Powered by Deep Web Technologies
Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Trends in Utility Scale Renewable Electricity  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Trends in Utility Scale Renewable Electricity for ReTech 2012

2

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

3

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

4

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

5

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

DOE Green Energy (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

6

Pumped Hydroelectricity and Utility-Scale Batteries for Reserve Electricity Generation in New Zealand.  

E-Print Network (OSTI)

??Non-pumped hydroelectricity-based energy storage in New Zealand has only limited potential to expand to meet projected growth in electricity demand. Seasonal variations of hydro inflows (more)

Kear, Gareth

2011-01-01T23:59:59.000Z

7

Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stri ngent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

Status: Published Citation: Luckow, P; Wise, M; Dooley, J; and Kim S. 2010. Large-scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios. In International Journal of Greenhouse Gas Control, Volume 4, Issue 5, 2010, pp. 865-877. Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting stringent global climate policy targets by the end of the century....

2010-12-31T23:59:59.000Z

8

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

9

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

10

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

11

UGI Utilities Electric Division | Open Energy Information  

Open Energy Info (EERE)

Utilities Electric Division Utilities Electric Division Jump to: navigation, search Logo: UGI Utilities Electric Division Name UGI Utilities Electric Division Address 2525 North 12th Street, Suite 360 Place Reading, Pennsylvania Zip 19605 Sector Services Product Green Power Marketer Website http://www.ugi.com/electric/in Coordinates 40.3746587°, -75.9149578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3746587,"lon":-75.9149578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)  

DOE Green Energy (OSTI)

This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

2011-11-01T23:59:59.000Z

13

Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency, thereby helping to reduce green house gas emissions, increase energy sustainability, and improve overall growth in the economy. In addition, our ability to encourage more efficient consumption through real-time feedback, control technology, and pricing is better and less costly than it has e...

2012-02-07T23:59:59.000Z

14

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

15

Concentrating solar power technologies offer utility-scale power ...  

U.S. Energy Information Administration (EIA)

Concentrating solar power (CSP) is a utility-scale renewable energy option for generating electricity that is receiving considerable attention in the southwestern ...

16

Transmission Planning Process and Opportunities for Utility-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC) Introduction Market barriers unrelated to...

17

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Scale Solar Inc Jump to: navigation, search Name Utility Scale Solar Inc Place Palo Alto, California Zip 94301 Product California-based PV tracker maker. References Utility...

18

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

19

Studying the Communications Requirements of Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

20

Electric utility system master plan  

SciTech Connect

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Columbia Utilities Electricity | Open Energy Information  

Open Energy Info (EERE)

Utilities Electricity Place New York Utility Id 55814 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861...

22

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

23

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

24

Energy efficiency and electric utilities  

SciTech Connect

Twenty years have now elapsed since the energy crisis irrevocably changed world energy priorities. The energy crisis banished all apparitions of cheap and almost limitless energy and made the public keenly aware of its scarcity. The sharp rise in energy prices that followed the Arab oil embargo created strong market incentives to conserve energy. Most users have substantially improved the efficiency with which they use energy, although one might lament that the gains have not been larger. In contrast to the increased efficiency with which electricity and other forms of energy are used, electric utilities themselves have singularly failed to improve their heat efficiency in generating electricity. This failure can be attributed to regulation preventing market forces from creating incentive to improve efficiency.

Studness, C.M.

1994-03-15T23:59:59.000Z

25

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

26

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

27

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

28

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

29

Marketing Reordering of the Electric Utility Industry  

E-Print Network (OSTI)

ELCON is a group of large industrial consumers of electricity with facilities in most of the 50 states and many foreign countries. Our members produce a wide range of products including steel, aluminum, chemicals, industrial gases, glass, motor vehicles, textiles and food. ELCON members consume approximately ten percent of all electricity sold to industrial customers and nearly five percent of all electricity consumed in the United States. We require an adequate and reliable supply of electricity at reasonable prices, so as you can imagine, we have a continuing interest in all aspects of the production, pricing, and delivery of electricity. ELCON member companies believe strongly that the electric utility industry is undergoing a market reordering that is being shaped by technological, institutional and legal forces. We see technical developments that now make small-scale generation economically attractive, if not downright desirable. Key regulatory and consumer institutions are taking fresh, new looks at issues such as wheeling and access to the grid that used to be considered sacred and untouchable. Some states are passing laws and implementing regulations that will require new thinking and new operating procedures on the part of utilities and consumers. I see these developments as logical reactions to changes in market forces. Change will take place. The relevant questions are: How will regulators and policy makers be influenced by market forces in the future? And: Will utilities, consumers and regulators attempt to benefit from market pressures or, alternatively, try to oppose what I believe is inevitable evolution to a more market-oriented electric industry?

Anderson, J. A.

1986-06-01T23:59:59.000Z

30

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

31

NREL: Continuum Magazine - The Utility-Scale Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Future Utility-Scale Future Issue 1 Print Version Share this resource Continuum Magazine Dan Says New Facility to Transform U.S. Energy Infrastructure New Facility to Transform U.S. Energy Infrastructure The nation's electricity infrastructure needs an overhaul. NREL's newest research facility will lead the way. Wind Innovation Enables Utility-Scale Wind Innovation Enables Utility-Scale NREL research will enable wind energy to make major contributions to meeting the nation's electrical demand. Leading Solar Expertise-A Launch Pad to the Future Leading Solar Expertise- A Launch Pad to the Future NREL is speeding solar devices from the lab to utility-scale operation. Paint it Black: One-Step Etch Cuts Solar Cell Costs Paint It Black: One-Step Etch Cuts Solar Cell Costs NREL's technique provides the solar cell manufacturing industry with a

32

Electric Utility Measurement & Verification Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Measurement and Verification (M&V) of applicable Power Smart Industrial projects is the process of verifying the results of the implementation of energy conservation measures (ECMs) at industrial customer facilities. Power Smart M&V activities are based on the International Performance Measurement & Verification Protocol (IPMVP); a consensus document produced with the international support of industry and government. This paper discusses BC Hydros M&V program and the M&V results from industrial projects. Several case history studies will also be reviewed. The case studies reviewed involve aeration motor speed controls upgrade, steam turbine controls upgrade and natural gas liquid pump speed controls upgrade.

Lau, K.; Henderson, G.; Hebert, D.

2007-05-01T23:59:59.000Z

33

Definition: Electric utility | Open Energy Information  

Open Energy Info (EERE)

utility utility Jump to: navigation, search Dictionary.png Electric utility A corporation, agency, or other legal entity that owns and/or operates facilities for the generation, transmission, distribution or sale of electricity primarily for use by the public. Also known as a power provider.[1][2] View on Wikipedia Wikipedia Definition An electric utility is an electric power company that engages in the generation, transmission, and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries. It is indispensable to factories, commercial establishments, homes, and even most recreational facilities. Lack of electricity causes not only inconvenience, but also economic loss due to reduced industrial production. Utility in the terms of power system,

34

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

35

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

36

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

37

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

38

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

39

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

Science Conference Proceedings (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

40

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

42

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

43

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Home Performance with ENERGY STAR®: $4000 Program Info Funding Source NH Saves State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with ENERGY STAR®: up to $4,000 for improvements ENERGY STAR® Homes Qualification: custom incentives and technical support

44

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

45

PPL Electric Utilities Corp | Open Energy Information  

Open Energy Info (EERE)

PPL Electric Utilities Corp PPL Electric Utilities Corp Jump to: navigation, search Name PPL Electric Utilities Corp Place Allentown, Pennsylvania Service Territory Pennsylvania Website www.pplelectric.com Green Button Reference Page pplweb.mediaroom.com/inde Green Button Committed Yes Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PPL Electric Utilities Corp. Smart Grid Project was awarded $19,054,516 Recovery Act Funding with a total project value of $38,109,032.

46

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

47

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

48

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

49

Page Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Page Electric Utility Page Electric Utility Jump to: navigation, search Name Page Electric Utility Place Arizona Utility Id 14373 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service with Demand Meter Commercial Commercial Service without Demand Meter Commercial Residential Service > 200 Amps Residential Residential Service < 200 Amps Residential

50

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

51

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

52

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

53

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

54

Appendices Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

EPRI report 1023562 provides a synthesis of the body of evidence regarding the major factors that affect how customers value and use electricity; this companion report contains five appendices to support that document. Appendix A provides additional background on price elasticity of demand as a companion to the economics of demand discussion in Section 2 of 1023562. Appendix B provides tables detailing elements of the experimental designs for the 10 pricing pilots examined in Section 3 of 1023562; Append...

2012-02-07T23:59:59.000Z

55

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

56

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

57

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

58

Approaches to Electric Utility Energy Efficiency for Low Income...  

Open Energy Info (EERE)

to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Name Approaches to Electric Utility Energy...

59

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

60

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

10. U.S. Electric Utility Energy Savings by North American Electric Reliability Council Region and ... design, advanced electric motors and drive systems,

62

PRODCOST: an electric utility generation simulation code  

SciTech Connect

The PRODCOST computer code simulates the operation of an electric utility generation system. Through a probabilistic simulation the expected energy production, fuel consumption, and cost of operation for each plant are determined. Total system fuel consumption, energy generation by type, total generation costs, as well as system loss of load probability and expected unserved energy are also calculated.

Hudson, II, C. R.; Reynolds, T. M.; Smolen, G. R.

1981-02-01T23:59:59.000Z

63

Utility-Scale Smart Meter Deployments, Plans & Proposals | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans & Proposals Utility-Scale Smart Meter Deployments, Plans & Proposals The Edison Foundation's chart of plans and proposals for utility-scale smart meter deployments....

64

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

and Scale Economies in Electric Power Production: Some Newand Delivery of Electric Power. Land Economics 62(4): 378-1998 Challenges of Electric Power Industry Restructuring for

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

65

JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING  

SciTech Connect

The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite-based activated (800 C, 1472 F) carbons required a shorter (15-minute) conditioning period in the simulated lignite flue gas and captured gaseous mercury more effectively than those activated at 750 C (1382 F). Subsequent tests with higher acid gas concentrations including 50 ppm HCl showed no early mercury breakthrough for either the activated (750 C, 1382 F) Bienfait carbon or the DARCO FGD. Although these high acid gas tests yielded better mercury capture initially, significant breakthrough of mercury ultimately occurred sooner than during the simulated lignite flue gas tests. The steam-activated char, provided by Luscar Ltd., and DARCO FGD, provided by NORIT Americas, were evaluated for mercury removal potential in a 580 MJ/hr (550,000-Btu/hr) pilot-scale coal combustion system equipped with four particulate control devices: (1) an electrostatic precipitator (ESP), (2) a fabric filter (FF), (3) the Advanced Hybrid{trademark} filter, and (4) an ESP and FF in series, an EPRI-patented TOXECON{trademark} technology. The Ontario Hydro method and continuous mercury monitors were used to measure mercury species concentrations at the inlet and outlet of the control technology devices with and without sorbent injection. Primarily Hg{sup o} was measured when lignite coals from the Poplar River Plant and Freedom Mine were combusted. The effects of activated Luscar char, DARCO FGD, injection rates, particle size, and gas temperature on mercury removal were evaluated for each of the four particulate control device options. Increasing injection rates and decreasing gas temperatures generally promoted mercury capture in all four control devices. Relative to data reported for bituminous and subbituminous coal combustion flue gases, higher sorbent injection rates were generally required for the lignite coal to effectively remove mercury. Documented results in this report provide the impacts of these and other parameters and provide the inputs needed to direct Phase II of the project.

John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

2003-10-01T23:59:59.000Z

66

High slot utilization systems for electric machines  

DOE Patents (OSTI)

Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

Hsu, John S (Oak Ridge, TN)

2009-06-23T23:59:59.000Z

67

The Utility-Scale Joint-Venture Program  

DOE Green Energy (OSTI)

The Department of Energy`s Utility-Scale Joint-Venture (USJV) Program was developed to help industry commercialize dish/engine electric systems. Sandia National Laboratories developed this program and has placed two contracts, one with Science Applications International Corporation`s Energy Projects Division and one with the Cummins Power Generation Company. In this paper we present the designs for the two dish/Stirling systems that are being developed through the USJV Program.

Gallup, D.R.; Mancini, T.R.

1994-06-01T23:59:59.000Z

68

Grid Reliability - An Electric Utility Company's Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Electric Utility Company's Perspective Marc Butts Southern Company Services 11/19/08 Topics * Business Continuity at Southern Company * NERC Cyber Security at Southern Company * Homeland Security at Southern Company * Physical recovery following a major outage * 5 questions to ask your local utility * Facing Realities 3 Service territory across four states: 120,000 square miles * Southern Linc * Southern Power * Southern Telecom * Southern Nuclear Other Subsidiaries: Serves approximately 4 million customers Business Continuity at Southern Company Southern Company Business Assurance Model Business Unit Management (Asset Owners) Southern Company Business Assurance Council Infrastructure Protection Business Continuity Incident Response * Identify critical assets * Design and implement

69

Trends in electric utility load duration curves  

SciTech Connect

This report documents the development and analysis of annual and quarterly load duration curves for each of the 10 Federal regions. The report describes analyses performed to test for changes in load duration curve shapes over time. These analyses are intended to aid the electric utility analyses and modeling activities of the Energy Information Administration (EIA) by expanding the understanding of current and expected load duration curve shapes. 7 figs., 13 tabs.

1984-12-01T23:59:59.000Z

70

utility-scale | OpenEI  

Open Energy Info (EERE)

898 898 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142258898 Varnish cache server utility-scale Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment

71

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

Preface. The U.S. Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Elec-

72

Electric Market and Utility Operation Terminology (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

Not Available

2011-05-01T23:59:59.000Z

73

Does EIA publish electric utility rate, tariff, and demand charge ...  

U.S. Energy Information Administration (EIA)

Does EIA publish electric utility rate, tariff, and demand charge data? No, EIA does not collect or publish data on electricity rates, or tariffs, for the sale or ...

74

Decoupling treatment of electric and gas utilities can differ ...  

U.S. Energy Information Administration (EIA)

Many States institute decoupled rates for both electric and gas utilities ... Virginia and North Carolina have both decoupled gas rates but not electric rates.

75

PPL Electric Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and...

76

Phase II -- Photovoltaics for Utility Scale Applications (PVUSA). Progress report  

DOE Green Energy (OSTI)

Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1994, summarizes key accomplishments and conclusions for the year, and outlines future work. The PVUSA project has five objectives. These are designed to narrow the gap between a large utility industry that is unfamiliar with PV and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: Evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side by side at a single location; Assess PV system operation and maintenance in a utility setting; Compare US utilities hands-on experience in designing, procuring, and operating PV systems; and, Document and disseminate knowledge gained from the project.

NONE

1995-06-01T23:59:59.000Z

77

Inventory of Electric Utility Power Plants in the United States  

Reports and Publications (EIA)

Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

Information Center

2002-03-01T23:59:59.000Z

78

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

79

New Mexico Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) New Mexico Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

80

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

82

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

83

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

84

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

85

New Guide Will Allow Electric Utilities to Develop Green ...  

Science Conference Proceedings (OSTI)

New Guide Will Allow Electric Utilities to Develop Green Button Web Tools. From NIST Tech Beat: February 6, 2013. ...

2013-02-06T23:59:59.000Z

86

Fossil Fuel Prices to Electric Utilities - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Fossil Fuel Prices to Electric Utilities. Sources: History: EIA; Projections: Short-Term Energy Outlook, July 2000.

87

Building a winning electric utility organization  

SciTech Connect

The key factor that will differentiate the winners and losers is the speed with which they build their skills and enhance their performance focus. Setting the {open_quote}right{close_quote} aspirations, then effectively managing the change process, will be critical for winning power companies. Historically, only certain dimensions of organizational performance have been critical to an electric utility`s financial success. As a result, utilities understandably focused on achieving high levels of customer satisfaction and reliability, excellent regulatory relationships, and safe and environmentally acceptable operations. However, as the power industry undergoes fundamental change, obtaining superior organizational performance will become much more crucial and difficult. Given the importance of meeting these organizational challenges head on, the authors believe CEOs can only address them by taking an important step back from day-to-day activities to define what high performance really means in the future competitive world and what steps should be taken to achieve their aspirations. To facilitate this rethink - which senior managers should view as a multiyear process - utilities need to do three things in an iterative way: (1) energize the transformation with the right performance aspirations. (2) Tailor a coherent change program to the company`s unique starting position. (3) Manage the change process to build a skill-based and performance-focused organization.

Farha, G.; Silverman, L. [McKinsey & Co., Washington, DC (United States)] [McKinsey & Co., Washington, DC (United States); Keough, K. [McKinsey & Co., Cleveland, OH (United States)] [McKinsey & Co., Cleveland, OH (United States)

1996-08-01T23:59:59.000Z

88

Utility Scale Wind turbine Demonstration Project  

SciTech Connect

The purpose of the Three Affiliated Tribes proposing to Department of Energy was nothing new to Denmark. National Meteorological Studies have proved that North Dakota has some of the most consistence wind resources in the world. The Three Affiliated Tribes wanted to assess their potential and become knowledgeable to developing this new and upcoming resource now valuable. By the Tribe implementing the Utility-scale Wind Turbine Project on Fort Berthold, the tribe has proven the ability to complete a project, and has already proceeded in a feasibility studies to developing a large-scale wind farm on the reservation due to tribal knowledge learned, public awareness, and growing support of a Nation wanting clean renewable energy. The tribe is working through the various measures and regulations with the want to be self-sufficient, independent, and marketable with 17,000 times the wind energy needed to service Fort Berthold alone.

Terry Fredericks

2006-03-31T23:59:59.000Z

89

Financial statistics of major publicly owned electric utilities, 1991  

Science Conference Proceedings (OSTI)

The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

Not Available

1993-03-31T23:59:59.000Z

90

PPL Electric Utilities Corp. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Corp. Smart Grid Project Corp. Smart Grid Project Jump to: navigation, search Project Lead PPL Electric Utilities Corp. Country United States Headquarters Location Allentown, Pennsylvania Recovery Act Funding $19,054,516.00 Total Project Value $38,109,032.00 Coverage Area Coverage Map: PPL Electric Utilities Corp. Smart Grid Project Coordinates 40.6084305°, -75.4901833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Utility-scale installations lead solar photovoltaic growth ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook ... led by particularly strong growth in both utility-scale PV and ... Because the utilization rate for ...

92

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

93

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

94

Financial statistics of major US publicly owned electric utilities 1994  

SciTech Connect

This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

NONE

1995-12-15T23:59:59.000Z

95

Workshop title: Transmission and Utility Scale Solar Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

process requirements for FERC Order 890 as outlined in Western's Open Access Transmission Tariff. Who Should Attend: Western customers, electric utilities, Tribes, generation and...

96

U.S. Electric Utility Demand-Side Management 1999  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1999 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

97

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

98

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

99

Annual Electric Utility Data - Form EIA-906 Database  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net...

100

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

icon Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to:...

102

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

2002-12-01T23:59:59.000Z

103

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

104

An Updated Assessement of Copper Wire Thefts from Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric utilities, lawmakers, scrap metal...

105

Financial statistics of major US publicly owned electric utilities 1993  

SciTech Connect

The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

Not Available

1995-02-01T23:59:59.000Z

106

Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Electric) - Residential Energy Efficiency Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Energy Star rebate: one rebate per appliance per residential utility customer Program Info Expiration Date 12/31/12 State Connecticut Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $60 Washing Machines: $60 Room AC: $60 Heat Pump Water Heater: $500 Central AC: $200 - $300/ton Dual Enthalpy Economizer Controls: $250 Air Source Heat Pump: $200 - $300/ton Geothermal Heat Pump: $150/ton

107

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

108

Ak-Chin Electric Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Ak-Chin Electric Utility Authority Ak-Chin Electric Utility Authority Jump to: navigation, search Name Ak-Chin Electric Utility Authority Place Arizona Utility Id 25866 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0815/kWh Industrial: $0.0550/kWh The following table contains monthly sales and revenue data for Ak-Chin Electric Utility Authority (Arizona).

109

Energy-based analysis of utility scale hybrid power systems.  

E-Print Network (OSTI)

??The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources' transient behavior and the (more)

Agyenim-Boateng, Kwame

2011-01-01T23:59:59.000Z

110

Liberty Utilities (Electric) - Commercial New Construction Rebate...  

Open Energy Info (EERE)

Service Department Liberty Utilities Address PO Box 960 Place Northborough, Massachusetts ZipPostal Code 1532-0960 Phone (800) 375-7413 Website http:liberty-utilities.comeast...

111

Electric Utility Marketing Guide to Foodservice  

Science Conference Proceedings (OSTI)

Business groups apply rigorous evaluation standards to guide them toward increased efficiency. Utility foodservice programs are not immune to this same sort of scrutiny. Designed to address key issues facing utility foodservice programs, this marketing guide is essentially a set of crucial guidelines and advice. This information can assist utilities servicing the foodservice industry to become more profitable.

1998-11-09T23:59:59.000Z

112

Online Algorithm for Battery Utilization in Electric Computer Science Department  

E-Print Network (OSTI)

Online Algorithm for Battery Utilization in Electric Vehicles Ron Adany Computer Science Department the problem of utilizing the pack of batteries serving current demands in Electric Vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. Due to its internal

Tamir, Tami

113

"List of Covered Electric Utilities under the Public Utility Regulatory Policies Act of 1978 (PURPA)- 2009  

Energy.gov (U.S. Department of Energy (DOE))

Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility

114

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

115

Coordinating Permit Offices and the Development of Utility-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Permit Offices and the Development of Utility-Scale Geothermal Energy 2013 Geothermal Resources Council Annual Meeting Aaron Levine Katherine R. Young Kermit Witherbee October 1,...

116

title Utility Scale Solar An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States year month institution LBNL abstract p Berkeley Lab hosted a webinar...

117

Estimated Economic Impacts of Utility Scale Wind Power in Iowa  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimated Economic Impacts of Utility Scale Wind Power in Iowa Sandra Halvatzis and David Keyser National Renewable Energy Laboratory Technical Report NRELTP-6A20-53187 November...

118

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

119

Lodi Electric Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Residential Energy Efficiency Rebate Lodi Electric Utility - Residential Energy Efficiency Rebate Program Lodi Electric Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate Energy Efficient Home Improvement Rebate Program: Maximum total rebate in a 12-month period is $500 per customer service address, PLUS, an additional $250 allowance for air duct repair, or an additional $800 allowance for air duct replacement, if eligible. Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Clothes Washer: $50 Dishwasher: $25 Air Duct Testing: $125

120

Liberty Utilities (Electric) - Commercial New Construction Rebate Program  

Open Energy Info (EERE)

Utilities (Electric) - Commercial New Construction Rebate Program Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on March 13, 2013. Financial Incentive Program Place New Hampshire Name Liberty Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) Incentive Type Utility Rebate Program Applicable Sector Commercial, Industrial, Local Government, Schools Eligible Technologies Central Air conditioners, Chillers, Compressed air, Custom/Others pending approval, Energy Mgmt. Systems/Building Controls, Heat pumps, Lighting, Lighting Controls/Sensors, Motor VFDs, Motors, Geothermal Heat Pumps, Control Sensors, Economizers

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ashland Electric Utility - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Residential Energy Efficiency Rebate Ashland Electric Utility - Residential Energy Efficiency Rebate Programs Ashland Electric Utility - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Washing Machines: $35 - $100 Dishwashers: $25 - $60 Refrigerators: $25 - $35 Refrigerator Recycling: $30 Water Heaters: $65 Ductwork: 80% of the cost up to $300 Insulation: Up to 70% of the cost Windows: $6.00 per square foot High-Efficiency Heat Pumps: $600

122

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

123

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

124

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

125

Avista Utilities (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential customers to save energy in eligible homes. Offers apply to residential homeowners in Idaho who heat homes primarily with Avista electricity Incentives vary depending...

126

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

127

New Service Opportunities for Electric Utilities  

Science Conference Proceedings (OSTI)

Faced with intensifying competitive pressures, many utilities are offering non-traditional services that provide new revenue sources. This report provides an overview of utility experience with diversification into non-traditional areas and identifies meaningful utility opportunities in several areas. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1994-10-08T23:59:59.000Z

128

Cost and quality of fuels for electric utility plants, 1994  

Science Conference Proceedings (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

129

Cost and quality of fuels for electric utility plants, 1992  

Science Conference Proceedings (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

130

Avista Utilities (Electric) - Commercial Lighting Energy Efficiency...  

Open Energy Info (EERE)

Applicable Sector Commercial Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

131

Ashland Electric Utility - Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

Building Insulation, CaulkingWeather-stripping, DuctAir sealing, Heat pumps, Windows, Solar Water Heat Active Incentive Yes Implementing Sector Utility Energy Category...

132

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or...

133

Galena Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for...

134

Orange and Rockland Utilities (Electric) - Residential Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (New York) < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate...

135

Ashland Electric Utility- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either $0.75 per watt (residential) or $1.00 per watt (commercial), up to a maximum...

136

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

137

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

138

Understanding Electric Utility Customers -- Summary Report  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency. In addition, our ability to encourage more efficient consumption through feedback, control technology, and dynamic pricing is better and less costly than it has ever been due to technology advancements.Despite decades of research into how customers use and value ...

2012-10-31T23:59:59.000Z

139

Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVGeneration PotentialRuralUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialRuralUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in rural areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialRuralUtilityScalePVGeneration"

140

Property:PotentialUrbanUtilityScalePVGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVGeneration PotentialUrbanUtilityScalePVGeneration Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVGeneration Property Type Quantity Description The estimated potential energy generation from utility-scale PV in urban areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialUrbanUtilityScalePVGeneration"

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-01-01T23:59:59.000Z

142

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

143

Electrolysis: Information and Opportunities for Electric Power Utilities  

DOE Green Energy (OSTI)

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

144

Financial statistics of major US publicly owned electric utilities 1992  

SciTech Connect

The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

Not Available

1994-01-01T23:59:59.000Z

145

Black Hills/Colorado Electric Utility Co. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Hills/Colorado Electric Utility Co. Smart Grid Project Hills/Colorado Electric Utility Co. Smart Grid Project Jump to: navigation, search Project Lead Black Hills/Colorado Electric Utility Co. Country United States Headquarters Location Pueblo, Colorado Recovery Act Funding $6,142,854.00 Total Project Value $12,285,708.00 Coverage Area Coverage Map: Black Hills/Colorado Electric Utility Co. Smart Grid Project Coordinates 38.2544472°, -104.6091409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

Electricity privatization : should South Korea privatize its state-owned electric utility?  

E-Print Network (OSTI)

The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

Lim, Sungmin

2011-01-01T23:59:59.000Z

147

Approaches to Electric Utility Energy Efficiency for Low Income Customers  

Open Energy Info (EERE)

Approaches to Electric Utility Energy Efficiency for Low Income Customers Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Focus Area: Energy Efficiency Topics: Best Practices Website: www.ornl.gov/~webworks/cppr/y2001/misc/99601.pdf Equivalent URI: cleanenergysolutions.org/content/approaches-electric-utility-energy-ef Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Feebates This report, written for members of the Weatherization Assistance Program

148

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

149

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

150

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - 1996 - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

1997-12-01T23:59:59.000Z

151

Sustainable Communities--Business Opportunities for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

The purposes of this study are to: develop and articulate a vision of sustainable communities of the future and identify and delineate resulting technology challenges and business opportunities facing the electric utility industry.

2006-01-30T23:59:59.000Z

152

U.S. Electric Utility Demand-Side Management 2000  

U.S. Energy Information Administration (EIA)

Energy Savings for the 516 large electric utilities increased to 53.7 billion kilowatthours (kWh), 3.1 billion kWh more than in 1999. These energy savings

153

U.S. Electric Utility Demand-Side Managment 1996  

U.S. Energy Information Administration (EIA)

Energy Savings as a Percentage of Retail Sales by U.S. Electric Utilities with DSM Energy Savings Programs and Sales to Ultimate Consumers by Class of Ownership, 1996

154

Activity-Based Costing for Electric Utilities  

Science Conference Proceedings (OSTI)

Activity-Based costing (ABC) is a cost-management approach that can help utility managers make better decisions through more-accurate process and product cost information and a better understanding of activities that either do or do not add value. This report is a primer on ABC.

1992-09-01T23:59:59.000Z

155

An Updated Assessement of Copper Wire Thefts from Electric Utilities -  

NLE Websites -- All DOE Office Websites (Extended Search)

An Updated Assessement of Copper Wire Thefts from Electric An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric utilities, lawmakers, scrap metal dealers, and local law enforcement have succeeded in reducing the problem. Updated Assessment-Copper-Final October 2010.pdf More Documents & Publications Investigation Letter Report: I11IG002 Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998 Energy Infrastructure Events and Expansions Year-in-Review 2010

156

City of Burlington-Electric, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burlington-Electric, Vermont (Utility Company) Burlington-Electric, Vermont (Utility Company) Jump to: navigation, search Name City of Burlington-Electric Place Vermont Utility Id 2548 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General (LG) Rate Demand is less than 25KW- Net Metered Renewable

157

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

158

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

159

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

160

Wind Power Generation Dynamic Impacts on Electric Utility Systems  

Science Conference Proceedings (OSTI)

This technical planning study is an initial assessment of potential dynamic impacts on electric utility systems of wind power generation via large wind turbines. Three classes of dynamic problems-short-term transient stability, system frequency excursions, and minute-to-minute unit ramping limitations - were examined in case studies based on the Hawaiian Electric Co. System.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

162

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

E-Print Network (OSTI)

from within the electricity distribution system. The mainfrom up to 155 electricity distribution utilities. The dataelectricity consumers are caused by events affecting primarily the electric distribution

Eto, Joseph H.

2013-01-01T23:59:59.000Z

163

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become increasing difficult for electric utilities to install new generating capacity due to public concerns about nuclear energy and environmental issues. In many areas of the country, utilities now find themselves capacity short during their peak periods, and have concerns about providing a reliable supply of electricity. These utilities have initiated programs which encourage their customers to conserve electric energy, and shift or lower use during the utility's peak periods. In other areas of the country there are utilities which have more than adequate electric supplies. These utilities have developed programs which ensure that costs of electricity are such that existing customers are maintained. Programs which address demand issues of an energy utility are referred to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient lighting, electric motors and packaged air conditioning systems. More recently, however, many utilities have implemented very innovative programs, which indicates an increased commitment towards demand planning, and requires a substantial financial investment in new equipment and engineering services. Some programs have addressed such areas as thermal storage and industrial processes, and others have included comprehensive facility energy studies where greater than fifty percent of the cost of energy retrofits may be covered by the utility. Progressive pricing strategies have included real-time pricing and aggressive curtailable rates for commercial and industrial buildings. Further, new standards are being established by electric utilities which promote energy efficient new construct ion. All of these programs can have considerable impacts on both the customer's and utility's energy use patterns and load shapes. This paper will discuss a number of more significant and innovative DSM programs, and will explain the potential load and energy impacts.

Epstein, G. J.; Fuller, W. H.

1989-09-01T23:59:59.000Z

164

A new method for electric utility resource planning  

Science Conference Proceedings (OSTI)

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends ... Keywords: decision making, electric utilities, power generation, resource planning

M. Sedighizadeh

2006-04-01T23:59:59.000Z

165

Best Management Practices for Vegetation Management at Electric Utility Facilities  

Science Conference Proceedings (OSTI)

Controlling vegetation inside key electric utility facilities is a necessary maintenance activity for a utilitys safe and reliable operation. Substations, switchyards, and other facilities require perpetual maintenance to maintain a vegetation-free environment. At a minimum, vegetation-maintenance treatment needs to be conducted annually; in some climatic regions, multiple treatments may be required. The objective of this research paper was to define current industry practices by means of a ...

2013-11-22T23:59:59.000Z

166

Potential Effects of Climate Change on Electric Utilities  

Science Conference Proceedings (OSTI)

In recent years, increasing attention has been focused on the potential for greenhouse gas emissions to modify the global climate system. Significant climate change could affect utility operations and costs through impacts on electricity demand and on generation and delivery systems. Utilities, moreover, may be called upon to take actions to reduce their emissions of CO2, an important greenhouse gas. This report summarizes an assessment of the long-term risks to individual utilities posed by the potentia...

1995-03-17T23:59:59.000Z

167

Initial Economic Analysis of Utility-scale Wind Integration in...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the Alliance for Sustainable Energy, LLC. INITIAL ECONOMIC ANALYSIS OF UTILITY-SCALE WIND INTEGRATION IN HAWAII NOTICE This report was prepared as an account of work sponsored...

168

US electric utility demand-side management, 1994  

SciTech Connect

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

169

Electric Utility Sales and Revenue - EIA-826 detailed data file  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-826 detailed data Form EIA-826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects retail sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, and agricultural irrigations.

170

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-12-01T23:59:59.000Z

171

Financial statistics major US publicly owned electric utilities 1996  

Science Conference Proceedings (OSTI)

The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

NONE

1998-03-01T23:59:59.000Z

172

PPL Electric Utilities - Custom Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools State Government Savings Category Other Maximum Rebate Custom Efficiency Rebates: 50% of incremental cost, $500,000 per customer site per year, or 2 million per parent company Technical Study: $100,000 annually Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Incentive: $0.10 per projected first year kWh savings Technical study: 50% of cost '''The available budget for Large C&I (Commercial and Industrial) customers has been fully committed. New funding for energy efficiency projects will be available when Phase 2 begins on June 1, 2013. However, Phase 2 funding

173

Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Electric) - Commercial Efficiency Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Prescriptive Rebates: 50% of cost Program Info Funding Source System Benefits Charge Start Date 4/1/2010 State New York Program Type Utility Rebate Program Rebate Amount Small Business Lighten Up Energy Savings Evaluation and CFLs: Free A/C A/C > 65 kBTU/h: $35/ton (11.5 EER); $55 (12 EER) Heat Pumps 14 SEER or 11.5 EER: $50-$65/ton

174

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate G-1 Rebates: $250 G-1 AC/Lighting Improvement: $1,000 G-2 Rebates: $7,500 G-3 to I-1 Rebates: $25,000 Program Info State California Program Type Utility Rebate Program Rebate Amount G-1 Rebates: up to $250 G-1 AC/Lighting Improvement: 25% of cost G-2 Rebates: $0.13/kWh annual projected savings

175

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

176

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

177

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

SciTech Connect

Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

2012-01-06T23:59:59.000Z

178

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

179

Economic impact of non-utility generation on electric power systems .  

E-Print Network (OSTI)

??Non-Utility Generation is a major force in the way electrical energy is now being produced and marketed, and electric utilities are reacting to the growth (more)

Gupta, Rajnish

1997-01-01T23:59:59.000Z

180

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and thus total electricity bills. A utility typically facesreduce consumers electricity bills significantly. However,ceteris paribus, their electricity bills would increase if

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New London Electric&Water Util | Open Energy Information  

Open Energy Info (EERE)

Util Util Jump to: navigation, search Name New London Electric&Water Util Place Wisconsin Utility Id 13467 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

182

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing plan is developed that addresses the target market, market penetration, promotional methods, incentive types and levels, internal and external training requirements and optimal organizational structure. The marketing plan also includes various rate structures, program procedures and evaluation techniques. In addition to the marketing plan, several case histories are addressed.

Niehus, T. L.

1994-01-01T23:59:59.000Z

183

Integrated Job Exposure Matrix for Electric Utility Workers  

Science Conference Proceedings (OSTI)

This report identifies and includes all exposure factors in a prototype job-exposure matrix (JEM) to inform utility professionals, exposure assessment experts, and epidemiologists about exposures other than electric and magnetic fields that should be considered when assessing health and safety issues related to work near electric facilities. The nature of exposures to these factors, the ordinal exposure ranking for most of the factors, and the methodology for establishing such determining ordinal exposur...

2009-07-14T23:59:59.000Z

184

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

DOE Green Energy (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

185

Table 8.13 Electric Utility Demand-Side Management Programs ...  

U.S. Energy Information Administration (EIA)

Energy Savings: Electric Utility Costs 4: ... motor drive) with less electricity. Examples include high-efficiency appliances, ... advanced electric motor drives, and

186

Cost analysis of energy storage systems for electric utility applications  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

187

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

188

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

189

Positioning the electric utility to build information infrastructure  

SciTech Connect

In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

Not Available

1994-11-01T23:59:59.000Z

190

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

191

Price impacts of electric-utility DSM programs  

Science Conference Proceedings (OSTI)

As competition in the electricity industry increases, utilities (and others) worry more about the upward pressure on electricity prices that demand-side management (DSM) programs often impose. Because of these concerns, several utilities have recently reduced the scope of their DSM programs or focused these programs more on customer service and peak-demand reductions and less on improving energy efficiency. This study uses the Oak Ridge Financial Model (ORFIN) to calculate the rate impacts of DSM. The authors use ORFIN to examine the two factors that contribute to DSM`s upward pressure on prices: the cost of the programs themselves and the loss of revenue associated with fixed-cost recovery. This second factor reflects the reduction in revenues caused by the DSM-induced energy and demand savings that exceed the reduction in utility costs. This analysis examines DSM price impacts as functions of the following factors: the DSM program itself (cost, conservation load factor, geographic focus on deferral of transmission and distribution investments, and mix across customer classes); the utility`s cost and pricing structures (factors at least partly under the utility`s control, such as retail tariffs, fixed vs variable operating costs, and capital costs not related to kW or kWh growth); and external economic and regulatory factors (the level and temporal pattern of avoided energy and capacity costs; ratebasing vs expensing of DSM-program costs; shareholder incentives for DSM programs; load growth; and the rates for income, property, and revenue taxes).

Hirst, E.; Hadley, S.

1994-11-01T23:59:59.000Z

192

CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION  

E-Print Network (OSTI)

(forthcoming) study the historical origins of governance institutions for natural gas and water, respectivelyCAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION Thomas P. Lyon Nathan Wilson prices rose in states that adopted state regulation before 1917, suggesting that regulators were

Lyon, Thomas P.

193

CASE STUDY -ELECTRIC UTILITY RESTRUCTURING -MASSACHUSETTS RENEWABLE ENERGY TRUST FUND  

E-Print Network (OSTI)

CASE STUDY - ELECTRIC UTILITY RESTRUCTURING - MASSACHUSETTS RENEWABLE ENERGY TRUST FUND John A or not WTE will be considered a "renewable energy" source with respect to mandated fractions of state. This discussion will provide a brief history of the Massachusetts, Renewable Energy Trust Fund (RETF), delineate

Columbia University

194

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

195

Economic impact of integrating photovoltaics with conventional electric utility operation  

SciTech Connect

The purpose of this study was to determine the parameters which impact the value of photovoltaics (PV) to the electric utility. We have, therefore, chosen the high, medium and low load days in winter (January) and summer (July). The daily peak load has varied from 5838 MW to 9712 MW. These six days are studied for reference (no PV), high, medium, low and intermittent PV output cases. Results from these 30 case studies are summarized in this paper. In order to study the impact of operating photovoltaic (PV) systems on the electric utility production cost (fuel and variable O and M) we have chosen the load profile of a southeastern utility and the PV output data from solar test facilities in Virginia and North Carolina. In order to incorporate the short-term variations we have used 10-minute resolution data for both load and PV output.

Rahman, S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (USA). Dept. of Electrical Engineering)

1990-09-01T23:59:59.000Z

196

Consumer's Guide to the economics of electric-utility ratemaking  

SciTech Connect

This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

1980-05-01T23:59:59.000Z

197

Property:PotentialUrbanUtilityScalePVArea | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVArea PotentialUrbanUtilityScalePVArea Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVArea Property Type Quantity Description The area of potential utility-scale PV in urban areas in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square

198

Property:PotentialRuralUtilityScalePVArea | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVArea PotentialRuralUtilityScalePVArea Jump to: navigation, search Property Name PotentialRuralUtilityScalePVArea Property Type Quantity Description The area of potential utility scale PV in rural areas in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square

199

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-07-01T23:59:59.000Z

200

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric utility applications of hydrogen energy storage systems  

DOE Green Energy (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

202

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guys problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

203

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

and are added to the utilitys rate base. Large-scale EE2009a, 2009b, 2009c). utilitys rate base, and the utilityto the grid at a higher rate if the utility does not face

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

204

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-01-01T23:59:59.000Z

205

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

206

Electric-utility DSM programs: Terminology and reporting formats  

SciTech Connect

The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

Hirst, E. (Oak Ridge National Lab., TN (United States)); Sabo, C. (Barakat and Chamberlin, Inc., Washington, DC (United States))

1991-10-01T23:59:59.000Z

207

Electric utility repowering assessment. Final report, July 1993-February 1994  

SciTech Connect

The report evaluates the potential for repowering of existing electric generation stations in the United States over the period 1994 to 2003. The report includes these topics: (1) Recommendations to GRI for technical development of repowering; (2) An evaluation of the major technological factors concerning major repowering options; (3) A generic economic assessment of the cost of repowering compared to alternatives; (4) An investigation of the factors that are important in the utility decision-making process concerning repowering. The topic was based on several in-depth interviews with utilities. (5) An evaluation of the potential market subdivided into two groups: gas- and oil-fired plants and coal-fired plants.

Lennox, F.; Siegel, J.; Preble, B.

1994-02-01T23:59:59.000Z

208

Electrolysis: Information and Opportunities for Electric Power Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis: Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Technical Report NREL/TP-581-40605 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Prepared under Task No. HY61.3620 Technical Report NREL/TP-581-40605 September 2006

209

NETL: Publications - 2002 Conference Proceedings: Electric Utilities and  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2002 Conference Proceedings Electric Utilities and Water: Emerging Issues and R&D Needs Table of Contents Disclaimer Front Matter and Workshop Summary [PDF-49KB] Appendix A - Workshop Brochure [PDF-274KB] Appendix B - Summary of Breakout Session A [PDF-19KB] Appendix C - Summary of Breakout Session B [PDF-27KB] Appendix D - Presentations Appendix E - List of Workshop Attendees [PDF-8KB] Electric Utilities and Water Brochure Cover Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

210

A primer on incentive regulation for electric utilities  

SciTech Connect

In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

Hill, L.J.

1995-10-01T23:59:59.000Z

211

Electric Utility Trace Substances Synthesis Report: Volumes 1-4  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of human health risks from trace substances in electric utility stack plumes was carried out for each of 600 U.S. power plants. Emissions estimates were based on measurements at 43 units. Under realistic assumptions of exposure and plant configuration, inhalation risks were well below one in one million for increased cancer likelihood to all individuals exposed to emissions from power plants. Mercury case studies at four power plants showed health risks lower than federal guide...

1995-01-11T23:59:59.000Z

212

Electric Utility Trace Substances Synthesis Report: Volumes 1-4  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of human health risks from trace substances in electric utility stack plumes was carried out for each of 600 U.S. power plants. Emissions estimates were based on measurements at 43 units. Under realistic assumptions of exposure and plant configuration, inhalation risks were well below one in one million for increased cancer likelihood to all individuals exposed to emissions from power plants. Mercury case studies at four power plants showed health risks lower than federal guide...

1995-01-10T23:59:59.000Z

213

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

214

A knowledge based model of electric utility operations. Final report  

SciTech Connect

This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

NONE

1993-08-11T23:59:59.000Z

215

Evaluating the role of uncertainty in electric utility capacity planning  

SciTech Connect

This final report on Evaluating the Role of Uncertainty in Electric Utility Capacity Planning is divided into separate sections addressing demand, supply and the simultaneous consideration of both and describes several mathematical characterizations of the effects of uncertainty on the capacity expansion decision. The basic objective is to develop more robust models which can appropriately include the fundamental uncertainties associated with capacity expansion planning in the electric utility industry. Much of what has been developed in this project has been incorporated into a long-term, computer model for capacity expansion planning. A review is provided of certain deterministic capacity expansion methodologies. The effect of load curve uncertainty on capacity planning is considered and the use of a certain expected load curve to account for uncertainty in demand is proposed. How uncertainty influences the allocation of capital costs among the various load curve realizations is also discussed. The supply side uncertainties of fuel prices and random availability of generating units are considered. In certain cases it is shown that the use of the expected fuel costs will furnish a solution which minimizes the total expected costs. The effect of derating units to account for their random availability is also characterized. A stochastic linear program formulated to examine the simultaneous consideration of fuel cost and demand uncertainties is analyzed. This volume includes the report text one appendix with information on linear programming-based analysis of marginal cost pricing in the electric utility industry.

Soyster, A.L.

1981-08-31T23:59:59.000Z

216

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

217

Treatment of Solar Generation in Electric Utility Resource Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

218

Utility-Scale PV Variability Workshop: October 7, 2009, Cedar Rapids, Iowa [Proceedings  

DOE Green Energy (OSTI)

Proceedings from the Utility Scale Photovoltaic Workshop held in Cedar Rapids Iowa on October 7, 2009.

Kroposki, B.

2010-02-01T23:59:59.000Z

219

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

220

The dubuque electricity portal: evaluation of a city-scale residential electricity consumption feedback system  

Science Conference Proceedings (OSTI)

This paper describes the Dubuque Electricity Portal, a city-scale system aimed at supporting voluntary reductions of electricity consumption. The Portal provided each household with fine-grained feedback on its electricity use, as well as using incentives, ... Keywords: behavior change, consumption feedback systems, ecf, electricity, smart meters, social comparison, sustainability

Thomas Erickson; Ming Li; Younghun Kim; Ajay Deshpande; Sambit Sahu; Tian Chao; Piyawadee Sukaviriya; Milind Naphade

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economic assessment of the utilization of lead-acid batteries in electric utility systems. Final report  

DOE Green Energy (OSTI)

Specific applications in which lead--acid batteries might be economically competitive on an electric utility system are identified. Particular attention is given to searching the Public Service Electric and Gas Company (PSE and G) system for installations of batteries which could defer or cancel costly transmission and/or distribution projects. Although the transmission and distribution data are based on specific applications on the PSE and G system, the generation data are based on a national reference system. The report analyzes and summarizes all costs and savings attributable to lead--acid batteries. 40 figures, 78 tables. (RWR)

Johnson, A.C.; Hynds, J.A.; Nevius, D.R.; Nunan, G.A.; Sweetman, N.

1977-04-01T23:59:59.000Z

222

Inventory of Electric Utility Power Plants in the United States 2000  

U.S. Energy Information Administration (EIA)

DOE/EIA-0095(2000) Inventory of Electric Utility Power Plants in the United States 2000 March 2002 Energy Information Administration Office of Coal, Nuclear, Electric

223

Region-specific study of the electric utility industry. Phase I, final report  

SciTech Connect

This report describes the financial background of the electric utility industry in VACAR, reports on the present condition of the industry and then assesses the future of this industry. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of its cooperativeness and its representative mix of powerplants, for example coal, hydro, nuclear, oil. It was found that the supply of future economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the present condition of the electricity industry was to make the present system work. The present system is sound, and with modifications, problems could be solved within the existing framework. 8 figs., 4 tabs.

Wacaster, A.J. (ed.)

1985-07-01T23:59:59.000Z

224

Feasibility Study for a Hopi Utility-Scale Wind Project  

DOE Green Energy (OSTI)

The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

Kendrick Lomayestewa

2011-05-31T23:59:59.000Z

225

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities....

226

A Statistical Forecast Model of Weather-Related Damage to a Major Electric Utility  

Science Conference Proceedings (OSTI)

A generalized linear model (GLM) has been developed to relate meteorological conditions to damages incurred by the outdoor electrical equipment of Public Service Electric and Gas, the largest public utility in New Jersey. Utilizing a perfect-...

Brian J. Cerruti; Steven G. Decker

2012-02-01T23:59:59.000Z

227

Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells  

SciTech Connect

ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

None

2010-09-01T23:59:59.000Z

228

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

229

Reexamination of electric-utility profitability in Ohio  

SciTech Connect

This article looks back to an earlier FORTNIGHTLY article by Coyne (Sept. 16, 1982), one which argued that investor-owned electric-utility companies in the state of Ohio could be demonstrated to be earning returns that were greater than those of major oil companies when the relative risks of the companies were taken into account. The author here points to considerations overlooked in the earlier article, leading to a conclusion that there is not statistical or practical difference between the risk-adjusted rates of return of the two industries. 6 references, 2 tables.

Davidson, W.N. III

1983-08-18T23:59:59.000Z

230

Feasible utility scale Superconducting Magnetic Energy Storage system  

DOE Green Energy (OSTI)

This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown in Fig. 1. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.

Loyd, R.J.; Schoenung, S.M.; Nakamura, T.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

1986-01-01T23:59:59.000Z

231

Financial Statistics of Major U.S. Investor-Owned Electric Utilities  

Reports and Publications (EIA)

1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

Information Center

1997-12-01T23:59:59.000Z

232

Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry  

SciTech Connect

This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

Akyol, Bora A.

2012-09-01T23:59:59.000Z

233

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

DOE Green Energy (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

234

Utility-Scale Smart Meter Deployments, Plans & Proposals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

edisonfoundation.net/IEE edisonfoundation.net/IEE Utility-Scale Smart Meter Deployments, Plans & Proposals April 2010 Utility State Target Number of Meters Notes Resources AEP 1 IN, KY, MI, OH, OK, TX, VA, WV 5,000,000 AEP plans on deploying smart meters to all customers within their service territory and have deployed 10,000 meters to customers in South Bend, IN, and are presently deploying another 700,000 to AEP-Texas customers. Timing for the remaining deployments will depend on specific conditions in each of the seven operating company subsidiaries. AEP Corporate Sustainability Report 2009 2 Allegheny Power MD, PA, WV 700,000 Allegheny launched pilots in Morgantown, WV and Urbana, MD to test smart meters and thermostats (1,140 meters installed). In PA, Act 129 (2008)

235

Thermal energy storage in utility-scale applications  

DOE Green Energy (OSTI)

The Thermal Energy Storage (TES) Progran focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. TES technology can be used in a new or an existing power generation facility to increase its efficiency and promote the use of this technology within the utility and the industrial sectors. The UTES project has included studies of both heat and cool storage systems for different, utility-scale applications. For example, one study showed that a molten salt TES system can substantially reduce the cost of coal-fired peak and intermediate load power production in an integrated gasification combined-cycle (IGCC) plant. The levelized energy cost (LEC) of an IGCC/TES plant can be reduced by as much as 20% over the LEC of a conventional IGCC plant. This concept produces lower-cost power than the natural-gas-fired alternative if significant escalation rates in the fuel price are assumed. In another study, an oil/rock diurnal TES system when integrated with a simple gas turbine cogeneration system was shown to produce on-peak power,for $0.045 to $0.06/kWh while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, in both the IGCC and the cogeneration plant applications, advanced TES concepts could substantially improve performance and economic benefits. An evaluation of TES options for precooling gas turbine inlet air showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

Somasundaram, S.; Drost, M.K.; Brown, D.R.; Antoniak, Z.I.

1994-08-01T23:59:59.000Z

236

Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary  

Science Conference Proceedings (OSTI)

The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

Not Available

1991-02-06T23:59:59.000Z

237

Laramie County Community College: Utility-Scale Wind Energy Technology  

DOE Green Energy (OSTI)

The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

Douglas P. Cook

2012-05-22T23:59:59.000Z

238

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

Science Conference Proceedings (OSTI)

Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

Abhyankar, Nikit; Phadke, Amol

2011-01-20T23:59:59.000Z

239

A summary of the California Public Utilities Commission`s two competing electric utility restructuring proposals  

Science Conference Proceedings (OSTI)

In May 1995, the California Public Utilities Commission (CPUC) released two proposals for restructuring the state`s electric power industry. The two proposals follow more than a year of testimony and public comment after the CPUC issued the ``Blue Book`` (CPUC 1994a) on April 20, 1994, which called for retail wheeling to be phased in to all customers over 5 years. The majority proposal, supported by three of the four CPUC commissioners (one seat was vacant when the proposals were released), calls for creating a central pool, or ``poolco``; setting electric prices to reflect true costs of service, or ``real-time pricing``; and allowing parties to negotiate ``contracts for differences`` between the pool price and the contract price. The minority proposal, sponsored by Commissioner Jesse Knight, calls for retail wheeling, or ``direct access,`` and for utilities to divest or spin off their generating assets. This paper presents a summary of the major provisions of the two CPUC proposals and the possible implications and issues associated with each. It is aimed at researchers who may be aware that various efforts to restructure the electric power industry are under way and want to known more about California`s proposals, as well as those who want to known the implications of certain restructuring proposals for renewable energy technologies. Presented at the end of the paper is a summary of alternative proposals promoted by various stakeholder in response to the two CPUC proposals.

Porter, K.

1995-11-01T23:59:59.000Z

240

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electric Utility Transmission and Distribution Line Engineering Program  

Science Conference Proceedings (OSTI)

Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

Peter McKenny

2010-08-31T23:59:59.000Z

242

Impact of residential photovoltaics on electric utilities: some evidence from field test and simulation  

SciTech Connect

The adoption of residential photovoltaics will affect the load profile of electric utilities, the adequacy and reliability of their capacity, and their consumption of fuels. Impacts are examined by a comparison of the actual load profile facing a Texas utility with solar outputs from both TRNSYS simulations and a test array in Fort Worth. Array output is scaled up parametrically to represent different levels of solar penetration. The reductions in peak load and loss-of-load probability indicate that the adoption of 5 kW arrays by 50% of the residences reduces capacity requirements by only 4%. The value of utility savings will exceed the cost of the PV systems before 1990. The field test results are more favorable than the simulation.

Katzman, M.T.

1981-01-01T23:59:59.000Z

243

Low-cost load research for electric utilities  

Science Conference Proceedings (OSTI)

Golden Valley Electric Association (GVEA) developed two pragmatic approaches to meet most load-research objectives at a substantially lower cost than would be incurred with traditional techniques. GVEA serves three customer classes, with most of its load in the Fairbanks area. GVEA's new approaches simulate load curves for individual customer classes to the degree necessary to meet most load-research objectives for the utility, including applications to cost-of-service analysis, rate design, demand-side management, and load forecasting. These approaches make class load-shape information available to utilities that cannot otherwise afford to develop such data. Although the two approaches were developed for a small utility, they are likely to work at least as well for medium and large utilities. The first approach simulates class curves by combining load data from system feeders with information on customer mix and energy usage. GVEA's supervisory control and data acquisition system gives hourly data on feeder loads, and its billing database provides the number of customers and kilowatt-hour usage by customer class on each feeder. The second approach enhances load-research results by redefining target parameters. Data from several like-hours are used to calculate substitutes for the parameters traditionally defined from single-hour data points. The precision of peak responsibility estimates, for example, can be improved if several of the highest hourly demands in a given time period are used rather than the single highest hourly demand. Arguably, use of several highest hourly demands can also improve the reliability of the allocation of responsibility.

Gray, D.A.; Butcher, M.

1994-08-01T23:59:59.000Z

244

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

245

Ancillary-service costs for 12 US electric utilities  

Science Conference Proceedings (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

246

A new FERC policy for electric utility mergers  

SciTech Connect

Section 203 of the FPA provides the FERC with significant authority to shape the future structure of the electric utility industry. The FERC should exercise this authority prudently, with due regard to the reality that competition works better than regulation. For the FERC, this means carefully selecting the type of regulation it pursues. Second guessing whether a particular merger makes good business sense or will create a more efficient firm are matters particularly ill-suited to the regulatory process. These decisions can generally be left to utility executives and shareholders. Competition will be more than adequate to discipline any mergers that do not live up to expectations. The goal should be to ensure that competition will remain a disciplining force following a merger. This means carefully considering the potential competitive impacts of a merger. In doing so, however, the FERC must remain cognizant of the interplay between its merger review standards and its other policies. FERC decisions regarding transmission pricing and future market institutions (such as Poolcos) will have a significant impact on the size and nature of markets. This, in turn, will affect the degree to which particular mergers may, or may not, harm competition. The FERC`s merger policies must not only be rational and clearly articulated, but coordinated with its other policies to achieve the common goal of more efficient bulk power markets.

Moot, J.S.

1996-12-31T23:59:59.000Z

247

Region-specific study of the electric utility industry. Phases I and II. Executive summary  

Science Conference Proceedings (OSTI)

This report describes the problems either confronting or likely to confront the electric utility industry in the event of a return of high rates of inflation. It attempts to assess the future of this industry and makes recommendations to resolve fundamental problems. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of the willingness of a wide range of parties to participate and its representative mix of powerplants, for example coal, hydro, nuclear and oil. It was found that the future supply of reliable, economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the condition of the electricity industry was to make the present system work. The present system is sound and, with modifications, problems could be solved within the existing framework. A series of recommendations, developed through a consensus building effort involving state government officials, state regulators and investor-owned utility representatives, are presented. A discussion of the need for innovative solutions and one state's approach to the problem concludes the report.

Not Available

1986-03-01T23:59:59.000Z

248

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-08-01T23:59:59.000Z

249

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-01-01T23:59:59.000Z

250

Rethinking the scale of coal-fired electric generation: technological and institutional considerations  

SciTech Connect

This paper examines the economic and social implications of an electric-utility system based on medium-scale (50 to 200 MWe) coal-fired plants dispersed near load centers. The historical trend in US electric generation has been a sustained effort to capture the economies of large scale. Technical and institutional conditions within the industry, as well as the historical perception of universal electrification as a desirable social goal, have brought about this trend. Large fossil and nuclear plants, often representing joint ventures of several utilities, dominate the plans of utilities over the next 20 years. Despite these trends, this review was unable to conclude that clear advantages must inherently accrue to either small- or large-scale electrical generation. Transportation and construction do offer demonstrable economies of scale, but the other terms in the cost equation (such as reliability and transmission) are sufficiently uncertain or site-specific to prevent firm conclusions concerning the effect of scale. Biases believed to exist in the regulatory process would dilute the utilities' perception of any advantages accruing to small generators; rate-of-return regulation favors overcapitalization as embodied in the construction of large plants and extensive transmission networks. It is not clear that the current regulatory structure is capable of weighing the institutional values of accountability and local control against dollar savings generally supposed to accrue to large plants. The Midwest and East North Central states may be singularly fit for a decentralized, medium-scale system for historical, geographical, and institutional reasons, as well as for their location near the coal fields.

Gilmer, R.W.; Meunier, R.E.; Whittle, C.E.

1978-04-01T23:59:59.000Z

251

City of Shasta Lake Electric Utility - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $9,050 Commercial: $192,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $1.81/W Commercial: $1.92/W Provider City of Shasta Lake Electric Utility '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. ''''' City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. For fiscal year

252

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

253

Do You Buy Clean Electricity From Your Utility? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean electricity from your utility. If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy. Do you buy clean electricity from your utility? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure Six Places to Find Help with Your Energy Costs Do You Drive a Hybrid Electric Vehicle?

254

Liberty Utilities (Electric) Commercial New Construction Rebate Program (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

'''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

255

Financial statistics of major US investor-owned electric utilities 1994  

SciTech Connect

The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

NONE

1995-12-01T23:59:59.000Z

256

Financial statistics of major U.S. investor-owned electric utilities 1993  

SciTech Connect

The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

Not Available

1995-01-01T23:59:59.000Z

257

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

DOE Green Energy (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

258

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network (OSTI)

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

259

System average rates of U.S. investor-owned electric utilities : a statistical benchmark study  

E-Print Network (OSTI)

Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

Berndt, Ernst R.

1995-01-01T23:59:59.000Z

260

Financial Statistics of Major U.S. Publicly Owned Electric Utilities  

Reports and Publications (EIA)

2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

Tom Leckey

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE-NETL Electric Utility-Water R&D Program EPRI Water Advisory  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Utility-Water R&D Program EPRI Water Advisory Council September 25, 2002 Milwaukee, WI Thomas J. Feeley, III, Product Manager Innovations for Existing Plants TJFEPRI...

262

Austin Utilities (Gas and Electric)- Residential Conserve and Save Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Utilities offers incentives to its residential customers for the installation of energy-efficient equipment in homes. Rebates are available for both electric and natural gas equipment....

263

Cloud computing and electricity: beyond the utility model  

Science Conference Proceedings (OSTI)

Assessing the strengths, weaknesses, and general applicability of the computing-as-utility business model.

Erik Brynjolfsson; Paul Hofmann; John Jordan

2010-05-01T23:59:59.000Z

264

Solar two: Utility-scale power from the sun  

DOE Green Energy (OSTI)

Information is presented on the Solar Two solar-powered electric generating plant located east of Barstow California.

NONE

1996-02-01T23:59:59.000Z

265

Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: Sales to Utility and Nonutility Purchasers, 2002;" Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1.3,0.9 "Value of Shipments and Receipts" "(million dollars)"

266

Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States" "RSE Column Factors:",0.9,1,1.1 "Value of Shipments and Receipts"

267

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

268

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

269

Updated Capital Cost Estimates for Utility Scale Electricity  

E-Print Network (OSTI)

, and juvenile progeny will be sampled and genotyped for 16 microsatellite markers (0). Estimate Connectivity altered the routes and conditions resident salmonids must undertake to connect with neighboring for the status of mountain whitefish. Population connectivity is a measurement of interbreeding among arbitrary

270

New Switches for Utility-Scale Inverters: First In-Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility-Scale Inverters  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: The SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLABs new power switches can also be used in wind turbines, railways, and other smart grid applications.

None

2011-12-31T23:59:59.000Z

271

Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM  

E-Print Network (OSTI)

This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

Baughman, Martin L.

1981-01-01T23:59:59.000Z

272

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

273

Electric Utility Industrial DSM and M&V Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydros large commercial and industrial non-transmission class customers. It is a direct energy acquisition program that is based on a partnering approach with BC Hydros business customers. A customer that commits to being a Power Smart Partner gains access to financial support and assistance with the identification and implementation of electricity savings projects. A direct financial incentive is provided to lower customers funding requirements and to improve the payback and/or investment criteria for energy efficiency projects. Projects are evaluated against established criteria set forth by BC Hydro. Projects which prove to be the most cost-effective on a $/kWh basis receive funds. For transmission-voltage customers, BC Hydro has recently implemented a new tariff designed to encourage energy reduction. The new tariff is an inclining block tariff and is known as the Stepped Rate. The customers consumption is compared against their Customer Baseline Load (CBL). The first 90% of the customers consumption is billed at a Tier 1 rate. The remaining consumption is billed at a Tier 2 rate, approximately two times the Tier 1 rate. There are mechanisms in place to adjust the customers CBL to account for activities such as customer-funded demand-side-management projects and customer plant expansion projects. This paper will discuss BC Hydros M&V program in terms of the process, operations and M&V results to date for the PSP. In addition, the paper will discuss the new Stepped Rate tariff intricacies in terms of CBL setting, CBL adjustments and transmission customer Impact Study guideline requirements.

Lau, K. P. K.

2008-01-01T23:59:59.000Z

274

Annual Public Electric Utility data - EIA-412 data file  

U.S. Energy Information Administration (EIA)

The EIA-412 "Annual Electric Industry Financial Report" collected information such as income statements, balance sheets, sales and purchases, and ...

275

Optimal site selection and sizing of distributed utility-scale wind power plants  

DOE Green Energy (OSTI)

As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)] [Minnesota Dept. of Public Service, St. Paul, MN (United States)

1998-04-01T23:59:59.000Z

276

Integration of Distributed Resources in Electric Utility Systems: Functional Definition for Communication and Control Requirements  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need for improved practices for integrating them with electric utility distribution systems. A functional definition of DR for defining communication and control requirements in electric utility distribution systems is provided. The report is a tool that readers can use in developing communication and control strategies for DR in specific distribution systems.

1998-12-11T23:59:59.000Z

277

NETL: Utilization Projects - Scale up and Demonstration of Fly...  

NLE Websites -- All DOE Office Websites (Extended Search)

unburned carbon. Elevated carbon levels often accompany low NOx retrofits of coal fired power stations and can disqualify ash for its largest and most lucrative utilization market:...

278

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

Science Conference Proceedings (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

279

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

Scale Energy Efficiency Programs On Consumer Tariffs andtariffs of implementing utility-funded cost-effective energyaverage tariff depends on the percentage reduction in energy

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

280

Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data |  

Open Energy Info (EERE)

26 Database Monthly Electric Utility Sales and Revenue Data 26 Database Monthly Electric Utility Sales and Revenue Data Dataset Summary Description EIA previously collected sales and revenue data in a category called "Other." This category was defined as including activities such as public street highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. EIA has revised its survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. This is an electric utility data file that includes utility level retail sales of electricity and associated revenue by end-use sector, State, and reporting month. The data source is the survey: Form EIA-826, "Monthly Electric Utility Sales and Revenue Report

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

282

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

283

Does EIA publish electric utility rate, tariff, and demand charge ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... tariff, and demand charge data? No, EIA does not collect or publish data on electricity rates, or tariffs, ...

284

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

285

Financial statistics of major U.S. publicly owned electric utilities 1997  

Science Conference Proceedings (OSTI)

The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

NONE

1998-12-01T23:59:59.000Z

286

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

287

Specific systems studies of battery energy storage for electric utilities  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

1993-08-01T23:59:59.000Z

288

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network (OSTI)

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence of residential solar water heating on electric utility demand. The electric demand of solar water hears was found to be approximately 0.39 kW lass than conventional electric water heaters during the late late afternoon, early evening period in the summer months when the Austin utility experiences its peak demand. The annual load factor would be only very slightly reduced if there were a major penetration of solar water heaters in the all electric housing sector. Thus solar water heating represents beneficial load management for utilities experiencing summer peaks.

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

289

Electric Utility Terrain Vehicle Demonstration at a Military Base in Florida  

Science Conference Proceedings (OSTI)

Non-road electric vehicles such as lift trucks, airport ground support equipment and underground mining vehicles have proven themselves in the marketplace. However, heavy-duty utility-terrain vehicles (UTVs) powered exclusively by electricity have been introduced only recently. To test the capabilities of electric UTVs, two demonstration vehicles were instrumented for data acquisition and placed in ...

2013-07-31T23:59:59.000Z

290

Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers" Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1.1,1 , 20,"Food and Kindred Products",1829," W "," W ",28

291

Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

292

Avista Utilities (Gas & Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates through...

293

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

294

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are...

295

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are evaluated...

296

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

297

NREL Webinar: Treatment of Solar Generation in Electric Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their...

298

Residential, Commercial, and Utility-Scale Photovoltaic (PV)...  

NLE Websites -- All DOE Office Websites (Extended Search)

beginning. Reducing those initial capital costs is crucial to reducing the cost of solar electricity. In addition to module price, many factors contribute to the price of a PV...

299

Utilization of pyrolysis oil in industrial scale boilers.  

E-Print Network (OSTI)

??The performance of pyrolysis oil in a large-scale combustion system is investigated to determine the feasibility of displacing fuel oil or natural gas in current (more)

Redfern, Kyle D.

2013-01-01T23:59:59.000Z

300

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

DOE Green Energy (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Power for America: Rural Electric Utilities Harvest New Crop (Brochure)  

DOE Green Energy (OSTI)

Wind Power for America: Rural Electric Utilities Harvest a New Crop is a trifold brochure that strives to educate rural landowners and rural co-op utilities about the benefits of wind power development. It provides examples of rural utilities that have successful wind energy projects and supportive statements from industry members.

Not Available

2002-02-01T23:59:59.000Z

302

Integrated resource planning Electric and gas utilities in the USA  

E-Print Network (OSTI)

acquisitions will be the important criteria. Resource planning at gas utilities IRP is just beginning to be applied to the natural gas industry. At gas utilities, called local distribution companies (LDCs and regulated differently. Natural gas is produced, transported, and distributed by three different sets

303

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

304

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion  

Science Conference Proceedings (OSTI)

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

None

2010-09-01T23:59:59.000Z

305

Utility to Purchase Electricity from Innovative DOE-Supported...  

NLE Websites -- All DOE Office Websites (Extended Search)

In a non-carbon-capture plant, the syngas is cleaned to remove impurities and sent to a gas turbine where it undergoes combustion to produce electricity. The hot flue gas from...

306

TY JOUR T1 Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans JF Energy Policy A1 Jordan Wilkerson A1 Peter H Larsen A1 Galen L Barbose AB p We review long term electric utility plans representing nbsp of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy ef ciency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in peak demand by nbsp

307

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

DOE Green Energy (OSTI)

A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

Not Available

1980-09-01T23:59:59.000Z

308

Handbook for Utility Participation in Biogas-Fueled Electric Generation  

Science Conference Proceedings (OSTI)

Biogas is a methane-rich gas produced from the controlled biological degradation of organic wastes. Biogas is produced as part of the treatment of four general classes of wet waste streams: Wastewater Treatment Plant Sludge Animal Manure Industrial Wastes Municipal Solid Waste in Sealed Landfills. The high methane content of biogas makes it suitable for fueling electric power generation. As energy prices increase, generation of electric power form biogas becomes increasingly attractive and the number of ...

2007-12-17T23:59:59.000Z

309

U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) |  

Open Energy Info (EERE)

Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB)

310

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal and State Structures to Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Technical Report NREL/TP-6A20-48685 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Prepared under Task No. CP09.2320

311

Impacts of Commercial Electric Utility Rate Structure Elements...  

NLE Websites -- All DOE Office Websites (Extended Search)

PVrate uses 15-minute or hourly data on building load and system production, as well as energy and demand charge information from a utility tariff sheet (usually available either...

312

Ashland Electric Utility - Bright Way to Heat Water Rebate |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Oregon Program Type Utility Rebate Program Rebate Amount 0.40annual kWh saved (on average 800 to 1,000) The City of Ashland Conservation Division offers a...

313

DSM strikes again. [Demand-side management of gas and electric utilities  

SciTech Connect

This paper discusses and explains demand-side management (DSM) of the gas and electric utility companies. It contrasts the advantages that electric utilities offering economic incentives (with any cost passed on to rate payers) to increase demand while such offerings are rarely available from the gas utilities. It then discusses the cause and cost of pollution from conventional electrical facilities compared to gas-operated equipment and facilities. The paper goes on to discuss fuel switching and other incentives to get individuals and facilities to switch to natural gas.

Katz, M.

1994-02-01T23:59:59.000Z

314

An economic and legal perspective on electric utility transition costs  

SciTech Connect

The issue of possibly unrecoverable cost incurred by a utility, or `stranded costs,` has emerged as a major obstacle to developing a competitive generation market. Stranded or transition costs are defined as costs incurred by a utility to serve its customers that were being recovered in rates but are no longer due to availability of lower-priced alternative suppliers. The idea of `stranded cost,` and more importantly arguments for its recovery, is a concept with little basis in economic theory, legal precedence, or precedence in other deregulated industries. The main argument recovery is that the ``regulatory compact`` requires it. This is based on the misconception that the regulator compact is simply: the utility incurs costs on behalf of its customers because of the ``obligation to serve`` so, therefore, customers are obligated to pay. This is a mischaracterization of what the compact was and how it developed. Another argument is that recovery is required for economic efficiency. This presumes, however, a very narrow definition of efficiency based on preventing ``uneconomic`` bypass of the utility and that utilities minimize costs. A broader definition of efficiency and the likelihood of cost inefficiencies in the industry suggest that the cost imposed on customers from inhibiting competition could exceed the gains from preventing uneconomic bypass. Both these issues are examined in this paper.

Rose, K.

1996-07-01T23:59:59.000Z

315

Demand-side management programs change along with the electric utility industry  

Science Conference Proceedings (OSTI)

They heyday of demand-side management may be over as far as utilities are concerned. The future path of utility demand-side management programs is obscured in a haze of important questions, especially questions regarding potential legislation and retail wheeling. Until recently, utility after utility was announcing new DSM programs, seemingly almost daily. But, as pointed out in our November issue by Robert Smock, Electric Light & Power`s editorial director, {open_quotes}Survivors of ruthless competition will not be doing much to reduce electricity sales. They`ll be doing their best to sell more of their product.

Stein, H. [ed.

1995-01-01T23:59:59.000Z

316

Impact of 1980 scheduled capacity additions on electric-utility oil consumption  

SciTech Connect

The electric-utility sector currently consumes approximately 8% of the total oil used in the Nation. This oil represented about 15% of total fuel consumed by electric utilities in 1979. Two important factors that affect the level of utility oil consumption in 1980 are the substantial increase in coal-fired generating capacity and the uncertainty surrounding nuclear-plant licensing. With particular emphasis on these considerations, this report analyzes the potential for changes in electric-utility oil consumption in 1980 relative to the 1979 level. Plant conversions, oil to coal, for example, that may occur in 1980 are not considered in this analysis. Only the potential reduction in oil consumption resulting from new generating-capacity additions is analyzed. Changes in electric-utility oil consumption depend on, among other factors, regional-electricity-demand growth and generating-plant mix. Five cases are presented using various electricity-demand-growth rate assumptions, fuel-displacement strategies, and nuclear-plant-licensing assumptions. In general, it is likely that there will be a reduction in electric-utility oil consumption in 1980. Using the two reference cases of the report, this reduction is projected to amount to a 2 to 5% decrease from the 1979 oil-consumption level; 7% reduction is the largest reduction projected.

Gielecki, M.; Clark, G.; Roberts, B.

1980-08-01T23:59:59.000Z

317

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

318

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

319

Italian Association of Energy EconomistsYardstick Regulation of Electricity Distribution Utilities Based on the Estimation of an Average Cost Function *  

E-Print Network (OSTI)

In this paper we estimate an average-cost function for a panel of 45 Swiss electricity distribution utilities as a basis for yardstick regulation of the distribution-network access prices. Unlike the existing literature, we separate the electricity sales function of utilities from the network operation function. Several exogenous variables measuring the heterogeneity of the service areas were included in the model specification in order to allow the regulator to set differentiated benchmark prices incorporating this heterogeneity. We can identify different exogenous service area characteristics that affect average cost. These are the load factor, the customer density and the output density of different consumer groups. Moreover, the estimation results indicate the existence of significant economies of scale; i.e. most of the Swiss utilities in our sample are too small to reach minimum efficient scale. However, to give the small utilities incentives to merge the size of the utilities must not be included in the yardstick calculation. 1.

Massimo Filippini; Jrg Wild; Massimo Filippini; Jrg Wild

1999-01-01T23:59:59.000Z

320

Electric Utility Company Assigned to a Zip Code? | OpenEI Community  

Open Energy Info (EERE)

Electric Utility Company Assigned to a Zip Code? Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers part of the zip code in question or not. How do I report an error like this for correction? Thanks. Submitted by Conroyt on 23 May, 2013 - 09:01 1 answer Points: 0 Thanks for submitting this. The Utilities Gateway (http://en.openei.org/wiki/Gateway:Utilities) uses the developer.nrel.gov service for zip-code lookups (http://developer.nrel.gov/doc/api/utility_rates/v3). This in turn uses Google for geocoding, and finds the centroid of the geographic region in question. This means that the result is based on the center of a zip code region, which may have no data. This question is timed well as we are

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal Multi-scale Capacity Planning under Hourly Varying Electricity Prices  

E-Print Network (OSTI)

1 Optimal Multi-scale Capacity Planning under Hourly Varying Electricity Prices Sumit Mitra Ignacio;2 Motivation of this work · Deregulation of the electricity markets caused electricity prices to be highly? (retrofit) · Challenge: Multi-scale nature of the problem! Hourly varying electricity prices vs. 10-15 years

Grossmann, Ignacio E.

322

Reliability of Electric Utility Distribution Systems: EPRI White Paper  

Science Conference Proceedings (OSTI)

This report discusses what is known about electric power distribution system reliability and investigates whether there are generally available methods for performing reliability analysis for distribution systems. The theory of the reliability of general systems is well understood. A fundamental issue is whether an appropriate implementation of the theory exists in a form readily usable by distribution system planners and designers.

2000-10-17T23:59:59.000Z

323

Program on Technology Innovation: Utility Scale of Use of Biomass  

Science Conference Proceedings (OSTI)

The report introduces the main aspects of co-firing biomass with coal, briefly focusing on the main problems and constraints related to utilizing biomass together with coal for power generation and the potential of the torrefaction + pelleting (ToP) preprocessing treatment in mitigating many of these constraints. Torrefaction combined with a pelletization process makes the logistics of transporting and storing bulky biomass more efficient due to its significantly higher energy. Torrefaction is a technol...

2009-03-31T23:59:59.000Z

324

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

325

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

326

International Benchmarking and Yardstick Regulation: An Application to European Electricity Utilities  

E-Print Network (OSTI)

. Also, due to electricity market liberalisation and privatisation policies, power markets and ownership of the utilities are becoming increasingly international, and mergers and acquisitions tend to reduce the domestic information base. Regulators can...

Jamasb, Tooraj; Pollitt, Michael G.

2004-06-16T23:59:59.000Z

327

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network (OSTI)

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

328

City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

329

Climate change adaptation in the U.S. electric utility sector  

E-Print Network (OSTI)

The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

Higbee, Melissa (Melissa Aura)

2013-01-01T23:59:59.000Z

330

A Review of Coal Mine Methane Recovery for Electric Utilities  

Science Conference Proceedings (OSTI)

Recovery of methane from coal mines might be a cost-effective offset method for some utilities looking for ways to reduce or offset their greenhouse gas emissions. This report provides an evaluation of potential recovery amounts and costs for U.S. mines along with a discussion of technical and legal issues.

1997-01-12T23:59:59.000Z

331

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

DOE Green Energy (OSTI)

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

332

" Electric Utilities",602076,"Florida","Rhode Island"  

U.S. Energy Information Administration (EIA) Indexed Site

Highest","Lowest" Highest","Lowest" "United States" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",1039062,"Texas","District of Columbia" " Electric Utilities",602076,"Florida","Rhode Island" " Independent Power Producers & Combined Heat and Power",436986,"Texas","Alaska" "Net Generation (megawatthours)",4125059899,"Texas","District of Columbia" " Electric Utilities",2471632103,"Florida","New Jersey" " Independent Power Producers & Combined Heat and Power",1653427796,"Texas","District of Columbia" "Emissions (thousand metric tons)"

333

EPRI EMF Exposure Database: University of North Carolina (UNC) Electrical Utility Worker Data Set  

Science Conference Proceedings (OSTI)

The University of North Carolina (UNC) Electrical Utility Worker Data Set contains measurement data collected during an epidemiologic study of leukemia and brain cancer mortality among nearly 139,000 men employed at five U.S. electric utilities. The data set contains eight data products related to measurements of magnetic field personal exposure. This document describes the UNC data products and provides a common set of statistical parameters, facilitating this study's comparison with other data sets in ...

1998-11-09T23:59:59.000Z

334

Adapting state and national electricity consumption forecasting methods to utility service areas. Final report  

SciTech Connect

This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

Swift, M.A.

1984-07-01T23:59:59.000Z

335

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

336

Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990  

Reports and Publications (EIA)

The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

Information Center

1994-03-01T23:59:59.000Z

337

Guided Horizontal Drilling: A Primer for Electric Utilities  

Science Conference Proceedings (OSTI)

This document is intended to be an introduction to guided horizontal drilling, also termed horizontal directional drilling (HDD), as an alternative construction method to open trenching for the installation of underground power cables, pipes, ducts, or conduits. It is written for an audience that includes electric power engineers, designers, operations and procurement personnel. The document introduces guided horizontal drilling technology, the equipment, and several critical aspects of operating the equ...

1997-02-18T23:59:59.000Z

338

Statistical recoupling: A new way to break the link between electric-utility sales and revenues  

SciTech Connect

In 1991, US electric utilities spent almost $1.8 billion on demand-side management (DSM) programs. These programs cut peak demands 5% and reduced electricity sales 1% that year. Utility projections suggest that these reductions will increase to 9% and 3%, respectively, by the year 2001. However, utility DSM efforts vary enormously across the country, concentrated in a few states along the east and west coasts and the upper midwest. To some extent, this concentration is a function of regulatory reforms that remove disincentives to utility shareholders for investments in DSM programs. A key component of these reforms is recovery of the net lost revenues caused by utility DSM programs. These lost revenues occur between rate cases when a utility encourages its customers to improve energy efficiency and cut demand. The reduction in sales means that the utility has less revenue to cover its fixed costs. This report describes a new method, statistical recoupling (SR), that addresses this net-lost-revenue problem. Like other decoupling approaches, SR breaks the link between electric-utility revenues and sales. Unlike other approaches, SR minimizes changes from traditional regulation. In particular, the risks of revenue swings associated with year-to-year changes in weather and the economy remain with the utility under SR. Statistical recoupling uses statistical models, based on historical data, that explain retail electricity sales as functions of the number of utility customers, winter and summer weather, the condition of the local economy, electricity price, and perhaps a few other key variables. These models, along with the actual values of the explanatory variables, are then used to estimate ``allowed`` electricity sales and revenues in future years.

Hirst, E.

1993-09-01T23:59:59.000Z

339

Electric Utility Terrain Vehicle Demonstration in a Military Base Application  

Science Conference Proceedings (OSTI)

Utility terrain vehicles (UTVs), also called all terrain vehicles (ATVs), are used for a variety of purposes ranging from transporting people and materials to recreation. Examples of uses include transportation at military bases, for beach patrols, at ports, agricultural locations, industrial sites, and local/municipal applications such as at parks and schools. As of August 30, 2012 the Federal Highway Administration estimated that annual fuel usage of All-terrain vehicles to be approximately 173 ...

2013-07-24T23:59:59.000Z

340

Are price caps the answer for electric utilities  

SciTech Connect

There is no widely acceptable alternative to traditional rate-base/rate-of-return regulation. The industry is keenly interested in the experiment currently unfolding in the telephone industry: the price cap approach being followed by the Federal Communications Commission (FCC) in regulating AT and T, and by many states in regulating local telephone companies. This approach offers an interesting and possibly useful alternative to traditional utility regulation.

Silverman, L.P. (McKinsey and Co., Washington, DC (United States)); Wenner, D.L.; Peters, R.S. (McKinsey and Company, Atlanta, GA (United States))

1991-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UTILITY RESTRUCTURING Electric Utility Restructuring: What Does It Mean for Residential and Small Retail Consumers in Maine?  

E-Print Network (OSTI)

poses both advantages and disadvantages to residential and small retail consumers in Maine. While electric restructuring in Maine has been thoughtfully developed, the basic question of whether electricity rates will be lower for the average consumer will remain uncertain for some time. This uncertainty is linked not only to Maines electricity rate bidding process but also to potentially oligopolistic national trends. In addition, whether individual consumers achieve savings in their electricity costs will be determined, in part, by their choice of electricity supplier. While some consumers may prefer a higher-cost supplier because of the value-added services that accompany that option, others may make no choice and, by default, receive the standard optionwhere rates are determined by the Maine Public Utilities Commission (MPUC). ? In this article, the authors describe the factors that initiated the push toward restructuring, the history of the enabling legislation, and relevant portions of the MPUCs Consumer Education Program. To consumers, the authors emphasize the importance of aggregationclusters of buying groupsand detail how the nature of open competition may affect them. In particular, they call attention to the additional services that may be provided by electricity suppliers. Finally, in discussing the implications of deregulation, they lay out the uncertainties that lie ahead for consumers, policymakers, and regulators as Maine opens itself up to competition in the electric power market.

Lewis Tagliaferre; Susan Greenwood

2000-01-01T23:59:59.000Z

342

Electric-utility DSM programs: 1990 data and forecasts to 2000  

SciTech Connect

In April 1992, the Energy Information Administration (EIA) released data on 1989 and 1990 electric-utility demand-site management (DMS) programs. These data represent a census of US utility DSM programs, with reports of utility expenditures, energy savings, and load reductions caused by these programs. In addition, EIA published utility estimates of the costs and effects of these programs from 1991 to 2000. These data provide the first comprehensive picture of what utilities are spending and accomplishing by utility, state, and region. This report presents, summarizes, and interprets the 1990 data and the utility forecasts of their DSM-program expenditures and impacts to the year 2000. Only utilities with annual sales greater than 120 GWh were required to report data on their DSM programs to EIA. Of the 1194 such utilities, 363 reported having a DSM program that year. These 363 electric utilities spent $1.2 billion on their DSM programs in 1990, up from $0.9 billion in 1989. Estimates of energy savings (17,100 GWh in 1990 and 14,800 GWh in 1989) and potential reductions in peak demand (24,400 MW in 1990 and about 19,400 MW in 1989) also showed substantial increases. Overall, utility DSM expenditures accounted for 0.7% of total US electric revenues, while the reductions in energy and demand accounted for 0.6% and 4.9% of their respective 1990 national totals. The investor-owned utilities accounted for 70 to 90% of the totals for DSM costs, energy savings, and demand reductions. The public utilities reported larger percentage reductions in peak demand and energy smaller percentage DSM expenditures. These averages hide tremendous variations across utilities. Utility forecasts of DSM expenditures and effects show substantial growth in both absolute and relative terms.

Hirst, E.

1992-06-01T23:59:59.000Z

343

Resolution of reservoir scale electrical anisotropy from marine CSEM data  

E-Print Network (OSTI)

model for the electrical resistivity of two-phase geologicsize, where the electrical resistivity is expected to beto the vertical electrical resistivity and to a lesser

Brown, V.

2013-01-01T23:59:59.000Z

344

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm  

E-Print Network (OSTI)

Battery Utilization in Electric Vehicles: Theoretical Analysis and an Almost Optimal Online Algorithm Ron Adany Tami Tamir Abstract We consider the problem of utilizing a pack of m batteries serving among the batteries in the pack. A battery's life depends on the discharge current used for supplying

Tamir, Tami

345

Early, Cost-Effective Applications of Photovoltaics in the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Photovoltaic (PV)-powered systems can compete economically with conventional utility approaches such as distribution line extensions and step-down transformer installation for powering small electric loads. This study identified more than 60 cost-effective applications of PV-powered systems for utilities and their customers.

1994-01-01T23:59:59.000Z

346

Energy and environmental advantages of cogeneration with nuclear and coal electrical utilities  

Science Conference Proceedings (OSTI)

The use of electrical-utility cogeneration from nuclear energy and coal is examined for improving regional energy-resource utilization efficiency and environmental performance. A case study is presented for a large and diverse hypothetical region which ... Keywords: coal, cogeneration, combined heat and power, efficiency, emissions, nuclear energy

Marc A. Rosen

2009-02-01T23:59:59.000Z

347

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive for the industrial customer to alter their present operation. Utilities recognize that industry offers the greatest potential for peak load reduction.

Williams, M. M.

1981-01-01T23:59:59.000Z

348

Fuel Inventory Management for Electric Companies: Current Uses of the EPRI Utility Fuel Inventory Model (UFIM)  

Science Conference Proceedings (OSTI)

This report describes current applications of the Utility Fuel Inventory Model (UFIM) developed by the Electric Power Research Institute (EPRI). This model is designed to help electric companies to better manage policy and operational decisions related to managing power plant fuel inventories. This report specifically address: (i) problems currently faced by electric power companies where fuel inventories can be used to address the problems; and, (ii) how the UFIM analysis tool can be used to ...

2013-07-26T23:59:59.000Z

349

Adapting Utility Solar Strategies for a Changing Electricity Landscape: Innovative Business Approaches for Consideration  

Science Conference Proceedings (OSTI)

This report considers the need for outside-the-box electric utility strategies that manage future deployment of distributed solar. Business models are discussed that offer potential to technically and financially align with utility interests and inform future planning and program development. For example, benefits and challenges of utility approaches that foster collaboration with third-party solar operators (TPO) are examined. In addition, the merits and technical feasibility of ...

2013-12-20T23:59:59.000Z

350

Superconducting energy storage development for electric utility systems  

DOE Green Energy (OSTI)

Model SMES experiments performed at LASL show that magnetic energy storage in a superconducting magnet is a viable alternate to energy storage methods which are being built today. It is a fast responding device, i.e., milliseconds, and efficient method which does not require electric energy be converted to mechanical form for storage. Component tests on a model SMES system include 12 pulse converter, automatic and manual converter power control system, and high current superconductors have been performed to evaluate and develop systems which could be used on the 100 MJ SMES system that has been designed. Test circuits have been designed and used for economical and nondestructive testing of magnets for superconductor performance and evaluation. A closed-loop model SMES system has been developed and built to study the electrical characteristics of the system. Initial test results were obtained for a symmetrically and asymmetrically triggered twelve-pulse converter. The asymmetrically triggered bridge shows the lower reactive power requirement, but a more distorted line current. Future converter tests and studies will be required to clearly identify the better circuit. A converter optimization study will include an evaluation of costs for harmonic filtering and power factor correction. Tests with the automatic control system show that a SMES system has switching times between the charging and discharging mode of about a cycle and a half. This makes the system very attractive for power system stabilization.

Turner, R.D.; Boenig, H.J.; Hassenzahl, W.V.

1976-01-01T23:59:59.000Z

351

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

352

Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",1,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",188,122,66,35.6 " 20-49",2311,1901,410,39.5 " 50-99",2951,2721,230,9.6 " 100-249",6674,5699,974,7.1

353

Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE Column Factors:",0.9,1.1,1 "Value of Shipments and Receipts" "(million dollars)" " Under 20",222,164," Q ",23.3 " 20-49",1131,937,194,17.2

354

Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers  

U.S. Energy Information Administration (EIA) Indexed Site

8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" 8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,1,1 , 20,"Food and Kindred Products",988,940,48,16.2 2011," Meat Packing Plants",0,0,0,"NF"

355

Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars  

Science Conference Proceedings (OSTI)

Observations of the wake generated by a single utility-scale turbine and collected by the Texas Tech University Ka-band mobile research radars on 27 October 2011 are introduced. Remotely sensed turbine wake observations using lidar technology have ...

Brian D. Hirth; John L. Schroeder; W. Scott Gunter; Jerry G. Guynes

2012-06-01T23:59:59.000Z

356

Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii  

DOE Green Energy (OSTI)

This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

Not Available

2012-03-01T23:59:59.000Z

357

TY RPRT T1 Utility Scale Solar An Empirical Analysis of Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States A1 Mark Bolinger A1 Samantha Weaver AB p Berkeley Lab hosted a webinar...

358

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

as sources of low-cost baseload power. 4.6.3 LargeScaleEEb is the variable cost of baseload power purchases, and L isbut simply avoids baseload power purchases. Utilities that

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

359

Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine  

Science Conference Proceedings (OSTI)

High-spatial-and-temporal-resolution radial velocity measurements surrounding a single utility-scale wind turbine were collected using the Texas Tech University Ka-band mobile research radars. The measurements were synthesized to construct the ...

Brian D. Hirth; John L. Schroeder

2013-01-01T23:59:59.000Z

360

Optimal Generation Expansion Planning for Electric Utilities Using Decomposition and Probabilistic Simulation Techniques  

E-Print Network (OSTI)

Three related methods are presented for determining the least-cost generating capacity investments required to meet given future demands for electricity. The models are based on application of large-scale mathematical ...

Bloom, Jeremy A.

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pacific gas electric: 1993 EL P Utility of the Year. Incentive nuclear regulation spurs financial comeback  

SciTech Connect

Incentive agreements for Diablo Canyon nuclear plant helped spur Pacific Gas Electric Co.'s financial comeback. Consistent nuclear plant capacity factors above 80 percent contributed 38 percent of 1992 PG E earnings per share. This, plus aggressive cost cutting and reorganization, industry leading demand-side management, environmental measures and a rate refund and freeze are among the reasons Electric Light Power magazine names Pacific Gas Electric Co. the 1993 EL P Utility of the Year. San Francisco-based PG E is the 25th utility to receive the annual award for investor-owned electric utilities. PG E employees strive to create the kind of environment that can address increasing industry competitiveness. Rather than just doing their jobs, people consistently challenge each other to do their jobs better, trying to anticipate the changes of tomorrow and the next millennium.

Hoske, M.T.; Beaty, W.

1993-12-01T23:59:59.000Z

362

Financial statistics of major U.S. publicly owned electric utilities 1995  

SciTech Connect

The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

NONE

1997-07-01T23:59:59.000Z

363

ESS 2012 Peer Review - Evaluating Utility Owned Electric ESS - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluating Utility Owned Evaluating Utility Owned Electric Energy Storage Systems: A Perspective for State Electric Utility Regulators DOE Energy Storage Program Peer Review 2012 September 28, 2012 Dhruv Bhatnagar & Verne Loose Sandia National Laboratories Motivation for this Work  Many state utility regulatory bodies are unfamiliar with electric energy storage systems  The technology  The functional uses  The value of these uses to the grid  This leads to a handicap in their proper evaluation for rate base  May prevent the best (economic) technologies from system integration 2 Source: GE What we are doing  Developing a guidebook:  Inform regulators about the system benefits of energy storage  Identify regulatory challenges to increased

364

Estimating potential stranded commitments for U.S. investor-owned electric utilities  

SciTech Connect

New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and other parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.

Baxter, L.; Hirst, E.

1995-01-01T23:59:59.000Z

365

Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint  

Science Conference Proceedings (OSTI)

Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

Fingersh, L. J.

2004-07-01T23:59:59.000Z

366

Utility-Scale Silicon Carbide Power Transistors: 15 kV SiC IGBT Power Modules for Grid Scale Power Conversion  

SciTech Connect

ADEPT Project: Cree is developing silicon carbide (SiC) power transistors that are 50% more energy efficient than traditional transistors. Transistors act like a switch, controlling the electrical energy that flows through an electrical circuit. Most power transistors today use silicon semiconductors to conduct electricity. However, transistors with SiC semiconductors operate at much higher temperatures, as well as higher voltage and power levels than their silicon counterparts. SiC-based transistors are also smaller and require less cooling than those made with traditional silicon power technology. Cree's SiC transistors will enable electrical circuits to handle higher power levels more efficiently, and they will result in much smaller and lighter electrical devices and power converters. Cree, an established leader in SiC technology, has already released a commercially available SiC transistor that can operate at up to 1,200 volts. The company has also demonstrated a utility-scale SiC transistor that operates at up to 15,000 volts.

None

2010-09-01T23:59:59.000Z

367

Can I generate and sell electricity to an electric utility? - FAQ ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

368

Vehicle Yaw Control Utilizing Hybrid Electric Drivetrains with Multiple Electric Motors.  

E-Print Network (OSTI)

??Vehicles with multiple electric motors coupled to individual wheels have excitingopportunities for safety control systems. An investigation is conducted to determine whatdynamic benefits can be (more)

D'Iorio, James

2008-01-01T23:59:59.000Z

369

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

DOE Green Energy (OSTI)

Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

Mendelsohn, M.; Kreycik, C.

2012-04-01T23:59:59.000Z

370

Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices  

SciTech Connect

Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levelseliminating the need for large transformers. Transformers step up the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually stepped down to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcons new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcons modular devices are designed to ensure reliabilityif one device fails it can be bypassed and the system can continue to run.

None

2012-01-25T23:59:59.000Z

371

Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation  

DOE Green Energy (OSTI)

This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

2013-05-01T23:59:59.000Z

372

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

373

Electric-utility DSM-program costs and effects, 1991 to 2001  

SciTech Connect

For the past three years (1989, 1990, and 1991), all US electric utilities that sell more than 120 GWh/year have been required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a rich and uniquely comprehensive picture of electric-utility DSM programs in the United States. Altogether, 890 utilities (of about 3250 in the United States) ran DSM programs in 1991; of these, 439 sold more than 120 GWh and reported details on their DSM programs. These 439 utilities represent more than 80% of total US electricity sales and revenues. Altogether, these utilities spent almost $1.8 billion on DSM programs in 1991, equal to 1.0% of total utility revenues that year. In return for these (and prior-year) expenditures, utility DSM programs cut potential peak demand by 26,700 MW (4.8% of the national total) and cut annual electricity use by 23,300 GWh (0.9% of the national total). These 1991 numbers represent substantial increases over the 1989 and 1990 numbers on utility DSM programs. Specifically, utility DSM expenditures doubled, energy savings increased by almost 50%, and demand reductions increased by one-third between 1989 and 1991. Utilities differed enormously in their DSM-program expenditures and effects. Almost 12% of the reporting utilities spent more than 2% of total revenues on DSM programs in 1991, while almost 60% spent less than 0.5% of revenues on DSM. Utility estimates of future DSM-program expenditures and benefits show continuing growth. By the year 2001, US utilities expect to spend 1.2% of revenues on DSM and to cut demand by 8.8% and annual sales by 2.7%. Here, too, expectations vary by region. Utilities in the West and Northwest plan to spend more than 2% of revenues on DSM that year, while utilities in the Mid-Atlantic, Midwest, Southwest, Central, and North Central regions plan to spend less than 1% of revenues on DSM.

Hirst, E.

1993-05-01T23:59:59.000Z

374

Two New Reports on Utility-Scale Solar from NREL | OpenEI Community  

Open Energy Info (EERE)

Two New Reports on Utility-Scale Solar from NREL Two New Reports on Utility-Scale Solar from NREL Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 June, 2012 - 14:33 imported OpenEI Article courtesy of the NREL Finance Blog Utility-scale solar is still something of a novelty in the renewable energy ecosystem. Large-scale deployment of these multi-megawatt (MW) installations has only recently been enabled in the United States by two key pieces of federal legislation and state-level implementation of renewable energy standards. The market boomed in 2011, adding more than 760 MW of capacity and ending the year with a bullish outlook for 2012. In April, the National Renewable Energy Laboratory (NREL) published a series of three reports on the market, technologies, policies, and cost of energy

375

Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation  

E-Print Network (OSTI)

Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation: Hardware-in-the-loop Hybrid electric vehicle Buckingham Pi Theorem Battery model a b s t r a c t Hardware between the highly coupled subsystems typically found in an electric or hybrid-electric vehicle

Brennan, Sean

376

Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

670 Federal Register 670 Federal Register / Vol. 76, No. 212 / Wednesday, November 2, 2011 / Notices DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative, Inc.: Notice of Intent To Prepare an Environmental Impact Statement and Hold Public Scoping Meetings AGENCY: Rural Utilities Service, USDA. ACTION: Notice. SUMMARY: The Rural Utilities Service (RUS), an agency within the U.S. Department of Agriculture (USDA), intends to prepare an environmental impact statement (EIS) for Basin Electric Power Cooperative's (Basin Electric) proposed Antelope Valley Station (AVS) to Neset Transmission Project (Project) in North Dakota. RUS is issuing this Notice of Intent (NOI) to inform the public and interested parties about the proposed Project, conduct a public

377

Superconductive Magnetic Energy Storage (SMES) System Studies for Electrical Utility at Wisconsin  

E-Print Network (OSTI)

Two-layer low aspect ratio rippled and non-rippled solenoids mounted in surface trenches are described for superconductive magnetic energy storage utility applications. Open pool cooling in superfluid helium provides extended time cryogenic stability. Axial structure also functions as a protective heat absorbing secondary during emergency discharge. The cost of the conductor, trench, dewar, struts, radial structure, plus others are proportional to E^ 2/3 where E= stored energy; the cost of the axial structure is approximately E; and the cost of refrigeration is a constant plus an E^2/3 term. Costs scale approximately from E^0.58 (low E) to E^0.71 (100 - 3000 MWh) to E ^0.78 (3000 to 10,000 MWh). The cost of the ac-dc conversion system is about $60/kW. The electrical usage is best for load-leveling units that charge 8 h at night and discharge 15 h during the daytime. 98% storage efficiency and rapid power reversal are the two primary benefits of SMES. The potential impact of high Tc oxide superconductors is a 10%-20% cost reduction for large SMES units (above 3000 MWh). The operational storage efficiency of smaller units would improve to better than 95% for E > 10 MWh.

Boom, R. W.; Eyssa, Y. M.; Abdelsalem, M. K.; Huang, X.

1988-09-01T23:59:59.000Z

378

Electric utility capacity expansion and energy production models for energy policy analysis  

DOE Green Energy (OSTI)

This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

Aronson, E.; Edenburn, M.

1997-08-01T23:59:59.000Z

379

DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AND REGIONAL POLICIES THAT AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National Association of State Energy Offi- cials, shall conduct a study of State and regional policies that promote cost-effective programs to reduce energy con- sumption (including energy efficiency programs) that are carried out by- (1) utilities that are subject to State regulation; and

380

Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; 5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 347 168 179 3112 Grain and Oilseed Milling 142 6 136 311221 Wet Corn Milling 14 4 10 31131 Sugar Manufacturing 109 88 21 3114 Fruit and Vegetable Preserving and Specialty Foods 66 66 0 3115 Dairy Products 22 0 22 3116 Animal Slaughtering and Processing 0 0 0 312 Beverage and Tobacco Products 1 1 * 3121 Beverages 1 1 * 3122 Tobacco 0 0 0 313 Textile Mills

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC TRANSMISSION CONGESTION STUDY JANUARY 2012 The Iowa Utilities Board (Board) is pleased to provide these comments as the Department of Energy (DOE) commences its next transmission congestion study (2012). These comments are organized to give DOE a perspective on electric transmission issues in Iowa - transmission planning, congestion, and siting. Iowa has been a leader in wind generation installation as well as manufacturing of wind turbines. Iowa has the second most installed wind capacity of any state. Since the DOE 2009 congestion study, Iowa added 884 MW of wind generation in 2009 -2010. MidAmerican Energy Company (MidAmerican), an Iowa investor owned utility added 593.5 MW in 2011 and plans to

382

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

383

Impact of state regulatory practices on electric utility: an empirical analysis  

Science Conference Proceedings (OSTI)

The objective of this study was to investigate the impact of state regulatory practices on investor-owned electric utilities in the context of interactions among 5 variables: allowed rate of return; cost of capital; cost of electric service; price of electricity; and realized rate of return. A recursive system of 5 equations was constructed and the ordinary least-squares estimation was adopted. Data sets comprise 77 utilities in the US for 1976 and 1980. Results are: (1) allowed rate of return is principally determined by firm specific variables rather than by commission-specific variables, and the behavior of the public utility commission is adaptive; (2) high common equity ratio and a high market to book value ratio lower the cost of external capital, as proxies for financial strength and regulatory risk; (3) long-run average cost of electric service is nearly horizontal and any inter-firm difference in the cost is predominantly explained by the difference in the price of fuel that a utility plant uses; inclusion of Construction Work in Progress adversely affects the realized rate of return, not the cost or price; (4) electricity price is mostly determined by the average cost, and inter-firm differences in the allowed rate of return have little effect on the price; and (5) regulation is effective mainly in the sense that the realized rate of return is severely affected by the allowed rate of return.

Lee, J.W.

1985-01-01T23:59:59.000Z

384

Energy Storage in a Restructured Electric Utility Industry: Report on EPRI Think Tanks I and II  

Science Conference Proceedings (OSTI)

Energy storage will play an increasingly crucial role in the deregulated electric power industry, with future generation probably decreasing in size and becoming more distributed. EPRI sponsored two think tanks to explore the need for energy storage in a deregulated environment and to assess the state of development of energy storage technologies. The think tanks described the U.S. Federal Energy Regulatory Commission (FERC) view of deregulation and how electric utility deregulation compares to the dereg...

1997-09-30T23:59:59.000Z

385

Program on Technology Innovation: Biotechnological Approaches to Removing Boron from Electric Utility Wastewater  

Science Conference Proceedings (OSTI)

Coal-based electric power generation faces compliance difficulties with respect to boron (B) contamination. Concentrations of B in coal-combustion byproduct electric utility effluents commonly range from 30 to 120 ppm; there is a critical need for cost-effective technologies to treat and remove B from these effluents to levels around 1.7ppm. Wetland treatment systems offer significant operational and maintenance cost savings over chemical treatment alternatives for wastewater discharges from ...

2012-11-28T23:59:59.000Z

386

Key Climate Variables Relevant to the Energy Sector and Electric Utilities  

Science Conference Proceedings (OSTI)

Changes in climate affect the energy sector and electric utilities through changes in demand, altered production and transmission capabilities, and effects on the operation of utility infrastructure. Unfortunately, few studies have been conducted on the impacts of climate change on the energy sector. This report outlines some key climate variables that may affect the energy sector, including long-term trends such as increases in air temperature, water temperatures, and sea-level rise; changes in precipit...

2009-03-31T23:59:59.000Z

387

Assessment and design of small-scale hydro-electric power plants.  

E-Print Network (OSTI)

??Appraisal and design of small-scale hydro power plants requires a knowledge of hydraulics, hydrology, civil, mechanical, and electrical engineering, and basic economics. Further, small hydro (more)

Jones, ID

1988-01-01T23:59:59.000Z

388

Design and cost of a utility scale superconducting magnetic energy storage plant  

DOE Green Energy (OSTI)

Superconducting Magnetic Energy Storage (SMES) has potential as a viable technology for use in electric utility load leveling. The advantage of SMES over other energy storage technologies is its high net roundtrip energy efficiency. This paper reports the major features and costs of a jointly developed 5000 MWh SMES plant design.

Loyd, R.J.; Nakamura, T.; Schoenung, S.M.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

1985-01-01T23:59:59.000Z

389

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institutes (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

390

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

391

Strategic planning in electric utilities: Using wind technologies as risk management tools  

Science Conference Proceedings (OSTI)

This paper highlights research investigating the ownership of renewable energy technologies to mitigate risks faced by the electric utility industry. Renewable energy technology attributes of fuel costs, environmental costs, lead time, modularity, and investment reversibility are discussed. Incorporating some of these attributes into an economic evaluation is illustrated using a municipal utility`s decision to invest in either wind generation or natural gas based generation. The research concludes that wind and other modular renewable energy technologies, such as photovoltaics, have the potential to provide decision makers with physical risk-management investments.

Hoff, T E [Pacific Energy Group, Stanford, CA (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States)

1996-06-01T23:59:59.000Z

392

Electric utility application of wind energy conversion systems on the island of Oahu  

DOE Green Energy (OSTI)

This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

Lindley, C.A.; Melton, W.C.

1979-02-23T23:59:59.000Z

393

A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets  

SciTech Connect

This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

Warwick, William M.

2002-06-03T23:59:59.000Z

394

Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mike Aimone, P.E. Mike Aimone, P.E. National Security Global Business Battelle Memorial Institute Utility Scale Renewable Energy Development near DOD Installations Making the Case for Land Use Compatibility Comments expressed are strictly those of the Briefer, and not necessarily the views or positions of the Battelle Memorial Institute or the Department of Defense 2 Sizing the Issue * Utility scale renewable energy development near DOD installations, ranges and Military Operational Areas/Special Use Airspace can affect mission operations and readiness * In the US, Land Use Planning is a "states-right" issue - tied to "Police Powers" - Goal: Acceptable zoning rules and consistent zoning

395

The Large Scale Roll-Out of Electric Vehicles  

E-Print Network (OSTI)

the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

2012-10-26T23:59:59.000Z

396

Vegetation Management by Electric Utilities: Use of Herbicides and Other Methods  

Science Conference Proceedings (OSTI)

This report summarizes the essential elements and principles comprising electric utility vegetation management programs, defines management problems, and discusses possible research on vegetation management issues. The report particularly focuses on the use of herbicides and their effects on wildlife and human health. Legal and regulatory aspects and cost control issues are also covered.

1995-03-22T23:59:59.000Z

397

Assessment of Advanced Batteries for Energy Storage Applications in Deregulated Electric Utilities  

Science Conference Proceedings (OSTI)

Energy storage technologies, including advanced batteries, are likely to find new roles in a restructured electric utility environment. This study evaluated the near-term potential of fourteen advanced battery technologies to outperform conventional lead-acid batteries in four key energy storage applications.

1998-12-08T23:59:59.000Z

398

Integrating Distributed Resources into Electric Utility Distribution Systems: EPRI White Paper  

Science Conference Proceedings (OSTI)

This EPRI white paper is about understanding electric power engineering issues related to integrating distributed resources (DR) into utility distribution systems. It is an overview designed for all stakeholders rather than a rigorous technical engineering guide. A major goal of the paper is to move discussion of integration issues toward solutions.

2001-12-14T23:59:59.000Z

399

Evaluation of Pen-Based and Hands-Free Computers for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

This report identifies the critical feature and design specifications of pen-based and hands-free computers for electric utility applications. The report concludes with results of a benchmark and field test designed to ensure vendor compliance with these product specifications.

1997-07-21T23:59:59.000Z

400

Integration of Distributed Resources in Electric Utility Systems: Current Interconnection Practice and Unified Approach  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need for improved practices for interconnecting them with electric utility distribution systems. An assessment of current practice is provided, and a unified approach is recommended to achieve greater consistency. This report is a tool that readers can use to simplify their efforts in resolving DR interconnection problems.

1999-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CPI anticipates price benefits in an open electricity market - but utilities `will erect roadblocks`  

SciTech Connect

Chemical manufacturers and industrial gas firms welcome the coming deregulation of electricity because the change offers them competitive choice in power supplies. They anticipate price benefits like those that have flowed from natural gas deregulation, which feed from manufacturers to bypass local utilities and shop for their own fuel supplies.

Pospisil, R.

1994-11-23T23:59:59.000Z

402

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

Science Conference Proceedings (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

403

Human Health Risk Assessment of Chemicals Encountered in Vegetation Management on Electric Utility Rights-of-Way  

Science Conference Proceedings (OSTI)

This report discusses the human health risk assessment of chemicals encountered in vegetation management on electric utility rights-of-way (ROWs).

2003-12-03T23:59:59.000Z

404

Nano-scale optical and electrical probes of materials and processes.  

DOE Green Energy (OSTI)

This report describes the investigations and milestones of the Nano-Scale Optical and Electrical Probes of Materials and Processes Junior/Senior LDRD. The goal of this LDRD was to improve our understanding of radiative and non-radiative mechanisms at the nanometer scale with the aim of increasing LED and solar cell efficiencies. These non-radiative mechanisms were investigated using a unique combination of optical and scanning-probe microscopy methods for surface, materials, and device evaluation. For this research we utilized our new near-field scanning optical microscope (NSOM) system to aid in understanding of defect-related emission issues for GaN-based materials. We observed micrometer-scale variations in photoluminescence (PL) intensity for GaN films grown on Cantilever Epitaxy pattern substrates, with lower PL intensity observed in regions with higher dislocation densities. By adding electrical probes to the NSOM system, the photocurrent and surface morphology could be measured concurrently. Using this capability we observed reduced emission in InGaN MQW LEDs near hillock-shaped material defects. In spatially- and spectrally-resolved PL studies, the emission intensity and measured wavelength varied across the wafer, suggesting the possibility of indium segregation within the InGaN quantum wells. Blue-shifting of the InGaN MQW wavelength due to thinning of quantum wells was also observed on top of large-scale ({micro}m) defect structures in GaN. As a direct result of this program, we have expanded the awareness of our new NSOM/multifunctional SPM capability at Sandia and formed several collaborations within Sandia and with NINE Universities. Possible future investigations with these new collaborators might include GaN-based compound semiconductors for green LEDs, nanoscale materials science, and nanostructures, novel application of polymers for OLEDs, and phase imprint lithography for large area 3D nanostructures.

Bogart, Katherine Huderle Andersen

2007-03-01T23:59:59.000Z

405

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

SciTech Connect

A number of investigations have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggest the deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. An important part of the DOE programs to develop new source technologies, in particular photovoltaic systems, is the experimental testing of complete or nearby complete power units. These experiments provide an opportunity to examine operational and integration issues which must be understood before widespread commercial deployment of these technologies can be achieved. Experiments may also be required to explicitly examine integration, operational, and control aspects of single and multiple new source technology power units within a utility system. An identification of utility information requirements, a review of planned experiments, and a preliminary determination of additional experimental needs and opportunities are presented. Other issues discussed include: (1) the impacts of on-site photovoltaic units on load duration curves and optimal generation mixes are considered; (2) the impacts of on-site photovoltaic units on utility production costs, with and without dedicated storage and with and without sellback, are analyzed; and (3) current utility rate structure experiments, rationales, policies, practices, and plans are reviewed.

1980-09-01T23:59:59.000Z

406

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

407

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

408

Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington, DC, July 1, 2004) A new group formed to work on the important new electricity area known as demand response was announced today in Washington, DC. The United States Demand Response Coordinating Committee (DRCC) will bring together a number of parties to focus on developing information and tools needed to allow demand response to be another option employed to address national, regional and state electricity issues and challenges. The DRCC's efforts are the U.S. part of a larger, global demand response effort announced recently by the International Energy Agency's

409

Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.  

SciTech Connect

This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

United States. Bonneville Power Administration.

1990-06-01T23:59:59.000Z

410

EEI's Ellis: A voice from the Northwest (What changes are in store for the next decade for electric utilities ). [Edison Electric Institute  

SciTech Connect

This article discusses the next decade from the perspective of electric utilities with John B. Ellis chairman of the Edison Electric Institute (EEI) for 1989-1990. Discussed are the top priorities for the next 12 months and the next decade, changing regulatory structures, independent power producers, power-supply versus power demand, energy storage, clean coal technology, acid rain, the greenhouse effect, dependency on natural gas, marketing of energy, and managing electric utilities.

1989-05-01T23:59:59.000Z

411

Cost-effective applications of photovoltaics for electric utilities: An overview  

DOE Green Energy (OSTI)

Cost targets for the large-scale entry of photovoltaic (PV) systems keep moving, subject to the vagaries of global oil prices and the economic health of the world. Over the last four decades since a practical PV device was announced, costs have come down by a factor of 20 or more and this downward trend is expected to continue, albeit at a slower pace. Simultaneously, conversion efficiencies have nearly tripled. There are many applications today for which PV is cost-effective. In recognition of this, utility interest in PV is increasing and this is manifested by projects such as PVUSA and Central and South West`s renewable resource development effort. While no major technical barriers for the entry of PV systems have been uncovered, several key issues such as power quality, system reliability, ramp rates, spinning reserve requirements, and misoperation of protection schemes will have to be dealt with as the penetration of this technology increases. PV is still in the evolutionary phase and is expected to grow for several decades to come. Fueled by environmental considerations, interest in PV is showing a healthy rise both in the minds of the public and in the planning realms of the electric power community. In recognition of this, the Energy Development Subcommittee of the IEEE Energy Development and Power Generation Committee organized a Panel Session on photovoltaics applications at the 1993 International Joint Power Generation Conference held in Kansas City, Missouri. Summaries of the four presentations are assembled here for the benefit of the readers of this Review.

Bigger, J.E. [Electric Power Research Inst., Palo Alto, CA (United States)

1993-12-31T23:59:59.000Z

412

Different approaches to estimating transition costs in the electric- utility industry  

SciTech Connect

The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

Baxter, L.W.

1995-10-01T23:59:59.000Z

413

Electric utility resource planning using Continuous-Discrete Modular Simulation and Optimization (CoDiMoSO)  

Science Conference Proceedings (OSTI)

Electric utility resource planning traditionally focuses on conventional energy supplies such as coal, natural gas, and oil. Nowadays, planning of renewable energy generation as well as its side necessity of storage capacities have become equally important ... Keywords: Continuous-discrete simulation modeling, Distributed energy generation and storage, Electric utility capacity planning, Integrated decision making

Juan Pablo SEnz; Nurcin Celik; Shihab Asfour; Young-Jun Son

2012-11-01T23:59:59.000Z

414

LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD  

SciTech Connect

The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young Unit 2 and TXU Monticello Unit 3. The work involves establishing Hg oxidation levels upstream of air pollution control devices (APCDs) and removal rates across existing ESP and FGD units, determining costs associated with those removal rates, investigating the possibility of the APCD acting as a multipollutant control device, quantifying the balance of plant impacts of the control technologies, and facilitating technology commercialization.

Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

2004-03-01T23:59:59.000Z

415

An approach to assess the performance of utility-interactive wind electric conversion systems  

SciTech Connect

This paper presents a probabilistic approach based on the convolution technique to assess the performance of utility-interactive wind electric conversion systems supplying loads. Expressions are developed to obtain the duration curve for the power injected into the utility grid. The energy injected into the grid and drawn from it to supply the load during the study period can be calculated from this duration curve. The load model employed enables the study period to range from one year to one particular hour-of-day, thus allowing the inclusion of the time-value of energy as appropriate in economic assessments.

Abouzahr, I.; Ramakumar, R. (Oklahoma State Univ., Stillwater, OK (US))

1991-12-01T23:59:59.000Z

416

Electric utility application of wind energy conversion systems on the island of Oahu  

DOE Green Energy (OSTI)

The objective of this study was to assess the potential for the application of Wind Energy Conversion Systems (a field of interconnected WTGs denoted in this report by the acronym WECS) in a specific utility contest to gain advance information concerning their economic feasibility; their optional problems; the criteria and procedures for site selection; environmental impacts; legal, social, and other problems; and the balance of cost and benefits from the point of view of the consumer and the utility. This study addresses the circumstances of the Hawaiian Electric Company operations onthe Island of Oahu.

Lindley, C.A.; Melton, W.C.

1979-02-23T23:59:59.000Z

417

Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit  

E-Print Network (OSTI)

This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement opportunities for their industrial customers. To be meaningful, strategies for increasing industrial competitiveness must consider not only energy use, but also all other production inputs. To this end, the program focusses on three major areas: productivity, environmental protection, and efficiency. The effectiveness of the program will be gauged by its ability to keep utility customers "alive and well."

Jeffress, R. D.

1993-03-01T23:59:59.000Z

418

Large-Scale Hydropower  

Energy.gov (U.S. Department of Energy (DOE))

Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 MW in size, and there is more than 80,000 MW...

419

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

420

Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems  

DOE Green Energy (OSTI)

This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report  

SciTech Connect

Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

NONE

1996-03-04T23:59:59.000Z

422

Regional Impacts of Electric Utility Restructuring on Fuel Markets: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Will open transmission under electric utility restructuring cause low-cost generation to displace high-cost generation? Will this lead to dramatic shifts in patterns of fuel use? This report, the second in a multivolume series by EPRI and GRI addressing deregulation, shows what to expect for each of 10 major regions in the nation. It also dispels many myths about the ongoing effects of restructuring.

1997-06-02T23:59:59.000Z

423

GIS/GPS Workshop '99: Applications and Developments for Electric Utilities  

Science Conference Proceedings (OSTI)

This report documents a 1999 EPRI workshop on recent geographic information system (GIS) and global positioning system (GPS) applications and developments relevant to electric utilities. The workshop content centered around the current state of the art in GIS and GPS technology suited to the planning, design, and management of power delivery assets. Contained in the report are the workshop agenda, lists of presenters and attendees, copies of the workshop presentations, and a summary of the group discussi...

1999-09-30T23:59:59.000Z

424

Molecular-scale measurements of electric fields at electrochemical interfaces.  

Science Conference Proceedings (OSTI)

Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

Hayden, Carl C.; Farrow, Roger L.

2011-01-01T23:59:59.000Z

425

Scaling Effects on Ferro-Electrics: Application in ...  

Science Conference Proceedings (OSTI)

... At nano-scale, strong influence of the surface energy, depolarization field ... Decrease of stand-by loss ( vampire power ... substrate and film energies ...

2011-10-03T23:59:59.000Z

426

Electric utilities broaden their vision, again, and move beyond energy services...to communications services  

SciTech Connect

Energy production and delivery will be tightly coupled with telecommunications and information services for the foreseeable future. In order to control access to the customer and prevent erosion of their customer bases, utilities will be driven to become more aggressive in deploying both supply-side information technologies for improved operation of their generation, transmission, and distribution facilities; and demand side Energy Information Service (EIS). Those information services will enable utilities to provide higher quality services at lower cost with lower environmental impact, and to give their ratepayers better control over their power usage. Utilities have important assets that will be valuable in deploying telecommunications networks that support EIS and other value-added information services. Electric power utilities have the potential to become significant players in the National Information Infrastructure, providing commercial EIS, non-energy value-added services, and telecommunications services. Utility entry into telecommunications markets would bring more competition to those markets and contribute toward universal service goals. Regulatory restrictions on utility entry into telecommunications markets are inconsistent with more recent government policies promoting competition. Joint ventures and other forms of partnering will be necessary to build utility networks, and partnering with telecommunications companies will be especially important to utilities. Pivotal business alliances and regulatory policies that will shape the business environment for both industries are likely to be decided int the next few years. Utilities face a brief window of necessity and opportunity: the necessity to assess the EIS and telecommunications capabilities they will need to support their core business in the future; and the opportunity to consider what new sources of revenue could be opened up by those capabilities.

Mann, M. [Electric Power Research Institutes, Palo Alto, CA (United States)

1995-12-01T23:59:59.000Z

427

Annual Electric Utility Data - EIA-906/920/923 Data File  

Gasoline and Diesel Fuel Update (EIA)

923 detailed data with previous form data (EIA-906/920) 923 detailed data with previous form data (EIA-906/920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel consumption, fossil fuel stocks, and receipts at the power plant and prime mover level. Specific survey information provided: Schedule 2 - fuel receipts and costs Schedules 3A & 5A - generator data including generation, fuel consumption and stocks Schedule 4 - fossil fuel stocks Schedules 6 & 7 - non-utility source and disposition of electricity Schedules 8A-F - environmental data Monthly data (M) - over 1,900 plants from the monthly survey Annual final data - approximately 1,900 monthly plants + 4,100 plants from the annual survey

428

Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.  

SciTech Connect

This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

United States. Bonneville Power Administration.

1991-06-01T23:59:59.000Z

429

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

430

Economic analysis of large-scale hydrogen storage for renewable utility applications.  

DOE Green Energy (OSTI)

The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

Schoenung, Susan M.

2011-08-01T23:59:59.000Z

431

Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; 6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 194 100 93 20-49 282 280 3 50-99 1,115 922 194 100-249 5,225 4,288 936 250-499 5,595 2,696 2,899 500 and Over 20,770 12,507 8,263 Total 33,181 20,793 12,388 Employment Size Under 50 395 177 218 50-99 3,412 3,408 5 100-249 6,687 3,088 3,599 250-499 5,389 4,175 1,214 500-999 7,082 3,635 3,447

432

Financial impacts of nonutility power purchases on investor-owned electric utilities  

SciTech Connect

To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

Not Available

1994-06-01T23:59:59.000Z

433

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

Maharashtra State Electricity Distribution Company Limitednorthern Gujarat electricity distribution company Source: (largest electricity transmission and distribution systems in

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

434

Cutting the electric bill for internet-scale systems  

Science Conference Proceedings (OSTI)

Energy expenses are becoming an increasingly important fraction of data center operating costs. At the same time, the energy expense per unit of computation can vary significantly between two different locations. In this paper, we characterize the variation ... Keywords: cloud computing, electricity markets, traffic engineering

Asfandyar Qureshi; Rick Weber; Hari Balakrishnan; John Guttag; Bruce Maggs

2009-08-01T23:59:59.000Z

435

Capping the electricity cost of cloud-scale data centers with impacts on power markets  

E-Print Network (OSTI)

In this paper, we propose a novel electricity cost capping algorithm that not only minimizes the electricity cost of operating cloud-scale data centers, but also enforces a cost budget on the monthly electricity bill. Our solution first explicitly models the impacts of power demands on electricity prices and the power consumption of cooling and networking in the minimization of electricity cost. In the second step, if the electricity cost exceeds a desired monthly budget due to unexpectedly high workloads, our solution guarantees the quality of service for premium customers and trades off the request throughput of ordinary customers. We formulate electricity cost capping as two related constrained optimization problems and propose an efficient algorithm based on mixed integer programming. Simulation results show that our solution outperforms the state-ofthe-art solutions by having lower electricity costs and achieves desired cost capping with maximized request throughput.

Yanwei Zhang; Yefu Wang; Xiaorui Wang

2011-01-01T23:59:59.000Z

436

Superconducting magnetic energy storage applications and benefits for electric utility power systems  

DOE Green Energy (OSTI)

Large SMES units are being studied for electric utility applications as diurnal, load-curve leveling and as transient stabilizer units. Such SMES units show promise of providing greater operating flexibility than pumped-hydro or other types of energy storage. This operating flexibility, together with its fast response capability to provide transient and dynamic stabilization benefits to a power system, are discussed. Small SMES units are being designed for dynamic stability applications on electric power systems for use when negatively damped system operating conditions are encountered. The 30-MJ, 10-MW SMES dynamic-stabilizer design is presented; and the status of the component development and fabrication contracts which have been placed with commercial manufacturers is discussed.

Turner, R.D.

1979-01-01T23:59:59.000Z

437

Performance evaluation of high-temperature superconducting current leads for electric utility SMES systems  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy`s Superconductivity Technology Program, Argonne National Laboratory and Babcock & Wilcox are developing high-temperature super-conductor (HTS) current leads for application to electric utility superconducting magnetic energy storage systems. A 16,000-A HTS lead has been designed and is being constructed. An evaluation program for component performance was conducted to confirm performance predictions and/or to qualify the design features for construction. Performance of the current lead assemblies will be evaluated in a test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of the evaluations to date are presented.

Niemann, R.C.; Cha, Y.S.; Hull, J.R. [and others

1995-08-01T23:59:59.000Z

438

Determining the value of conservation to Thailand's electric utility  

SciTech Connect

Incorporating demand-side resources into the planning regime of fast-growing electric utilities in developing countries is a particular challenge. In this paper, a method is developed for valuing the contribution of conservation under these circumstances and illustrated through scenarios of electricity savings in Thailand's large commercials sector. The primary value of these scenarios is in the creation of opportunities to defer or cancel plants planned for future inclusion in the system. The benefits of such deferments are twofold: a direct reduction in capacity needs commensurate with the load impacts of the scenario, plus a reduction in the reserve margin required to maintain system reliability. Comparison of the capital requirements of the conservation scenarios versus the deferrable plant capacity showed that conservation is substantially less capital intensive.

Busch, J.F. Jr. (Lawrence Berkeley Lab., Univ. of California, Berkeley, CA (US))

1992-08-01T23:59:59.000Z

439

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

440

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

SciTech Connect

Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Impacts of time-of-day on average electricity prices and utility load factors  

SciTech Connect

A degree of rationalism is brought to the rate debate between marginalist time of day advocates and embedded cost traditionalists by an empirical analysis. Studies show that neither side can claim victory. The results show that blanket statements cannot be made concerning the impacts of TOD in demand and load factor, and that rates reduce only slightly. This paper summarizes the impacts of marginal cost TOD rates on peak demand, generation, load factor, and the average price of electricity. The methodology includes calculation of marginal cost, prediction of effect of TOD on load shapes by means of a Load Curve Forecasting model, and a production costing model. A matrix shows that impacts of TOD rates on individual utilities will depend on the specific utility customer mix, load shape, and generation mix.

Chamberlin, J.H.; Dickson, C.T.; Spann, R.M.

1982-06-01T23:59:59.000Z

442

Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid  

SciTech Connect

Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

443

Incentive regulation in the electric utility industry. Volume II. Final report  

SciTech Connect

On October 15, 1982, Resource Consulting Group, Inc. (RCG), submitted a draft report to the Federal Energy Regulatory Commission (FERC) titled, Incentive Regulation in the Electric Utility Industry. The FERC distributed the draft report to more than 60 individuals and organizations who were requested to review and comment on the various proposals and recommendations outlined in the report. In response to the FERC's request, 18 organizations submitted formal review comments. This report contains reviewers comments on each of the three programs recommended. The three major incentive programs are: (1) Rate Control Incentive program (RCIP); (2) Construction Cost Control Incentive Program (CCIP); and (3) Automatic Rate Adjustment Mechanism (ARAM).

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

444

The death spiral: An assessment of its likelihood in electric utilities  

SciTech Connect

First, we present the death spiral hypothesis (high rate increases leading to bankruptcy), providing a historical background on its inception and discussing the observations provided in other industries of its occurrence through the years. Then we provide a discussion of the conditions necessary for the spiral effect. In doing this we provide insight into the assumptions implied by those who forecast such doom. Based on this discussion, we then provide the reader with a discussion of the implications such a concept has for regulatory policy. In addition, we conclude that given the structure of the regulatory process, the chances of a spiral effect for the electric utility industry have probably been overstated. It is shown that the occurrence of a death spiral is based on unrealistic conditions about the response of a utility's customers to higher rates, the incentives of and constraints facing regulators regarding pricing and permitting a utility to experience permanent financial distress, and the intense actions of a utility's management to avoid financial disaster.

Hemphill, R.C.; Costello, K.W.

1987-01-01T23:59:59.000Z

445

Performance improvement of a solar heating system utilizing off-peak electric auxiliary  

DOE Green Energy (OSTI)

The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

Eltimsahy, A.H.

1980-06-01T23:59:59.000Z

446

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

SciTech Connect

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

447

Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)  

DOE Green Energy (OSTI)

Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

Denholm, P.; Short, W.

2006-10-01T23:59:59.000Z

448

Utility-scale combined-cycle power systems with Kalina bottoming cycles  

SciTech Connect

A new power-generation technology, often referred to as the Kalina cycle, is being developed as a direct replacement for the Rankine steam cycle. It can be applied to any thermal heat source, low or high temperature. Among several Kalina cycle variations, there is one that is particularly well suited as a bottoming cycle for utility combined-cycle applications. It is the subject of this paper. Using an ammonia/water mixture as the working fluid and a condensing system based on absorption-refrigeration principles, the Kalina bottoming cycle outperforms a triple-pressure steam cycle by 16%. Additionally, this version of the Kalina cycle is characterized by an intercooling feature between turbine stages, diametrically opposite to normal reheating practice in steam plants. Energy and mass balances are presented for a 200-MW(electric) Kalina bottoming cycle. Kalina cycle performance is compared to a triple-pressure steam plant. Energy and mass balances are presented as well for a 200-MW(electric) Kalina direct-fired cycle designed for utility purposes.

Kalina, A.I.

1987-01-01T23:59:59.000Z

449

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

450

Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urban Electric Power Takes Energy Storage from Startup to Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute developed a low-cost zinc-anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

451

Resolution of reservoir scale electrical anisotropy from marine CSEM data  

Science Conference Proceedings (OSTI)

A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

2011-10-01T23:59:59.000Z

452

Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology  

SciTech Connect

The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

Douglas P. Cook

2012-05-22T23:59:59.000Z

453

RECOVERY AND UTILIZATION OF COALMINE METHANE: PILOT-SCALE DEMONSTRATION PHASE  

DOE Green Energy (OSTI)

A fuel cell demonstration was conducted on coalmine methane to demonstrate the utilization of methane emissions associated with underground coal mining operations in a carbonate Direct FuelCell{reg_sign} (DFC{reg_sign}) power plant. FuelCell Energy (FCE) conducted the demonstration with support from the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and in cooperation with Northwest Fuel Development, the operator of the Rose Valley test site in Hopedale, Ohio. The fuel cell power plant, a first generation sub megawatt power plant, was operated on CMM between August 1, 2003 and December 13, 2003. The direct fuel cell operated on low-Btu CMM with 42% methane content and achieved performance levels comparable to natural gas on a Btu feed basis. During this period 1456 hours on-load operation was achieved. The total power generated using CMM was 134 megawatt-hours (MWh) of electricity. The power generated was connected to the American Electric Power grid by a 69-kilovolt (kV) transformer. The maximum power level achieved was 140 kW. Efficiency of power generation was 40% based on the lower heating value (LHV) of the CMM. Compression and drying of the CMM resulted in additional parasitic load, which reduced the overall efficiency to 36 % LHV. In future applications, on-board compression and utilization of the saturated CMM without drying will be investigated in order to reduce the auxiliary power requirements. By comparison, the internal combustion engines operating on CMM at the Hopedale site operate at an over efficiency of 20%. The over-all efficiency for the fuel cell is therefore 80% higher than the internal combustion engine (36% vs. 20%). Future operation of a 250 kW Fuel Cell Power Plant on CMM will utilize 18,400,000 cubic feet of methane per year. This will be equivalent to: (a) avoiding 7428 metric tons of CO{sub 2} emissions, (b) avoiding 16.4 million pounds of CO{sub 2} emissions, (c) removing 1640 cars off the road for one year, (d) heating 267 households for 1 year, (e) planting 2234 acres of trees. Based on the results obtained in this demonstration it can be concluded that utilization of fuel cells to mitigate CMM emissions is an attractive option that can be utilized to generate power at high efficiencies and with very low emissions.

George Steinfeld; Jennifer Hunt

2004-09-28T23:59:59.000Z

454

The market potential for SMES in electric utility applications. Final report  

DOE Green Energy (OSTI)

Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

Not Available

1994-06-01T23:59:59.000Z

455

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

E-Print Network (OSTI)

Reliability of the U.S. Electric Power System: An Assessment2003 IEEE Guide for Electric Power Distribution ReliabilitySmart Self-Healing Electric Power Grid." Power and Energy

Eto, Joseph H.

2013-01-01T23:59:59.000Z

456

Integration of Distributed Resources in Electric Utility Distribution Systems: Distribution System Behavior Analysis for Urban and R ural Feeders  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need for improved practices for integrating them with electric utility distribution systems. Analytical models of DR were developed for use in existing utility system simulation tools, and case studies on a rural and an urban distribution feeder were performed to assess the impacts of DR in various scenarios for those feeders.

1999-11-11T23:59:59.000Z

457

Integration of Distributed Resources in the Electric Utility Distribution Systems: Distribution System Behavior Analysis for Suburba n Feeder  

Science Conference Proceedings (OSTI)

Accelerating commercialization of distributed resources (DR) has created the need to improve practices for integrating them with electric utility distribution systems. Analytical models of DR were developed for use in existing utility system simulation tools, and initial case studies on a suburban distribution feeder were performed to assess the impacts of DR in various scenarios for that feeder.

1998-12-15T23:59:59.000Z

458

Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)  

DOE Green Energy (OSTI)

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

Not Available

2011-10-01T23:59:59.000Z

459

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

current approach to electricity tariffs in India is based onlower cost than the electricity tariff. Thus, CCE estimatedcompared with the electricity tariff to estimate net

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

460

Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility scale electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.