters Features comprehensive basic information and resources. U.S. Department of Energy Solar Decathlon

270

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

271

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network (OSTI)

Nevertheless water and solar energy share many similar to realizing additional solar energy generation throughout installation of a  solar energy systems.    Solar Easement 

Fedman, Anna

2011-01-01T23:59:59.000Z

272

Economic Analysis of Solar Water Heaters in GuangZhou  

E-Print Network (OSTI)

As a mature applied technology, the largest obstacle to the promotion of the solar water heater is the high initial investment that makes an impact on consumers' choices. The initial investment and maintenance cost of the solar water heater,gas water heater and electrical water heater in Guangzhou was compared and the Annual Cost Calculation Method (ACCM)was introduced to explain the remarkable economic benefits. The social benefits of the solar water heater were introduced from a scientific view.

Wang, Y.; Zhao, L.

2006-01-01T23:59:59.000Z

273

Tutorial on Electric Utility Water Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues in the News TJFClearwater031003 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water...

274

DOE-NETL Electric Utility-Water R&D Program EPRI Water Advisory  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Utility-Water R&D Program EPRI Water Advisory Council September 25, 2002 Milwaukee, WI Thomas J. Feeley, III, Product Manager Innovations for Existing Plants TJFEPRI...

275

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and must have an electric water heater. October 16, 2013 Clark Public Utilities - Solar Energy Equipment Loan Clark Public Utilities offers financing available to its...

276

Water-soluble polymers and utilization thereof  

SciTech Connect

Water-soluble polymers that thicken reversibly in aqueous solution on alteration of the degree of alkalinity are manufactured by treating an aqueous suspension of protein with the enzymes elaborated extracellularly by a species of the genus Pseudomonas. The water-soluble polymers resulting therefrom are biodegradable. They are useful for stabilizing emulsions, as flow-control agents in water base paint, and as antiredeposition agents in laundry detergents. They are particularly useful as flow-control agents in the waterflooding process for the recovery of petroleum. (11 claims)

Leavitt, R.I.

1976-11-02T23:59:59.000Z

277

Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy  

Science Conference Proceedings (OSTI)

The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

Bisio, G.; Pisoni, C. [Univ. of Genoa (Italy). Energy Engineering Dept.

1995-11-01T23:59:59.000Z

278

Water Utility Demand Management and the Financial, Social and Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Utility Demand Management and the Financial, Social and Environmental Water Utility Demand Management and the Financial, Social and Environmental Drivers Speaker(s): Allan J. Dietemann Date: February 19, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Camilla Whitehead At Seattle Public Utilities, Al Dietemann leads a team of 11 persons with a budget of $5 million a year implementing cost-effective resource conservation measures. In 2003, the Seattle area used less water than was used in 1950 on an annual basis. Seattle's demand management programs have been successful in holding total regional water use constant in our service area, despite an annual growth in population served. During this seminar he will speak to the following issues: 1) Water utility demand management and the financial, social and environmental drivers. 2)

279

Inverted amorphous silicon solar cell utilizing cermet layers  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

280

Solar thermal repowering utility value analysis. Final report  

DOE Green Energy (OSTI)

The retrofit of solar central receiver energy supply systems to existing steam-electric generating stations (repowering) is being considered as a major programmatic thrust by DOE. The determination of a government response appropriate to the opportunities of repowering is an important policy question, and is the major reason for the analysis. The study objective is to define a government role in repowering that constitutes an efficient program investment in pursuit of viable private markets for heliostat-based energy systems. In support of that objective, the study is designed to identify the scope and nature of the repowering opportunity within the larger context of its contributions to central receiver technology development and commercialization. The Supply and Integration Tasks are documented elsewhere. This report documents the Demand Task, determining and quantifying the sources of the value of repowering and of central receiver technology in general to electric utilities. The modeling tools and assumptions used in the Demand Task are described and the results are presented and interpreted. (MCW)

Taylor, R.; Day, J.; Reed, B.; Malone, M.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING ENERGY AUDITS A/C & HEATING INSULATION LIGHTING  

E-Print Network (OSTI)

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING for homeowners, businesses, and government entities that assist them in lowering utility bills, reducing a unique solutions approach based on the RE3 concept, which includes: · Review ­ current energy usage

Colorado at Boulder, University of

282

South River EMC- Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

South River Electric Membership Corporation (EMC) is providing rebates to encourage their customers to install solar water heating systems. To be eligible for the rebate solar collectors must have...

283

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Maine Program Type Solar/Wind Contractor Licensing In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North American Board of Certified Energy Practitioners (NABCEP). The state solar thermal rebate program maintains a list of Efficiency Maine registered vendors/installers. In addition, Efficiency Maine has information for vendors interested in becoming registered and listed on the [http://www.efficiencymaine.com/at-home/registered-vendor-locator web

284

Utility rates and service policies as potential barriers to the market penetration of decentralized solar technologies  

DOE Green Energy (OSTI)

At present, economic and institutional concerns dictate that decentralized solar technologies generally require an auxiliary energy source to assure continuous service through periods of adverse weather. Utility rates and service policies regarding auxiliary energy service have a significant impact upon solar system economics, and thus the commercialization of solar energy. The scope of this paper evaluates three basic issues: (1) whether a utility can refuse to provide auxiliary service to solar users, (2) whether a utility can charge higher or lower than traditional rates for auxiliary service, and (3) whether a utility can refuse to purchase excess power generated by small power producers utilizing electricity-producing solar technologies. It appears that a utility cannot refuse to provide auxiliary service to a solar user unless the company can demonstrate that to provide such service, substantial harm would result to its existing customers. Statutes or case decisions also provide that utilities cannot unreasonably discriminate in rates charged to customers for the same service under like conditions. The ability of a utility to provide solar users lower than traditional rates may depend upon the jurisdiction's view of promotional rates. 681 references.

Feuerstein, R. J.

1979-08-01T23:59:59.000Z

285

DOE Solar Decathlon: 2005 Contests and Scoring - Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

teams will install systems that can do even more. The Hot Water contest demonstrates that solar hot water heating systems can supply all the hot water we use daily - to bathe and...

286

Adapting Utility Solar Strategies for a Changing Electricity Landscape: Innovative Business Approaches for Consideration  

Science Conference Proceedings (OSTI)

This report considers the need for “outside-the-box” electric utility strategies that manage future deployment of distributed solar. Business models are discussed that offer potential to technically and financially align with utility interests and inform future planning and program development. For example, benefits and challenges of utility approaches that foster collaboration with third-party solar operators (TPO) are examined. In addition, the merits and technical feasibility of ...

2013-12-20T23:59:59.000Z

287

Solar Water Heating Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

288

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

289

Utility-scale installations lead solar photovoltaic growth ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... led by particularly strong growth in both utility-scale PV and ... Because the utilization rate for ...

290

SunShot Initiative: Solar Utility Networks: Replicable Innovations...  

NLE Websites -- All DOE Office Websites (Extended Search)

in California that can be realized from forecasts of behind-the-meter distributed (rooftop) solar photovoltaic (PV) generation. This project will reduce the costs of...

291

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

According to EIA's new survey-based estimate of total solar capacity, total on-grid photovoltaic (PV) capacity nearly doubled in 2011, led by particularly strong ...

292

Water Consumption from Freeze Protection Valves for Solar Water Heating Systems  

DOE Green Energy (OSTI)

Conference paper regarding research in the use of freeze protection valves for solar domestic water heating systems in cold climates.

Burch, J.; Salasovich, J.

2005-12-01T23:59:59.000Z

293

TRNSYS simulation of solar water heating system in Iraq  

Science Conference Proceedings (OSTI)

The objective of this work is to model and verify a direct solar water heating system in Baghdad, Iraq using TRNSYS software to meet the demand of hot water for 25 persons. This is achieved by using 10 m2 of a flat plate collector and 600 ... Keywords: Baghdad-Iraq, TRNSYS, solar, water heating

M. N. Mohammed; M. A. Alghoul; Kh. Abulqasem; Alshrif. Mustafa; Kh. Glaisa; P. Ooshaksaraei; M. Yahya; A. Zaharim; K. Sopian

2011-07-01T23:59:59.000Z

294

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

295

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal and State Structures to Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Technical Report NREL/TP-6A20-48685 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Prepared under Task No. CP09.2320

296

New, Cost-Competitive Solar Plants for Electric Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix to develop its 7700 Amonix to develop its 7700 system, which drastically reduces the requirement for costly solar cells by using Fresnel lenses to concentrate sunlight 500 times onto small, highly efficient photovoltaic cells. This reduces the cell area so that expensive solar cell materials can be replaced with inexpensive plastic lenses. Amonix Inc. (Torrance, CA), founded in 1989, develops and

297

Southwest Gas Corporation - Smarter Greener Better Solar Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Southwest Gas Corporation - Smarter Greener Better Solar Water Heating Program < Back Eligibility Commercial Local Government Nonprofit Residential State Government Savings...

298

Puerto Rico - Building Energy Code with Mandatory Solar Water...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Solar Swimming Pool Heaters Water Heating Program Information Program Type Building Energy Code In 2009, the Governor of Puerto Rico provided assurance that Puerto...

299

Liquid Fuels from CO2, Water, and Solar Energy  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title, Liquid Fuels from CO2, Water, and Solar Energy. Author(s), Aldo ...

300

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonprofit Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Water Heating Program Info State Massachusetts...

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Burbank Water and Power - Residential and Commercial Solar Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Income Residential Nonprofit Residential Schools State Government Savings For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum...

302

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

303

New London Electric&Water Util | Open Energy Information  

Open Energy Info (EERE)

Util Util Jump to: navigation, search Name New London Electric&Water Util Place Wisconsin Utility Id 13467 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

304

Solar heating/cooling and domestic hot-water systems  

Science Conference Proceedings (OSTI)

Increasing awareness of global warming forces policy makers and industries to face two challenges: reducing greenhouse gas emissions and securing stable energy supply against ever-increasing world energy consumption, which is projected to increase by ... Keywords: buildings heating, domestic hot-water, energetical analysis, renewable energy sources, solar cooling technologies, solar energy collection, solar thermal systems

Ioan Sârbu; Marius Adam

2011-02-01T23:59:59.000Z

305

Large scale solar hot water heating systems for green hospital  

Science Conference Proceedings (OSTI)

Concerns over the impact of the environment on the massive usage of fossil fuels, combined with soaring energy prices, triggered increased interest in the use of solar energy. Solar energy is abundant, provides an important saving to the consumer, and ... Keywords: energy savings, evacuated tubes, greenhouse gas reduction, solar assisted hot water heaters

Poorya Ooshaksaraei; Baharudin Ali; Sohif Mat; M. Yahya; Kamaruzaman Ibrahim; Azami Zaharim; Kamaruzaman Sopian

2010-01-01T23:59:59.000Z

306

Study on Water-Cooled Solar Semiconductor Air Conditioner  

Science Conference Proceedings (OSTI)

Water-cooled solar semiconductor air conditioner was designed. Relevant calculation was made to determine the room's cooling load, which export the solar panels and battery capacity, followed by selection of CNC matcher. Development work also involves ... Keywords: solar energy, peltier effect, semiconductor air conditioner

Dong Zhi-Ming; Chang Ji-Bin; Xiang Li-Juan; Zhou Xue-Bin

2012-04-01T23:59:59.000Z

307

A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Guide to Community Shared Solar: Utility, Private, and Nonprofit A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model. 54570.pdf More Documents & Publications Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project

308

TY RPRT T1 Utility Scale Solar An Empirical Analysis of Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States A1 Mark Bolinger A1 Samantha Weaver AB p Berkeley Lab hosted a webinar...

309

A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Guide to Community Shared Solar: Utility, Private, and Nonprofit A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model. 54570.pdf More Documents & Publications Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project

310

Atmospheric Solar Heating Rate in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

The total absorption of solar radiation by water vapor in clear atmosphere is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are ...

Ming-Dah Chou

1986-11-01T23:59:59.000Z

311

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

312

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

DOE Green Energy (OSTI)

7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

313

Investigation of a novel façade-based solar loop heat pipe water heating system.  

E-Print Network (OSTI)

??Solar thermal is one of the most cost-effective renewable energy technologies, and solar water heating is one of the most popular solar thermal systems. Based… (more)

Wang, Zhangyuan

2012-01-01T23:59:59.000Z

314

Design and Application of Solar Water Heater Intelligent Control System  

Science Conference Proceedings (OSTI)

Solar water heater intelligent control system is made up of four modules which are data acquisition module, single-chip control module, the implementation and regulation module and human- machine interaction module. The problems of automatic detection ... Keywords: Solar Water Heater, Hardware Design, Detection and Control

Yu Gui Yin

2009-10-01T23:59:59.000Z

315

Solar heating of buildings and domestic hot water  

SciTech Connect

Design criteria and cost analysis methods are presented for the sizing and justification of solar heat collectors for augmentation of potable water heaters and space heaters. Sufficient information is presented to enable engineers to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (WDM)

Beck, E.J. Jr.; Field, R.L.

1976-01-01T23:59:59.000Z

316

City of Water Valley, Mississippi (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mississippi (Utility Company) Mississippi (Utility Company) Jump to: navigation, search Name City of Water Valley Place Mississippi Utility Id 20176 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power 1 Commercial General Power 2 Commercial General Power 3 Commercial Lighting Service- 100W HPS Lighting Lighting Service- 175W Mercury Vapor Lighting Lighting Service- 250W HPS Lighting Lighting Service- 400W HPS Lighting Lighting Service- 400W Mercury Vapor Lighting Lighting Service- 400W Metal Halide Lighting

317

Final report : testing and evaluation for solar hot water reliability.  

DOE Green Energy (OSTI)

Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

2011-07-01T23:59:59.000Z

318

Austin Utilities - Solar Choice Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Active Incentive No Incentive Inactive Date 09012011 Implementing Sector Utility Energy Category Renewable Energy Incentive Programs Amount Varies; determined by amount...

319

Workshop title: Transmission and Utility Scale Solar Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

process requirements for FERC Order 890 as outlined in Western's Open Access Transmission Tariff. Who Should Attend: Western customers, electric utilities, Tribes, generation and...

320

Solar Water Heaters and the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters and the Economy Solar Water Heaters and the Economy Solar Water Heaters and the Economy July 11, 2012 - 11:59am Addthis Ernie Tucker Editor, National Renewable Energy Laboratory These are the days of hot sun and mortgage refinance frenzy. Somehow, they've both combined in my mind to make me ponder the economics of a solar water heater. Because the sun's been beating down on our garden hose, the initial flush of water can be very hot. The warm spray reminded me of the times on camping trips when we'd bring along a portable solar shower -- essentially a black plastic bag with a tube and shower nozzle -- for bathing. While not an endless supply (perhaps 10 gallons), it was a very enjoyable luxury. Of course, it assumes that there's plenty of sunshine, but if so -- voila -- a

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Hot Water Creates Savings for Homeless Shelters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts? Recovery Act funds are being used to install solar hot water systems at 5 Phoenix shelters. The systems will save Phoenox 33,452 kWh of energy -- about $4,000 -- annually. The systems will reduce about 40,000 pounds of carbon emissions annually. "This project will save us a huge amount of money," says Paul Williams, House of Refuge Sunnyslope's Executive Director. Williams is referring to a recent partnership between the state of Arizona and House of Refuge Sunnyslope to install solar hot water systems at five Phoenix-area housing sites for homeless men, which will make an immediate difference at the

322

Outdoor Outfitter Gets Greener With Solar Water Heater | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater Outdoor Outfitter Gets Greener With Solar Water Heater October 8, 2010 - 12:51pm Addthis L.L. Bean’s flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | L.L. Bean's flagship store sees nearly 3 million visitors each year. The store now uses solar-heated water for showers, restrooms and two cafes. | Photo courtesy of L.L. Bean | Lindsay Gsell L.L. Bean is known for its outdoor apparel- jackets, backpacks and cozy winter sweaters. However, the company does more than just dress for the outdoors, it also works to protect and preserve it. For nearly 100 years, L.L. Bean has been committed to environmental conservation and

323

Estimating the Cost and Energy Efficiency of a Solar Water Heater...  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water...

324

Solar collector/still for salt-water desalination. Final report  

DOE Green Energy (OSTI)

A combined in-line solar collector/still for the desalination of salt water was designed, built, and tested on site in the Florida Keys. During the course of the project the basic configuration was modified, as project funds permitted, to enhance performance. This collector/still utilizes sunlight for the direct heating of water and for the heating of air. The heating air is bubbled through the heated water producing desalinated water vapor which is subsequently collected. The result is non-salted water produced using sunlight.

Fonash, R.L.

325

Performance Evaluation of Combined Batch Type Solar Water Heater Cum Regenerative Solar Still  

Science Conference Proceedings (OSTI)

In this work, effort is being made to integrate two different solar appliances so that they could work in much better way. Solar water heater cum distillation system is designed and fabricated to carry out two operations simultaneously, heating of water ...

A. Sumit Ambade; B. Tarun Narekar; C. Vikrant Katekar

2009-12-01T23:59:59.000Z

326

home power 114 / august & september 2006 in Solar Hot Water  

E-Print Network (OSTI)

water entering the heat exchanger, and the hot water being produced. "I don't know..." I replied. The graphs show that the ultimate temperature of the solar-produced hot water is indeed higher therms) Percentage of hot water produced annually: Approximately 70 percent Equipment Collectors: Two

Knowles, David William

327

A Guide to Community Solar: Utility, Private, and Non-profit Project  

Open Energy Info (EERE)

Utility, Private, and Non-profit Project Utility, Private, and Non-profit Project Development Jump to: navigation, search Name A Guide to Community Solar: Utility, Private, and Non-profit Project Development Agency/Company /Organization U.S. Department of Energy Partner National Renewable Energy Laboratory, Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, Bonneville Environmental Foundation Sector Energy Focus Area People and Policy, Solar Phase Evaluate Options, Develop Finance and Implement Projects Resource Type Guide/manual Availability Free; publicly available Publication Date 11/1/2010 Website http://www.nrel.gov/docs/fy11o References A Guide to Community Solar: Utility, Private, and Non-profit Project Development[1] Overview This guide provides information for communities interested in developing

328

Public utilities supply solar energy to eager customers  

DOE Green Energy (OSTI)

This articles examines how photovoltaic power is an alternative source of energy that can help utilities earn goodwill from their customers for being innovative, saving money, and reducing harmful emissions. Planners at municipal utilities are discovering the advantages that photovoltaic (PV) power offers. In addition to the thousands of private, federal, state, and commercial PV systems installed during the last 20 years, more than 65 cities in 24 states also have installed such systems. PV power is cost effective in selected utility applications today, and those applications are expanding every year. PV can be useful in applications ranging from low-power uses to decentralized applications to large, central stations. Public utilities in Austin and Sacramento are among those successfully using PV power for all three types of applications.

NONE

1995-01-01T23:59:59.000Z

329

Port Angeles Public Works & Utilities- Solar Energy Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Port Angeles Public Works & Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for...

330

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

331

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

332

Building Codes and Regulations for Solar Water Heating Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every community or municipality initially welcomes residential renewable energy installations. Although this is often due to ignorance or the comparative novelty of renewable energy systems, you must comply with existing building and permit procedures to install your system.

333

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

DOE Green Energy (OSTI)

Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

Mendelsohn, M.; Kreycik, C.

2012-04-01T23:59:59.000Z

334

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

335

EERE Roofus' Solar and Efficient Home: Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

of Roofus, a golden retriever, sitting in front of three black, rectangular solar collectors. Sunshine is really hot, and it makes my roof get hot, too So I use a...

336

Solar Water Heating System Maintenance and Repair | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating System Maintenance and Repair Water Heating System Maintenance and Repair Solar Water Heating System Maintenance and Repair May 30, 2012 - 2:35pm Addthis Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Also, from time to time, components may need repair or replacement. You should also take steps to prevent scaling, corrosion, and freezing. You might be able to handle some of the inspections and maintenance tasks on your own, but others may require a qualified technician. Ask for a cost estimate in writing before having any work done. For some systems, it may

337

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

338

Solar water-heating system for the Ingham County geriatric medical care facility, Okemos, Michigan. Operational and maintenance instruction manual  

DOE Green Energy (OSTI)

The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through the tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.

Not Available

1983-07-29T23:59:59.000Z

339

SOLERAS - Solar Energy Water Desalination Project: Boeing Engineering and Construction. System design final report  

Science Conference Proceedings (OSTI)

The system design for a future commercial solar energy brackish water desalination plant is described. Key features of the plant are discussed along with its configuration selection rationale, design objectives, operation, and performance. The water treatment technology used in the plant is ion exchange pretreatment and single stage reverse osmosis desalination utilizing high-flux membranes. Electrical power needed for plant operation is produced by a solar energy system, which is based on the Brayton cycle having air as the working fluid. Primary solar system components are: heliostat field, central cavity-tube receiver, receiver support tower, thermal energy storage, and a commercial gas turbine generator set. The thermal energy storage subsystem is of the sensible heat brick type and provides a capability for continuous day/night power generation during most weather conditions. This system design was selected in a study of various system alternatives and their life cycle product water costs for a representative site in western Texas.

Not Available

1986-01-01T23:59:59.000Z

340

Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)  

DOE Green Energy (OSTI)

This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Utility Solar Financing Programs (ACE, JCP&L, RECO) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Utility Solar Financing Programs (ACE, JCP&L, RECO) Utility Solar Financing Programs (ACE, JCP&L, RECO) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date August 2009 (first solicitation for projects) State New Jersey Program Type Other Incentive Provider NERA Economic Consulting Note: As of this writing there are no further solicitations scheduled under the current program. The summary below describes the program as it existed prior to its suspension and is included for informational purposes only. In May 2012 the New Jersey Board of Public Utilities (BPU) issued an order

342

Two New Reports on Utility-Scale Solar from NREL | OpenEI Community  

Open Energy Info (EERE)

Two New Reports on Utility-Scale Solar from NREL Two New Reports on Utility-Scale Solar from NREL Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 June, 2012 - 14:33 imported OpenEI Article courtesy of the NREL Finance Blog Utility-scale solar is still something of a novelty in the renewable energy ecosystem. Large-scale deployment of these multi-megawatt (MW) installations has only recently been enabled in the United States by two key pieces of federal legislation and state-level implementation of renewable energy standards. The market boomed in 2011, adding more than 760 MW of capacity and ending the year with a bullish outlook for 2012. In April, the National Renewable Energy Laboratory (NREL) published a series of three reports on the market, technologies, policies, and cost of energy

343

Design and installation package for solar hot water system  

DOE Green Energy (OSTI)

This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

Not Available

1978-12-01T23:59:59.000Z

344

DOE Solar Decathlon: Hot Water Contest  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon 2011 New Zealand team members jumping in celebration. U.S. Department of Energy Solar Decathlon Bookmark and Share - Home About Competition Rules Contests - Architecture...

345

Solar Water Heaters | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

only in mild-freeze climates because the outdoor pipes could freeze in severe, cold weather. Evacuated-tube solar collectors They feature parallel rows of transparent glass...

346

Utility interface requirements for a solar power system  

DOE Green Energy (OSTI)

This study specifies that the southern tier of the US (south of the 36th parallel) should be examined to see what problems might develop with the installation of a Satellite Power System (SPS) in the year 2000. One or more 5-GW SPS units could be installed in the utility systems of the southern states in the year 2000. The 345- and 500-kV transmission systems that will probably exist at that time could be readily extended to accommodate the SPS units. The operation of the units will present the utilities with new and difficult problems in system stability and frequency control. The problems will arise because a somewhat variable 5-GW output will be produced by a generator having no mechanical inertia. The unavoidable time lag in controlling the position of the energy beam at the receiving station may have a very critical effect on the stability of the utility systems. The maintenance problems associated with the energy-receiving device, a continuous structure covering more than 40 mi/sup 2/, must be given careful consideration. Repair of lightning damage while maintaining SPS operation may be the most critical requirement. Acquisition and preparation of the 90 mi/sup 2/ land required for the receiving antenna (rectenna) will create many new and difficult environmental problems.

Donalek, P.J.; Whysong, J.L.

1978-09-01T23:59:59.000Z

347

Low Cost Solar Water Heating R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office...

348

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

349

An Energy Policy Perspective on Solar Hot Water Equipment Mandates  

E-Print Network (OSTI)

An Energy Policy Perspective on Solar Hot Water EquipmentU.S. OIL VULNERABILITY: ENERGY POLICY FOR THE 1980's, DOE/cited as Langston]. ENERGY POLICY tween a new house with

Williams, Stephen F.

1981-01-01T23:59:59.000Z

350

GreyStone Power- Solar Water Heating Program  

Energy.gov (U.S. Department of Energy (DOE))

GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

351

Creating a Comprehensive Solar Water Heating Deployment Strategy  

DOE Green Energy (OSTI)

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Focus Marketing Services

1999-08-18T23:59:59.000Z

352

New Home Buyer Solar Water Heater Trade-Off Study  

DOE Green Energy (OSTI)

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Symmetrics Marketing Corporation

1999-08-18T23:59:59.000Z

353

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

354

Solar hot water pays off for commercial enterprises  

SciTech Connect

Two solar water heating systems in Florida are described. One system supplies a motel for guest rooms, laundry, and kitchen. The other system serves a coin-operated laundry. (WDM)

Jones, H.

1976-05-01T23:59:59.000Z

355

Brunswick EMC - Residential Energy Efficiency and Solar Water...  

Open Energy Info (EERE)

insulation, and solar water heaters. The loans of up to 6,000 are available to homeowners served by BEMC for at least one year and who have a good credit history. Incentive...

356

Solar Radiation Absorption due to Water Vapor: Advanced Broadband Parameterizations  

Science Conference Proceedings (OSTI)

Accurate parameterizations for calculating solar radiation absorption in the atmospheric column due to water vapor lines and continuum are proposed for use in broadband shortwave radiative transfer codes. The error in the absorption values is ...

Tatiana A. Tarasova; Boris A. Fomin

2000-11-01T23:59:59.000Z

357

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

358

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Energy.gov (U.S. Department of Energy (DOE))

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

359

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of May 1, 2012, NV Energy electric customers in Southern Nevada who own their...

360

Commonwealth Solar Hot Water Commercial Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Feasibility study: $5,000; Construction: 25% system costs or $50,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 08/04/2011 State Massachusetts Program Type State Rebate Program Rebate Amount Feasibility study: $5,000; Construction grants: $45*number of collectors*SRCC Rating (Private); $55*number of collectors*SRCC Rating (Public/Non-Profit) Massachusetts Manufactured adder: $200-$500 Metering adder: Up to $1,500

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Initiative for the Transformation and Strengthening of the Solar Water  

Open Energy Info (EERE)

Transformation and Strengthening of the Solar Water Transformation and Strengthening of the Solar Water Heating Market Jump to: navigation, search Name Initiative for the Transformation and Strengthening of the Solar Water Heating Market Agency/Company /Organization Latin America Energy Organization Partner UNEP Sector Energy Focus Area - Solar Hot Water Topics Market analysis, Policies/deployment programs Resource Type Workshop Website http://www.olade.org/iniciativ Country Argentina, Barbados, Brazil, Colombia, Nicaragua, Peru UN Region Caribbean, Central America, South America References Renewable Energy and Environment Coordination[1] OLADE is a Latin American organization working with Central American countries on climate change vulnerability for hydroelectric systems and adaptation options. Specific activities include: methodology for climate

362

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network (OSTI)

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

363

Heat Exchangers for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat to water in a storage tank. Heat-transfer fluids, such as antifreeze, protect the solar collector from freezing in cold weather. Liquid-to-liquid heat exchangers have...

364

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough Federal Technology Alert covers parabolic-trough solar...

365

A water utility industry conceptual asset management data warehouse model  

E-Print Network (OSTI)

Timely decision making is critical in today’s competitive business world and in recent times, data warehousing has been employed by numerous companies to satisfy the needs of accurate and timely information. Data warehousing has traditionally been employed for financial and customer relationship analysis with current applications now moving to other domains, such as the medical and power industries. The asset management industry is one that has seen great strides in recent years due to improved technology, but data warehousing of asset management information has been lacking. A literature review was undertaken to determine data warehousing applications in the area of asset management, and with the lessons learned, a conceptual model of data warehousing for asset management is proposed. The water utility industry is chosen to provide a grounded example of an enterprise data warehouse model that integrates data from various local information systems. The particular issues faced in the asset management domain are highlighted, and several water utility applications are presented. KEY WORDS: data warehousing, asset management, water utility industry, design 1.

Avin Mathew; Sheng Zhang; Lin Ma; Doug Hargreaves

2006-01-01T23:59:59.000Z

366

Observations from the field: Solar domestic hot water installation recommendations  

SciTech Connect

The Florida Solar Energy Center (FSEC) was ten years old in 1984. Constant contact has been maintained between the Center and solar businesses selling and installing domestic hot water systems in Florida and throughout the Southern states of the Caribbean. FSEC has thus had the opportunity to visit or discuss thousands of DHW system installations with homeowners and installers. This paper provides an overview of lessons learned and some of the resulting installation recommendations for direct, open-loop domestic hot water systems.

Cromer, C.J.

1985-01-01T23:59:59.000Z

367

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

368

A comprehensive review of market research on solar water heaters  

DOE Green Energy (OSTI)

This is the second report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. The objective of this task is to identify key elements in previous studies on the marketing of solar water heaters in the new home industry. This review includes studies performed by FOCUS Marketing Services, the National Association of Home Builders Research Center, Symmetrics Marketing Corporation, and the California Energy Commission.

Ghent, P.; Keller, C.

1999-11-01T23:59:59.000Z

369

Enhancing the Solar Water Disinfection (SODIS) Method Using a Fresnel Lens  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA RIVERSIDE Enhancing the Solar WaterUniversity of California, Riverside! Acknowledgements First,

Awad, Christina

2012-01-01T23:59:59.000Z

370

Performance improvement of a solar heating system utilizing off-peak electric auxiliary  

DOE Green Energy (OSTI)

The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

Eltimsahy, A.H.

1980-06-01T23:59:59.000Z

371

Solar hot water system installed at Anderson, South Carolina  

DOE Green Energy (OSTI)

The solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina is described. The building is a low-rise two-story 114-room motel. The solar components were partly funded by the Department of Energy. The solar system was designed to provide 40% of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

Not Available

1978-12-01T23:59:59.000Z

372

Pasteurization of naturally contaminated water with solar energy  

Science Conference Proceedings (OSTI)

A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60/sup 0/C or greater. Heating water in an SBC to at least 65/sup 0/C ensures that the water will be above the milk pasteurization temperature of 62.8/sup 0/C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65/sup 0/C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested. 14 references.

Ciochetti, D.A.; Metcalf, R.H.

1984-02-01T23:59:59.000Z

373

Solar Water Heaters and the Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters and the Economy Water Heaters and the Economy Solar Water Heaters and the Economy July 11, 2012 - 11:59am Addthis Ernie Tucker Editor, National Renewable Energy Laboratory These are the days of hot sun and mortgage refinance frenzy. Somehow, they've both combined in my mind to make me ponder the economics of a solar water heater. Because the sun's been beating down on our garden hose, the initial flush of water can be very hot. The warm spray reminded me of the times on camping trips when we'd bring along a portable solar shower -- essentially a black plastic bag with a tube and shower nozzle -- for bathing. While not an endless supply (perhaps 10 gallons), it was a very enjoyable luxury. Of course, it assumes that there's plenty of sunshine, but if so -- voila -- a warm and sudsy campsite clean-up is possible.

374

Solar Water Heating Requirement for New Residential Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

375

Windjammer solar-water-heating system. Final technical report  

DOE Green Energy (OSTI)

The results of the Windjammer Solar-Water-Heating System tests showed that it was not as an efficient system as a comparable conventional system for converting solar energy into heat energy. However, it was determined that the innovative mode used less electric back-up energy for water heating. Reduced fossil fuel energy consumption being the ultimate objective of a solar water heating, the principle employed has been shown to be a workable energy saving concept. The differential mode of temperature control emerged as the more efficient mode of operation for the innovative system and under comparable conditions is projected to be nearly equivalent to the conventional solar system. Although the concept has proven workable, the costs feasible, and the potential for considereable improvements exists, additional research and development is needed to advance the design into its most practical application.

Windham, J.R.

1982-04-01T23:59:59.000Z

376

Driving Water and Wastewater Utilities to More Sustainable Energy Management  

E-Print Network (OSTI)

The Water Environment Federation (WEF) and industry leaders have identified the need for an energy roadmap to guide utilities of all sizes down the road to sustainable energy management through increased renewable energy production, energy conservation and focus on overall energy management. This roadmap leverages the framework developed in the electric power sector to move to smart grid technology: the smart grid maturity model (SGMM). The basis of this material originated at a workshop of water and power industry leaders convened by WEF in North Carolina, in March 2012. Case studies were analyzed from successful utilities in Austria, Holland, Australia, and the United States. High level, strategic best practices were identified and organized into topic areas, which define the level of progression (enable, integrate and optimize) towards achieving energy sustainability. The WEF energy roadmap is intended to guide utilities of all sizes as they progress towards becoming the treatment plants of the future. While it is not practical for all wastewater treatment plants to become energy positive or neutral, all can take steps towards increasing energy sustainability. Financial viability for energy management sustainability is crucial for success. Finding alternative financial models such as Energy Services Performance Contracts (ESPC) is a good option to accomplish energy management goals in a timely and financially responsible method.

Ferrel, L.; Liner, B.

2013-01-01T23:59:59.000Z

377

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and metal absorber tube attached to a fin. The fin is covered with a coating that absorbs solar energy well, but which inhibits radiative heat loss. Air is removed, or evacuated,...

378

Utility-impacts assessment of residential passive-solar systems. Final report  

SciTech Connect

This report summarizes a project undertaken to provide the electric-utility industry with a tool to use in analyzing the advantages and disadvantages for themselves and their customers of passive-solar residential construction within their service areas. A methodology to accomplish this was created and then tested in cooperation with seven participating utilities. Results indicate that passive solar homes and well-insulated homes are more economic to both utilities and homeowners than conventional homes insulated to ASHRAE 90-75 standards, still the norm for building construction in many parts of the country. Further indications are that passive-solar homes may have lower life-cycle costs for heating and cooling than well-insulated homes in areas of the country where the annual heating load predominates over the annual cooling load, and where there is an adequate amount of sunshine during the heating season. The methodology developed also has the capability of simulating and comparing the performance of a wide variety of non-solar electrical heating and cooling systems. As a result, it can be adapted by utilities for a broad range of residential energy analyses.

Wood, R.A.; Siegel, M.D.

1983-03-01T23:59:59.000Z

379

A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)  

DOE Green Energy (OSTI)

This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

2012-05-01T23:59:59.000Z

380

Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005  

DOE Green Energy (OSTI)

World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

2005-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Program on Technology Innovation: Cooling Water Review of the Advanced Light Water Reactor Utility Requirements Document  

Science Conference Proceedings (OSTI)

The EPRI Utility Requirements Document (URD) was developed and last revised in 1999 to provide a list of requirements for the design and construction of new nuclear power plants. The objective of this project was to review URD Vol. III. This volume covers passive advanced light water reactors (ALWRs) for plant design requirements with respect to operations and maintenance (O&M) practices of the plant's cooling water systems (not including the circulating water system used for condenser cooling). The revi...

2007-07-26T23:59:59.000Z

382

Arizona public service utility solar central receiver study: Volume 1, Phase 1 topical report  

Science Conference Proceedings (OSTI)

The Arizona Public Service Company (APS), in association with Black and Veatch (BandV), Babcock and Wilcox (BandW), Solar Power Engineering Company (SPECO), Pitt-DesMoines (PDM), and the University of Houston (UH), has completed Phase I of the Utility Solar Central Receiver Study. This study was co-funded by the US Department of Energy (DOE) under Cooperative Agreement Number DE-FC04-86AL38741. The Phase I effort focused on defining the most cost-effective solar thermal central receiver (STCR) power plant configuration for commercial utility application. A team led by Pacific Gas and Electric (PGandE) performed a similar parallel effort; in addition, the Alternate Utility Team (AUT) under APS management completed work for Phase I to support the overall effort. By the conclusion of Phase I, the utilities had reached consensus on the key technical issues for the STCR technology and had performed assessments of the technology which showed similar and favorable economic potential in the commercial utility market. Furthermore, APS and PGandE have agreed to an integrated approach for Phase II to assess and mitigate key risk issues on the path to commercializing the technology. This topical report documents the Phase I efforts; a separate Phase II report will be submitted upon completion of Phase II. 114 figs., 74 tabs.

Not Available

1988-11-01T23:59:59.000Z

383

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Below you will find Solar Decathlon news from the Hot Water archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

384

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

385

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

386

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

387

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

388

Heating Water with Solar Energy Costs Less at the Phoenix Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in...

389

Exposure testing and evaluation of solar utilization materials. Semiannual report, May 1, 1975--October 31, 1975  

DOE Green Energy (OSTI)

The initial efforts of a program of research and experimental testing is described in which the optical performance of materials for use in solar energy utilization devices will be determined before and after exposure to outdoor weathering tests. Materials which are currently in use and others which are being considered or developed for these applications will be characterized and exposed to natural solar radiation. Outdoor testing will be accomplished in Phoenix (Ariz.), Miami (Fla.), and Chicago (Ill.). The results of these tests, primarily the effects of outdoor exposure on optical and physical properties, will be compiled in a handbook, along with cost, availability and other pertinent information. These data are vital to the intelligent selection of solar utilization materials, since a knowledge of the cost performance and lifetime characteristics of candidate materials will greatly assist the design of efficient and reliable solar energy utilization devices. Primary accomplishments include the definition of sample requirements, specification of test samples and test configurations, formulation of acceptance/rejection criteria and contacts with numerous potential materials suppliers.

Gilligan, J.E.; Brzuskiewicz, J.

1975-01-01T23:59:59.000Z

390

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

391

Solar domestic hot water system inspection and performance evaluation handbook  

DOE Green Energy (OSTI)

A reference source and procedures are provided to a solar technician for inspecting a solar domestic hot water system after installation and for troubleshooting the system during a maintenance call. It covers six generic DHW systems and is designed to aid the user in identifying a system type, diagnosing a system's problem, and then pinpointing and evaluating specific component problems. A large amount of system design and installation information is also included.

Not Available

1981-10-01T23:59:59.000Z

392

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

DOE Green Energy (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Arvada, CO (United States)

1991-12-01T23:59:59.000Z

393

Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power  

DOE Green Energy (OSTI)

The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

Harder, J.E.

1981-04-01T23:59:59.000Z

394

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

395

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

COST IMPACT OF SAFE DRINKING WATER ACT COMPLIANCE FOR COMMISSION-REGULATED WATER UTILITIES  

E-Print Network (OSTI)

(NRRI) with funding provided by participating member commissions of the National Association of Regulatory Utility Commissioners (NARUC). The views and opinions of the authors do not necessarily state or reflect the views, opinions, or policies of the NRRI, the NARUC, or NARUC member commissions. EXECUTIVE SUMMARY This study was prepared for state public utility commissioners and their staff in response to the growing concern about the effect of the Safe Drinking Water Act (SDWA) on water utilities under their jurisdiction. Compliance with the SDWA is expected to have a significant impact on water utilities and the rates they charge for service. A sensitivity analysis was developed for this report using a hypothetical water company to identify the costs associated with alternative treatment processes. A total of eighteen different treatment processes are considered, from conventional treatment to granular activated carbon (GAC) adsorption and reverse osmosis. Capital costs for these processes range from $100,000 to $3.25 million for a water plant with a designed capacity of one million

Patrick C. Mann; Janice A. Beecher

1989-01-01T23:59:59.000Z

397

Low-Cost Solar Water Heating Research and Development Roadmap  

DOE Green Energy (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

398

Orlando Utilities Commission - Commercial Energy Efficiency Rebate...  

Open Energy Info (EERE)

conditioners, Clothes Washers, DuctAir sealing, Heat pumps, Roofs, Water Heaters, Cool Roofs, Solar Screens, Window Film Active Incentive Yes Implementing Sector Utility Energy...

399

Ashland Electric Utility - Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

Building Insulation, CaulkingWeather-stripping, DuctAir sealing, Heat pumps, Windows, Solar Water Heat Active Incentive Yes Implementing Sector Utility Energy Category...

400

Solar heating and hot water system installed at Listerhill, Alabama  

DOE Green Energy (OSTI)

The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

Not Available

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

2011-08-01T23:59:59.000Z

402

Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region  

DOE Green Energy (OSTI)

This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

None

1980-07-01T23:59:59.000Z

403

Commonwealth Solar Hot Water Residential Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water Heating Maximum Rebate 3,500 per building or 25% of total installed costs Program Information Funding Source Massachusetts Renewable Energy Trust Fund Start Date...

404

1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report  

DOE Green Energy (OSTI)

The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

Not Available

1982-01-01T23:59:59.000Z

405

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

406

Solar '94: Technical papers  

Science Conference Proceedings (OSTI)

The Solar 94 Conference of the American Solar Energy Society met in San Jose, California to provide a forum for state-of-the-art work in all the solar technologies. The following topics were included in the proceedings: Photovoltaic Modules and Systems; Wind Energy; Solar Thermal Systems; Utility Programs; Solar Water Heating; Solar Fuels; Resource Assessment; Economics and Education. A total of 83 papers were indexed separately for the data base.

Burley, S.M.; Arden, M.E.; Campbell-Howe, R.; Wilkins-Crowder, B. (eds.)

1994-01-01T23:59:59.000Z

407

Study Design And Realization Of Solar Water Heater  

Science Conference Proceedings (OSTI)

Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

Lounis, M. [LAAR Laboratory-Physics Department-USTOMB 31000 Oran (Algeria); Boudjemaa, F.; Akil, S. Kouider [Genie Climatic Department-CUKM 44000-Khemis Miliana (Algeria)

2011-01-17T23:59:59.000Z

408

Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland  

SciTech Connect

Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.

Skowronski, P. [Polish Foundation for Energy Efficiency, Warsaw (Poland); Wisniewski, G. [Institute for Building, Mechanization and Electrification of Agriculture, Warsaw (Poland)

1996-09-01T23:59:59.000Z

409

Federal technology alert. Parabolic-trough solar water heating  

DOE Green Energy (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

410

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

measures may apply for loans up to 7,500. July 12, 2013 Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities offers a rebate of 500 to customers who...

411

Marketing and promoting solar water heaters to home builders  

DOE Green Energy (OSTI)

This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

Keller, C.; Ghent, P.

1999-12-06T23:59:59.000Z

412

An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization  

DOE Green Energy (OSTI)

This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

Burch, J.; Thomas, K.E.

1998-01-01T23:59:59.000Z

413

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former...

414

Modeling and Test-and-Rate Methods for Innovative Thermosiphon Solar Water Heaters: Preprint  

SciTech Connect

Conference paper regarding research in modeling and test-and-rate methods for thermosiphon solar domestic water heaters.

Burch, J.; Shoukas, G.; Brandemuhl, M.; Krarti, M.

2006-05-01T23:59:59.000Z

415

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

'Hot Water' 'Hot Water' New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example, in the Appliances Contest graphic, the scores for running the refrigerator,

416

Reedy Creek Utilities, Lake Buena Vista, Florida, solar energy system performance evaluation, December 1979-March 1980  

DOE Green Energy (OSTI)

The Reedy Creek solar system operated moderately well during the December 1979 through March 1980 heating season. The overall performance of the system was below estimated design performance but the solar system still supplied 47% of the building conditioning loads. The thermal performance is summarized. The system failed to reach design performance levels in the cooling subsystem. Since the cooling load of 40.24 million Btu was nearly three times larger than the space heating and domestic hot water loads of 14.44 million Btu, the overall system performance was significantly reduced. Although collected solar energy exceeds the system load in most months, the solar fraction is necessarily less than 100% due to the normal operating inefficiencies of pumps, heat exchanger, and particularly the absorption chiller. At Reedy Creek, excessive storage losses, presumably due to high storage temperatures, further degrade system performance. Collector array efficiency based on the total incident solar radiation was 11%. This was significantly lower than the 14% collector array efficiency for the 1979 heating season.

Logee, T.

1980-01-01T23:59:59.000Z

417

ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar  

SciTech Connect

ToÃ?Â?Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the CaÃ?Â?oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

Burpo, Rob

2012-02-29T23:59:59.000Z

418

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices  

DOE Green Energy (OSTI)

This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

None

1977-06-01T23:59:59.000Z

419

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

420

Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)  

Science Conference Proceedings (OSTI)

Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

Not Available

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hotel in the Bahamas profits from solar hot water system  

SciTech Connect

On Paradise Island, located in the Bahamas, American Energy Technologies Inc. (AET) recently designed and supplied a domestic solar water heating system for the new Comfort Suites Hotel. AET is a Florida manufacturer of solar thermal collectors. The hotel has 150 rooms. Hot water usage entails the laundry facilities and the limited kitchen facilities. Access to hot showers is more of a luxury in some places, but guests at the Comfort Suites Hotel need not be concerned. During the development of the hotel, it was noted that the high heating costs of the propane-fueled hotel boiler were somewhat prohibitive. Propane cost approximately $1.67/gallon, causing the cost of heating water for the hotel to be estimated at over $1,000 per month. To offset the high heating costs, a 49-collector system on a 3200 gallon storage tank was designed into the plans for the new facility. The 49 roof mounted collectors were placed on a direct solar link to the 3200 gallon storage tank. The water is preheated before it gets to the boiler, cutting costs tremendously.

1993-01-01T23:59:59.000Z

422

Cedarburg Light and Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 Water Heaters: 25 - 100 Tankless Water Heaters: 100 Heat Pump Water Heater: 300 Air SealingAttic Insulation: Up to 300 Energy Star Home Performance: 33.3% of cost up to...

423

Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems May 16, 2013 - 3:02pm Addthis Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional change in length (or sometimes in volume, when specified) of a material for a unit change in temperature Viscosity - resistance of a liquid to sheer forces (and hence to flow) Thermal capacity - the ability of matter to store heat Freezing point - the temperature below which a liquid turns into a

424

Desalination of salt water by solar energy means  

SciTech Connect

Desalination apparatus using solar energy comprises a main insulated container with a subsidiary preheating container next to it; the main container is covered with a transparent cover serving as a selective filter to provide the greenhouse effect and also as a condensation surface for water vapor, and this transparent cover incorporates a hollow space, for example by making the cover double skinned. The hollow space forms part of a syphon which automatically regulates the water levels, transferring salt water from a preheating container to the main container as the level in the main container falls due to loss by evaporation leading to condensation and withdrawal of the desalinated water. The hollow part of the transparent cover thus serves also to preheat the incoming salt water with the heat lost upon condensation by the vapor within the main container.

La Rocca, A.

1979-01-23T23:59:59.000Z

425

Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint  

DOE Green Energy (OSTI)

In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

Burch, J.

2012-06-01T23:59:59.000Z

426

Utility investment in on-site solar: risk and return analysis for capitalization and financing  

DOE Green Energy (OSTI)

A set of financial strategies designed to accelerate the penetration of on-site solar heating and cooling systems are studied. The approach of portfolio theory or the capital asset pricing model (CAPM) is used. The major features of the CAPM is summarized including a survey of those applications which are most relevant to the analysis. These include utility return on equity calculations and project evaluation techniques. How to apply empirical results is discussed based on CAPM methods. In particular, applications to the capitalization variant of the utility investment strategy and the financing variant are distinguished. Subsidization rationales are also discussed. Empirical results to date are summarized, including estimation problems for the various risk measures. The general problem of financial risk assessment for energy technologies is reviewed. (MHR)

Kahn, E.; Schutz, S.

1978-09-01T23:59:59.000Z

427

New Braunfels Utilities- Energy Efficiency and Water Conservation Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

New Braunfels Utilities offer a variety of programs encouraging its customers to make their homes more energy efficiency. Rebates are available for washing machines, air conditioners, heat pumps,...

428

Controllers for solar domestic hot-water systems  

SciTech Connect

This document is intended as a resource for designers and installers of solar domestic hot water systems. It provides key functional control strategy and equipment alternatives and equipment descriptions adequate for writing effective DHW controller specifications. It also provides the installer with adequate technical background to understand the functional aspects of the controller. Included are specific instructions to install, check out, and troubleshoot the controller installation.

1981-10-01T23:59:59.000Z

429

A degree-day method for residential heating load calculations specifically incorporating the utilization of solar gains  

DOE Green Energy (OSTI)

A simple and well known method of estimating residential heating loads is the variable base degree-day method, in which the steady-state heat loss rate (UA) is multiplied by the degree-days based from the balance temperature of the structure. The balance temperature is a function of the UA as well as the average rate of internal heat gains, reflecting the displacement of the heating requirements by these gains. Currently, the heat gains from solar energy are lumped with those from appliances to estimate an average rate over the day. This ignores the effects of the timing of the gains from solar energy, which are more highly concentrated during daytime hours, hence more frequently exceeding the required space heat and less utilizable than the gains from appliances. Simulations or specialized passive solar energy calculation methods have previously been required to account for this effect. This paper presents curves of the fraction of the absorbed solar energy utilized for displacement of space heat, developed by comparing heating loads calculated using a variable base degree-day method (ignoring solar gains) to heating loads from a large number of detailed DOE-2 simulations. The difference in the loads predicted by the two methods can be interpreted as the utilized solar gains. The solar utilization decreases as the thermal integrity increases, as expected, and the solar utilizations are similar across climates. They can be used to estimate the utilized fraction of the absorbed solar energy and, with the load predicted by the variable base degree-day calculation, form a modified degree-day method that closely reproduces the loads predicted by the DOE-2 simulation model and is simple enough for hand calculations. 6 refs., 6 figs., 2 tabs.

Lucas, R.G.; Pratt, R.G.

1990-09-01T23:59:59.000Z

430

Affordable Solar Hot Water and Power LLC | Open Energy Information  

Open Energy Info (EERE)

Water and Power LLC Water and Power LLC Jump to: navigation, search Name Affordable Solar Hot Water and Power LLC Place Dothan, Alabama Zip 36305 Sector Solar Product Solar and Energy Efficiency for buildings and homes Year founded 2006 Number of employees 1-10 Phone number 334-828-1024 Website http://www.asolarpro.com Coordinates 31.2070554°, -85.4994192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2070554,"lon":-85.4994192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Microprocessor controlled solar collector system. Technical progress report No. 3  

SciTech Connect

The strategy and initial results of a microprocessor control system for a solar water heating system are described. Two hot water storage tanks are utilized. (WHK)

1979-11-15T23:59:59.000Z

432

A Comparison of Columnar Water Vapor Retrievals Obtained with Near-IR Solar Radiometer and Microwave Radiometer Measurements  

Science Conference Proceedings (OSTI)

A simple two-channel solar radiometer and analysis technique have been developed for setting atmospheric water vapor via differential solar transmission measurements in and adjacent to the 940-nm water vapor absorption band. A prototype solar ...

J. Reagan; K. Thome; B. Herman; R. Stone; J. DeLuisi; J. Snider

1995-06-01T23:59:59.000Z

433

Solar water heating technical support. Technical report for November 1997--April 1998 and final report  

DOE Green Energy (OSTI)

This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

Huggins, J.

1998-10-01T23:59:59.000Z

434

TVA Partner Utilities- Energy Right Water Heater Program  

Energy.gov (U.S. Department of Energy (DOE))

The TVA energy right Water Heater Plan promotes the installation of high efficiency water heaters in homes and small businesses. TVA provides a $50 incentive to local power companies for each...

435

Knox County Detention Facility Goes Solar for Heating Water | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water Knox County Detention Facility Goes Solar for Heating Water August 16, 2010 - 12:30pm Addthis An array of solar collectors | Photo courtesy of Trane An array of solar collectors | Photo courtesy of Trane Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funds solar farm to heat 14,000 gallons of water a day Estimated to save $60,000 a year 174 tons of CO2 emissions avoided annually Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily-and don't forget the laundry. Naturally, county officials sought an alternative to costly water heating. Their solution: a $1.88 million solar thermal system, among

436

SOLERAS - Solar Energy Water Desalination Project. Rural solar applications. Final report, executive summary  

Science Conference Proceedings (OSTI)

The contracts awarded to five US-based firms for their intended design of a solar water desalination plant are outlined and briefly discussed. The companies awarded include: Catalytic, Inc. of Philadelphia, PA; Exxon Research and Engineering Co. of Florham Park, NJ; Boeing Engineering and Construction Co. of Seattle, WA; Chicago Bridge and Iron Co. of Oakbrook, IL; and Donovan, Hamester and Rattien, Inc. of Washington, D.C. Some cost estimates for each proposal are provided. (BCS)

Not Available

1986-01-01T23:59:59.000Z

437

Water Utility Demand Management and the Financial, Social and...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Camilla Whitehead At Seattle Public Utilities, Al Dietemann leads a team of 11 persons with a budget of 5 million...

438

Ashland Electric Utility - Bright Way to Heat Water Rebate |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Oregon Program Type Utility Rebate Program Rebate Amount 0.40annual kWh saved (on average 800 to 1,000) The City of Ashland Conservation Division offers a...

439

Solar preheating of both domestic hot water and space. Final technical report for the Sea Loft restaurant in Long Branch, New Jersey (Engineering Materials)  

Science Conference Proceedings (OSTI)

Stephen Giddio's Sea Loft Restaurant in Long Branch, NJ is equipped with an active solar system for preheating of both Space and Domestic Hot Water (DHW). Three pumped water loops, each closed circuit, transfer heat from one major equipment component to another. The closed loop drain back solar energy collection circuit uses a 3/4 horsepower pump to circulate seventeen gallons per minute of deionized water from the Solar Storage Tank to the Solar Collector Array, and return. This tank has a capacity of 600 gallons. The solar array consist of eighty-three evacuated tube type concentrating collectors. The heat gathered in this circuit is stored in the tank for either simultaneous or future use in either or both of the Space and DHW preheating loops. The preheating of city water prior to its entrance into the gas fired 86 gallon DHW heater is accomplished in a separate 600 gallon capacity tank. Two thirty-five square foot tubed heat exchanger bundles inserted into this tank accept solar heated hot water from the Solar Storage Tank. This solar heated water is pumped at sixteen GPM in a closed loop circuit using a 1/4 HP pump. The preheating of restaurant space is accomplished in a closed loop circuit between the Solar Storage Tank and an eight SF hot water coil inserted into the return air from the Main Dining Room of the restaurant. A 1/4 HP pump circulates fifteen gallons of solar heated hot water per minute. This system incorporates a differential temperature controller that utilizes a multitude of pressure sensors and temperature thermistors located throughout the various portions of the system components and piping. The Display Board mounted on the wall of the Bar-Lounge Area serves to integrate the entire solar system. It not only displays the flow but houses the Btu flowmeters, Digital temperature readouts, and HVAC EMS Programmer. Reference DOE/CS/30007-T1.

Not Available

1982-11-28T23:59:59.000Z

440

Toward a national plan for the commercialization of solar energy: price/demand scenarios and projections of solar utilization under the National Energy Act  

DOE Green Energy (OSTI)

Three macroeconomic scenarios were developed as an economic backdrop for projecting solar technology market acceptance under various government policies and commercialization programs. These scenarios assume three levels of future world oil prices - $18, $25 and $32 per barrel (1976 $) in the year 2000. This range is intended to encompass the most likely set of energy futures. The scenarios are discussed in terms of their underlying assumptions and changes in fuel and resource consumption by sector of the economy. Estimates of the future utilization of solar technologies for the mid-price scenarios are given. These estimates are based on the solar subsidies and incentive programs in the National Energy Act.

Rebibo, K. K.

1979-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing solar energy and water use efficiencies in winter wheat  

SciTech Connect

The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

Asrar, G.; Hipps, L.E.; Kanemasu, E.T.

1982-09-01T23:59:59.000Z

442

Photocatalytic destruction of chlorinated solvents in water with solar energy  

SciTech Connect

Sandia National Laboratories and the National Renewable Energy Laboratory are developing a photocatalytic process to destroy organic contaminants in water. Tests with common water pollutants have been conducted at Sandia's Solar Thermal Facility using a near commercial scale, single-axis tracking parabolic trough system with a glass pipe reactor mounted at its focus. Experiments at this scale provide verification of laboratory studies and allow examination of design and operation issues at a real-lifescale. The catalyst, titanium dioxide (TiO[sub 2]), is a harmless material found in paint, cosmetics, and toothpaste. Experiments were conducted to determine the effects of key process parameters on destruction rates of chlorinated organic compounds that are common water pollutants. This paper summarizes the engineering-scale results of these experiments and analyses.

Pacheco, J.E.; Prairie, M.R.; Yellowhorse, L. (Sandia National Lab., Albuquerque, NM (United States). Solar Thermal Technology Dept.)

1993-08-01T23:59:59.000Z

443

Cedarburg Light & Water Utility - Commercial Shared Savings Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 50,000 Program Information Wisconsin Program...

444

University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. | Courtesy of University of Maryland Solar Decathlon Team The University of Maryland's "WaterShed" won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and

445

Discovery of water ice nearly everywhere in the solar system  

DOE Green Energy (OSTI)

During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The water is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.

Zuppero, A.

1995-10-01T23:59:59.000Z

446

Preferences and concerns of potential users in the selection of solar thermal systems for industrial and small utility applications  

SciTech Connect

To achieve widespready application in the industrial and utility sectors, solar systems must be economically competitive. Economic viability is, in turn, determined by a number of supporting criteria, ranging from system reliability to dispatch characteristics to how the system supports the main product line. In addition, solar systems possess some inherent attributes that may render some of the traditional supporting criteria inappropriate or require their redefinition. Those criteria and their relation to the solar investments are discussed in three steps. First, the main concerns and preferences of the potential users, as identified in recent SERI studies, are identified. Second, the equitability of the resulting decision criteria for solar investments are examined. Finally, the implications of these criteria for solar energy's penetration into these markets are discussed.

Gresham, J.B.; Kriz, T.A.

1981-03-01T23:59:59.000Z

447

Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

Kearney, D.

2011-05-01T23:59:59.000Z

448

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

of S for On-Site Solar Heating -iv- List of Figures Fig. 1.penetration of on-site solar heating and cooling systems.investment in on-site solar heating cannot easily quantify

Kahn, E.

2011-01-01T23:59:59.000Z

449

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network (OSTI)

of advanced concept solar power plants. For conditions offor the operation of a solar power plant is very small.success of the solar thermal electric power program rests on

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

450

City of Sunset Valley - Solar Water Heating Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program City of Sunset Valley - Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $2,000 Program Info Funding Source General Funds State Texas Program Type Local Rebate Program Rebate Amount 30% of installed cost Provider City of Sunset Valley The City of Sunset Valley offers rebates to local homeowners who install solar water heating systems on their properties. The local rebate acts as an add-on to the solar water heating rebates that are offered by Austin Energy to its electric customers. The Sunset Valley rebate is set at 30% of the installed system cost, up to a maximum rebate of $2,000 per homeowner, supplementing the

451

Pumped Solar Domestic Hot Water (SDHW) system design guidelines  

SciTech Connect

This article provides practical guidelines based on experience gained from the design, installation, and commissioning of a pumped Solar Domestic Hot Water (SDHW) system in Saudi Arabia. The authors believe that such information is not readily available and will be useful to designers and installers of SDHW systems within the region. Since the current motivation for buying SDHW systems in Saudi Arabia is not strictly economic, it is imperative that a professional reference be available, against which the soundness of any technical decisions could be confirmed prior to their implementation. The intent is to ensure that systems designed and installed will operate reliably, therefore enhancing customer satisfaction.

Arshad, K.; Said, S.A.M. (King Fahd Univ. of Petroleum Minerals, Dhahran (Saudi Arabia))

1989-01-01T23:59:59.000Z

452

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

453

California Solar Initiative - Solar Thermal Program (California...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

454

Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA  

SciTech Connect

This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1978-11-01T23:59:59.000Z

455

Cost effective solar hot water system for Econo-Travel Motor Hotel, Chesapeake, Virginia. Final report  

SciTech Connect

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1978-12-01T23:59:59.000Z

456

Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA  

DOE Green Energy (OSTI)

This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1978-11-01T23:59:59.000Z

457

Cost effective solar hot water system for Econo-Travel Motor Hotel, Chesapeake, Virginia. Final report  

DOE Green Energy (OSTI)

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1978-12-01T23:59:59.000Z

458

A Water Hypsometer Utilizing High-Precision Thermocouples  

Science Conference Proceedings (OSTI)

A boiling-point barometer—commonly called hypsometer—has been developed for use on meteorological radiosondes. In this hypsometer, water is heated electrically, and its boiling temperature is measured with a thermocouple. Once the boiling ...

Hans Richner; Jürg Joss; Paul Ruppert

1996-02-01T23:59:59.000Z

459

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burbank Water and Power, California (Utility Company) Burbank Water and Power, California (Utility Company) (Redirected from Burbank Water and Power) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery

460

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Metal Ferrite Spinels for Solar-thermal Water Splitting REDOX Cycles  

Science Conference Proceedings (OSTI)

Presentation Title, Metal Ferrite Spinels for Solar-thermal Water Splitting REDOX Cycles. Author(s), Alan Weimer. On-Site Speaker (Planned), Alan Weimer.

462

Economic efficiency of using solar water lift stations under the conditions of Uzbekistan  

SciTech Connect

It is shown that under certain conditions the best effect of using solar water lift stations is achieved by using installations with a dynamic converter.

Zakhidov, R.A.; Bogdasarov, V.M.

1981-01-01T23:59:59.000Z

463

Progress Energy Florida - SunSense Solar Water Heating with EnergyWise...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In 2011, Progress Energy expanded its SunSense program to Florida and increased the Solar Water Heating Program rebate amount. Program incentives are as follows: * A 550...

464

Optimum hot water temperature for absorption solar cooling  

SciTech Connect

The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

2009-10-15T23:59:59.000Z

465

Solar Water Splitting: Photocatalyst Materials Discovery and Systems Development  

SciTech Connect

Hydrogen promises to be an attractive transportation fuel in the post-fossil fuel era. Relatively abundant and clean burning (water being the principal byproduct), hydrogen offers the potential to significantly reduce greenhouse gas emissions. However, there are significant technical barriers that require solutions before hydrogen can be implemented in large scale. These are: · Sources (e.g. hydrocarbon, water) · Transportation · Storage Each of the aforementioned barriers carries with it important considerations. First, would a hydrocarbon-based hydrogen source be of any benefit compared to conventional fossil fuels? Second, will a system based on centralized generation and distribution be viable? Finally, methods of on-board storage, whether they are liquefaction, adsorption, or intercalation, are far from optimized. The scope of this program is limited to hydrogen generation, specifically generation using solarinitiated water electrolysis. Though concept of making hydrogen using water and sunlight may sound somewhat far-fetched, in reality the concept is very real. Since the discovery of solar-generated hydrogen, termed photoelectrochemical hydrogen, nearly 30 years ago by Fujishima and Honda, significant advances in both fundamental understanding and technological capability have been made. Using solar radiation to generate hydrogen in a fashion akin to using solar to generate electricity offers many advantages. First, hydrogen can be generated at the point of use, reducing the importance of transportation. Second, using water as the hydrogen source eliminates greenhouse gas evolution and the consequences that come with it. Finally, because the process uses very little electricity (pumps and compressors predominantly), the quantity of chemical fuel produced far exceeds the amount of electricity consumed. Consequently, there is some level of truth to the notion that photoelectrochemically-derived hydrogen offers the potential to nearly eliminate greenhouse gas emissions from the transportation landscape. This report focuses primarily on the technical issues inherent to developing an economically viable photoelectrochemical hydrogen system. This involves research intended to address technology gaps as well as research to address commercial feasibility. Though a firm cost target is not identified explicitly, much of the economics are presented in terms of “dollars per gallon of gasoline equivalent” ($/gge). Obviously this is a moving target, but it is important to understand cost in terms of current gasoline pricing, since the intended target is gasoline replacement. However, this does put the cost contribution into a perspective that at least allows for a reasonable assessment of technological viability. It also allows for the identification of need areas beyond the obvious technology gaps.

McNulty, Thomas F.

2008-05-02T23:59:59.000Z

466

Promising freeze protection alternatives in solar domestic hot water systems  

DOE Green Energy (OSTI)

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

467

Mexico-GTZ Support for the Programme to Promote Solar Water Heating | Open  

Open Energy Info (EERE)

for the Programme to Promote Solar Water Heating for the Programme to Promote Solar Water Heating Jump to: navigation, search Logo: Mexico-GTZ Support for the Programme to Promote Solar Water Heating Name Mexico-GTZ Support for the Programme to Promote Solar Water Heating Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Partner German Federal Ministry for Economic Cooperation and Development (BMZ), Centro Mexicano de Promoción del Cobre A.C. (PROCOBRE) Sector Energy Focus Area Solar Topics Background analysis Website http://www.gtz.de/en/themen/27 Program Start 2007 Program End 2009 Country Mexico Central America References Support for the Programme to Promote Solar Water Heating in Mexico (PPP)[1] GTZ is working with Mexico on this project with the following objective:

468

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld  

E-Print Network (OSTI)

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld Department of Mechanical and Process fuels make use of concentrated solar radiation as the energy source of high-temperature process heat Engineering, ETH Zurich, Switzerland and Solar Technology Laboratory, Paul Scherrer Institute, Switzerland

Ponce, V. Miguel

469

New Mexico Water Resources Research Institute, New Mexico State University http://wrri.nmsu.edu Solar Desalination of Brackish Water Using  

E-Print Network (OSTI)

It was found that the solar water heater could increase the brackish water temperature to above 170 F during://wrri.nmsu.edu Solar Desalination of Brackish Water Using Membrane Distillation Process Shuguang Deng, NMSU from brackish water by using solar energy assisted membrane distillation processes. Problem

Johnson, Eric E.

470

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

471

Utility of Variable Speed Drives for Fish Protection at Cooling Water Intakes  

Science Conference Proceedings (OSTI)

This report reviews the utility of a variable frequency drive (VFD) for reducing cooling water flow and potentially the extent of impingement and entrainment of fish and shellfish at power plant cooling water intakes. Reduction of impingement and entrainment at cooling water intakes is the objective of Clean Water Act 316(b) requirements that are being developed by the U.S. Environmental Protection Agency (EPA).

2010-06-03T23:59:59.000Z

472

Analysis of strategies for improving uranium utilization in pressurized water reactors  

E-Print Network (OSTI)

Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal ...

Sefcik, Joseph A.

1981-01-01T23:59:59.000Z

473

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

by any capital in the utility's rate base. incentive probleminterest equal to the utility's threshold rate of return formarket and composite utilities' index rates of return were

Kahn, E.

2011-01-01T23:59:59.000Z

474

Advanced Light Water Reactor Utility Requirements Document, Volume 2, Revision 8: ALWR Evolutionary Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

475

Advanced Light Water Reactor Utility Requirements Document, Volume 3, Revision 8: ALWR Passive Plant  

Science Conference Proceedings (OSTI)

EPRI's ALWR Program has been an industry-wide effort to establish the technical foundation for design of the advanced light water reactor (ALWR). This program included participation and sponsorship of several international utility companies and close cooperation with the U.S. Department of Energy. The cornerstone of the ALWR Program is a set of utility design requirements, which are contained in the ALWR Utility Requirements Document. The purpose of this document is to present a clear, complete statement...

1999-03-30T23:59:59.000Z

476

Solar-energy-system performance evaluation. Reedy Creek Utility District office building, Lake Buena Vista, Florida, September 1978-February, 1979  

DOE Green Energy (OSTI)

The Reedy Creek site is a two-story office building in Florida whose solar heating system provides space heating and domestic hot water and space cooling. The system consists of an array of parabolic trough collectors, an absorption chiller, a 10,000-gallon hot water tank and a 10,000-gallon cold water tank. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

477

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? 150 new jobs. 1200 solar water heaters installed. In Puerto Rico, solar water heaters have been popular for decades. But even with energy savings, not everyone can afford one. Through a new Recovery Act-funded program for the island, more families are showering with water heated by the sun. The U.S. Department of Energy's new Weatherization Assistance Program (WAP) in Puerto Rico has made it a priority to install the systems in homes of income-eligible residents, as part of its weatherization assistance services. The Puerto Rico Energy Affairs Administration (PREAA), which

478

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

479

Using prospect theory to create persuasive communications about solar water heaters and energy conservation  

SciTech Connect

Based on predictions advanced by Kahneman and Tversky in their prospect theory, a research plan was developed comparing the effectiveness of cost-benefit presentations which a) were framed in terms of savings or loss, and b) provided isolated or integrated information about tax credit and retail price, about c) either solar water heaters or insulating blankets. After hearing one of the versions of the cost-benefit information, 175 homeowners evaluated the worth and desirability of either solar water heaters or insulating blankets and indicated the likelihood of installing the retrofit within the coming year. Results indicate that, in general, homeowners will find energy-efficient technology more attractive if they are given price information that incorporates the money-saving benefits of tax credits directly into the statement of cost, and which encourages consideration of the money-losing consequences of nonaction. This effect is limited to some extent, however, by how expensive and controversial the time was, and by the individual's prior attitudes toward alternative energy and conservation. When the cost of the device is very high (and the device, itself, controversial), and the homeowner is skeptical about the value of conservation and alternative energy sources, a hard-sell pitch, utilizing the loss-integrated presentation, appears to elicit a strong reactance effect.

Yates, S.M.

1982-01-01T23:59:59.000Z

480

Prototype solar heating and cooling systems including potable hot water. Quarterly reports  

DOE Green Energy (OSTI)

The activities conducted by Solaron Corporation from November 1977 through September 1978 are summarized and the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is covered. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Williamson, R.

1978-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility solar water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Design manual for solar heating of buildings and domestic hot water  

SciTech Connect

This manual presents design and cost analysis methods for sizing and payback estimating of solar heat collectors for augmentation of portable water heaters and space heaters. Sufficient information is presented to enable almost anyone to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (MOW)

Field, R.L.

1977-01-01T23:59:59.000Z

482

Engineering quality control of solar-powered intelligent water-saving irrigation  

Science Conference Proceedings (OSTI)

The development tendency of the agricultural irrigation technology is Automatic water-saving irrigation, powered by solar energy and achieved control purposes by moisture content monitoring techniques and the variable irrigation technology. In this paper, ... Keywords: intelligent, quality control, solar power, water-saving irrigation

Liu Xiaochu; Wu Hualong; Ling Jingpeng; Tao Jianhua; Yao Li

2010-03-01T23:59:59.000Z

483

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.