Sample records for utility scale solar

  1. Utility Scale Solar PV Cost Steven SimmonsSteven Simmons

    E-Print Network [OSTI]

    Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

  2. Utility Scale Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility RatePalo Alto,

  3. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

  4. Utility-Scale Solar through the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-Scale Solar through the Years

  5. Estimating the Value of Utility-Scale Solar Technologies in California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Value of Utility- Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard J. Jorgenson, P. Denholm, and M. Mehos Technical Report NREL...

  6. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  7. Workshop title: Transmission and Utility Scale Solar Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purpose: A stakeholder communication with transmission customers, Tribes, developers, state and federal agencies, and utilities about Western Area Power Administration's (Western)...

  8. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems 

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    Renewable energy technologies have been growing in their installed capacity rapidly over the past few years. This growth in solar, wind and other technologies is fueled by state incentives, renewable energy mandates, ...

  9. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms...

  10. UTILITY-SCALE SOLAR LOAD CONTROL Richard Perez, ASRC

    E-Print Network [OSTI]

    Perez, Richard R.

    output data. 1 E.g., if the installed PV capacity is 10MW, the objective is for PV + SLC to meet 100% of the loads above a threshold equal to the utility peak minus 10 MW. 2 #12;UPEX-02 PV output data: PV output the report is PTC (AC output at 25 degrees ambient). Load data: Hourly SMUD system load data from 1996

  11. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01T23:59:59.000Z

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  12. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  13. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    SciTech Connect (OSTI)

    Burpo, Rob

    2012-02-29T23:59:59.000Z

    ToÃ?Â?Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the CaÃ?Â?oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  14. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Broader source: Energy.gov [DOE]

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in 2013 and is expected to continue for at least the next few years.

  15. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  16. Hypermodular Self-Assembling Space Solar Power -- Design Option for Mid-Term GEO Utility-Scale Power Plants

    E-Print Network [OSTI]

    Leitgab, Martin

    2013-01-01T23:59:59.000Z

    This paper presents a design for scaleable space solar power systems based on free-flying reflectors and module self-assembly. Lower system cost of utility-scale space solar power is achieved by design independence of yet-to-be-built in-space assembly or transportation infrastructure. Using current and expected near-term technology, this study describe a design for mid-term utility-scale power plants in geosynchronous orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  17. Helping Utilities Make Smart Solar Decisions Utility Barriers

    E-Print Network [OSTI]

    Homes, Christopher C.

    #12;About SEPA Developed by utilities to facilitate the integration of solar electric power. SEPA (insurance, disconnects, metering) · Balanced vs. best interconnection and net metering regimes #12;Managing Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW

  18. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  19. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01T23:59:59.000Z

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  20. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  1. Federal and State Structures to Support Financing Utility-Scale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Federal and State Structures to Support Financing...

  2. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt;...

  3. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV)...

  4. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01T23:59:59.000Z

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  5. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    None

    2012-01-25T23:59:59.000Z

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  6. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  7. Secretary Jewell Announces Approval of Second Utility-Scale Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestrationofPrepared forthe House CommitteeProject

  8. Enhancing User Customization through Novel Software Architecture for Utility Scale Solar Siting Software

    SciTech Connect (OSTI)

    Brant Peery; Sam Alessi; Randy Lee; Leng Vang; Scott Brown; David Solan; Dan Ames

    2014-06-01T23:59:59.000Z

    There is a need for a spatial decision support application that allows users to create customized metrics for comparing proposed locations of a new solar installation. This document discusses how PVMapper was designed to overcome the customization problem through the development of loosely coupled spatial and decision components in a JavaScript plugin architecture. This allows the user to easily add functionality and data to the system. The paper also explains how PVMapper provides the user with a dynamic and customizable decision tool that enables them to visually modify the formulas that are used in the decision algorithms that convert data to comparable metrics. The technologies that make up the presentation and calculation software stack are outlined. This document also explains the architecture that allows the tool to grow through custom plugins created by the software users. Some discussion is given on the difficulties encountered while designing the system.

  9. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  10. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30T23:59:59.000Z

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  11. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  12. Opportunities for utility involvement with solar domestic hot water

    SciTech Connect (OSTI)

    Carlisle, N.; Christensen, C. (National Renewable Energy Lab., Golden, CO (United States)); Barrett, L. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

    1992-05-01T23:59:59.000Z

    Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

  13. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

  14. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008 Cover Photo Credits: Photographer: Andrew McKinney Name of Installer: Marin Solar System owner

  15. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  16. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report October 2008 #12;2 California Solar Initiative CPUC Staff Progress Report - October 2008 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  17. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  18. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  19. Clark Public Utilities- Solar Energy Equipment Loan

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and...

  20. Clark Public Utilities- Solar Water Heater Rebate

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed...

  1. Rochester Public Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Rochester Public Utilities provides incentives for residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt...

  2. The Sacramento power utility experience in solar

    SciTech Connect (OSTI)

    Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

    1993-12-31T23:59:59.000Z

    An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

  3. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  4. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

  5. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

  6. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  7. How Three Retail Buyers Source Large-Scale Solar Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  8. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE) program is helping utilities develop adaptable and replicable practices, long-term strategic plans, and technical...

  9. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  10. Fort Pierce Utilities Authority- Solar Water Heating Rebate (Florida)

    Broader source: Energy.gov [DOE]

    '''''Fort Pierce Utilities Authority has suspended the Solar Water Heating rebate program until 2013. Contact the utility for more information on these offerings.'''''

  11. Updated Capital Cost Estimates for Utility Scale Electricity

    E-Print Network [OSTI]

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

  12. Orlando Utilities Commission- Residential Solar Loan Program (Florida)

    Broader source: Energy.gov [DOE]

    Orlando Utilities Commission (OUC), in cooperation with the Orlando Federal Credit Union (OFCU), provides its customers with low-interest loans for solar photovoltaic (PV) systems and solar water...

  13. AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01T23:59:59.000Z

    An Evaluation of Solar Valuation Methods Used in UtilityAN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITYAN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY

  14. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

  15. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  16. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  17. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31T23:59:59.000Z

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

  18. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  19. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  20. Solar Utilities Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro JumpProjectsSolarSolarSolarSolar

  1. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01T23:59:59.000Z

    Laboratory National Renewable Energy Laboratory Universityof Energy Efficiency and Renewable Energy (Solar EnergySystem Operations Table 27. Renewable Curtailment in the BR

  2. Utility Scale Renewable Energy Development Near DOD Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations: Making the...

  3. Gainesville Regional Utilities- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Gainesville Regional Utilities (GRU) Solar Rebate Program, established in early 1997 as part of GRU's demand-side management initiatives, provides rebates of $500 to residential customers of...

  4. Can Solar PV Rebates Be Funded with Utility Cost Savings?

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

  5. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

  6. Lake Worth Utilities- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A...

  7. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  8. New Braunfels Utilities- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available...

  9. Utility-scale AFBC projects - 1986 update

    SciTech Connect (OSTI)

    Ehrlich, S.; Friedman, M.A.; Howe, W.C.

    1986-01-01T23:59:59.000Z

    Atmospheric fluidized-bed combustion (AFBC) offers several potential advantages over a conventional pulverized-coal steam generator, particularly when a conventional boiler would have to be equipped with a flue gas desulfurization system. AFBC can meet sulfur and nitrogen oxide emission regulations without add-on emission control equipment. Low coal-combustion temperatures in an AFBC eliminate slagging problems as well as low-NO/sub x/ levels. The major benefit of a low combustion temperature in an AFBC is that it permits a wide range of fuels to be fired in the same combustor. The Electric Power Research Institute (EPRI) is participating in three utility-scale AFBC demonstration projects expected to start operation in 1986, 1987, and 1988. Each project has unique characteristics (scope of supply, design configuration, fuel, location, starts per year, etc.) that make the three projects complementary. This report describes the development of AFBC technology, the three utility-scale AFBC demonstration plants, and the technical and economic information EPRI expects to derive from these projects.

  10. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  11. OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS

    E-Print Network [OSTI]

    Moore, John Barratt

    OPTIMAi UTILIZATION OF SOLAR ENERGY IN HEATING AND COOLINGOF BUILDINGS C. Byron Winn Gearold R Wales, Australia ABSTRACT The Colorado State University Solar House has to minimizing the use of auxiliary energy required been studied with respect for heating and cooling. The approach

  12. Owatanna Public Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Owatanna Public Utilities. An energy audit must be performed prior to system installation...

  13. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01T23:59:59.000Z

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  14. Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization 

    E-Print Network [OSTI]

    Wang, R.; Zhai, X.

    2006-01-01T23:59:59.000Z

    Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

  15. Utility Scale Renewable Energy Development Near DOD Installations...

    Broader source: Energy.gov (indexed) [DOE]

    Aimone, P.E. National Security Global Business Battelle Memorial Institute Utility Scale Renewable Energy Development near DOD Installations Making the Case for Land Use...

  16. Solar Utility Networks: Replicable Innovations in Solar Energy (SUNRISE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of EnergySite Screening Decision Tree Solar

  17. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30T23:59:59.000Z

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  18. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings,Sardinia,SawasdeeSayreville, NewScaled

  19. Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)

    SciTech Connect (OSTI)

    Ruckman, K.

    2011-03-01T23:59:59.000Z

    This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

  20. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  1. Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization

    E-Print Network [OSTI]

    Wang, R.; Zhai, X.

    2006-01-01T23:59:59.000Z

    collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered...

  2. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

  3. utility scale | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHomeimprovesecurity

  4. SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY Mechanical Engineering Department , Philadelphia University, Amman Jordan, e-mail

    E-Print Network [OSTI]

    SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY A. Saleh1 A. Badran2 1 Mechanical Engineering dish­type solar cooker was built and tested utilizing satellite dish technology. A common satellite-TV dish was utilized as a solar cooker after covering it with a highly­reflective aluminum foil, which

  5. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  6. Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller

    E-Print Network [OSTI]

    Voigt, Thiemo

    Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over propose and evaluate two protocols that perform solar- aware routing. The presented simulation results

  7. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Energy Savers [EERE]

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation...

  8. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  9. Guide to Community Solar: Utility, Private, and Non-profit Project Development

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

  10. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA). Progress report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1994, summarizes key accomplishments and conclusions for the year, and outlines future work. The PVUSA project has five objectives. These are designed to narrow the gap between a large utility industry that is unfamiliar with PV and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: Evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side by side at a single location; Assess PV system operation and maintenance in a utility setting; Compare US utilities hands-on experience in designing, procuring, and operating PV systems; and, Document and disseminate knowledge gained from the project.

  11. February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program....

  12. Community Renewable Energy Success Stories Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Exploring How Municipal Utilities Fund Solar Energy Projects," originally presented on February 19, 2013.

  13. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect (OSTI)

    Rapp, Jim [Parametrix; Knight, Tawnie [Ute Mountain Ute Tribe

    2014-01-30T23:59:59.000Z

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  14. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantof the plant is minimal. CONCLUSIONS A new type of solar

  15. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar...

  16. Sandia National Laboratories: Solar Glitter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells in utility-scale solar power systems, which eventually could cut the costs of solar panels in half and nearly double their efficiency. Sandia's work with industry,...

  17. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01T23:59:59.000Z

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  18. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    SciTech Connect (OSTI)

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03T23:59:59.000Z

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  19. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31T23:59:59.000Z

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  20. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high levels of wind and solar generation. WWSIS found adding greater amounts of wind and solar power to be technically feasible if certain operational changes could be made, but...

  1. Orlando Utilities Commission- Residential Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Through a partnership with the Orlando Federal Credit Union (OFCU), OUC also offers a Residential Solar Loan Program to finance the solar hot water system. Customers who choose to finance through...

  2. NREL: Wind Research - Utility-Scale Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6SiteUtility-Scale Wind

  3. Property:PotentialRuralUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation, search

  4. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation,

  5. Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to:

  6. Property:PotentialUrbanUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump

  7. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea

  8. Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop

    Broader source: Energy.gov [DOE]

    This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight...

  9. Fort Pierce Utilities Authority- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    Note: Fort Pierce Utilities Authority has completed its rebate program for 2015. Check the website for updates.

  10. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01T23:59:59.000Z

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  11. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  12. SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY

    SciTech Connect (OSTI)

    Salem, C.; Bale, S. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Mangeney, A. [LESIA, Observatoire de Paris-Meudon, F-92195 Meudon (France); Veltri, P. [Dipartimento di Fisica, Universita della Calabria, Rende (Italy)], E-mail: salem@ssl.berkeley.edu

    2009-09-01T23:59:59.000Z

    In this paper, we present a study of the scaling properties and intermittency of solar wind MHD turbulence based on the use of wavelet transforms. More specifically, we use the Haar Wavelet transform on simultaneous 3 s resolution particle and magnetic field data from the Wind spacecraft, to investigate anomalous scaling and intermittency effects of both magnetic field and solar wind velocity fluctuations in the inertial range. For this purpose, we calculated spectra, structure functions, and probability distribution functions. We show that this powerful wavelet technique allows for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range. The scaling of the magnetic field and the velocity fluctuations are found to be fundamentally different. Moreover, when the most intermittent structures superposed to the standard fluctuations are removed, simple statistics are recovered. The magnetic field and the velocity fluctuations exhibit a well-defined, although different, monofractal behavior, following a Kolmogorov -5/3 scaling and a Iroshnikov-Kraichnan -3/2 scaling, respectively. The multifractal properties of solar wind turbulence appear to be determined by the presence of those most intermittent structures. Finally, our wavelet technique also allows for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind.

  13. City of Tallahassee Utilities- Solar Water Heating Rebate

    Broader source: Energy.gov [DOE]

    The homeowner must allow the City of Tallahassee to conduct an energy audit on the home in order to make a preliminary assessment of sun exposure and to provide program guidance. All solar water...

  14. Gainesville Regional Utilities- Solar-Electric (PV) System Rebate Program

    Broader source: Energy.gov [DOE]

    '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of...

  15. Solar cycle variations of large scale flows in the Sun

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2000-01-17T23:59:59.000Z

    Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

  16. Attaching solar collectors to a structural framework utilizing a flexible clip

    DOE Patents [OSTI]

    Kruse, John S

    2014-03-25T23:59:59.000Z

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged by the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.

  17. A cash-flow economic model for analyzing utility/ESCO solar hot water programs

    SciTech Connect (OSTI)

    Bircher, C. [ENSTAR, De Pere, WI (United States); DeLaune, J.L. [Wisconsin Public Service Corp., Green Bay, WI (United States); Lyons, C.R. [Energy Alliance Group, Boston, MA (United States)

    1996-11-01T23:59:59.000Z

    Wisconsin Public Service Corporation (WPSC), in partnership with Energy Alliance Group (EAG), has developed a robust cash-flow economic model to analyze an energy service company (ESCO) approach to utility solar water heating programs. This paper describes the ESCO approach and its potential to increase penetration of solar water heating. The economic model is presented, and its use in designing WPSC`s Solar-Wise Water Heating Service program is described. The model`s results for WPSC are positive, indicating that an ESCO approach has strong potential. A feasibility study of ESCO solar water heating programs for a varied sample of other US utilities was also conducted using the model, and the results are summarized. Sensitivity analyses from the study reveal that the three key drivers of ESCO solar water heating success are electric rate, length of the service agreement, and the amount of the customer`s payment for the service.

  18. Solar Utility SpA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,PanelsLightSolarSolarTrust

  19. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  20. Port Angeles Public Works and Utilities- Solar Energy Loan Program

    Broader source: Energy.gov [DOE]

    The City of Port Angeles Public Works and Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for...

  1. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

    2011-07-01T23:59:59.000Z

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  2. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  3. Public attitudes regarding large-scale solar energy development in the U.S.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; Bowman, Madelaine; Joe, Jeffrey C.

    2015-08-01T23:59:59.000Z

    Using data collected from both a National sample as well as an oversample in U.S. Southwest, we examine public attitudes toward the construction of utility-scale solar facilities in the U.S. as well as development in one’s own county. Our multivariate analyses assess demographic and sociopsychological factors as well as context in terms of proximity of proposed project by considering the effect of predictors for respondents living in the Southwest versus those from a National sample.We find that the predictors, and impact of the predictors, related to support and opposition to solar development vary in terms of psychological and physical distance.more »Overall, for respondents living in the U.S. Southwest we find that environmentalism, belief that developers receive too many incentives, and trust in project developers to be significantly related to support and opposition to solar development, in general. When Southwest respondents consider large-scale solar development in their county, the influence of these variables changes so that property value, race, and age only yield influence. Differential effects occur for respondents of our National sample.We believe our findings to be relevant for those outside the U.S. due to the considerable growth PV solar has experienced in the last decade, especially in China, Japan, Germany, and the U.S.« less

  4. Coordinating Permit Offices and the Development of Utility-Scale Geothermal

    E-Print Network [OSTI]

    Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy 2013 Geothermal-Scale Geothermal Overview 1. Background and other Analysis 2. Specific Coordinating Permit Office Examples 3 and the Development of Utility-Scale Geothermal Background 2011 Islandbanki Report · Report stated on average

  5. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 issue of Innovation Magazine. Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems On October 17, 2011, in Energy, News, Photovoltaic, Renewable Energy,...

  6. Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility

    Broader source: Energy.gov [DOE]

    Presentation covers Utility Scale Renewable Energy Development Near DOD Installations and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  7. Secretary Jewell Announces Approval of Second Utility-Scale Solar...

    Energy Savers [EERE]

    strong and prosperous tribal communities and the Climate Action Plan to cut carbon pollution and create clean energy jobs, Secretary of the Interior (DOI) Sally Jewell announced...

  8. Powering New Markets: Utility-scale Photovoltaic Solar | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric, Inc.DepartmentFleet Card Program Review

  9. Utility-Scale Solar through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18UnrevisedCoolUsingDepartmentProject |

  10. COLLISIONLESS DAMPING AT ELECTRON SCALES IN SOLAR WIND TURBULENCE

    SciTech Connect (OSTI)

    TenBarge, J. M.; Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Dorland, W., E-mail: jason-tenbarge@uiowa.edu [Department of Physics, University of Maryland, College Park, MA 20742-3511 (United States)

    2013-09-10T23:59:59.000Z

    The dissipation of turbulence in the weakly collisional solar wind plasma is governed by unknown kinetic mechanisms. Two candidates have been suggested to play an important role in the dissipation, collisionless damping via wave-particle interactions and dissipation in small-scale current sheets. High resolution spacecraft measurements of the turbulent magnetic energy spectrum provide important constraints on the dissipation mechanism. The limitations of popular fluid and hybrid numerical schemes for simulation of the dissipation of solar wind turbulence are discussed, and instead a three-dimensional kinetic approach is recommended. We present a three-dimensional nonlinear gyrokinetic simulation of solar wind turbulence at electron scales that quantitatively reproduces the exponential form of the turbulent magnetic energy spectrum measured in the solar wind. A weakened cascade model that accounts for nonlocal interactions and collisionless Landau damping also quantitatively agrees with the observed exponential form. These results establish that a turbulent cascade of kinetic Alfven waves that is terminated by collisionless Landau damping is sufficient to explain the observed magnetic energy spectrum in the dissipation range of solar wind turbulence.

  11. Solar Compartment Design Methods, Performance Analysis and Thermal Data for Solar Composting Latrines: A Full Scale Experimental Study

    E-Print Network [OSTI]

    Rendall, Joseph D.

    2012-12-31T23:59:59.000Z

    . Pathogen resistance to disinfection or inactivation in latrines is multifaceted. The full-scale solar composting compartment studies at the University of Kansas have advanced the knowledge about feces composting in solar compartments based on climate...

  12. The Nature of Subproton Scale Turbulence in the Solar Wind

    E-Print Network [OSTI]

    Chen, C H K; Xia, Q; Perez, J C

    2013-01-01T23:59:59.000Z

    The nature of subproton scale fluctuations in the solar wind is an open question, partly because two similar types of electromagnetic turbulence can occur: kinetic Alfven turbulence and whistler turbulence. These two possibilities, however, have one key qualitative difference: whistler turbulence, unlike kinetic Alfven turbulence, has negligible power in density fluctuations. In this Letter, we present new observational data, as well as analytical and numerical results, to investigate this difference. The results show, for the first time, that the fluctuations well below the proton scale are predominantly kinetic Alfven turbulence, and, if present at all, the whistler fluctuations make up only a small fraction of the total energy.

  13. A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)

    SciTech Connect (OSTI)

    Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

    2012-05-01T23:59:59.000Z

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  14. Community Shared Solar: Utility,Private,andNonpro tProjectDevelopment

    E-Print Network [OSTI]

    Laboratory by Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, Clean Energy Collective; Marc Romito, Tucson Electric Power; Ellen Lamiman, Energy Solutions GRAPHICA Guide to Community Shared Solar: Utility,Private,andNonpro tProjectDevelopment #12

  15. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    SciTech Connect (OSTI)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21T23:59:59.000Z

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  16. Cross-Scale Effects in Solar-Wind Turbulence

    SciTech Connect (OSTI)

    Valentini, F.; Veltri, P. [Dipartimento di Fisica and CNISM, Universita della Calabria, 87036 Rende (Serbia and Montenegro) (Italy); Califano, F. [Dipartimento di Fisica and CNISM, Universita di Pisa, 56127 Pisa (Italy); Mangeney, A. [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France)

    2008-07-11T23:59:59.000Z

    The understanding of the small-scale termination of the turbulent energy cascade in collisionless plasmas is nowadays one of the outstanding problems in space physics. In the absence of collisional viscosity, the dynamics at small scales is presumably kinetic in nature; the identification of the physical mechanism which replaces energy dissipation and establishes the link between macroscopic and microscopic scales would open a new scenario in the study of turbulent heating in space plasmas. We present a numerical analysis of kinetic effects along the turbulent energy cascade in solar-wind plasmas which provides an effective unified interpretation of a wide set of spacecraft observations and shows that, simultaneously with an increase in the ion perpendicular temperature, strong bursts of electrostatic activity in the form of ion-acoustic turbulence are produced together with accelerated beams in the ion distribution function.

  17. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser pageUtility+Utility Access Map

  18. SCALING-UP OF NEW GENERATION OF 3D FLEXIBLE ORGANIC SOLAR CELLS

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    SCALING-UP OF NEW GENERATION OF 3D FLEXIBLE ORGANIC SOLAR CELLS _______________ A Thesis Presented Generation of 3D Flexible Organic Solar Cell _____________________________________________ Samuel Kinde Engineering San Diego State University, 2012 Scaling-up of New Generation of 3D Flexible Organic Solar Cells

  19. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect (OSTI)

    Harder, J.E.

    1981-04-01T23:59:59.000Z

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  20. New Switches for Utility-Scale Inverters: First In-Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility-Scale Inverters

    SciTech Connect (OSTI)

    None

    2011-12-31T23:59:59.000Z

    Solar ADEPT Project: The SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLAB’s new power switches can also be used in wind turbines, railways, and other smart grid applications.

  1. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  2. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01T23:59:59.000Z

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  3. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  4. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  5. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    large, utility-scale solar plants have been made under thethe 64 MW Nevada Solar One CSP plant – came online in 2007,scale solar facility, the 25 MW ac DeSoto plant, which was

  6. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  7. Large-scale structure of the fast solar wind

    E-Print Network [OSTI]

    Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

    2007-01-01T23:59:59.000Z

    measurements of Solar Wind velocity, in press, Journal of1992), The Ulysses solar wind plasma experiment, AstronomyA. Hewish (1967), The solar wind outside the plane of the

  8. Large-scale structure of the fast solar wind

    E-Print Network [OSTI]

    Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

    2007-01-01T23:59:59.000Z

    Scintillation measurements of Solar Wind velocity, in press,K. Sakurai (1992), The Ulysses solar wind plasma experiment,Telescope for the SOHO Mission, Solar Physics, 162, 291–312.

  9. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01T23:59:59.000Z

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  10. Reliability and optimization studies of nuclear and solar powered systems utilizing a Stirling engine for the space station

    E-Print Network [OSTI]

    Schmitz, Paul Charles

    1990-01-01T23:59:59.000Z

    RELIABILITY AND OPTIMIZATION STUDIES OF NUCLEAR AND SOLAR POWERED SYSTEMS UTILIZING A STIRLING ENGINE FOR THE SPACE STATION A Thesis by PAUL CHARLES SCHMITZ Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Nuclear Engineering RELIABILITY AND OPTIMIZATION STUDIES OF NUCLEAR AND SOLAR POWERED SYSTEMS UTILIZING A STIRLING ENGINE FOR THE SPACE STATION A Thesis...

  11. Efficient small-scale dynamo in solar convection zone

    E-Print Network [OSTI]

    Hotta, H; Yokoyama, T

    2015-01-01T23:59:59.000Z

    We investigate small-scale dynamo action in the solar convection zone through a series of high resolution MHD simulations in a local Cartesian domain with 1$R_\\odot$ (solar radius) of horizontal extent and a radial extent from 0.715 to 0.96$R_\\odot$. The dependence of the solution on resolution and diffusivity is studied. For a grid spacing of less than 350 km, the root mean square magnetic field strength near the base of the convection zone reaches 95% of the equipartition field strength (i.e. magnetic and kinetic energy are comparable). For these solutions the Lorentz force feedback on the convection velocity is found to be significant. The velocity near the base of the convection zone is reduced to 50% of the hydrodynamic one. In spite of a significant decrease of the convection velocity, the reduction in the enthalpy flux is relatively small, since the magnetic field also suppresses the horizontal mixing of the entropy between up- and downflow regions. This effect increases the amplitude of the entropy pe...

  12. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Time series modeling and large scale global solar radiation forecasting from geostationary global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory

  13. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01T23:59:59.000Z

    Energiae Solaris Sinica" and the "Solar Energy" journal[6]. It accelerated application of solar energy in the northwest in China. Today, 25 years later, Xi?an is selected to demonstrate the large scale solar energy application in urban residential...

  14. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C. [Univ. of Genoa (Italy). Energy Engineering Dept.

    1995-11-01T23:59:59.000Z

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  15. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01T23:59:59.000Z

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  16. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  17. A Scaled, Performance Driven Evaluation of the Layered Sensing Framework Utilizing Polarimetric Infrared Imagery

    E-Print Network [OSTI]

    Krim, Hamid

    sensing, distributed sensing, polarimetric, infrared, tracking, feature-aided, fusion, multi- sensor 1A Scaled, Performance Driven Evaluation of the Layered Sensing Framework Utilizing Polarimetric Infrared Imagery Hamilton Scott Clousea and Hamid Krima and Olga Mendoza-Schrockb aNorth Carolina State

  18. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation

    SciTech Connect (OSTI)

    Daye, Tony [Green Power Labs

    2013-09-30T23:59:59.000Z

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  19. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    expectancy of a thermal solar energy development? A commontowards solar energy: Photovoltaic vs Solar Thermal. In:

  20. Georgia Power- Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia)

    Broader source: Energy.gov [DOE]

    '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity...

  1. A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp

    SciTech Connect (OSTI)

    Siminovitch, M.; Gould, C.; Page, E.

    1997-06-01T23:59:59.000Z

    High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

  2. Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

  3. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantplant has the additional advantage of not requiring cooling water, an important feature since arid areas are the best solar

  4. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    refrigerators, water heaters (solar, natural gas, LPG) andwith natural gas or solar heaters), space cooling (replacingof electric water heaters by solar water heaters (iv)

  5. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn Keeler,Washington

  6. Fluidic: Grid-Scale Batteries for Wind and Solar

    Broader source: Energy.gov [DOE]

    Thanks to an ARPA-E award, Fluidic recognized the potential to transform how our nation stores and utilizes energy throughout the electric grid.

  7. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  8. Neutrinoless double beta decay, solar neutrinos and mass scales

    E-Print Network [OSTI]

    Per Osland; Geir Vigdel

    2001-09-13T23:59:59.000Z

    We obtain bounds for the neutrino masses by combining atmospheric and solar neutrino data with the phenomenology of neutrinoless double beta decay where hypothetical values of || are envisaged from future 0\

  9. Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations

    SciTech Connect (OSTI)

    Carbone, V. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Marino, R. [Dipartimento di Fisica, Universita della Calabria, Ponte Bucci 31C, I-87036 Rende (Italy); University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Sorriso-Valvo, L. [Liquid Crystal Laboratory, INFM/CNR, Ponte Bucci 33B, I-87036 Rende (Italy); Noullez, A. [University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Bruno, R. [Istituto di Fisica dello Spazio Interplanetario-INAF, via Fosso del Cavaliere Roma (Italy)

    2009-08-07T23:59:59.000Z

    Incompressible and isotropic magnetohydrodynamic turbulence in plasmas can be described by an exact relation for the energy flux through the scales. This Yaglom-like scaling law has been recently observed in the solar wind above the solar poles observed by the Ulysses spacecraft, where the turbulence is in an Alfvenic state. An analogous phenomenological scaling law, suitably modified to take into account compressible fluctuations, is observed more frequently in the same data set. Large-scale density fluctuations, despite their low amplitude, thus play a crucial role in the basic scaling properties of turbulence. The turbulent cascade rate in the compressive case can, moreover, supply the energy dissipation needed to account for the local heating of the nonadiabatic solar wind.

  10. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    SciTech Connect (OSTI)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20T23:59:59.000Z

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

  11. Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations

    E-Print Network [OSTI]

    Franci, Luca; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-01-01T23:59:59.000Z

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.

  12. January/February 1997 21 Utility Green

    E-Print Network [OSTI]

    of scale that favored a single provider--the electric utility--have been exhausted. Nonutility companies to choose their electricity suppliers. Anticipating this competition, some electric utility companies have pricing program. #12;22 SOLAR TODAY In an early effort to break the histori- cal utility monopoly

  13. Large-scale solar cycle features of solar photospheric magnetic field

    E-Print Network [OSTI]

    W. B. Song

    2007-05-14T23:59:59.000Z

    It is well accepted that the solar cycle originates from a magnetohydrodynamics dynamo deep inside the Sun. Many dynamo models have long been proposed based on a lot of observational constraints. In this paper, using 342 NSO/Kitt Peak solar synoptic charts we study the solar cycle phases in different solar latitudinal zones to set further constraints. Our results can be summarized as follows. (1) The variability of solar polar regions' area has a correlation with total unsigned magnetic flux in advance of 5 years. (2) The high-latitude region mainly appears unipolar in the whole solar cycle and its flux peak time lags sunspot cycle for 3 years. (3) For the activity belt, it is not surprised that its phase be the same as sunspot's. (4) The flux peak time of the low-latitude region shifts forward with an average gradient of 32.2 $day/deg$. These typical characteristics may provide some hints for constructing an actual solar dynamo.

  14. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  15. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28T23:59:59.000Z

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  16. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Broader source: Energy.gov [DOE]

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  17. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    by natural gas or solar water heaters (iii)Replacement ofwater heaters by solar water heaters (iv) Replacement ofAC Fans Water Heating Solar Water Heater It should be noted

  18. The Long Island Solar Farm

    Broader source: Energy.gov [DOE]

    In November 2011, a utility-scale solar array became operational in the most unlikely of places: at Brookhaven National Laboratory on densely populated Long Island, New York. Now the largest...

  19. A Guide to Community Solar: Utility, Private, and Non-profit...

    Open Energy Info (EERE)

    Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, Bonneville Environmental Foundation Sector Energy Focus Area People and Policy, Solar Phase Evaluate...

  20. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

  1. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    Jenerette. 2010. Box 11: Two paths towards solar energy:Photovoltaic vs Solar Thermal. In: Planetary Stewardship.government betting on the wrong solar horse. Natural Gas &

  2. Barriers to commercialization of large-scale solar electricity: Lessions learned from the LUZ experience

    SciTech Connect (OSTI)

    Lotker, M. [Lotker (Michael), Westlake Village, CA (United States)

    1991-11-01T23:59:59.000Z

    This report discusses the economic and policy factors leading to the initial successful introduction of Luz International Limited`s Solar Electric Generating Systems (SEGS). It then addresses the wide range of barriers to continued SEGS commercialization, including state and federal tax policy, avoided cost energy pricing, artificial size limitations under the Public Utility Regulatory Policies Act (PURPA), the loss of effectiveness of PURPA itself, the lack of incentives available to utilities as owners of solar electric plants, and the limited ways in which the environmental benefits of this technology have been recognized. The way in which each of these barriers contributed to the suspension of new LUZ projects is highlighted. In addition, mitigation approaches to each of these barriers are suggested.

  3. Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen

    SciTech Connect (OSTI)

    Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

    1996-09-30T23:59:59.000Z

    The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

  4. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  5. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01T23:59:59.000Z

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  6. U.S. Departments of Energy and Interior Announce Site for Solar...

    Broader source: Energy.gov (indexed) [DOE]

    energy goals. These projects on BLM land in Nevada can significantly reduce the costs and environmental impacts of utility-scale solar power facilities and demonstrate the...

  7. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  8. The Influence of Residential Solar Water Heating on Electric Utility Demand 

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  9. The Influence of Residential Solar Water Heating on Electric Utility Demand

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  10. Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics

    SciTech Connect (OSTI)

    None

    2012-02-23T23:59:59.000Z

    Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

  11. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  12. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Organometallic Frames for Solar Energy Storage, Berkeley. [Nanotubes as High-Energy Density Solar Thermal Fuels,” Nano

  13. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  14. The Role of Subsurface Flows in Solar Surface Convection: Modeling the Spectrum of Supergranular and Larger Scale Flows

    E-Print Network [OSTI]

    Lord, J W; Rast, M P; Rempel, M; Roudier, T

    2014-01-01T23:59:59.000Z

    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolomogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large scale radiative hydrodynamic simulations. We reach two primary conclusions: 1. The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. 2. Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also ...

  15. Solar resource-utility load matching assessment: NREL photovoltaic project summary

    SciTech Connect (OSTI)

    none,

    1993-11-01T23:59:59.000Z

    Many utility planners may be unfamiliar with the potential for the development of photovoltaics (PV) in their service areas. The goal of the research summarized in this document is to provide information on the match existing between the output of PV powder plants and the load requirements of US utilities. This material indicates whether or not the effective capacity (hence the value) of this renewable resource should be higher than that traditionally assigned to an intermittent resource.

  16. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Natural Conven- Effi- lamps) Solar Geyser 10(yrs) Gas 10(yrs) tional 10(yrs) Power requirement (Watts) Appliance life (hours) Usage (

  17. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    a common size for solar plants of 1,000MW). This translatesthe lifespans of the solar plants, compared with this long-solar arrays in California leads to the loss of endangered species, destruction of plant

  18. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect (OSTI)

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09T23:59:59.000Z

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  19. Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy (Presentation)

    SciTech Connect (OSTI)

    Levine, A.; Young, K.; Witherbee, K.

    2013-10-01T23:59:59.000Z

    Permitting is a major component of the geothermal development process. Better coordination across government agencies could reduce uncertainty of the process and the actual time of permitting. This presentation highlights various forms of coordinating permit offices at the state and federal level in the western United States, discusses inefficiencies and mitigation techniques for permitting natural resource projects, analyzes whether various approaches are easily adaptable to utility-scale geothermal development, and addresses advantages and challenges for coordinating permit offices. Key successful strategies identified include: 1. Flexibility in implementing the approach (i.e. less statutory requirements for the approach); 2. Less dependence on a final environmental review for information sharing and permit coordination; 3. State and federal partnerships developed through memorandum of understanding to define roles and share data and/or developer information. A few of the most helpful techniques include: 1. A central point of contact for the developer to ask questions surrounding the project; 2. Pre-application meetings to assist the developer in identifying all of the permits, regulatory approvals, and associated information or data required; 3. A permit schedule or timeline to set expectations for the developer and agencies; 4. Consolidating the public notice, comment, and hearing period into fewer hearings held concurrently.

  20. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    SciTech Connect (OSTI)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22T23:59:59.000Z

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  1. Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales

    E-Print Network [OSTI]

    Soler, Roberto

    2015-01-01T23:59:59.000Z

    Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...

  2. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  3. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  4. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruary 17, 2015 -ProductsFederal and State

  5. PATHWAYS OF LARGE-SCALE MAGNETIC COUPLINGS BETWEEN SOLAR CORONAL EVENTS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; Title, Alan M.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2013-08-20T23:59:59.000Z

    The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events.

  6. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

  7. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Sigmon, Thomas W. (Beaverton, OR)

    1995-01-01T23:59:59.000Z

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  8. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Sigmon, T.W.

    1995-10-10T23:59:59.000Z

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  9. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Dolan, S. L.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

  10. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  11. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    SciTech Connect (OSTI)

    Mehos, M.; Turchi, C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Pacheco, J. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Boegel, A.J.; Merrill, T.; Stanley, R. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States)

    1992-08-01T23:59:59.000Z

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors.

  12. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie Laure

    2014-01-01T23:59:59.000Z

    When a territory is poorly instrumented, geostationary satellites data can be useful to predict global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory, the Corsica Island, but as data used are available for the entire surface of the globe, our method can be easily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3 surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence models (scaled or not). Comparisons between these models and clear sky estimations were proceeded to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5% for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground measurements. F...

  13. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    lamps with T5, use of solar water heater and, efficient airDevelopment Corporation Water Heater v vi Executive Summary replacing electric water heaters with gas water heaters); (

  14. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”Power Plants,” Journal of Solar Energy Engineering, 124 (2),

  15. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Organometallic Frames for Solar Energy Storage, Berkeley. [Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  16. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Organometallic Frames for Solar Energy Storage, Berkeley. [and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage for

  17. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    focus only on the solar collector and catalytic converterfluid, a microfluidic solar collector, and a catalytic heatS. a. , 2004, “Solar Thermal Collectors and Applications,”

  18. Solar Thermal Utility-Scale Joint Venture Program (USJVP) Final Report

    SciTech Connect (OSTI)

    MANCINI,THOMAS R.

    2001-04-01T23:59:59.000Z

    Several years ago Sandia National Laboratories developed a prototype interior robot [1] that could navigate autonomously inside a large complex building to aid and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified and integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities.

  19. Utility-Scale Wind & Solar Power in the U.S.: Where it stands...

    Energy Savers [EERE]

    Dakota instead of Florida, just to employ North Dakotans? 13 Simplistic Energy Supply Potential from Wind * North Dakota alone could support 571,400 GE 1.6 MW turbines or...

  20. Federal and State Structures to Support Financing Utility-Scale Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDTheJune 6, 2012. ARRA870ADepartment ofProjects

  1. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idaho |EnergyTanklessThe Clean EnergyDepartment

  2. U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&Department ofDepartment of Energy

  3. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe Facts on Gas Prices: Infographic The

  4. U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeedEnergy Navy MoanaluaDepartment of

  5. Two New Reports on Utility-Scale Solar from NREL | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbull Hydro LLC Jump to:PageTwo New Reports

  6. Sandia Energy - Glitter-Sized Photovoltaic Cells in Utility-Scale Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower Systems Glitter-Sized

  7. Large scale flows in the solar interior: Effect of asymmetry in peak profiles

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    1999-06-15T23:59:59.000Z

    Ring diagram analysis can be used to study large scale velocity fields in the outer part of the solar convection zone. All previous works assume that the peak profiles in the solar oscillation power spectrum are symmetric. However, it has now been demonstrated that the peaks are not symmetric. In this work we study how the explicit use of asymmetric peak profiles in ring-diagram analysis influences the estimated velocity fields. We find that the use of asymmetric profiles leads to significant improvement in the fits, but the estimated velocity fields are not substantially different from those obtained using a symmetric profile to fit the peaks. The resulting velocity fields are compared with those obtained by other investigators.

  8. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  9. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  10. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  11. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. (Spire Corp., Bedford, MA (United States))

    1993-04-01T23:59:59.000Z

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  12. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  13. A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

  14. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    1981-06-01T23:59:59.000Z

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  15. NREL Develops Sub-Hour Solar Power Data Set

    E-Print Network [OSTI]

    from photovoltaic and concentrating solar power plants of various sizes. Researchers measure global into their electric power systems. Large-scale deployment of solar energy requires a favorable environment and requirements. Utilities need tools and data to study and enable high solar penetrations on their power systems

  16. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect (OSTI)

    Korecko, J.; Jirka, V. [ENKI, o.p.s., Dukelska 145, 379 01 Trebon (Czech Republic); Sourek, B. [ENKI, o.p.s., Dukelska 145, 379 01 Trebon (Czech Republic); Czech Technical University of Prague, Technicka 4, 166 07 Prague (Czech Republic); Cerveny, J. [ENKI, o.p.s., Dukelska 145, 379 01 Trebon (Czech Republic); Institute of Physical Biology, Zamek 136, 373 33 Nove Hrady (Czech Republic)

    2010-10-15T23:59:59.000Z

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  17. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint

    SciTech Connect (OSTI)

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-07-01T23:59:59.000Z

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  18. Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    I.G. : 2006, In situ solar wind and magnetic ?eld signaturesPenou, E. : 2008, The IMPACT Solar Wind Electron Analyzer (Heliospheric images of the solar wind at Earth. Astrophys.

  19. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    achieved over a solar power plant due to decorrelationmodel (WVM) for solar PV power plants. Sustainable Energy,solar PV power production is mostly caused by the movement of clouds across the PV plant.

  20. Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    I.G. : 2006, In situ solar wind and magnetic ?eld signaturesE. : 2008, The IMPACT Solar Wind Electron Analyzer (SWEA).Heliospheric images of the solar wind at Earth. Astrophys.

  1. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Solar Energy Conversion Applications By Dusan Coso B.S. (UniversitySolar Energy Conversion Applications by Dusan Coso Doctor of Philosophy in Engineering – Mechanical Engineering University

  2. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    At NREL's Energy Systems Integration Facility (ESIF), integrated, megawatt-scale power hardware-in-the-loop (PHIL) capability allows researchers and manufacturers to test new energy technologies at full power in real-time simulations - safely evaluating component and system performance and reliability before going to market.

  3. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    SciTech Connect (OSTI)

    Jean-Claude Ossyra

    2012-10-25T23:59:59.000Z

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  4. Scaling anisotropy of the power in parallel and perpendicular components of the solar wind magnetic field

    E-Print Network [OSTI]

    Oughton, Sean

    superthermal particles and cosmic rays appear to be diffusively coupled to the solar wind, allowing exchange

  5. Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating

    E-Print Network [OSTI]

    P. C. H. Martens

    2008-04-16T23:59:59.000Z

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

  6. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01T23:59:59.000Z

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  7. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-08-01T23:59:59.000Z

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  8. The impact of centennial-scale solar forcing on the Holocene climate: simulations with a coupled climate model

    E-Print Network [OSTI]

    Renssen, Hans

    lasts about 50-year longer than the TSI anomaly. This is caused by extensive sea-ice build- up, which. During shorter TSI anomalies, such as event B centered at 2300 BP, sea-ice build-up is insufficientThe impact of centennial-scale solar forcing on the Holocene climate: simulations with a coupled

  9. Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis

    E-Print Network [OSTI]

    Yermolaev, Yu I; Nikolaeva, N S; Yermolaev, M Yu

    2015-01-01T23:59:59.000Z

    Using the OMNI data for period 1976-2000 we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: re-scaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately 8 sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the pl...

  10. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Yao Shuo [School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083 (China); He, J.-S.; Tu, C.-Y.; Wang, L.-H. [Department of Geophysics, Peking University, Beijing (China); Marsch, E., E-mail: yaoshuo@cugb.edu.cn [Christian Albrechts University at Kiel, Kiel (Germany)

    2013-09-01T23:59:59.000Z

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  11. Solar Utility Procurement Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Renewable Energy Procurement Associate; Renewable Energy Transactions Specialist;

  12. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    SciTech Connect (OSTI)

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.

    1992-01-01T23:59:59.000Z

    During 1989-90, a 75-kW{sub t} sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include (1) boiling sodium as the heat transfer medium and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750{degree}C, heated by quartz lamps with incident radiant fluxes up to 95 W/cm{sup 2}. The effects of various orientations and added gases have been studied. results of these studies are presented. 15 refs.

  13. A performance correlation of horizontal solar heaters 

    E-Print Network [OSTI]

    Gopffarth, Wilford Hugo

    1964-01-01T23:59:59.000Z

    OF SYMBOLS BIBLIOGRAPHY APPENDIX 53 56 58 Data 59 LIST OF FIGURES F igure s I. Infrared Spectrum Transmission of Tedlar I I. Spectral Transmission of Tedlar and Glass I I I. Transmittance ? Absorption Characteristics of Page 16 16 Solar Heaters... by radiation and convection through the upper sections of the solar heater. In order to utilize this correlation along with the transmittance ? absorption product of a parti- cular solar heater for accurate scale-up calculations, one must not change certain...

  14. Sandia National Laboratories: Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market TransformationUtility Operations and Programs Utility Operations and Programs Utilities need to understand how solar generating technologies will behave on their systems...

  15. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  16. Engineering the optical properties of luminescent solar concentrators at the molecular scale

    E-Print Network [OSTI]

    Mulder, Carlijn Lucinde

    2012-01-01T23:59:59.000Z

    Luminescent Solar Concentrators (LSCs) concentrate solar radiation onto photovoltaic (PV) cells using an inexpensive collector plate to absorb incoming photons and waveguide fluorescently re-emitted photons to PVs at the ...

  17. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17T23:59:59.000Z

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  18. LARGE-SCALE CORONAL PROPAGATING FRONTS IN SOLAR ERUPTIONS AS OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY—AN ENSEMBLE STUDY

    SciTech Connect (OSTI)

    Nitta, Nariaki V.; Schrijver, Carolus J.; Title, Alan M.; Liu, Wei [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2013-10-10T23:59:59.000Z

    This paper presents a study of a large sample of global disturbances in the solar corona with characteristic propagating fronts as intensity enhancement, similar to the phenomena that have often been referred to as Extreme Ultraviolet Imaging Telescope (EIT) waves or extreme-ultraviolet (EUV) waves. Now EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide a significantly improved view of these large-scale coronal propagating fronts (LCPFs). Between 2010 April and 2013 January, a total of 171 LCPFs have been identified through visual inspection of AIA images in the 193 Å channel. Here we focus on the 138 LCPFs that are seen to propagate across the solar disk, first studying how they are associated with flares, coronal mass ejections (CMEs), and type II radio bursts. We measure the speed of the LCPF in various directions until it is clearly altered by active regions or coronal holes. The highest speed is extracted for each LCPF. It is often considerably higher than EIT waves. We do not find a pattern where faster LCPFs decelerate and slow LCPFs accelerate. Furthermore, the speeds are not strongly correlated with the flare intensity or CME magnitude, nor do they show an association with type II bursts. We do not find a good correlation either between the speeds of LCPFs and CMEs in a subset of 86 LCPFs observed by one or both of the Solar and Terrestrial Relations Observatory spacecraft as limb events.

  19. Magnetic reconnection between small-scale loops observed with the New Vacuum Solar Telescope

    E-Print Network [OSTI]

    Yang, Shuhong; Xiang, Yongyuan

    2014-01-01T23:59:59.000Z

    Using the high tempo-spatial resolution H$\\alpha$ images observed with the New Vacuum Solar Telescope, we report the solid observational evidence of magnetic reconnection between two sets of small-scale anti-parallel loops with an X-shaped topology. The reconnection process contains two steps: a slow step with the duration of more than several tens of minutes, and a rapid step lasting for only about three minutes. During the slow reconnection, two sets of anti-parallel loops reconnect gradually, and new loops are formed and stacked together. During the rapid reconnection, the anti-parallel loops approach each other quickly, and then the rapid reconnection takes place, resulting in the disappearance of former loops. In the meantime, new loops are formed and separate. The region between the approaching loops is brightened, and the thickness and length of this region are determined to be about 420 km and 1.4 Mm, respectively. During the rapid reconnection process, obvious brightenings at the reconnection site an...

  20. Multi-scale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its non-linear dependence on the 11-year solar cycle

    E-Print Network [OSTI]

    Nicola Scafetta; Richard C. Willson

    2013-11-26T23:59:59.000Z

    Herein we adopt a multi-scale dynamical spectral analysis technique to compare and study the dynamical evolution of the harmonic components of the overlapping ACRIMSAT/ACRIM3, SOHO/VIRGO and SORCE/TIM total solar irradiance (TSI) records during 2003.15 to 2013.16 in solar cycles 23 and 24. The three TSI time series present highly correlated patterns. Significant power spectral peaks are common to these records and are observed at the following periods: 0.070 year, 0.097 year, 0.20 year, 0.25 year, 0.30-0.34 year, 0.39 year. Less certain spectral peaks occur at about 0.55 year, 0.60-0.65 year and 0.7-0.9 year. Four main frequency periods at 24.8 days (0.068 year), 27.3 days (0.075 year), at 34-35 days (0.093-0.096 year) and 36-38 days (0.099-0.104 year) characterize the solar rotation cycle. The amplitude of these oscillations, in particular of those with periods larger than 0.5 year, appears to be modulated by the 11-year solar cycle. Similar harmonics have been found in other solar indices. The observed periodicities are found highly coherent with the spring, orbital and synodic periods of Mercury, Venus, Earth and Jupiter. We conclude that solar activity is likely modulated by planetary gravitational and electromagnetic forces acting on the sun. The strength of the sun's response to planetary forcing depends non-linearly on the state of internal solar dynamics: planetary-sun coupling effects are enhanced during solar activity maxima and attenuated during minima.

  1. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    SciTech Connect (OSTI)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan [Royal Observatory of Belgium-SIDC, Avenue Circulaire 3, B-1180 Brussels (Belgium); Shearer, Paul [Department of Mathematics, 2074 East Hall, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043 (United States)

    2013-11-01T23:59:59.000Z

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  2. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    on Sustainable thermal Energy Storage Technologies, Part I:of various energy storage technologies. Here only batterieseffective solar energy storage technologies makes the sun,

  3. Analysis of the California Solar Resource--Volume 3: Appendices

    E-Print Network [OSTI]

    erdahl, P.

    2011-01-01T23:59:59.000Z

    of solar technology on utility companies investigatingunder k) predicting solar impact on utility companies D) E)COMPANY, SAN DIEGO Detailed information on clear-day solar

  4. Small Scale Magnetic Flux Emergence Observed with Hinode/Solar Optical Telescope

    E-Print Network [OSTI]

    Kenichi Otsuji; Kazunari Shibata; Reizaburo Kitai; Satoru Ueno; Shin'ichi Nagata; Takuma Matsumoto; Tahei Nakamura; Hiroko Watanabe; Saku Tsuneta; Yoshinori Suematsu; Kiyoshi Ichimoto; Toshifumi Shimizu; Yukio Katsukawa; Theodore D. Tarbell; Bruce W. Lites; Richard A. Shine; Alan M. Title

    2007-09-20T23:59:59.000Z

    We observed small scale magnetic flux emergence in a sunspot moat region by the Solar Optical Telescope (SOT) aboard the Hinode satellite. We analyzed filtergram images observed in the wavelengths of Fe 6302 angstrom, G-band and Ca II H. In Stokes I images of Fe 6302 angstrom, emerging magnetic flux were recognized as dark lanes. In G-band, they showed their shapes almost the same as in Stokes I images. These magnetic flux appeared as dark filaments in Ca II H images. Stokes V images of Fe 6302 angstrom showed pairs of opposite polarities at footpoints of each filament. These magnetic concentrations are identified to correspond to bright points in G-band/Ca II H images. From the analysis of time-sliced diagrams, we derived following properties of emerging flux, which are consistent with the previous works. (1) Two footpoints separate each other at a speed of 4.2 km/s during the initial phase of evolution and decreases to about 1 km/s in 10 minutes later. (2) Ca II H filaments appear almost simultaneously with the formation of dark lanes in Stokes I in the observational cadence of 2 minutes. (3) The lifetime of the dark lanes in Stokes I and G-band is 8 minutes, while that of Ca filament is 12 minutes. An interesting phenomena was observed that an emerging flux tube expands laterally in the photosphere with a speed of 3.8 km/s. Discussion on the horizontal expansion of flux tube will be given with refernce to previous simulation studies.

  5. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26T23:59:59.000Z

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  6. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  7. February 19, 2013 Webinar: Exploring How Municipal Utilities...

    Energy Savers [EERE]

    February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects This...

  8. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    organized by the Solar Thermal Test Facilities UsersMexico, Organized by the Solar Thermal Test Facilities Usersdevelop a new type of solar thermal receiver that utilizes a

  9. An assessment of the economic, regulatory and technical implications of large-scale solar power deployment

    E-Print Network [OSTI]

    Merrick, James Hubert

    2010-01-01T23:59:59.000Z

    Electricity from solar energy has many favorable attributes. Despite its current high cost relative to other technology options, a combination of cost reductions and policy support measures could lead to increasing deployment ...

  10. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01T23:59:59.000Z

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  11. EIS-0403: Solar Energy Development in Six Southwestern States

    Broader source: Energy.gov [DOE]

    The BLM and DOE have jointly prepared this PEIS to evaluate actions that the agencies are considering taking to further facilitate utility-scale solar energy development in six southwestern states. For the BLM, this includes the evaluation of a new Solar Energy Program applicable to solar development on BLM-administered lands. For DOE, it includes the evaluation of developing new guidance to further facilitate utility-scale solar energy development and maximize the mitigation of associated potential environmental impacts. This Solar PEIS evaluates the potential environmental, social, and economic effects of the agencies’ proposed actions and alternatives. For additional information, please visit the Solar PEIS website at http://solareis.anl.gov.

  12. Dover Public Utilities- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  13. Solar resource: Utility load-matching assessment. Interim subcontract report, 20 September 1991--19 December 1993

    SciTech Connect (OSTI)

    Perez, R.; Seals, R.; Stewart, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

    1994-03-01T23:59:59.000Z

    This report describes work performed to estimate the load-matching capability of photovoltaics (PV) for a selected group of utilities in the continental United States. The report provides an initial quantitative estimate of this capability for 20 utilities. This characteristic is important because it may indicate that the effective capacity, hence the value, of PV is higher than is traditionally assigned to such non-controllable, non-dispatchable resources. Load-matching capability is determined experimentally by analyzing the interaction between the load requirements of each utility and the output of locally sited PV systems. This type of investigation requires site- and time-specific insolation data that are not commonly available. Here, the needed data were inferred from geostationary satellite remote sensing of the Earth`s cloud cover. A secondary objective of this study was to evaluate the suitability of this approach. The results of this investigation are presented in this report.

  14. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  15. Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes

    E-Print Network [OSTI]

    E. Khomenko; R. Centeno; M. Collados; J. Trujillo Bueno

    2008-02-07T23:59:59.000Z

    We report two-dimensional MHD simulations which demonstrate that photospheric 5-min oscillations can leak into the chromosphere inside small-scale vertical magnetic flux tubes. The results of our numerical experiments are compatible with those inferred from simultaneous spectropolarimetric observations of the photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter (TIP) at 10830 A. We conclude that the efficiency of energy exchange by radiation in the solar photosphere can lead to a significant reduction of the cut-off frequency and may allow for the propagation of the 5 minutes waves vertically into the chromosphere.

  16. Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields and Material Flows in the Formation of Solar Filaments

    E-Print Network [OSTI]

    Mackay, Duncan

    Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields Scale Structures and their Role in Solar Activity, ASP Conference Proceedings Series, 346, 177. 2. "The-297. Conference Proceedings (Others). 1. "Basic Magnetic Field Configurations for Filament Channels and Filaments

  17. Published as: Ha T. Nguyen and Joshua M. Pearce, "Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 12451260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2012-01-01T23:59:59.000Z

    Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 1245­1260 (2012). DOI: http; Photovoltaic; Renewable energy; Solar energy; Solar irradiation modeling ; Shading Abbreviations (Apv : slope 1 hal-00685775,version1-5Apr2012 Author manuscript, published in "Solar Energy 86, 5 (2012) 1245

  18. Three Dimensional Simulations of the Parker's Model of Solar Coronal Heating: Lundquist Number Scaling

    E-Print Network [OSTI]

    Ng, Chung-Sang

    Three Dimensional Simulations of the Parker's Model of Solar Coronal Heating: Lundquist Number analysis as well as 2D simulations. In the same limit the average magnetic energy built up by the random by NSF grant AST-0434322, NASA grant NNX08BA71G, and DOE. #12;Parker's model of coronal heating through

  19. Parallelization of the SIR code for the investigation of small-scale features in the solar photosphere

    E-Print Network [OSTI]

    Thonhofer, Stefan; Utz, Dominik; Hanslmeier, Arnold; Jur?ák, Jan

    2015-01-01T23:59:59.000Z

    Magnetic fields are one of the most important drivers of the highly dynamic processes that occur in the lower solar atmosphere. They span a broad range of sizes, from large- and intermediate-scale structures such as sunspots, pores and magnetic knots, down to the smallest magnetic elements observable with current telescopes. On small scales, magnetic flux tubes are often visible as Magnetic Bright Points (MBPs). Apart from simple $V/I$ magnetograms, the most common method to deduce their magnetic properties is the inversion of spectropolarimetric data. Here we employ the SIR code for that purpose. SIR is a well-established tool that can derive not only the magnetic field vector and other atmospheric parameters (e.g., temperature, line-of-sight velocity), but also their stratifications with height, effectively producing 3-dimensional models of the lower solar atmosphere. In order to enhance the runtime performance and the usability of SIR we parallelized the existing code and standardized the input and output ...

  20. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  1. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  2. Solar Space Density of the Red Clump Stars and the Scale-length of the Thin Disc

    E-Print Network [OSTI]

    Gokce, E Yaz; Duran, S; Bilir, S; Yalcinkaya, A; Ak, S; Ak, T; Lopez-Corredoira, M; Cabrera-Lavers, A

    2015-01-01T23:59:59.000Z

    We estimated the scale-length of the thin disc with the J and W1 magnitudes of the most probable Red Clump (RC) stars in the Galactic plane, $-0\\overset{^\\circ}.5 \\leq b \\leq +0\\overset{^\\circ}.5$, in 19 equal sized fields with consecutive Galactic longitudes which cover the interval $90^\\circ \\leq l \\leq 270^\\circ$. Our results are constrained with respect to the solar space density ($D^*=5.95$), which indicates that the radial variation of the density is lower for higher Galactocentric distances. The scale-length of the thin disc is 2 kpc for the fields in the Galactic anticentre direction or close to this direction, while it decreases continuously in the second and third quadrants reaching to a lower limit of $h$ = 1.6 kpc at the Galactic longitudes $l$ = 90$^\\circ$ and $l$ = 270$^\\circ$. The distribution of the scale-length in 19 fields is consistent with the predictions from the Galaxia model and its variation with longitude is probably due to the inhomogeneity structure of the disc caused by the accrete...

  3. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Operations and Programs On April 4, 2012, in Utilities need to understand how solar generating technologies will behave on their systems (transmission and distribution) as...

  4. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect (OSTI)

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

    2009-05-15T23:59:59.000Z

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  5. Small-scale dynamos on the solar surface: dependence on magnetic Prandtl number

    E-Print Network [OSTI]

    Thaler, I

    2015-01-01T23:59:59.000Z

    The question of possible small-scale dynamo action in the surface layers of the Sun is revisited with realistic 3D MHD simulations. As in other MHD problems, dynamo action is found to be a sensitive function of the magnetic Prandtl number ${\\rm P_{\\rm m} }=\

  6. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  7. Helioseismic Holography of Simulated Solar Convection and Prospects for the Detection of Small-Scale Subsurface Flows

    E-Print Network [OSTI]

    D. C. Braun; A. C. Birch; D. Benson; R. F. Stein; Å. Nordlund

    2007-08-01T23:59:59.000Z

    We perform helioseismic holography on realistic solar convection simulations and compare the observed travel-time perturbations with the expected travel times from the horizontal flows in the simulations computed from forward models under the assumption of the Born approximation. We demonstrate reasonable agreement between the observed and model travel times which reinforces the validity of helioseismic holography in the detection of subsurface horizontal flows. From the variation of the signal-to-noise ratio with depth, we conclude that the helioseismic detection of individual flow structures with spatial scales of supergranulation or smaller is not possible for depths below about 5 Mm below the surface over time scales less than a day. Approximately half of the observed signal originates within the first 2 Mm below the surface. A consequence of this is a rapid decrease (and reversal in some cases) of the travel-time perturbations with depth due to the contribution to the measurements of oppositely directed surface flows in neighboring convective cells. This confirms an earlier interpretation of similar effects reported from observations.

  8. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    Local and state governments may utilize funds for solar installations on government buildings and engage in energy strategy

  9. Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal CombustionSmart GridforCommunitiesCommunity-ScaleBuilding

  10. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    SciTech Connect (OSTI)

    Macknick, J.; Beatty, B.; Hill, G.

    2013-12-01T23:59:59.000Z

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  11. Solar Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    For both residential and non-residential systems, the exemption applies to solar-energy systems that utilize solar radiation to produce energy designed to provide heating, cooling, hot water and/or...

  12. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect (OSTI)

    Hayes, J.; Andrejko, D.A.

    1983-01-01T23:59:59.000Z

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  13. absorption solar cooling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: loads with solar radiation intensity is an important advantage when utilizing solar energy in air, solar energy J.P. Praene Education: At the University of Reunion...

  14. Mini-Optics Solar Energy Concentrator

    E-Print Network [OSTI]

    Mark Davidson; Mario Rabinowitz

    2003-09-12T23:59:59.000Z

    This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

  15. Prison Solar Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Prison Solar Project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  16. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01T23:59:59.000Z

    of Tracking for Capturing Solar Radiation in the ContinentalTime Scales of the Surface Solar Radiation Field, Journal ofof Tracking for Capturing Solar Radiation in the Continental

  17. Land-Use Requirements for Solar Power Plants in the United States

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01T23:59:59.000Z

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  18. High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N. Romeo, A. Bosio, A. Romeo, M. Bianucci, L. Bonci, C. Lenti

    E-Print Network [OSTI]

    Romeo, Alessandro

    High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N-mail:Nicola.Romeo@fis.unipr.it ABSTRACT: It has been demonstrated that CdTe/CdS thin film solar cells can exhibit an efficiency around 16 diffusor in CdTe and at a long run it can segregates at the grain boundaries damaging the solar cell

  19. Colorado Springs Utilities- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (PV) systems, wind systems, and solar water...

  20. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01T23:59:59.000Z

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  1. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  2. Innovative Systems for Solar Air Conditioning of Buildings

    E-Print Network [OSTI]

    Kessling, W.; Peltzer, M.

    2004-01-01T23:59:59.000Z

    for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

  3. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  4. SOLAR ENERGY POTENTIALS

    E-Print Network [OSTI]

    Loreta N. Gashi; Sabedin A. Meha; Besnik A. Duriqi; Fatos S. Haxhimusa

    In recent years solar energy has experienced phenomenal growth due to the technological improvements resulting in cost reductions and also governments policies supportive of renewable energy development and utilization. In this paper we will present possibilities for development and deployment of solar energy. We will use Kosovo to compare the existing power production potential and future possible potential by using solar energy.

  5. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  6. Final Technical Report, City of Brockton Solar Brightfield: Deploying a Solar Array on a Brockton Brownfield

    SciTech Connect (OSTI)

    Ribeiro, Lori

    2007-08-23T23:59:59.000Z

    The City of Brockton, Massachusetts sought to install New England’s largest solar array at a remediated brownfield site on Grove Street. The 425-kilowatt solar photovoltaic array – or “Brightfield” – was installed in an urban park setting along with interpretive displays to maximize the educational opportunities. The “Brightfield” project included 1,395 310-Watt solar panels connected in “strings” that span the otherwise unusable 3.7-acre site. The project demonstrated that it is both technically and economically feasible to install utility scale solar photovoltaics on a capped landfill site. The US Department of Energy conceived the Brightfields program in 2000, and Brockton’s Brightfield is the largest such installation nationwide. Brockton’s project demonstrated that while it was both technically and economically feasible to perform such a project, the implementation was extremely challenging due to the state policy barriers, difficulty obtaining grant funding, and level of sophistication required to perform the financing and secure required state approvals. This demonstration project can be used as a model for other communities that wish to implement “Brownfields to Brightfields” projects; 2) implementing utility scale solar creates economies of scale that can help to decrease costs of photovoltaics; 3) the project is an aesthetic, environmental, educational and economic asset for the City of Brockton.

  7. Petrovay: Solar physics The solar cycle ACTIVE REGIONS

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics The solar cycle ACTIVE REGIONS Large scale (up to 100 Mm) anomalies in the structure and radiation of the solar atmosphere. Photosphere : AR = cluster of strong magnetic flux tubes of facular points. Filamentary structure due to supergranulation. #12;Petrovay: Solar physics The solar cycle

  8. A handbook for solar central receiver design

    SciTech Connect (OSTI)

    Falcone, P.K.

    1986-12-01T23:59:59.000Z

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  9. Small-scale magnetic islands in the solar wind and their role in particle acceleration. Part 1: Dynamics of magnetic islands near the heliospheric current sheet

    E-Print Network [OSTI]

    Khabarova, O; Li, G; Roux, J A le; Webb, G M; Dosch, A; Malandraki, O E

    2015-01-01T23:59:59.000Z

    Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller current sheets in the solar wind (Zharkova & Khabarova 2012), of which a consequence is particle energization by the dynamically evolving secondary current sheets and magnetic islands (Zank et al. 2014; Drake et al. 2006a). The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples c...

  10. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2013-08-31T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  11. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  12. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    International Symposium on Solar Thermal Power and Energyto develop large scale solar thermal power plants capable ofthe current state of solar thermal conversion is mostly

  13. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    In January 2006, the California Public Utilities Commission (CPUC) adopted a program – the California Solar Initiative (CSI) – to provide more than $3 billion in incentives for solar projects with...

  14. Fatal Flaw Analysis of Utility-Scale Wind Turbine Generators at the West Haymarket Joint Public Agency. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-08-01T23:59:59.000Z

    Fatal flaw analysis of utility-scale wind turbines at the West Haymarket Joint Public Agency brownfields site in Lincoln, Nebraska, funded by EPA.

  15. Technical and Economic Feasibility Study of Utility-Scale Wind at the Doepke-Holliday Superfund Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-05-01T23:59:59.000Z

    This report is a technical and financial feasibility study of a utility-scale wind turbine on the Doepke Superfund site.

  16. Collective behavior of semiconductor nanoparticles for use in solar energy harvesting

    E-Print Network [OSTI]

    Shcherbatyuk, Georgiy

    2012-01-01T23:59:59.000Z

    and B. P. Wittmershaus, Solar Energy 83, 566 (2009). [33].in luminescence for solar energy utilization,” Opt. Mater.and W. Greubel, "Solar Energy Conversion with. Fluorescent

  17. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Chemical Challenges in Solar Energy Utilization. Proc. Natl.Generation from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.

  18. Solar energy grid integration systems : final report of the Florida Solar Energy Center Team.

    SciTech Connect (OSTI)

    Ropp, Michael (Northern Plains Power Technologies, Brookings, SD); Gonzalez, Sigifredo; Schaffer, Alan (Lakeland Electric Utilities, Lakeland, FL); Katz, Stanley (Satcon Technology Corporation, Boston, MA); Perkinson, Jim (Satcon Technology Corporation, Boston, MA); Bower, Ward Isaac; Prestero, Mark (Satcon Technology Corporation, Boston, MA); Casey, Leo (Satcon Technology Corporation, Boston, MA); Moaveni, Houtan (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Click, David (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Davis, Kristopher (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Reedy, Robert (Florida Solar Energy Center of the University of Central Florida, Cocoa, FL); Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration Systems (SEGIS) program is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the program have focused on the complete-system development of solar technologies, with the dual goal of expanding utility-scale penetration and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. The Florida Solar Energy Center (FSEC), its partners, and Sandia National Laboratories have successfully collaborated to complete the work under the third and final stage of the SEGIS initiative. The SEGIS program was a three-year, three-stage project that include conceptual design and market analysis in Stage 1, prototype development and testing in Stage 2, and moving toward commercialization in Stage 3. Under this program, the FSEC SEGIS team developed a comprehensive vision that has guided technology development that sets one methodology for merging photovoltaic (PV) and smart-grid technologies. The FSEC team's objective in the SEGIS project is to remove barriers to large-scale general integration of PV and to enhance the value proposition of photovoltaic energy by enabling PV to act as much as possible as if it were at the very least equivalent to a conventional utility power plant. It was immediately apparent that the advanced power electronics of these advanced inverters will go far beyond conventional power plants, making high penetrations of PV not just acceptable, but desirable. This report summarizes a three-year effort to develop, validate and commercialize Grid-Smart Inverters for wider photovoltaic utilization, particularly in the utility sector.

  19. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

    2013-11-05T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  20. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  1. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012, in Desirable Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for...

  2. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01T23:59:59.000Z

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  3. The Solar Interior Paul Bushby (Newcastle University)

    E-Print Network [OSTI]

    Haase, Markus

    The Solar Interior Paul Bushby (Newcastle University) STFC Introductory Course in Solar System efficiently transport energy from the interior to the solar surface Sunday, 5 September 2010 #12;1. Basic. Solar rotation and large-scale flows 3. The solar cycle 4. Solar dynamo theory 5. Open questions Sunday

  4. Solar Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more efficient and less expensive solar energy technologies translate into easy access and large-scale energy savings. Explore EERE's solar energy success stories below. January...

  5. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  6. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  7. UNICOR Renewable Energy Group Solar Program and Service Offerings...

    Energy Savers [EERE]

    UNICOR Renewable Energy Group Solar Program and Service Offerings UNICOR Renewable Energy Group Solar Program and Service Offerings Presentation-for the Federal Utility Partnership...

  8. active solar thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunspot fine structure observed with Swedish Solar Telescope (SST) Sunspot 7 CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK Energy Storage, Conversion and Utilization...

  9. ancient solar wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006-02-03 5 Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies Energy Storage, Conversion and Utilization Websites Summary: )...

  10. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01T23:59:59.000Z

    Systems for Solar Thermionic Converters!! , AD 922869 (Performance of a Thermionic Converter Module Utilizing

  11. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M. [Spire Corp., Bedford, MA (United States)

    1993-04-01T23:59:59.000Z

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  12. SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Heat Storage for a Solar Thermal Power Plant T. Baldwin, S.A. J. Hunt, "A new solar thermal receiver utilizing small9317. A. J. Hunt, "A new solar thermal receiver utilizing a

  13. Public Lecture Prospects for Solar

    E-Print Network [OSTI]

    Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

  14. Massachusetts Community Shared Solar Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Massachusetts community shared solar policy, and touches on key community shared solar models currently being utilized across the Commonwealth. Additionally, the webinar outlines key resources individuals and municipalities can use in order to pursue a community shared solar project.

  15. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC SCALING LAWS AND THERMAL ENERGIES

    SciTech Connect (OSTI)

    Aschwanden, Markus J. [Lockheed Martin Advanced Technology Center, Org. ADBS, Bldg. 252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Shimizu, Toshifumi, E-mail: aschwanden@lmsal.com, E-mail: shimizu.toshifumi@isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2013-10-20T23:59:59.000Z

    In this study we measure physical parameters of the same set of 155 M- and X-class solar flares observed with AIA/SDO as analyzed in Paper I, by performing a differential emission measure analysis to determine the flare peak emission measure EM{sub p} , peak temperature T{sub p} , electron density n{sub p} , and thermal energy E{sub th}, in addition to the spatial scales L, areas A, and volumes V measured in Paper I. The parameter ranges for M- and X-class flares are log (EM{sub p}) = 47.0-50.5, T{sub p} = 5.0-17.8 MK, n{sub p} = 4 × 10{sup 9}-9 × 10{sup 11} cm{sup –3}, and thermal energies of E{sub th} = 1.6 × 10{sup 28}-1.1 × 10{sup 32} erg. We find that these parameters obey the Rosner-Tucker-Vaiana (RTV) scaling law T{sub p}{sup 2}?n{sub p} L and H?T {sup 7/2} L {sup –2} during the peak time t{sub p} of the flare density n{sub p} , when energy balance between the heating rate H and the conductive and radiative loss rates is achieved for a short instant and thus enables the applicability of the RTV scaling law. The application of the RTV scaling law predicts power-law distributions for all physical parameters, which we demonstrate with numerical Monte Carlo simulations as well as with analytical calculations. A consequence of the RTV law is also that we can retrieve the size distribution of heating rates, for which we find N(H)?H {sup –1.8}, which is consistent with the magnetic flux distribution N(?)??{sup –1.85} observed by Parnell et al. and the heating flux scaling law F{sub H} ?HL?B/L of Schrijver et al.. The fractal-diffusive self-organized criticality model in conjunction with the RTV scaling law reproduces the observed power-law distributions and their slopes for all geometrical and physical parameters and can be used to predict the size distributions for other flare data sets, instruments, and detection algorithms.

  16. Impact of Financial Structure on the Cost of Solar Energy

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01T23:59:59.000Z

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  17. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), modern wood pellet heating,...

  18. Santa Clara Water and Sewer- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies,...

  19. Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998): 231-237.

    E-Print Network [OSTI]

    Delaware, University of

    Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998 technologies, like photovoltaics (PV), can offer additional benefits to electric utility companies utility company to defer investments in upgrading transmission and distribution facilities, among other

  20. Agua Caliente Solar Feasibility and Pre-Development Study Final Report

    SciTech Connect (OSTI)

    Carolyn T. Stewart, Managing Partner; Red Mountain Energy Partners

    2011-04-26T23:59:59.000Z

    Evaluation of facility- and commercial-scale solar energy projects on the Agua Caliente Band of Cahuilla Indians Reservation in Palm Springs, CA. The Agua Caliente Band of Cahuilla Indians (ACBCI) conducted a feasibility and pre-development study of potential solar projects on its lands in southern California. As described below, this study as a logical and necessary next step for ACBCI. Support for solar project development in California, provided through the statewide California Solar Initiative (CSI), its Renewable Portfolio Standard and Feed-in Tariff Program, and recently announced Reverse Auction Mechanism, provide unprecedented support and incentives that can be utilized by customers of California's investor-owned utilities. Department of Energy (DOE) Tribal Energy Program funding allowed ACBCI to complete its next logical step to implement its Strategic Energy Plan, consistent with its energy and sustainability goals.

  1. Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water?

    E-Print Network [OSTI]

    Piani, Laurette; Remusat, Laurent

    2015-01-01T23:59:59.000Z

    Organic matter and hydrous silicates are intimately mixed in the matrix of chondrites and in-situ determination of their individual D/H ratios is therefore challenging. Nevertheless, the D/H ratio of each pure component in this mixture should yield a comprehensible signature of the origin and evolution of water and organic matter in our solar system. We measured hydrogen isotope ratios of organic and hydrous silicates in the matrices of two carbonaceous chondrites (Orgueil CI1 and Renazzo CR2) and one unequilibrated ordinary chondrite (Semarkona, LL3.0). A novel protocol was adopted, involving NanoSIMS imaging of H isotopes of monoatomatic ($H^-$) and molecular ($OH^-$) secondary ions collected at the same location. This allowed the most enriched component with respect to D to be identified in the mixture. Using this protocol, we found that in carbonaceous chondrites the isotopically homogeneous hydrous silicates are mixed with D-rich organic matter. The opposite was observed in Semarkona. Hydrous silicates i...

  2. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  3. Austin Energy- Value of Solar Residential Rate (Texas)

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and...

  4. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  5. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    IV. E. 2 Hold passive solar design competitions, the primaryresidential-scale passive solar design handbooks. IILGA (H,2) development of passive solar designs appropriate to the

  6. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    114 Solar Irradiance And Power Output Variabilitytechniques for solar power output with no exogenous inputs.and their effect on solar power output. For large scale

  7. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  8. Nevada Sample Application for Permit Under Utility Environmental...

    Open Energy Info (EERE)

    Protection Act. Lionel Sawyer & Collins. Initial Application of K Road Moapa Solar, LLC for a Permit to Construct A Transmission Line Under the Utility Environmental...

  9. Federal Utility Partnership Working Group Meeting Financing Session Compilation

    Broader source: Energy.gov [DOE]

    Presentation covers the Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in Biloxi, Mississippi.

  10. Central Lincoln People's Utility District- Renewable Energy Incentive Program (Oregon)

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  11. Federal Utility Partnership Working Group Meeting Financing Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Session Compilation Federal Utility Partnership Working Group Meeting Financing Session Compilation Presentation covers the Space Coast Next Generation Solar Energy...

  12. CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK

    E-Print Network [OSTI]

    CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program....................................................................................3 2.1.1 Host Customer

  13. SMUD- Solar Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the...

  14. Bryan Texas Utilities- SmartHOME Program

    Broader source: Energy.gov [DOE]

    The Bryan Texas Utilities (BTU) SmartHOME Programs offers incentives to owners of single- and multi-family homes for insulation, windows, and solar screens. The incentive rate is set at $900/kW...

  15. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Program addresses technical barriers to large-scale deployment of solar photovoltaic (PV) generation in grid-tied power systems. Sandia's grid integration...

  16. The Solar Argon Abundance

    E-Print Network [OSTI]

    Katharina Lodders

    2007-10-24T23:59:59.000Z

    The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.

  17. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    None

    2012-02-27T23:59:59.000Z

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  18. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  19. MDU Solar Energy Project Case Study

    Broader source: Energy.gov [DOE]

    Presentation covers the MDU Solar Energy Project Case Study and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  20. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  1. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  2. Commercial and Industrial Solar Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

  3. Solar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gain a better understanding of the 'nano' scale as it relates to the creation of a (dye-sensitized) solar cell (DSSC). The introductory lessons guide students through activities...

  4. Solar Power Systems Find A Professional Solar Energy Installer For Any

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power Systems Find A Professional Solar Energy Installer For Any Type Of System www.CleanEnergyAuthority.com Install Solar Panels Enter Your Zip Code & Connect To Pre-Screened Solar Panel Installers www.ServiceMagic.com Biomass Pumps Reliable metering for apps from microflow to scale-up & pilot plant www.isco.com The Solar

  5. Abengoa Solar, Inc. (Mojave Solar) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa Solar, Inc. (Mojave Solar) Abengoa...

  6. Solar Updraft TowersSolar Updraft Towers Presentation 5

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Colonel of the spanish army Isidoro Cabanyes first proposed a solar chimney power plant in the magazine La energía eléctrica. One of the earliest descriptions of a solar chimney power plant was written in 1931 in SpainPrototype in Spain small-scale experimental model of a solar chimney power plant Built in 1982

  7. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25T23:59:59.000Z

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  8. The solar electric power outlook

    SciTech Connect (OSTI)

    Kemp, J.W.

    1995-12-31T23:59:59.000Z

    The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

  9. UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-

    E-Print Network [OSTI]

    Oregon, University of

    i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

  10. Solar Rights

    Broader source: Energy.gov [DOE]

    In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

  11. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01T23:59:59.000Z

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  12. Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid

    E-Print Network [OSTI]

    Hill, Steven Craig

    2013-01-01T23:59:59.000Z

    solar PV and distributed generation. UTILITY RATE DESIGN ANDutility concerns that a high penetration of inverter-based solar energy systems along with other distributed generation

  13. Austin Energy's Residential Solar Rate

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

  14. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  15. Solar Easements and Rights Laws

    Broader source: Energy.gov [DOE]

    In Missouri, the right to utilize solar energy is a property right, but eminent domain may not be used to obtain such property rights. Easements obtained for the purpose of construction,...

  16. Utility Formation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn

  17. Utility Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohnpotential-calc Sign InPages

  18. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01T23:59:59.000Z

    Potential Benefits of an Energy Imbalance Market in the Western Interconnection, NREL/TP-5500-57115, National Renewable

  19. Integrating Solar PV in Utility System Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Webinar presenting findings from the recent report, authored jointly by researchers at Argonne National Laboratory, Berkeley Lab, and the National Renewable Energy Laboratory and entitled, ...

  20. California Solar Initiative- Low-Income Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The California Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential properties....

  1. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  2. Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis

    SciTech Connect (OSTI)

    Hubbell, R.; Lowder, T.; Mendelsohn, M.; Cory, K.

    2012-09-01T23:59:59.000Z

    This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite this limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.

  3. Spectral sensitization of nanocrystalline solar cells

    DOE Patents [OSTI]

    Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

    2002-01-01T23:59:59.000Z

    This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

  4. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01T23:59:59.000Z

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  5. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL

    2012-01-01T23:59:59.000Z

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  6. Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Feldman, W.C. : 1978, Solar wind stream interfaces. J.of large-scale solar wind structures. Ph.D. dissertation,R.M. : 2008, Weaker solar wind from the polar coronal holes

  7. Solar Utility Networks: Replicable Innovations in Solar Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle Selection and InvestmentSolarof

  8. WHITE-LIGHT OBSERVATIONS OF SOLAR WIND TRANSIENTS AND COMPARISON WITH AUXILIARY DATA SETS

    SciTech Connect (OSTI)

    Howard, T. A.; DeForest, C. E. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Reinard, A. A., E-mail: howard@boulder.swri.edu [NOAA/SEC Mail Code W/NP92, 325 Broadway, Boulder, CO 80305 (United States)

    2012-08-01T23:59:59.000Z

    This paper presents results utilizing a new data processing pipeline for STEREO/SECCHI. The pipeline is used to identify and track 24 large- and small-scale solar wind transients from the Sun out to 1 AU. This comparison was performed during a few weeks around the minimum at the end of Solar Cycle 23 and the start of Cycle 24 (2008 December to 2009 January). We use coronagraph data to identify features near the Sun, track them through HI-2A, and identify their signatures with in situ data at the Earth and STEREO-B. We provide measurements and preliminary analysis of the in situ signatures of these features near 1 AU. Along with the demonstration of the utility of heliospheric imagers for tracking even small-scale structures, we identify and discuss an important limitation in using geometric triangulation for determining three-dimensional properties.

  9. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    in bulk, which is why many solar companies and utilities aresolar farms. Today it is widely acknowledged by power producers, utility companies and

  10. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Biomass Utility-scale Solar Customer-sited Solar RenewableFiring Utility-scale Solar Customer-sited Solar WinDS SEDSlandf ill Utility-scale Solar Customer-sited Solar Renewable

  11. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30T23:59:59.000Z

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  12. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  13. Solar Policy Environment: Orlando

    Broader source: Energy.gov [DOE]

    Through the Green Future Alliance, the City of Orlando will partner with the Orlando Public Utilities Commission and Orange County Government to develop a comprehensive, systematic approach to promoting solar market development which includes public outreach, training for stakeholders, meaningful incentives and new regulatory standards that can act as a model to encourage participation from surrounding local governments.

  14. Solar Policy Environment: Knoxville

    Broader source: Energy.gov [DOE]

    The City of Knoxville is “beginning at the beginning” of the transition to solar energy utilization. With limited public information and experience, it is important for Knoxville to focus extensively on public outreach and workforce development. The City will also commence a direct incentive and embark on a massive educational program.

  15. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  16. NRG Solar (California Valley Solar Ranch) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) NRG Solar (California Valley Solar Ranch) Location: San...

  17. Solar Easements

    Broader source: Energy.gov [DOE]

    Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

  18. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    SciTech Connect (OSTI)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-10-15T23:59:59.000Z

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  19. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

    2007-05-15T23:59:59.000Z

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  20. Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

  1. Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Facilities and Solar Potential The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV)...

  2. Sandia National Laboratories: utility-scale blade

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    blade Fabrication of AMI Demonstration Blade Begun On September 10, 2013, in Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The Advanced Manufacturing...

  3. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    SciTech Connect (OSTI)

    John, Sajeev [University of Toronto

    2014-08-15T23:59:59.000Z

    We provide designs of thin-film solar cells utilizing optimized photonic-crystal light-trapping and numerical simulations of their solar-to-electrical power conversion efficiencies.

  4. Utility Partnerships Webinar Series: Gas Utility Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs gasutilityeewebinarnov2...

  5. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

  6. Ozark Mountain solar home

    SciTech Connect (OSTI)

    Miller, B.

    1998-03-01T23:59:59.000Z

    If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

  7. Community Shared Solar with Solarize

    Broader source: Energy.gov [DOE]

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  8. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  9. NREL: News Feature - Assuring Solar Modules Will Last for Decades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Laboratory (NREL) is co-leading an international push to assure the reliability of solar panels-an assurance demanded by customers, manufacturers, lenders, and utilities....

  10. BEF- Solar 4R Schools

    Broader source: Energy.gov [DOE]

    Bonneville Environmental Foundation's (BEF) Solar 4R Schools program began in 2002. This competitive grant program seeks to install small-scale photovoltaic systems at K-12 schools interested in...

  11. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

  12. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  13. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

  14. Better Buildings Alliance Solar Decision Guide

    Broader source: Energy.gov [DOE]

    Businesses considering implementing solar PV may encounter widespread geographic differences regarding utility incentive structures (buy-down incentives, performance based incentives, feed-in tariffs, etc.), utility policies (net metering, interconnection requirements), regulatory structures, and permitting requirements. They might also have uncertainty about how to assess the different ownership structures (PPA, lease, own, etc.). The Solar Decision Guide can help companies navigate this complex environment to determine if investing in solar makes financial sense and to identify the regions that offer the most promising returns on solar investment.

  15. River Falls Municipal Utilities- Renewable Energy Finance Program

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The...

  16. anniversary technology utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the use of carbon based fuels to generate electricity and utilizing nuclear or solar energy systems instead. While nuclear power can technically be Alfred J. Cavallo 2001-01-01 8...

  17. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    of Energy under Arlon Hunt, "A New Solar Thermal Receiversolar thermal receiver that utilizes a dispersion of very small particles sus£e2ded in a gas to absorb the radiant energy

  18. The Solar Chimney Schlaich Bergermann und Partner

    E-Print Network [OSTI]

    Lucier, Bradley J.

    . Designing large solar chimneys 10 6. Energy Production Costs 12 7. References 14 Author: Schlaich Bergermann with solar radiation in their desert areas. Usbe Ukra WeiÃ? RuÃ?l Keni GR Arge Syri Jord Saud Vene Trin E Tsch does anything. Why? Because apparently it must be a well-kept secret that large-scale solar energy

  19. SIPS: Solar Irradiance Prediction System Stefan Achleitner

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    SIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in power potentially limit the impact of fluctuations in solar power generation, specifically in cloudy days when

  20. Passive Sorting of Asteroid Material Using Solar Radiation Pressure

    E-Print Network [OSTI]

    Yárnoz, Daniel García; McInnes, Colin R

    2014-01-01T23:59:59.000Z

    Understanding dust dynamics in the vicinity of asteroids is key for future science missions and, in the long-term, for asteroid exploitation. This paper analyzes the feasibility of manipulating asteroid material by means of solar radiation pressure. A novel method is proposed for passively sorting material as a function of its grain size or density, where solar radiation pressure is used as a passive in-situ "mass spectrometer". A simplified analysis shows that in principle this method allows an effective sorting of regolith material. This could have immediate applications for a sample return mission, and for industrial scale in-situ resource utilization to separate and concentrate regolith according to particle size or composition.

  1. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

    1997-01-01T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  2. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  3. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    SciTech Connect (OSTI)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31T23:59:59.000Z

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing of the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.

  4. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01T23:59:59.000Z

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  5. Solar photovoltaic residence in Carlisle, Massachusetts

    SciTech Connect (OSTI)

    Strong, S. J.; Nichols, B. E.

    1981-01-01T23:59:59.000Z

    The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

  6. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01T23:59:59.000Z

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  7. Piedmont EMC- Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  8. Rating of Solar Energy Devices (Texas)

    Broader source: Energy.gov [DOE]

    The Public Utility Commission has regulatory authority over solar energy devices installed and used in the state of Texas. The Commission can choose to adopt standards pertaining to the rating of...

  9. Solar Rights

    Broader source: Energy.gov [DOE]

    Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

  10. Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory. Final report

    SciTech Connect (OSTI)

    Hamm, Julia; Taylor, Mike

    2008-12-31T23:59:59.000Z

    The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companiesâ?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university teamâ??s home.

  11. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  12. Polycrystalline thin-film solar cells and modules

    SciTech Connect (OSTI)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01T23:59:59.000Z

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  13. Solar Physics (2004) 224: 3747 C Springer 2005 Review Paper

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Solar Physics (2004) 224: 37­47 C Springer 2005 Review Paper LONG-TERM SOLAR ACTIVITY: DIRECT be used before 1850. The behavior of solar activity on longer time scales can be studied only using indicators of solar activity but can be hardly quantitatively interpreted. Cosmogenic isotope records provide

  14. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  15. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  16. Bulb mounting of solar cell

    SciTech Connect (OSTI)

    Thompson, M.E.

    1983-04-05T23:59:59.000Z

    An energy converting assembly is provided for parasiting of light from a fluorescent light bulb utilizing a solar cell. The solar cell is mounted on a base member elongated in the dimension of elongation of the fluorescent bulb, and electrical interconnections to the cell are provided. A flexible sheet of opaque material having a flat white interior reflective surface surrounds the fluorescent bulb and reflects light emitted from the bulb back toward the bulb and the solar cell. The reflective sheet is tightly held in contact with the bottom of the bulb by adhesive, a tie strap, an external clip, or the like.

  17. ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale in order for solar

    E-Print Network [OSTI]

    Honsberg, Christiana

    ABSTRACT--Due to the sun's intermittent nature, there must be energy storage on a large scale electrode). Since this produces no carbon dioxide this is a very clean process. With the growing demand future. Hydrogen is a potential candidate to act as an energy storage medium in a sustainable energy

  18. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    E-Print Network [OSTI]

    Kronawitter, Coleman

    2012-01-01T23:59:59.000Z

    and economical solar fuel production. 47 Alpha-phase iron(economical solar electricity and fuel production. Figure 3-2the large-scale production of solar fuels – those energy-

  19. AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT

    E-Print Network [OSTI]

    Viswanathan, R.

    2011-01-01T23:59:59.000Z

    only for large - scale solar power plant type applica- tionsEnergy Storage for Solar Power Plant", 11th IECEC (1976), J,energy storage~ solar power plants and other preliminary

  20. KINETIC MODELING OF PARTICLE ACCELERATION IN A SOLAR NULL-POINT RECONNECTION REGION

    SciTech Connect (OSTI)

    Baumann, G.; Haugbolle, T.; Nordlund, A., E-mail: gbaumann@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2013-07-10T23:59:59.000Z

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal three-dimensional reconnection null-point regions. Starting from a potential field extrapolation of a Solar and Heliospheric Observatory (SOHO) magnetogram taken on 2002 November 16, we first performed magnetohydrodynamics (MHD) simulations with horizontal motions observed by SOHO applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan plane of the null point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms in the simulated pre-flare phase, featuring a power-law index of about -1.78. This work provides a first step toward bridging the gap between macroscopic scales on the order of hundreds of Mm and kinetic scales on the order of centimeter in the solar corona, and explains how to achieve such a cross-scale coupling by utilizing either physical modifications or (equivalent) modifications of the constants of nature. With their exceptionally high resolution-up to 135 billion particles and 3.5 billion grid cells of size 17.5 km-these simulations offer a new opportunity to study particle acceleration in solar-like settings.

  1. Solar Water Heating: What's Hot and What's Not 

    E-Print Network [OSTI]

    Stein, J.

    1992-01-01T23:59:59.000Z

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  2. Solar Water Heating: What's Hot and What's Not

    E-Print Network [OSTI]

    Stein, J.

    A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

  3. Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by

    E-Print Network [OSTI]

    Iglesia, Enrique

    ­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology shouldGreen Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials also be considered. This project would examine the proposed solar cell materials and designs and create

  4. Nanocrystal Solar Cells

    SciTech Connect (OSTI)

    Gur, Ilan

    2006-12-15T23:59:59.000Z

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  5. II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar

    E-Print Network [OSTI]

    Oregon, University of

    2 II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar Monitoring Laboratory has operated a solar radiation monitoring network in the Pacific Northwest. The number of stations participat of utilities headed by the Eugene Water and Electric Board initiated the Re- gional Solar Radiation Monitoring

  6. Regional Test Centers for Solar Technologies | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by...

  7. STATEMENT OF CONSIDERATIONS REQUEST BY BP SOLAR INTERNATIONAL...

    Broader source: Energy.gov (indexed) [DOE]

    RATIONALE FOR DECISION DISPOSITION BP Solar Large-Scale PV Module Manufac- 58 percent cost sharing International, LLC turing Using Ultra-Thin Poly-Crystalline * Silicon Solar Cells...

  8. Batteries put to test in PV plan The technology could help utilities absorb

    E-Print Network [OSTI]

    companies and the Kauai Island Utility Cooperative is the ability to absorb increasing amounts of solar of solar power produced by rooftop photovoltaic panels. The project, in a neighborhood with one energy being generated by an unprecedented number of rooftop PV systems. The solar boom is raising grid

  9. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  10. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  11. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS...

  12. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+...

  13. Solar Energy of the North

    SciTech Connect (OSTI)

    Davis St. Peter Director of Faclities ( retired) Charles Bonin Vice President of Administration & Finance

    2012-01-12T23:59:59.000Z

    The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

  14. Solar energy unlimited

    SciTech Connect (OSTI)

    Mahjouri, F.S.

    1997-06-01T23:59:59.000Z

    Energy efficiency and renewable energy are valued resources in meeting future energy demands. Aside from environmental incentives, the economic value of these alternate energy resources is measured primarily by the avoided costs of conventional supplies. The renewable energy technologies are significantly more market-mature and ready for large-scale economic application than is commonly thought. Advanced solar thermal technologies - Evacuated Heat Pipe Solar Collectors (Tubes) - have been used for eighteen years. Technology has overcome the limitations of flat-plate solar panels, especially in unfavorable weather conditions. These kinds of collectors easily produce temperatures higher than 160 degrees F. This paper addresses Photo-Thermal Conversion, Vacuum, Heat Pipe, Thermomax, and Desiccant Technologies. Further, the integration of these technologies in three commercial/residential units is briefly described.

  15. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI), enacted by SB 1 of 2006, provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and Electric Company (PG&...

  16. Solar Car

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

  17. Solar Rights

    Broader source: Energy.gov [DOE]

    Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

  18. U.S. Solar Market Trends

    SciTech Connect (OSTI)

    Larry Sherwood

    2011-04-01T23:59:59.000Z

    2010 marked the emergence of the utility sector photovoltaic market. Utility sector photovoltaic installations quadrupled over 2009 installations. The share of utility sector installations of all U.S. grid-connected PV installations grew from virtually none in 2006 to 15 percent in 2009 and 32 percent in 2010. In addition, 2010 saw installation of a 75 MWAC concentrating solar power plant, the largest installed in the U.S. since 1991. In 2010, annual distributed grid-connected PV installations in the United States grew by 62 percent, to 606 MWDC. Photovoltaic arrays were installed at more than 50,000 sites in 2010, a 45 percent increase over the number of installations in 2009. Solar water heating installations increased by 6 percent in 2010, compared with 2009. Solar water heating has shown only two years of higher growth in the last 10 years. Solar pool heating installations increased by 13 percent in 2010, the largest growth in five years.

  19. Solar Policy Environment: New York

    Broader source: Energy.gov [DOE]

    The New York City Solar America Cities (SAC) team hopes to foster a local solar energy market that will be economically sustainable while providing the City with clean, reliable, affordable electricity by reducing barriers and educating the workforce, using the City’s resources to spur the market and create economies of scale to lower prices, and creating institutions to plan and monitor future growth.

  20. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2011-02-11T23:59:59.000Z

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  1. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  2. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  3. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  4. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  5. GSA- Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  6. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    DOE Patents [OSTI]

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11T23:59:59.000Z

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  7. EXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST

    E-Print Network [OSTI]

    for comparing multiple technologies and policies to one another), focusing exclusively on customer-sited solar customers to others constitute undue price discrimination against solar PV. Perhaps most damaging for solar TO DEEPER SOLAR PV COST REDUCTIONS The Current Terrain In recent years, electric utilities have experienced

  8. Ceria and its derivatives as substrates for solar-driven thermochemical fuel production

    E-Print Network [OSTI]

    Weaver, John H.

    Ceria and its derivatives as substrates for solar-driven thermochemical fuel production Sossina M of solar energy into a storable form suitable for on-demand utilization, i.e., the creation of solar fuels. We have developed a unique thermochemical approach to solar fuel generation using ceria as a reaction

  9. Shenandoah parabolic dish solar collector

    SciTech Connect (OSTI)

    Kinoshita, G.S.

    1985-01-01T23:59:59.000Z

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  10. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    International Conference onFly Ash Disposal and Utilization,onJanuary 20-22, 1998, New Delhi, India. COAL ASH and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;COAL ASH GENERATIONANDUTILIZATION: A REVIEW and utilization of coal ash in many parts of the world. The utilization potential for coal ash generated from

  12. Boston, Massachusetts: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

  13. Solar Advisor Model User Guide for Version 2.0

    SciTech Connect (OSTI)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01T23:59:59.000Z

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  14. Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module

    E-Print Network [OSTI]

    Zengeni, Hazel C

    2014-01-01T23:59:59.000Z

    This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

  15. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    must maintain high absorptance in the solar spectrum but lower emittance in the infrared spectrum. It must also be stable in air, easily applied at large scales, cost...

  16. Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-AGB end for 0.15 - 2.5 Mo stars

    E-Print Network [OSTI]

    G. Bertelli; L. Girardi; P. Marigo; E. Nasi

    2008-03-10T23:59:59.000Z

    Tracks and isochrones have been computed in the range of initial masses 0.15 - 20 Mo for a grid of 39 chemical compositions with the metal content Z between 0.0001 and 0.070, and helium content Y between 0.23 and 0.46. The Padova stellar evolution code has been implemented with updated physics. New synthetic TP-AGB models allow the extension of stellar models and isochrones until the end of the thermal pulses along the AGB. Software tools for the bidimensional interpolation (in Y and Z) of the tracks have been tuned. This first paper presents tracks for low mass stars (from 0.15 to 2.5 Mo) with scaled-solar abundances and the corresponding isochrones from very old ages down to about 1 Gyr. Tracks and isochrones are made available in tabular form for the adopted grid of chemical compositions in the plane Z-Y. An interactive web interface will allow users to obtain isochrones of whatever chemical composition and also simulated stellar populations with different Y(Z) helium-to-metal enrichment laws.

  17. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  18. "List of Covered Electric Utilities" under the Public Utility...

    Energy Savers [EERE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  19. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  20. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  1. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  2. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    Building codes and standards Performance criteria Incentives Consumer education Utility programs Solar energysolar energy technology, Certain localities (e.g. , Davis, California) have modified building codes

  3. OFFICIAL RULES SunShot Prize RACE TO 7-DAY SOLAR OFFICIAL RULES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    systems). DOE designed this competition to motivate communities, local jurisdictions, solar installers, and utility companies to collaborate towards one goal of improving the...

  4. Community Solar and Wind Grant Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois. Eligible businesses can apply for up to 30%...

  5. Solar Fair in San José Tomorrow

    Broader source: Energy.gov [DOE]

    The fair will have the first outdoor demonstration site of large scale, cutting-edge solar, wind, electric vehicle and energy efficiency technologies that is open to the public.

  6. Solar-heated rotary kiln

    DOE Patents [OSTI]

    Shell, P.K.

    1982-04-14T23:59:59.000Z

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  7. Solar Rights

    Broader source: Energy.gov [DOE]

    According to state law, effective July 1, 2008, community associations in Virginia generally may not prohibit a homeowner from installing or using a solar energy collection device on their property...

  8. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  9. Utility Data Collection Service

    Broader source: Energy.gov [DOE]

    Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

  10. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  11. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  12. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  13. Municipal Utility Districts (Texas)

    Broader source: Energy.gov [DOE]

    Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

  14. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  15. Cardiff University Distinguished Lecture Symposium Advances in Solar Energy

    E-Print Network [OSTI]

    Martin, Ralph R.

    Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

  16. Solar activity and earth rotation variability R. Abarca del Rioa,

    E-Print Network [OSTI]

    Dai, Aiguo

    to secular times scales, meteorological and climatic data are correlated with solar variability (see reviews changes in solar output could be amplified in the Earth's atmosphere. In fact, at wavelengths not visibleSolar activity and earth rotation variability R. Abarca del Rioa, *, D. Gambisb , D. Salsteinc , P

  17. Nighttime solar cell

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Currently photovoltaic (PV) cells convert solar energy into electrical energy at an efficiency of about 18%, with the maximum conversion rate taking place around noon on a cloudless day. In many applications, the PV cells are utilized to recharge a stand-by battery pack that provides electrical energy at night or on cloudy days. Increasing the utilization of the panel array area by producing electrical power at night will reduce the amount of required electrical energy storage for a given array size and increase system reliability. Thermoelectric generators (TEG) are solid state devices that convert thermal energy into electrical energy. Using the nighttime sky, or deep space, with an effective temperature of 3.5 K as a cold sink, the TEG presented here can produce electrical power at night. The hot junction is supplied energy by the ambient air temperature or some other warm temperature source. The cold junction of the TEG is insulated from the surroundings by a vacuum cell, improving its overall effectiveness. Combining the TEG with the PV cell, a unique solid state device is developed that converts electromagnetic radiant energy into usable electrical energy. The thermoelectric-photovoltaic (TEPV) cell, or the Nighttime Solar Cell, is a direct energy conversion device that produces electrical energy both at night and during the day.

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    for Reno, Nevada . . . . . (Q) Solar Data for China Lake/using Nominal Solar Profiles China Lake/Inyokern ANGLE OFStations - China Lake, Edwards Monthly Latitude: Jan SOLAR

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  20. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Figure 6.3: Birds-eye view of solar array deployment siteBirds-eye 7. Birds-eye view of of solar solar array array