Sample records for utility scale electricity

  1. Updated Capital Cost Estimates for Utility Scale Electricity

    E-Print Network [OSTI]

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

  2. Updated Capital Cost Estimates for Utility Scale Electricity...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    turbines, and other auxiliary equipment * Electrical and instrumentation and control: electrical transformers, switchgear, motor control centers, switchyards, distributed...

  3. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24T23:59:59.000Z

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  4. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  5. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  6. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  7. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  8. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  9. Gas and Electric Utilities Regulation (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the Public Utilities Commission a document regarding...

  10. "List of Covered Electric Utilities" under the Public Utility...

    Energy Savers [EERE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  11. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  12. Deregulating the electric utility industry

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

  13. Studying the Communications Requirements of Electric Utilities...

    Office of Environmental Management (EM)

    Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

  14. Virginia Electric Utility Regulation Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation...

  15. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01T23:59:59.000Z

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  16. The top 100 electric utilities

    SciTech Connect (OSTI)

    Warkentin, D.

    1995-10-01T23:59:59.000Z

    This has been an extremely interesting market during the past year or so due to the Energy Policy Act of 1992 (EPACT) and the US FERC actions since then to make it more competitive. A major move was a 1994 proposal to open up access to the nation`s privately owned transmission grid to make it easier for buyers and sellers of wholesale electricity to do business. Overall, the wholesale market in the US generates about $50 billion in annual revenues. That compares with a retail market about four times that size. The term retail refers to electricity sales to ultimate consumers, while wholesale refers to bulk power transactions among utilities or purchases by utilities from NUGs. The data in this report can be considered a baseline look at the major utility players in the wholesale market. Results of wholesale deregulation have not really been felt yet, so this may be the last look at the regulated market.

  17. "List of Covered Electric Utilities" under the Public Utility...

    Office of Environmental Management (EM)

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  18. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  19. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  1. SAGEWASP. Optimal Electric Utility Expansion

    SciTech Connect (OSTI)

    Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)

    1989-10-10T23:59:59.000Z

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  3. PPL Electric Utilities- Custom Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If applicants do not have one, they should contact the utility at the phone or...

  4. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6...

  5. Quality electric motor repair: A guidebook for electric utilities

    SciTech Connect (OSTI)

    Schueler, V.; Douglass, J.

    1995-08-01T23:59:59.000Z

    This guidebook provides utilities with a resource for better understanding and developing their roles in relation to electric motor repair shops and the industrial and commercial utility customers that use them. The guidebook includes information and tools that utilities can use to raise the quality of electric motor repair practices in their service territories.

  6. Electric Utilities and Electric Cooperatives (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and...

  7. Moreno Valley Electric Utility- Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

  8. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  9. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  10. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  11. Electric utility research and development

    SciTech Connect (OSTI)

    Not Available

    1982-10-25T23:59:59.000Z

    Nineteen papers presented at a seminar held by the National Association of Regulatory Utility Commissioners (NARUC) at North Carolina State University during October, 1982 represent an opportunity for an exchange of research information among regulators, utility officials, and research planners. The topics range from a regulatory perspective of research and development to a review of new and evolving technologies. Separate abstracts were prepared for each of the papers for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis.

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    8 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2008. Monthly Electric Utility Sales and Revenue...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for April 2008. Monthly Electric Utility Sales and...

  14. Grid Reliability- An Electric Utility Company's Perspective

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—covers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

  15. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  16. Rate making for Electric Utilities

    E-Print Network [OSTI]

    Hanson, Carl Falster

    1911-01-01T23:59:59.000Z

    of a given size in Texas may be dif­ ferent from that of a same size town in Massachusetts. This growing demand depends upon two factors: The educating of the people to the use of electricity for light and power, and the probable growth...

  17. Utility-scale AFBC projects - 1986 update

    SciTech Connect (OSTI)

    Ehrlich, S.; Friedman, M.A.; Howe, W.C.

    1986-01-01T23:59:59.000Z

    Atmospheric fluidized-bed combustion (AFBC) offers several potential advantages over a conventional pulverized-coal steam generator, particularly when a conventional boiler would have to be equipped with a flue gas desulfurization system. AFBC can meet sulfur and nitrogen oxide emission regulations without add-on emission control equipment. Low coal-combustion temperatures in an AFBC eliminate slagging problems as well as low-NO/sub x/ levels. The major benefit of a low combustion temperature in an AFBC is that it permits a wide range of fuels to be fired in the same combustor. The Electric Power Research Institute (EPRI) is participating in three utility-scale AFBC demonstration projects expected to start operation in 1986, 1987, and 1988. Each project has unique characteristics (scope of supply, design configuration, fuel, location, starts per year, etc.) that make the three projects complementary. This report describes the development of AFBC technology, the three utility-scale AFBC demonstration plants, and the technical and economic information EPRI expects to derive from these projects.

  18. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Office of Environmental Management (EM)

    from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of...

  19. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Environmental Management (EM)

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  20. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Office of Environmental Management (EM)

    The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on...

  1. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Press. Portland General Electric Company. 2004. Renewablegreen power is Portland General Electric. The utility workswind energy use (Portland General Electric, 2004). From the

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    January 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-01 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-01-01...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company Ak-Chin Electric Utility Authority (Arizona) Place Arizona Start Date 2008-12-01...

  4. Electric utility of the year for 1984: Potomac Electric Power

    SciTech Connect (OSTI)

    Not Available

    1984-11-01T23:59:59.000Z

    High performance, efficiency improvements, a modest construction program, a clear balance sheet, and an effort to expend power plant life were among the qualities that earned Potomac Electric Power (PEPCO) the title of 1984 Utility of the Year. Other key elements in the utility's selection were its strategy for purchasing power, a load management plan, diversified investments into subsidiary businesses, community concern that considers the aesthetics of transmission facilities, and its interest in personnel development, especially among minorities. 3 figures.

  5. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  6. High slot utilization systems for electric machines

    DOE Patents [OSTI]

    Hsu, John S (Oak Ridge, TN)

    2009-06-23T23:59:59.000Z

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  7. Electricity Industry Leaders U.S. Utilities, Grid Operators,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington,...

  8. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  9. Approaches to Electric Utility Energy Efficiency for Low Income...

    Open Energy Info (EERE)

    Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches to Electric...

  10. What Does Industry Expect From An Electrical Utility 

    E-Print Network [OSTI]

    Jensen, C. V.

    1989-01-01T23:59:59.000Z

    WHAT DOES INDUSTRY EXPECT FROM AN ELECTRICAL UTILITY C. V. JENSEN Manager, Energy Policy and Supply Union Carbide Corporation Danbury, Connecticut ABSTRACT and federal laws, rules and regulations. The electric utility industry...

  11. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  12. UGI Utilities Electric Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGI Utilities Electric Division Jump

  13. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  14. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  15. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA). Progress report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1994, summarizes key accomplishments and conclusions for the year, and outlines future work. The PVUSA project has five objectives. These are designed to narrow the gap between a large utility industry that is unfamiliar with PV and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: Evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side by side at a single location; Assess PV system operation and maintenance in a utility setting; Compare US utilities hands-on experience in designing, procuring, and operating PV systems; and, Document and disseminate knowledge gained from the project.

  16. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-15T23:59:59.000Z

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  17. Federal and State Structures to Support Financing Utility-Scale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Federal and State Structures to Support Financing...

  18. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  19. Future Competitive Positioning of Electric Utilities and their Customers

    E-Print Network [OSTI]

    Schrock, D.; Parker, G.; Baechler, M.

    This paper addresses the future competitive positioning of electric and gas utilities and their industrial customers. Each must respond to a dramatic reshaping of the utility industry while confronting aggressive environmental pressures and taking...

  20. Designing a Thermal Energy Storage Program for Electric Utilities

    E-Print Network [OSTI]

    Niehus, T. L.

    1994-01-01T23:59:59.000Z

    Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

  1. Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities

    Broader source: Energy.gov [DOE]

    Presentation covers the rising electricity costs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1889 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  3. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1777 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  4. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1656 Total Consumers 417 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1588 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  6. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 2604 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  7. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 1786 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  8. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Sales (MWh) 2434 Total Consumers 416 Source: Energy Information Administration. Form EIA-826 Database Monthly Electric Utility Sales and Revenue Data 1 Previous | Next...

  9. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  10. Un Seminar On The Utilization Of Geothermal Energy For Electric...

    Open Energy Info (EERE)

    Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

  11. PPL Electric Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers numerous rebates and incentives for its residential customers. Refer to the program web site for complete details.

  12. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat...

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  15. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers 3 commercial energy efficiency programs to eligible customers. Available incentives are based upon the customer rate schedule. Each program has separate incentive...

  16. Utility Scale Renewable Energy Development Near DOD Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility Utility Scale Renewable Energy Development Near DOD Installations: Making the...

  17. CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION

    E-Print Network [OSTI]

    Lyon, Thomas P.

    CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION Thomas P. Lyon Nathan Wilson prices rose in states that adopted state regulation before 1917, suggesting that regulators were "captured" by the interests of the regulated electric utilities. An alternative explanation is that state

  18. Other utilities, not IPPs key concern for electric executives

    SciTech Connect (OSTI)

    O'Driscoll, M.

    1994-01-12T23:59:59.000Z

    The evolving competitive electric utility world is making executives more cautious and focused on their core businesses at the expense of high-profile issues like international investment, global warming, demand side management and electric and magnetic fields, a new survey shows. The 1994 Electric Utility Outlook, conducted by the Washington International Energy Group, also shows growing concern about utility-on-utility competition and a decline of the independent power producer threat, a growing but grudging acknowledgement of retail wheeling and increasing discomfort with nuclear power.

  19. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02T23:59:59.000Z

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  20. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  1. Marketing Reordering of the Electric Utility Industry

    E-Print Network [OSTI]

    Anderson, J. A.

    . Residential customers original ly used electricity to light their homes. Elec tric power now has literally thousands of uses. Similarly, commercial customers now use electricity to compute, control, provide comfort, as well as illuminate offices... generated power. However, such displacement requires "wheeling", which is the use of transmission facilities of one electric system to transmit power of and for others. Market forces are developing tremendous in dustrial interest in wheeling...

  2. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  3. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01T23:59:59.000Z

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  4. Risk Management Strategies for Electric Utilities

    E-Print Network [OSTI]

    Sheets, E.

    The Pacific Northwest has gone through an enormously expensive lesson in both the uncertainty and risk associated with power planning. The difficult lessons we have learned may benefit other parts of the country. In the 1970s, utility planners...

  5. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Broader source: Energy.gov [DOE]

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  6. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  7. Renewable Energy For Electric Utilities (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of this rule is to implement the Renewable Energy Act, and to bring significant economic development and environmental benefits to New Mexico. This rule applies to electric public...

  8. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  9. What Does Industry Expect From An Electrical Utility

    E-Print Network [OSTI]

    Jensen, C. V.

    The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier...

  10. Electricity privatization : should South Korea privatize its state-owned electric utility?

    E-Print Network [OSTI]

    Lim, Sungmin

    2011-01-01T23:59:59.000Z

    The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

  11. Utility Scale Renewable Energy Development Near DOD Installations...

    Broader source: Energy.gov (indexed) [DOE]

    Aimone, P.E. National Security Global Business Battelle Memorial Institute Utility Scale Renewable Energy Development near DOD Installations Making the Case for Land Use...

  12. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  13. Women in the electric-utility industry

    SciTech Connect (OSTI)

    Reynolds, M.R.

    1983-01-01T23:59:59.000Z

    Potomic Electric Power Co. (PEPCO) has won recognition for its progress in placing women in nontraditional jobs at all levels through its affirmative action program. PEPCO representatives and personnel managers take the initiative in making women aware of widening career opportunities and reversing the attitudes that have historically tied women to traditional employment. (DCK)

  14. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  15. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  16. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  17. Utility Scale Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility RatePalo Alto,

  18. Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

  19. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    SciTech Connect (OSTI)

    Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-06T23:59:59.000Z

    Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

  20. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  1. Electric Utility Strategic Planning at the PUCT: An Overview

    E-Print Network [OSTI]

    Zarnikau, J.

    . This paper provides a broad 'overview of electric utility atrategic planning activities at the PUCT, concentrating on each project's objec tives, methodology, and relationship to other projects. The role of planning activities at a regulatory agency... will be discussed. It is argued that planning projects at a regulatory agency can provide an invaluable validity check on a utility's planning programs, as well as a source of guidance, objective information, and new ideas. However, a regulatory agency...

  2. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Electric utility response to the Clean Air Act Amendments

    SciTech Connect (OSTI)

    Torrens, I.M.; Platt, J.B. [Electric Power Research Inst., Palo Alto, CA (United States)

    1994-01-01T23:59:59.000Z

    This article describes the actions and planning by electric utilities to meet regulations on nitrogen oxide and sulfur dioxide emissions. The topics of the article include sulfur dioxide response and options, the fuel, technology and allowance interplay, nitrogen oxides control, continuous emission monitors, air toxics, clean air response tool kit, and the economics of compliance.

  4. Consumer's Guide to the economics of electric-utility ratemaking

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  5. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-07-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  6. Market feasibility study of utility battery applications: Penetration of battery energy storage into regulated electric utilities

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Labs., Albuquerque, NM (United States); Kraft, S. [Frost and Sullivan, Mountainview, CA (United States); Symons, P.C. [Electrochemical Engineering Consultants, Inc., Morgan Hill, CA (United States)

    1997-12-01T23:59:59.000Z

    Although recent studies indicate there could be significant opportunities for battery systems in electric utility applications, markets for this and other dispersed energy storage technologies have been slow to develop. Prior analyses had suggested that the slow market development has resulted from reluctance to make the necessary investments on the part of both suppliers and customers. In order to confirm this and other concerns over the utility energy storage market, an assessment has been performed to estimate the potential penetration of batteries into regulated electric utilities. The estimates thus obtained confirm that the possible market for batteries on the utility side of the meter, approximately $280 million annually in 2010, is indeed smaller than indicated by the assessment of potential opportunities had suggested it might be. On the other hand, the estimates for possible market penetration on the customer side of the meter are greater than on the utility-side, particularly in the nearer-term. Of more importance than the numeric results, however, are the comments given by potential customers of utility battery energy storage, and the conclusions regarding ways to increase the attractiveness of utility battery energy storage that result from analyses of these comments.

  7. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01T23:59:59.000Z

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  8. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-01-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  9. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. [Oak Ridge National Lab., TN (United States); Sabo, C. [Barakat and Chamberlin, Inc., Washington, DC (United States)

    1991-10-01T23:59:59.000Z

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  10. A primer on incentive regulation for electric utilities

    SciTech Connect (OSTI)

    Hill, L.J.

    1995-10-01T23:59:59.000Z

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  11. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  12. A knowledge based model of electric utility operations. Final report

    SciTech Connect (OSTI)

    NONE

    1993-08-11T23:59:59.000Z

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  13. NREL: Technology Deployment - Electric Utility Assistance and Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuilding EnergyElectric Utility Assistance

  14. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Energy Savers [EERE]

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation...

  15. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  16. U.S. Electric Utility Companies and Rates: Look-up by Zipcode...

    Open Energy Info (EERE)

    Ventyx U.S. Electric Utility ... Dataset Activity Stream U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) This dataset, compiled by NREL and Ventyx,...

  17. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01T23:59:59.000Z

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  18. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  19. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06T23:59:59.000Z

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  20. Utility Scale Solar PV Cost Steven SimmonsSteven Simmons

    E-Print Network [OSTI]

    Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

  1. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  2. Financial statistics of major U.S. investor-owned electric utilities 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues. The US electric power industry is a combination of electric utilities (investor-owned, publicly owned, Federal, and cooperatives) and nonutility power producers. Investor-owned electric utilities account for over three-fourths of electric sales and revenue. Historically, the investor-owned electric utilities have served the large consolidated markets. There is substantial diversity among the investor-owned electric utilities in terms of services, size, fuel usage, and prices charged. Most investor-owned electric utilities generate, transmit, and distribute electric power. Investor-owned electric utilities operate in all States except Nebraska; Hawaii is the only State in which all electricity is supplied by investor-owned electric utilities. 5 figs., 57 tabs.

  3. Energy Conservation and Management for Electric Utility Industrial Customers

    E-Print Network [OSTI]

    McChesney, H. R.; Obee, T. N.; Mangum, G. F.

    within an industrial plant. Detai 1s of an EPRI sponsored pilot program are sUl1ll1arized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportun ities in HL... Conference, Houston, TX, May 12-15, 1985 (EPRI) in close association with several participat ing electric utilities and selected industrial cus tomers (1). In initiating this service, the first step would normally involve periodic contact between a...

  4. Electric Utility Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy EighthElectric Utility Energy

  5. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect (OSTI)

    Peter McKenny

    2010-08-31T23:59:59.000Z

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

  6. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01T23:59:59.000Z

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  7. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31T23:59:59.000Z

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  8. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  9. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    SciTech Connect (OSTI)

    Abhyankar, Nikit; Phadke, Amol

    2011-01-20T23:59:59.000Z

    Large-scale EE programs would modestly increase tariffs but reduce consumers' electricity bills significantly. However, the primary benefit of EE programs is a significant reduction in power shortages, which might make these programs politically acceptable even if tariffs increase. To increase political support, utilities could pursue programs that would result in minimal tariff increases. This can be achieved in four ways: (a) focus only on low-cost programs (such as replacing electric water heaters with gas water heaters); (b) sell power conserved through the EE program to the market at a price higher than the cost of peak power purchase; (c) focus on programs where a partial utility subsidy of incremental capital cost might work and (d) increase the number of participant consumers by offering a basket of EE programs to fit all consumer subcategories and tariff tiers. Large scale EE programs can result in consistently negative cash flows and significantly erode the utility's overall profitability. In case the utility is facing shortages, the cash flow is very sensitive to the marginal tariff of the unmet demand. This will have an important bearing on the choice of EE programs in Indian states where low-paying rural and agricultural consumers form the majority of the unmet demand. These findings clearly call for a flexible, sustainable solution to the cash-flow management issue. One option is to include a mechanism like FAC in the utility incentive mechanism. Another sustainable solution might be to have the net program cost and revenue loss built into utility's revenue requirement and thus into consumer tariffs up front. However, the latter approach requires institutionalization of EE as a resource. The utility incentive mechanisms would be able to address the utility disincentive of forgone long-run return but have a minor impact on consumer benefits. Fundamentally, providing incentives for EE programs to make them comparable to supply-side investments is a way of moving the electricity sector toward a model focused on providing energy services rather than providing electricity.

  10. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01T23:59:59.000Z

    the field data to accurately model potential reservoirs andreservoir scale electrical anisotropy from marine CSEM datathe reservoir target can be determined from seismic data or

  11. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01T23:59:59.000Z

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  12. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  13. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  14. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01T23:59:59.000Z

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  15. Recent Developments in the Regulation of Electric Utility Resource Planning in Texas

    E-Print Network [OSTI]

    Totten, J.; Adib, P.; Matlock, R.; Treadway, N.

    The Texas Legislature has charged the Public Utility Commission of Texas with the responsibility to license utility power plants and transmission lines, and develop a statewide electrical energy plan. Related duties include the encouragement...

  16. System average rates of U.S. investor-owned electric utilities : a statistical benchmark study

    E-Print Network [OSTI]

    Berndt, Ernst R.

    1995-01-01T23:59:59.000Z

    Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

  17. Utility-Scale Solar through the Years | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe NewUtility-Scale Solar through the Years

  18. NREL: Wind Research - Utility-Scale Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6SiteUtility-Scale Wind

  19. Property:PotentialRuralUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation, search

  20. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation,

  1. Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to:

  2. Property:PotentialUrbanUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump

  3. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea

  4. Business Plan for a New Engineering Consulting Firm in the Electrical Utility Market

    E-Print Network [OSTI]

    Gois, Roberto Cavalcanti

    2009-05-15T23:59:59.000Z

    has been experiencing steady growth for more than ten years. Along with energy market regulatory agencies such as the Federal Energy Regulatory Commission (FERC) and Southwest Power Pool (SPP), electrical utilities must ensure that the electricity...

  5. The ICF, Inc. coal and electric utilities model : an analysis and evaluation

    E-Print Network [OSTI]

    Wood, David O.

    1981-01-01T23:59:59.000Z

    v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

  6. E-Print Network 3.0 - applying electrical utility Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the USA Summary: Integrated resource planning Electric and gas utilities in the USA Eric Hirst, Charles Goldman... to encourage integrated re source planning. Keywords:...

  7. Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM

    E-Print Network [OSTI]

    Baughman, Martin L.

    1981-01-01T23:59:59.000Z

    This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

  8. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  9. Financial statistics of major US investor-owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-28T23:59:59.000Z

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector, the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.

  10. Fifteen years later: Whither Restructuring in the American Electric Utility System?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to Power Loss: The Origins of Deregulation and Restructuring in the American Electric Utility System1 1990s. It advances the thesis of my book, Power Loss, namely that the traditional holders of political. Hirsh, Power Loss: The Origins of Deregulation and Restructuring in the American Electric Utility System

  11. Benchmarking and incentive regulation of quality of service: an application to the UK electricity distribution utilities

    E-Print Network [OSTI]

    Giannakis, D; Jamasb, Tooraj; Pollitt, Michael G.

    2004-06-16T23:59:59.000Z

    Cambridge Working Papers in Economics CWPE 0408 Benchmarking and Incentive Regulation of Quality of Service: an Application to the UK Electricity Distribution Utilities D. Giannakis, T. Jamasb, and M. Pollitt... and Environmental Policy Research CMI Working Paper Series UNIVERSITY OF CAMBRIDGE Department of Applied Economics BENCHMARKING AND INCENTIVE REGULATION OF QUALITY OF SERVICE: AN APPLICATION TO THE UK ELECTRICITY DISTRIBUTION UTILITIES Dimitrios Giannakis...

  12. Utility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

    E-Print Network [OSTI]

    Gupta, Rajesh

    in energy prices along with the rise of cloud computing brings up the issue of making clouds energy. In this paper, we use deferral with dynamic pricing of electricity for energy efficiency while using utilityUtility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

  13. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage...UTILITYIINDUSTRY PARTNERSHIPS INVOLVING DISTRIBUTED GENERATION TECHNOLOGIES IN EVOLVING ELECTRICITY MARKETS Daniel M. Rastler Manager, Fuel Cells and Distributed Generation Electric Power Research Institute Palo Alto, California ABSTRACT...

  14. Optimizing electric utility air toxics compliance with other titles of the Clean Air Act

    SciTech Connect (OSTI)

    Loeb, A.P.; South, D.W.

    1993-12-31T23:59:59.000Z

    This paper provides an overview of regulatory issues under Title III of the Clean Air Act Amendments that could affect electric utilities. Title III contains provisions relating to hazardous air pollutants (HAPs) and provides special treatment for electric utilities. Generally, this discussion documents that if utility toxic emissions are regulated, one of the chief difficulties confronting utilities will be the lack of coordination between Title III and other titles of the Act. The paper concludes that if the US Environmental Protection Agency (EPA) determines that regulation of utility HAPs is warranted under Title III, savings can be realized from flexible compliance treatment.

  15. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  16. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  17. How Three Retail Buyers Source Large-Scale Solar Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

  18. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01T23:59:59.000Z

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  19. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  20. Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

  1. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  2. Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  3. Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

  4. New Switches for Utility-Scale Inverters: First In-Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility-Scale Inverters

    SciTech Connect (OSTI)

    None

    2011-12-31T23:59:59.000Z

    Solar ADEPT Project: The SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLAB’s new power switches can also be used in wind turbines, railways, and other smart grid applications.

  5. Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel with the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)

  6. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Suppliers. Washington, DC: EIA, September. United StatesAdministration. 1998-1999. Form EIA-861, Annual ElectricInformation Administration (EIA), and the Federal Energy

  7. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    Electricity from Renewable Resources: A Review of Utilityprovision of power from renewable resources, the end resultinvestments in renewable energy generating resources. Hence:

  8. Survey of Western U.S. Electric Utility Resource Plans

    E-Print Network [OSTI]

    Wilkerson, Jordan

    2014-01-01T23:59:59.000Z

    future peak power and energy demand, electricity generation,timelines, and energy demand. An inaccurate prediction ofto reduce their annual energy demand in 2020 by 39 TWh (

  9. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  10. Coordinating Permit Offices and the Development of Utility-Scale Geothermal

    E-Print Network [OSTI]

    Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy 2013 Geothermal-Scale Geothermal Overview 1. Background and other Analysis 2. Specific Coordinating Permit Office Examples 3 and the Development of Utility-Scale Geothermal Background 2011 Islandbanki Report · Report stated on average

  11. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05T23:59:59.000Z

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  12. Utility Scale Renewable Energy Development Near DOD Installations: Making the Case for Land Use Compatitbility

    Broader source: Energy.gov [DOE]

    Presentation covers Utility Scale Renewable Energy Development Near DOD Installations and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  13. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05T23:59:59.000Z

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  15. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  16. The effects of utility DSM programs on electricity costs and prices

    SciTech Connect (OSTI)

    Hirst, E.

    1991-11-01T23:59:59.000Z

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  17. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    inefficient set of generating plants. Here, in the price-all U.S. electricity generating plants. EGRID containsplants that serve only peak loads, coal has enjoyed steady popularity as a generating

  18. Innovative and Progressive Electric Utility Demand-Side Management Strategies

    E-Print Network [OSTI]

    Epstein, G. J.; Fuller, W. H.

    Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

  19. Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit

    E-Print Network [OSTI]

    Jeffress, R. D.

    This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement...

  20. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01T23:59:59.000Z

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  1. Stochastic Programming Models for Strategic Planning: An Application to Electric Utilities

    E-Print Network [OSTI]

    Bienstock, Daniel

    This paper reports on the application of stochastic programming with recourse models to strategic planning problems typical of those faced by an electric utility. A prototype model was constructed using realistic data, and ...

  2. CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data

    E-Print Network [OSTI]

    Ellerman, A. Denny.; Tsukada, Natsuki.

    Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

  3. Climate change adaptation in the U.S. electric utility sector

    E-Print Network [OSTI]

    Higbee, Melissa (Melissa Aura)

    2013-01-01T23:59:59.000Z

    The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

  4. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart by Daniel Wood. View...

  5. Estimating the Value of Utility-Scale Solar Technologies in California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Value of Utility- Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard J. Jorgenson, P. Denholm, and M. Mehos Technical Report NREL...

  6. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023USWNCFeet)

  7. Adapting state and national electricity consumption forecasting methods to utility service areas. Final report

    SciTech Connect (OSTI)

    Swift, M.A.

    1984-07-01T23:59:59.000Z

    This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

  8. Estimation of body composition in channel catfish utilizing relative weight and total body electrical conductivity

    E-Print Network [OSTI]

    Jaramillo, Francisco

    1993-01-01T23:59:59.000Z

    ESTIMATION OF BODY COMPOSITION IN CHANNEL CATFISH UTILIZING RELATIVE WEIGHT AND TOTAL BODY ELECTRICAL CONDUCTIVITY A Thesis by FRANCISCO JARAMILLO, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1993 Major Subject: Wildlife and Fisheries Sciences ESTIMATION OF BODY COMPOSITION IN CHANNEL CATFISH UTILIZING RELATIVE WEIGHT AND TOTAL BODY ELECTRICAL CONDUCTIVITY A Thesis...

  9. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01T23:59:59.000Z

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  10. Assessing integrated resource plans prepared by electric utilities

    SciTech Connect (OSTI)

    Hirst, E.; Schweitzer, M. (Oak Ridge National Lab., TN (USA)); Yourstone, E. (Yourstone (Evelin), Albuquerque, NM (USA)); Eto, J. (Lawrence Berkeley Lab., CA (USA))

    1990-02-01T23:59:59.000Z

    This report discusses guidelines for long-term resource plans, based on the written reports only. The word plan refers to both the program worked out beforehand to accomplish a goal and the report that describes the plan. The particular meaning should be clear from the context. The purpose of these guidelines is to assist PUC staff who review utility plans and utility staff who prepare such plans. These guidelines were developed at Oak Ridge National Laboratory with contributions from Lawrence Berkeley Laboratory. 45 refs.

  11. Workshop title: Transmission and Utility Scale Solar Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purpose: A stakeholder communication with transmission customers, Tribes, developers, state and federal agencies, and utilities about Western Area Power Administration's (Western)...

  12. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  13. UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas for electrical shock. NOTIFY University Police. What should I do if I smell natural or propane gas? LEAVE/Repair line, 7-6333, or CALL the Campus University Police or Security at (561) 297-3500 or 911

  14. The process of integrated resource planning for electric utilities

    SciTech Connect (OSTI)

    Schweitzer, M.; Hirst, E. (Oak Ridge National Lab., TN (USA)); Yourstone, E. (Yourstone (Evelin), Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    This paper identifies six key issues in utility integrated resource planning that are expected to influence a plan's societal value and discusses the first four, which are related to the planning process. They are: (1) the relative emphasis placed on supply- and demand-side resources throughout the planning process; (2) the breadth of inputs considered during plan preparation from various in-house departments and non-utility interests; (3) the criteria used to select options for resource plans; and (4) the uncertainty analyses used and their application to the resource selection process. A number of opportunities exist for utilities and their regulators to improve the planning process in order to increase the value of the resource plans that are produced. Specifically, utilities and/or their state regulatory agencies can: (1) conduct comprehensive assessments of demand-side management (DSM) resources, avoid unduly restrictive screening methods, and expand data collection efforts concerning current energy-use patterns and existing DSM program performance; (2) increase the involvement of regulators and other interested non-utility parties in the resource planning process through mechanisms such as public meeting and the establishment of technical advisory boards; (3) when evaluating the cost-effectiveness of potential demand-side resources, use the Total Resource Cost Test or Societal Test instead of the more restrictive Ratepayer Impact Test, consider the environmental effects of the resources considered, and examine the effects of the entire mix of resource selection criteria used; and (4) focus uncertainty analysis on key uncertainties over the short-term time horizon and make sure that the results of this analysis are used in resource selection. 20 refs., 1 fig.

  15. The Electric Utility Industry--Change and Challenge

    E-Print Network [OSTI]

    Williams, M. H.

    , quality circles, and strategic planning are but a few of the latest buzzwords making their way around utilities these days. The terms are frequently misunderstood, are sometimes intimidating, and consequently may get in the way of implementing improved... resource needs, be estimated so that intelligent decisions regarding resource allocation, timing and trade-offs can be made. Summgry The process outlined above most closely resembles strategic planning. This procedure represents a structured...

  16. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  17. Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    E-Print Network [OSTI]

    Essakiappan, Somasundaram

    2014-04-30T23:59:59.000Z

    sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms...

  18. Approaches to Electric Utility Energy Efficiency for Low Income Customers

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricInc JumpAppliedAssistancein

  19. Electric Utility Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Publicof EnergyElectric

  20. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | DepartmentKavitaEnergy SafelyDepartment ofWorkforce

  1. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  2. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  3. Statistics of publicly owned electric utilities in the United States: 1979, energy data report

    SciTech Connect (OSTI)

    McEwan, P.; Ryan, S.

    1980-12-01T23:59:59.000Z

    Financial and operating information about publicly owned utilities in the United States are presented. This publication contains the annual reports for 162 Municipalities and 74 Federal projects whose annual operating revenues equal or exceed $5,000,000 or $1,000,000, respectively. Data from 11 municipalities which reported in 1978 and 6 federal projects (5 of which reported in 1978) were not received in time for inclusion in this year's publication. The US Department of Interior markets all the electric energy produced at projects of the US Department of the Army Corps of Engineers. The 1979 edition is constructed to include an index listing of names for each reporting publicly owned utility by State, or States, in which it operates. Federal projects are listed by the particular department operating that project. A summary for all utilities in total may be found at the begining of each section. These summaries include the balance sheet, and statements for income accounts, electric operating revenues, electric utility plants, electric operation and maintenance expenses, energy accounts, and physical quantities. The Year in Review is composed of statements from both Publicly Owned Municipal Electric Utilities and Federal Projects. It includes both financial and operational information.

  4. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser pageUtility+Utility Access Map

  5. Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Proper Use of Electric/Gas UtilityType Vehicles (FS4) Form FS-4 8/24/2011 Regulation Governing Use of Electric/Gas Utility­Type Vehicles (EGUV): Individual operators will use their judgment on whether. · Electric vehicles will be recharged at a location appropriate for such use. Use of extension cords from

  6. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  7. Coping with nuclear power risks: the electric utility incentives

    SciTech Connect (OSTI)

    Starr, C.; Whipple, C.

    1982-01-01T23:59:59.000Z

    The financial risks associated with nuclear power accidents are estimated by interpolating between frequency-vs.-severity data from routine outages and the frequency-vs.-severity estimates from the Nuclear Regulatory Commission's (NRC's) Reactor Safety Study (WASH-1400). This analysis indicates that the expected costs of plant damage and lost power production are large compared to the public risks estimated in WASH-1400, using values from An Approach to Quantitative Safety Goals for Nuclear Power Plants (NUREG-0739), prepared by the NRC Advisory Committee on Reactor Safeguards. Analyses of the cost-effectiveness of accident-prevention investments that include only anticipated public safety benefits will underestimate the value of such investments if reductions in power plant damage risk are not included. The analysis also suggests that utility self-interest and the public interest in safety are generally coincident. It is argued that greater use could be made of this self-interest in regulation if the relationship between the NRC and the industry were more cooperative, less adversary in nature.

  8. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15T23:59:59.000Z

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  9. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25T23:59:59.000Z

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  10. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    None

    2012-01-25T23:59:59.000Z

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  11. UTILITY-SCALE SOLAR LOAD CONTROL Richard Perez, ASRC

    E-Print Network [OSTI]

    Perez, Richard R.

    output data. 1 E.g., if the installed PV capacity is 10MW, the objective is for PV + SLC to meet 100% of the loads above a threshold equal to the utility peak minus 10 MW. 2 #12;UPEX-02 PV output data: PV output the report is PTC (AC output at 25 degrees ambient). Load data: Hourly SMUD system load data from 1996

  12. Spatial Ecology of and Public Attitudes toward Monk Parakeets Nesting on Electric Utility Structures in Dallas and Tarrant Counties, Texas

    E-Print Network [OSTI]

    Reed, Janet Elaine

    2014-07-29T23:59:59.000Z

    2013, we examined the spatial ecology of and public attitudes toward monk parakeets nesting on electric utility structures in Dallas and Tarrant counties, Texas, US. As nest sites, monk parakeets selected electric switchyards and substations...

  13. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  14. Wind system value analysis for electric utilities: a comparison of four methods

    SciTech Connect (OSTI)

    Harper, J.; Percival, D.; Flaim, T.

    1981-11-01T23:59:59.000Z

    There have been several studies of how much Wind Energy Conversion Systems (WECS) are worth to electric utilities. When attempting to compare the different results of these studies, questions arose concerning the effect of the different methodologies and models on the determined WECS values. This paper will report on the only known effort that used more than a single methodology for the value analysis of WECS to a specific utility. This paper will present and compare the WECS utility value analysis methodologies of Aerospace Corp., JBF Scientific Corp., and the Solar Energy Research Institute (SERI). Results of the application of these three methodologies were found for two large utilities. Breakeven values (the amount a utility can pay for a wind turbine over its lifetime and still breakeven economically) were found to be from $1600 to $2400 per kW of wind capacity in 1980 dollars. The reasons for variation in the results are discussed.

  15. Powering New Markets: Utility-scale Photovoltaic Solar | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric, Inc.DepartmentFleet Card Program Review

  16. Renewable Energy: Utility-Scale Policies and Programs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNS Electric,RMPipeline First Oil CeremonyCurriculumof

  17. UTILITIES PROBLEMS AND FAILURES ELECTRICAL OR PLUMBING FAILURE/FLOODING/WATER LEAK

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES ELECTRICAL OR PLUMBING FAILURE/FLOODING/WATER LEAK NATURAL GAS - F 8a - 5p HBOI@FAU Security (772) 216-1124 Afterhours, Weekends or Holidays What should I do Police 911. · NOTIFY Building Safety personnel when possible. What should I do if I smell natural

  18. UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas or

    E-Print Network [OSTI]

    Fernandez, Eduardo

    UTILITIES PROBLEMS AND FAILURES Electrical or plumbing failure/Flooding/Water leak/Natural gas Physical Plant (772) 242-2246 M - F 8a - 5p (954) 762-5040 HBOI@FAU Security (772) 216-1124 Afterhours University Police. NOTIFY Building Safety personnel when possible. What should I do if I smell natural

  19. Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them

    SciTech Connect (OSTI)

    Mendelsohn, M.; Kreycik, C.

    2012-04-01T23:59:59.000Z

    Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

  20. Scaling-up Renewable Electricity in BC: Tackling the Institutional and Political Challenges

    E-Print Network [OSTI]

    Pedersen, Tom

    Scaling-up Renewable Electricity in BC: Tackling the Institutional and Political Challenges Dr.................................................................................................................................... 4 2. Renewable Electricity and Hydropower in BC................................................................................................... 6 3. Institutions and Processes for Renewable Electricity Development

  1. January/February 1997 21 Utility Green

    E-Print Network [OSTI]

    of scale that favored a single provider--the electric utility--have been exhausted. Nonutility companies to choose their electricity suppliers. Anticipating this competition, some electric utility companies have pricing program. #12;22 SOLAR TODAY In an early effort to break the histori- cal utility monopoly

  2. A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets

    SciTech Connect (OSTI)

    Warwick, William M.

    2002-06-03T23:59:59.000Z

    This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

  3. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  4. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Dolan, S. L.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

  5. Impacts of new coal-using technologies on coal markets and electric utilities

    SciTech Connect (OSTI)

    Stauffer, C.H.

    1982-06-01T23:59:59.000Z

    ICF's Coal and Electric Utilities Model (CEUM) was used to make forecasts on the impact of new coal technologies and markets and utilities. The new technologies include the gasifier/ combined cycle (GCC), the atmospheric fluidized bed combustor (AFBC), and the retrofit of synthetic coal-fluids on advanced combined cycle capacity. National production by the year 2000 will increase slightly. Impact of technology will be negligible due to the offsetting effects of GCC (it uses less coal) and synthetic coal fluids. Regional production will increase in synthetic coal fluid regions, decrease in sulphur coal regions. In utilities, coal additions by GCC are favored in the east, by AFBC in the west. SO/sub 2/ emissions will start to decline in 1995, NOx emissions will continue to rise, but not as sharply. Overall costs of utilities are expected to fall slightly by the year 2010.

  6. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01T23:59:59.000Z

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  7. Service Entrance Conductor Taps for Utility-Interactive Inverter Systems Section 690.64 of the National Electrical Code (NEC) establishes how and where a utility-

    E-Print Network [OSTI]

    Johnson, Eric E.

    1 of 3 Service Entrance Conductor Taps for Utility-Interactive Inverter Systems Section 690.64 of the National Electrical Code (NEC) establishes how and where a utility- interactive PV system may be connected or in a group of enclosures. The PV system may be counted as a separate service (230.2) and could have up to six

  8. Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management

    SciTech Connect (OSTI)

    Chowdhury, B.H.; Rahman, S.

    1988-08-01T23:59:59.000Z

    The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

  9. Supplemental financing techniques: implications for electric utilities and the investing public

    SciTech Connect (OSTI)

    Sillin, J.O. (Booz, Allen and Hamilton, Washington, DC); Connellan, D.M.

    1982-05-27T23:59:59.000Z

    In a 1981 study for the Department of Energy, the authors of this article conducted an extensive survey and analysis of financing techniques that represent a divergence from the electric utility industry's historical approach to the raising of capital. On the basis of a lengthy series of interviews with utility-industry executives and members of the financial community, they sought to determine the reasons for the changes in the traditional pattern of the industry's capital-raising efforts, the significance of the changes, and the potential benefits and risks of the new and supplemental methods of financing. Their findings are summarized in this article. 6 figures.

  10. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01T23:59:59.000Z

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  11. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V. [and others

    1995-03-01T23:59:59.000Z

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  12. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-04T23:59:59.000Z

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  13. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset.S. electric infrastructure is designed to meet the highest expected demand for power and, as a resultIMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

  14. Financial impacts of nonutility power purchases on investor-owned electric utilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  15. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    SciTech Connect (OSTI)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01T23:59:59.000Z

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  16. A Scaled, Performance Driven Evaluation of the Layered Sensing Framework Utilizing Polarimetric Infrared Imagery

    E-Print Network [OSTI]

    Krim, Hamid

    sensing, distributed sensing, polarimetric, infrared, tracking, feature-aided, fusion, multi- sensor 1A Scaled, Performance Driven Evaluation of the Layered Sensing Framework Utilizing Polarimetric Infrared Imagery Hamilton Scott Clousea and Hamid Krima and Olga Mendoza-Schrockb aNorth Carolina State

  17. Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University No. 5501 Rev.: 0

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Electric/Gas Utility-type Vehicle Page 1 of 5 Virginia Polytechnic Institute and State University __________________________________________________________________________________ Subject: Electric/Gas Utility-type Vehicle, purchasing, inventory and disposal of all Electric/Gas Utility-type Vehicles (EGUV, e.g. golf carts and non

  18. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01T23:59:59.000Z

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  19. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    SciTech Connect (OSTI)

    Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

    2009-06-01T23:59:59.000Z

    Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

  20. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    in programs that influence electric demand in ways that produce desired changes in the pattern and magnitude of a utility's electric load profile. These programs, commonly termed "de mand side management" (DSH) , have a customer orien tation... such a rescheduling. The residential customer class appears least suited to load-shaping efforts. Al though characterized by a relatively low load-profile (high peak-to-average ratio) and consistent electricity consumption pat terns, the timing...

  1. The market potential for SMES in electric utility applications. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  2. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  3. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01T23:59:59.000Z

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  4. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

    E-Print Network [OSTI]

    Wang, Wei Hua

    Room-temperature stationary sodium-ion batteries for large-scale electric energy storage Huilin Pan attention particularly in large- scale electric energy storage applications for renewable energy and smart storage system in the near future. Broader context With the rapid development of renewable energy sources

  5. Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre

    E-Print Network [OSTI]

    Identification of Market Power in Large-Scale Electric Energy Markets Bernard C. Lesieutre Hyung and competitive operation of centrally- dispatched electricity markets. Traditional measures for market power demand and reserve requirements, a centrally-dispatched electricity market provides a transparent

  6. Economic analysis of large-scale hydrogen storage for renewable utility applications.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-08-01T23:59:59.000Z

    The work reported here supports the efforts of the Market Transformation element of the DOE Fuel Cell Technology Program. The portfolio includes hydrogen technologies, as well as fuel cell technologies. The objective of this work is to model the use of bulk hydrogen storage, integrated with intermittent renewable energy production of hydrogen via electrolysis, used to generate grid-quality electricity. In addition the work determines cost-effective scale and design characteristics and explores potential attractive business models.

  7. Utility-Scale Solar 2013: An Empirical Analysis of Project Cost, Performance, and Pricing Trends in the United States

    Broader source: Energy.gov [DOE]

    Other than the SEGS I-IX parabolic trough projects built in the 1980s, virtually no large-scale or "utility-scale" solar projects existed in the United States prior to 2007. By 2012 – just five years later – utility-scale had become the largest sector of the overall PV market in the United States, a distinction that was repeated in 2013 and is expected to continue for at least the next few years.

  8. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  9. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    E-Print Network [OSTI]

    Sullivan, M.J.

    2009-01-01T23:59:59.000Z

    Journal of Electrical Power & Energy Systems - Special Issueschemes. Electrical Power and Energy Systems, 2005 Vol. 27.power interruptions: a consistent model and methodology,” Electrical Power and Energy Systems,

  10. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect (OSTI)

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01T23:59:59.000Z

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  11. System for developing real time economic incentives to encourage efficient use of the resources of a regulated electric utility

    SciTech Connect (OSTI)

    Chasek, N.E.

    1993-08-17T23:59:59.000Z

    An electronic system is described, that when superimposed over an electric utility and its associated power pool will emulate and automate commodity-like market operations for retailed electric energy through a melding of cost, supply and demand, and competitive factors represented by demand related hourly pricing, capped gross revenues, and bonus/surcharge attributions which in turn make possible minimally regulated utility operations, more efficient use of utility assets, improved incentives for conservation, and inter-utility competition, is comprised of: recording meters that indicate the individual customer's energy consumption by hour and date or in calendar-time; recording meters that indicate mean hourly power supplied by each generator in a utility system in calendar time; recording meters that indicate the amount of energy being exported and imported by a utility in calendar-time; a recording meter system that indicates hourly out-of-doors temperatures in calendar-time throughout the utility's region; means for collecting the metered information and feeding it into a utility's central computer; a utility central computer which processes the metered data computing gross-revenue-capped, import-adjusted demand-related hourly prices, bonus/surcharge attributions, and customer billing; means for feeding back condensed economic information that imparts to consumers the cost for using electric energy at any time; and a power pool sub system that collects and disseminates to all pool members anticipated demand-related hourly prices for electricity that will be available for export from each pool member, and the amount available, and then following buy decisions, computes interim credits and debits for the energy actually exported or imported, and later determines final prices by splitting differences between estimated and actual demand-related prices, and then adjusts each transaction as indicated.

  12. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01T23:59:59.000Z

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  13. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  14. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States)] [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J.P. [Raytheon Engineers and Constructors, New York, NY (United States)] [Raytheon Engineers and Constructors, New York, NY (United States)

    1996-07-01T23:59:59.000Z

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  15. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  16. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  17. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01T23:59:59.000Z

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  18. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  19. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Broader source: Energy.gov [DOE]

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  20. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect (OSTI)

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01T23:59:59.000Z

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  1. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Management (DSM) in the Electricity Sector: Urgent Need for1   Electricity Sector inin the Indian electricity sector has large potential for

  2. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    on their monthly electricity consumption (for example 0-200reduction in their electricity consumption and thus totalfrom their reduced electricity consumption. The participant

  3. ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar

    SciTech Connect (OSTI)

    Burpo, Rob

    2012-02-29T23:59:59.000Z

    ToĂ?Â?Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the CaĂ?Â?oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

  4. The Influence of Residential Solar Water Heating on Electric Utility Demand 

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  5. The Influence of Residential Solar Water Heating on Electric Utility Demand

    E-Print Network [OSTI]

    Vliet, G. C.; Askey, J. L.

    1984-01-01T23:59:59.000Z

    Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

  6. Economic Theory and Electrical public Utilities Organization in the first part of the twentieth century: French and US Experiences

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    controversies led in the sixties by the Public Choice theory and in the eighties by the new public economics and by their intervention in the new legislative framework building or directly in the firms' management. Both US experienceEconomic Theory and Electrical public Utilities Organization in the first part of the twentieth

  7. Modeling temporal variations of electrical resistivity associated with pore pressure change in a kilometer-scale

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (hautot@univ-brest.fr) [1] From 1995 to 1998 the natural electric field was monitored with an array of 20 role of fluids in the distortion of the induced electric fields. Electromagnetic methods could provide in a kilometer-scale natural system Sophie Hautot School of Geosciences, University of Edinburgh, Edinburgh, UK

  8. Rural Electric Cooperatives Energy Efficiency Rebate Programs (Offered by 12 Utilities)

    Broader source: Energy.gov [DOE]

    The Central Iowa Power Cooperative (CIPCO) is a generation and transmission cooperative serving 12 rural electric cooperatives (REC) and one municipal electric cooperative in the state of Iowa....

  9. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

  10. Decision-making in demand-side management collaboratives: The influence of non-utility parties on electric-utility policies and programs

    SciTech Connect (OSTI)

    Schweitzer, M. [Oak Ridge National Lab., TN (United States); English, M.; Schexnayder, S. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1995-07-01T23:59:59.000Z

    Since the late 1980s, a number of electric utilities and interested non-utility parties (NUPs)-such as environmental groups, large industrial customers, and state government agencies-have tried a new approach to reaching agreement on program design and policy issues related to utility use of Demand-Side Management (DSM) resources. Through this new arrangement, known as the DSM collaborative process, parties who have often been adversaries attempt to resolve their differences through compromise and consensus rather than by using traditional litigation. This paper-which is based on studies of over a dozen collaboratives nationwide-discusses the organizational structure of collaboratives, the ways in which NUPs have been involved in the decision-making process, and how the amount of influence exerted by the NUPs is related to collaborative accomplishments. Most of the collaboratives studied had two organizational levels: a {open_quotes}working group{close_quotes} that provided policy direction and guidance for the collaborative and {open_quotes}subgroups{close_quotes} that performed the detailed tasks necessary to flesh out individual DSM programs. Most collaboratives also had a coordinator who was charged with scheduling meetings, exchanging information, and performing other important organizational functions, and it was common for the utility to fund consultants to provide expert assistance for the NUPs. In general, the utilities reserved the final decision-making prerogative for themselves, in line with their ultimate responsibility to shareholders, customers, and regulators. Still, there was substantial variation among the collaboratives in terms of how actively consensus was sought and how seriously the inputs of the NUPs were taken. In general, the collaboratives that resulted in the largest effects on utility DSM usage were those in which the utilities were most willing to allow their decisions to be shaped by the NUPs.

  11. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect (OSTI)

    Rau, N.S.

    1994-08-01T23:59:59.000Z

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  12. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    E-Print Network [OSTI]

    Eto, Joseph H.

    2013-01-01T23:59:59.000Z

    SAIDI SAIFI SERC SPP TRE WECC Alaska Systems CoordinatingElectricity Coordinating Council (WECC) Midwest ReliabilityCoordinating Council (WECC). Completeness of reported

  13. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    E-Print Network [OSTI]

    Administration, Duke Energy, Mid America Power, Pacific Gas and Electric Company, Puget Sound Energy, Salt River

  14. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    E-Print Network [OSTI]

    Hamachi La Commare, Kristina

    2013-01-01T23:59:59.000Z

    and Electronics Engineers (IEEE) Standard 1366-2003, IEEE Guide for Electric Power Distribution Reliability

  15. Helping Utilities Make Smart Solar Decisions Utility Barriers

    E-Print Network [OSTI]

    Homes, Christopher C.

    #12;About SEPA Developed by utilities to facilitate the integration of solar electric power. SEPA (insurance, disconnects, metering) · Balanced vs. best interconnection and net metering regimes #12;Managing Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW

  16. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  17. The effects of Title IV of the Clean Air Act amendments of 1990 on electric utilities: An update

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents data and analyses related to Phase I implementation of the Clean Air Act Amendment by electric utilities. It describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on sulfur dioxide emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. The first year of Phase I demonstrated that the market-based sulfur dioxide emissions control system could achieve significant reductions in emissions at lower than expected costs. Some utilities reduced aggregate emissions below legal requirements due to economic incentives; other utilities purchased additional allowances to avoid noncompliance. More than half of the utilities switched to or blended with lower sulfur coal, due to price reductions in the coal market which were partially due to the allowance trading program. 21 figs., 20 tabs.

  18. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Atcitty, Stanley

    2011-07-01T23:59:59.000Z

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  19. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  20. Economic assessment of small-scale electricity generation from wind 

    E-Print Network [OSTI]

    McAllister, Kristen Dawn

    2007-09-17T23:59:59.000Z

    Analysis was done to determine if small-scale wind energy could be economically feasible on a cotton farm with 1,200 irrigated acres, a house, and a barn. Lubbock and Midland were locations chosen for this model farm and the twenty-year analysis. A...

  1. Electric Power Industry Needs for Grid-Scale Storage Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy Eighth AnnualELECTRIC MOTORSDepartment

  2. Electric Power Industry Needs for Grid-Scale Storage Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient CoolingInc.Electric

  3. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    SciTech Connect (OSTI)

    Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

    2011-10-01T23:59:59.000Z

    A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

  4. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01T23:59:59.000Z

    distributed generation from elimination of electric utilitydistributed generation sites in urban areas and eight utility-57 . The utility-scale and distributed solar generation were

  5. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  6. The Large Scale Roll-Out of Electric Vehicles

    E-Print Network [OSTI]

    Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

    2012-10-26T23:59:59.000Z

    , biomass power plant, nuclear, imported electricity, coal steam turbine, heavy fuel oil steam turbine and natural gas combined cycle (Vuorinen, 2007). In 2007, nuclear and renewable were the main sources which were used to generate up to 17 GW and 20 GW... factor from such a plant is between 350 and 450 g/kWh. Our calculations (for 2010) are in line with the CO2 emission factor of a typical gas turbine power plant operating in the UK in 2010. 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 1 2 3 4 5 6 7 8 9 10 11 12...

  7. Hypermodular Self-Assembling Space Solar Power -- Design Option for Mid-Term GEO Utility-Scale Power Plants

    E-Print Network [OSTI]

    Leitgab, Martin

    2013-01-01T23:59:59.000Z

    This paper presents a design for scaleable space solar power systems based on free-flying reflectors and module self-assembly. Lower system cost of utility-scale space solar power is achieved by design independence of yet-to-be-built in-space assembly or transportation infrastructure. Using current and expected near-term technology, this study describe a design for mid-term utility-scale power plants in geosynchronous orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  8. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01T23:59:59.000Z

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  9. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    reduction in thermal efficiency of the boiler. Excess air bypenalty for thermal efficiencies of the boiler. Flue gasFractional Efficiency of a Utility Boiler Baghouse, Nucla

  10. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  11. Deregulation Process, Governance Structures and Efficiency: The U.S. Electric Utility Sector

    E-Print Network [OSTI]

    Delmas, Magali; Tokat, Yesim

    2003-01-01T23:59:59.000Z

    Electricity Restructuring: Deregulation or Reregulation?138. Joskow, P. L. 2000 Deregulation and Regulatory ReformAEI Conference on Deregulation in Network Industries,

  12. DEREGULATION PROCESS, GOVERNANCE STRUCTURES AND EFFICIENCY: THE U.S. ELECTRIC UTILITY SECTOR

    E-Print Network [OSTI]

    Delmas, Magali A.; Tokat, Yesim

    2003-01-01T23:59:59.000Z

    Electricity Restructuring: Deregulation or Reregulation?138. Joskow, P. L. 2000 Deregulation and Regulatory ReformAEI Conference on Deregulation in Network Industries,

  13. Sub-metering to Electricity Use in Large-scale Commercial Buildings

    E-Print Network [OSTI]

    Yuan, W.

    2006-01-01T23:59:59.000Z

    ~240Hotel251218113~129Office Building181118103~119government office building4582775~89 #0;?#0;? Great Difference between each type Sub-metering and statistics to electricity use in commercial buildings 5 Situation of Energy consumption in Large...Sub-metering to Electricity Use in Large-scale Commercial Buildings Wang YuanTsinghua University2006.11 Sub-metering and statistics to electricity use in commercial buildings 2 Index #0;?#0;? Situation of Energy consumption in commercial buildings...

  14. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01T23:59:59.000Z

    of electricity in a wind farm and subsequent production of Hexample, large remote wind farms that generate electricityvehicles, many large-scale wind farms that could utilize

  15. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01T23:59:59.000Z

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  16. Selenium And Arsenic Speciation in Fly Ash From Full-Scale Coal-Burning Utility Plants

    SciTech Connect (OSTI)

    Huggins, F.E.; Senior, C.L.; Chu, P.; Ladwig, K.; Huffman, G.P.; /Kentucky U. /Reaction Engin. Int. /Elect. Power Res. Inst., Palo Alto

    2007-07-09T23:59:59.000Z

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO{sub 3}{sup 2-}) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO{sub 4}{sup 3-}) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the post-combustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  17. Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy (Presentation)

    SciTech Connect (OSTI)

    Levine, A.; Young, K.; Witherbee, K.

    2013-10-01T23:59:59.000Z

    Permitting is a major component of the geothermal development process. Better coordination across government agencies could reduce uncertainty of the process and the actual time of permitting. This presentation highlights various forms of coordinating permit offices at the state and federal level in the western United States, discusses inefficiencies and mitigation techniques for permitting natural resource projects, analyzes whether various approaches are easily adaptable to utility-scale geothermal development, and addresses advantages and challenges for coordinating permit offices. Key successful strategies identified include: 1. Flexibility in implementing the approach (i.e. less statutory requirements for the approach); 2. Less dependence on a final environmental review for information sharing and permit coordination; 3. State and federal partnerships developed through memorandum of understanding to define roles and share data and/or developer information. A few of the most helpful techniques include: 1. A central point of contact for the developer to ask questions surrounding the project; 2. Pre-application meetings to assist the developer in identifying all of the permits, regulatory approvals, and associated information or data required; 3. A permit schedule or timeline to set expectations for the developer and agencies; 4. Consolidating the public notice, comment, and hearing period into fewer hearings held concurrently.

  18. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie M.; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO] [National Renewable Energy Laboratory Golden, CO

    2013-07-01T23:59:59.000Z

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  19. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    SciTech Connect (OSTI)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22T23:59:59.000Z

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  20. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  1. Barriers to commercialization of large-scale solar electricity: Lessions learned from the LUZ experience

    SciTech Connect (OSTI)

    Lotker, M. [Lotker (Michael), Westlake Village, CA (United States)

    1991-11-01T23:59:59.000Z

    This report discusses the economic and policy factors leading to the initial successful introduction of Luz International Limited`s Solar Electric Generating Systems (SEGS). It then addresses the wide range of barriers to continued SEGS commercialization, including state and federal tax policy, avoided cost energy pricing, artificial size limitations under the Public Utility Regulatory Policies Act (PURPA), the loss of effectiveness of PURPA itself, the lack of incentives available to utilities as owners of solar electric plants, and the limited ways in which the environmental benefits of this technology have been recognized. The way in which each of these barriers contributed to the suspension of new LUZ projects is highlighted. In addition, mitigation approaches to each of these barriers are suggested.

  2. PRE-STUDY COMMENTS OF IOWA UTILITIES BOARD ON DOE 2012 ELECTRIC...

    Broader source: Energy.gov (indexed) [DOE]

    should be considered in the DOE study. There are two utilities in Iowa that own transmission lines - MidAmerican, and ITC Midwest LLC (ITCM). MISO has operational control of...

  3. Weather Factors and Performance of Network Utilities: A Methodology and Application to Electricity Distribution

    E-Print Network [OSTI]

    Jamasb, Tooraj; Orea, Luis; Pollitt, Michael G.

    Incentive regulation and efficiency analysis of network utilities often need to take the effect of important external factors, such as the weather conditions, into account. This paper presents a method for estimating the effect of weather conditions...

  4. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  5. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, I.; /SLAC; Clayton, C.E.; /UCLA; Decker, F.J.; Hogan, M.J.; /SLAC; Huang, C.; /UCLA; Ischebeck, R.; Iverson, R.H.; /SLAC; Joshi, C.; /UCLA; Katsouleas, T.; /Southern California U.; Kirby, N.; /SLAC; Lu, W.; Marsh, K.A.; Mori, W.B.; /UCLA; Muggli, P.; Oz, E.; /Southern California U.; Siemann, R.H.; Walz, D.R.; /SLAC; Zhou, M.; /UCLA

    2012-06-12T23:59:59.000Z

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  6. CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers

    E-Print Network [OSTI]

    Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

    the available options and appropriate strategy is to properly understand the customers’ thermal and electric energy needs, and the existing Combined Heat and Power (CHP) system. This paper outlines an approach for developing such models at low cost, and using...

  7. The Benefits of Restructuring: It's Not Your Grandfather's Electric Utility Anymore

    SciTech Connect (OSTI)

    Switzer, Sheldon; Straub, Mary M.

    2006-02-01T23:59:59.000Z

    The key to achieving and maintaining most of the benefits from the emerging competitive market for electricity supply is to have a workably competitive wholesale generation market. By any objective measure, the PJM regional transmission organization is fulfilling its mission.

  8. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    1975, p. 48. "Clean Energy from Coal Technology," Office ofClean Ways to Burn Coal Estimated Busbar Power Costs for Coal-Electric TechnologiesClean Fuels from Coal," Cochran, N. P. , Office of Science and Technology,

  9. Electric utility forecasting of customer cogeneration and the influence of special rates

    E-Print Network [OSTI]

    Pickel, Frederick H.

    1979-01-01T23:59:59.000Z

    Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

  10. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    4 to 7 percent of the plants ' generating capacity (17,20).Boiler Baghouse, Nucla Generating Plant," Bradway, R. M. andof Electrical Generating Plants Effect of Load Factor on

  11. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30T23:59:59.000Z

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. • Facility scale, net metered renewable energy systems – These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  12. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    SciTech Connect (OSTI)

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03T23:59:59.000Z

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  13. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    SciTech Connect (OSTI)

    LaCommare, Kristina H.; Eto, Joseph H.

    2008-10-10T23:59:59.000Z

    Large blackouts, such as the August 14-15, 2003 blackout in the northeasternUnited States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. This study examines current state and utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based primarily on reliability information for 2006 reported by 123 utilities to 37 state public utility commissions.

  14. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    refrigerators, water heaters (solar, natural gas, LPG) andwith natural gas or solar heaters), space cooling (replacingof electric water heaters by solar water heaters (iv)

  15. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    Development Corporation Water Heater v vi Executive Summary cost programs (such as replacing electric water heaters withgas water heaters); (b) sell power conserved through the EE

  16. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    , use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

  17. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01T23:59:59.000Z

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage... Residential Single Family Multi Family 1-10 kW 15- 50 kW Ultra micro-turbines Stirling Engines Fuel Cells PEMFC SOFC PV BatterylUPS Remote Loads 5 kW - 1,000 kW IC engines Off Grid Diesel Engine Micro turbine Stirling Engines Distribution...

  18. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.; Hill, L.J. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Oak Ridge National Lab., TN (United States). Energy Div.

    1995-11-01T23:59:59.000Z

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  19. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:5 Electricity:

  20. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:5Electricity:

  1. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:5Electricity:6

  2. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 2, Appendices

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N. [Lawrence Berkeley Lab., CA (United States); Hill, L.J. [Oak Ridge National Lab., TN (United States)

    1995-11-01T23:59:59.000Z

    This document contains summaries of the electric utilities performance-based rate plans for the following companies: Alabama Power Company; Central Maine Power Company; Consolidated Edison of New York; Mississippi Power Company; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation; PacifiCorp; Pacific Gas and Electric; Southern California Edison; San Diego Gas & Electric; and Tucson Electric Power. In addition, this document also contains information about LBNL`s Power Index and Incentive Properties of a Hybrid Cap and Long-Run Demand Elasticity.

  3. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  4. A good integrated resource plan: Guidelines for electric utilities and regulators

    SciTech Connect (OSTI)

    Hirst, E.

    1992-12-01T23:59:59.000Z

    Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility`s report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

  5. 1. INTRODUCTION Seattle City Light (SCL) is the public electric utility of

    E-Print Network [OSTI]

    Haneberg, William C.

    , and environmentally responsible electric power to approximately 395,000 customers in Seattle and neighboring suburbs to mitigate persistent rock fall problems and develop a design approach to reroute the transmission lines voltage transmission lines, make collection of field data using a manual compass and clinometer slow

  6. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  7. David and the Goliaths: How a small environmental group helps reform electric-utility regulation

    SciTech Connect (OSTI)

    Hirst, E. [Oak Ridge National Lab., TN (United States); Swanson, S. [New York State Dept. of Public Services, Albany, NY (United States)

    1994-09-01T23:59:59.000Z

    In 1991 the Land and Water Fund of the Rockies (LAW Fund), a regional environmental organization, started an Energy Project with two lawyers and a scientist to challenge the energy-efficiency, renewable-resource and environmental-protection practices of utilities in the vast six-state Rocky Mountain region. Within three years, Colorado and Utah had adopted comprehensive integrated resource planning (IRP) rules, and several utilities had developed plans to expand their demand-side management (DSM) activities. The authors discuss the role that this small band of lawyers and policy analysts played in stimulating these changes, based on their first-hand experience with the LAW Fund. They also comment on the substantial influence and valuable services that such a small group can provide.

  8. A good integrated resource plan: Guidelines for electric utilities and regulators

    SciTech Connect (OSTI)

    Hirst, E.

    1992-12-01T23:59:59.000Z

    Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility's report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

  9. Neural network technology as a pollution prevention tool in the electric utility industry

    SciTech Connect (OSTI)

    Johnson, M.L.

    1998-07-01T23:59:59.000Z

    This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project was funded in part by a grant from the US Environmental Protection Agency (EPA), Region VI. combustion control is quickly becoming an emerging alternative for reducing utility plant emissions without installing costly end of pipe controls. The LCRA estimates that the technology has the potential to improve the thermal efficiency of a large utility boiler by more than 1 percent. preliminary calculations indicate that a 1% improvement in thermal efficiency at the 430 MW gas-fired utility boiler could results in an estimated energy savings of 142, 140 mmBtus and carbon dioxide (CO{sub 2}) reductions of 8,774 tons per year. This paper describes the process that were undertaken to identify and implement the pilot project at LCRA's Thomas C. Ferguson Power Plant, located in Marble Falls, Texas, Activities performed and documented include lessons learned, equipment selection, data acquisition, model evaluation and projected emission reductions.

  10. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01T23:59:59.000Z

    lamps with T5, use of solar water heater and, efficient airDevelopment Corporation Water Heater v vi Executive Summary replacing electric water heaters with gas water heaters); (

  11. Financial comparison of time-of-use pricing with technical DSM programs and generating plants as electric-utility resource options

    SciTech Connect (OSTI)

    Hill, L.J.

    1994-04-01T23:59:59.000Z

    Changing electricity prices to more closely reflect production costs has a significant impact on the consumption of electricity. It is known, for example, that most of the efficiency gains in the electric power sectors of the industrialized world since the first international oil price shock in 1973 are attributable to the rising trend of electricity prices. This was due to the rising average price of electricity. Because of the unique characteristics of producing electricity, its marginal cost is higher than its average cost during many hours of the day. This study shows that, for utilities not reflecting these cost differences in their rates, there is ample room to satisfy a portion of their resource needs by exploiting the load-shaping properties of time-of-use (TOU) rates. Satisfying a portion of resource requirements by implementing a TOU-pricing program, however, is not costless. Metering and administering TOU pricing requires a financial commitment by an electric utility. And the commitment has an opportunity cost. That is, the funds could be used to construct generating plants or run DSM programs (other than a TOU-pricing program) and satisfy the same resource needs that TOU pricing does. The question addressed in this study is whether a utility is better-served financially by (i) implementing TOU pricing or (ii) running technical DSM programs and building power plants. The answer is that TOU pricing compares favorably on a financial basis with other resources under a wide set of conditions that real-world utilities confront.

  12. Effects of microstructure on native oxide scale development and electrical characteristics of eutectic CuCu6La alloys

    E-Print Network [OSTI]

    Alpay, S. Pamir

    , and the characteristics of the native oxide scales lead to contact resistances orders of magnitude higher than thoseEffects of microstructure on native oxide scale development and electrical characteristics atomic force microscopy techniques have been used to study the microstructure, oxide scale development

  13. Superconductive Magnetic Energy Storage (SMES) System Studies for Electrical Utility at Wisconsin 

    E-Print Network [OSTI]

    Boom, R. W.; Eyssa, Y. M.; Abdelsalem, M. K.; Huang, X.

    1988-01-01T23:59:59.000Z

    of the axial structure is approximately E; and the cost of refrigeration is a constant plus an E^2/3 term. Costs scale approximately from E^0.58 (low E) to E^0.71 (100 - 3000 MWh) to E ^0.78 (3000 to 10,000 MWh). The cost of the ac-dc conversion system is about...

  14. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectric Fund (CDWR) Jump

  15. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:5

  16. Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity Sold to

  17. Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity Sold

  18. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric

  19. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric6

  20. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle Reduction WeightRebate -5 20054 Share of635 U.S. Electric67

  1. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFactEnergy

  2. Systemic Sublingual Delivery of Octreotide Acetate Utilizing Low-Current Oral Electrical Stimulation in Rabbits

    E-Print Network [OSTI]

    Bolch, Christina M.

    2012-10-19T23:59:59.000Z

    biological warfare agents such as anthrax, nerve agents, smallpox, and Ebola. On a broader scale, patients taking biologics or drugs for ailments such as cancer and autoimmune diseases will benefit from alternatives to intravenous injections.1... (Clinical Pharmacology Online Database). Due to poor oral bioavailability, octreotide must be delivered parenterally. This characteristic, in conjunction with the fact that it is typically administered to patients in 4 a chronic manner, makes...

  3. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  4. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  5. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29T23:59:59.000Z

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  6. Entropy of the Nordic electricity market: anomalous scaling, spikes, and mean-reversion

    E-Print Network [OSTI]

    Perello, J; Montero, M; Palatella, L; Simonsen, I; Masoliver, Jaume; Montero, Miquel; Palatella, Luigi; Perello, Josep; Simonsen, Ingve

    2006-01-01T23:59:59.000Z

    The electricity market is a very peculiar market due to the large variety of phenomena that can affect the spot price. However, this market still shows many typical features of other speculative (commodity) markets like, for instance, data clustering and mean reversion. We apply the diffusion entropy analysis (DEA) to the Nordic spot electricity market (Nord Pool). We study the waiting time statistics between consecutive spot price spikes and find it to show anomalous scaling characterized by a decaying power-law. The exponent observed in data follows a quite robust relationship with the one implied by the DEA analysis. We also in terms of the DEA revisit topics like clustering, mean-reversion and periodicities. We finally propose a GARCH inspired model but for the price itself. Models in the context of stochastic volatility processes appear under this scope to have a feasible description.

  7. ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    At NREL's Energy Systems Integration Facility (ESIF), integrated, megawatt-scale power hardware-in-the-loop (PHIL) capability allows researchers and manufacturers to test new energy technologies at full power in real-time simulations - safely evaluating component and system performance and reliability before going to market.

  8. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    SciTech Connect (OSTI)

    Jean-Claude Ossyra

    2012-10-25T23:59:59.000Z

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  9. A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage{

    E-Print Network [OSTI]

    Gao, Hongjun

    A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage-planar organic molecule with electron donor and acceptor capabilities was synthesized for nano-scale data storage the demand of expansive storage capacity in the future. Recently, organic materials have received much

  10. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  11. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  12. PowerGrid - A Computation Engine for Large-Scale Electric Networks

    SciTech Connect (OSTI)

    Chika Nwankpa

    2011-01-31T23:59:59.000Z

    This Final Report discusses work on an approach for analog emulation of large scale power systems using Analog Behavioral Models (ABMs) and analog devices in PSpice design environment. ABMs are models based on sets of mathematical equations or transfer functions describing the behavior of a circuit element or an analog building block. The ABM concept provides an efficient strategy for feasibility analysis, quick insight of developing top-down design methodology of large systems and model verification prior to full structural design and implementation. Analog emulation in this report uses an electric circuit equivalent of mathematical equations and scaled relationships that describe the states and behavior of a real power system to create its solution trajectory. The speed of analog solutions is as quick as the responses of the circuit itself. Emulation therefore is the representation of desired physical characteristics of a real life object using an electric circuit equivalent. The circuit equivalent has within it, the model of a real system as well as the method of solution. This report presents a methodology of the core computation through development of ABMs for generators, transmission lines and loads. Results of ABMs used for the case of 3, 6, and 14 bus power systems are presented and compared with industrial grade numerical simulators for validation.

  13. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  14. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    SciTech Connect (OSTI)

    Weller, G.H.

    2001-07-15T23:59:59.000Z

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  15. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  16. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2013-08-31T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  17. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  18. Is there a case for broadband utility communications networks? Valuing and pricing incremental communications capacity on electric utility smart grid networks

    SciTech Connect (OSTI)

    Heidell, James; Ware, Harold

    2010-01-15T23:59:59.000Z

    Analysis of the potential for selling non-utility uses of broadband capability constructed in conjunction with Smart Grid/AMI deserves careful consideration. These services can be provided in a manner that neither creates unfair competition nor results in cross-subsidization of unregulated services by regulated services. (author)

  19. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at Texas A&M University -- Galveston (TAMU-G) Galveston, Texas

    E-Print Network [OSTI]

    Zhu, Y.; Turner, W. D.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    ESL-TR-99/12-05 Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at the Texas A&M University at Galveston (TAMU-G) Galveston, Texas Submitted to Texas A&M University at Galveston The Texas A&M University... to the Community College, we have not included it as a potential commissioning site. We did also do a commissioning audit of the TEEX Bayou Building as part of the study. Metering Recommendations for Electric Deregulation Several options exist -reinstall ESL meters...

  20. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at Texas A&M University – Texarkana (TAMU–T) Texarkana, Texas

    E-Print Network [OSTI]

    Zhu, Y.; Turner, W. D.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    System Submitted by Yeqiao Zhu Dan Turner David Claridge Energy Systems Laboratory The Texas A&M University System December, 1999 Acknowledgement The Electric Utility Regulation and Energy Efficiency Study for all universities in the TAMU System... was initiated in May 1999 and is funded through an interagency agreement between the Chancellor's office and TEES's Energy Systems Laboratory. Detailed site visits were made to all system universities throughout the summer and fall. The Energy Systems Laboratory...

  1. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  2. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  3. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  4. Statistical characteristics of small-scale spatial and temporal electric field variability in the high-latitude ionosphere

    E-Print Network [OSTI]

    Shepherd, Simon

    to the total energy deposited in the atmosphere through Joule heating and mechanical energy transfer's ionosphere are investigated using 48 months of data from the Super Dual Auroral Radar Network (Super. The amount of energy contributed by small-scale electric field variability has been estimated in previous

  5. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  6. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    of various energy efficiency business models on utilityContribution of energy efficiency business models to after-Table 2. Energy efficiency business models analyzed for

  7. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

    2013-11-05T23:59:59.000Z

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

  8. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  9. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In Montana, regulated electric utilities are required to offer customers the option of purchasing electricity generated by certified, environmentally-preferred resources that include, but are not...

  10. Techniques for analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Regulatory laws and policies. [State by state

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is a legal study prepared to provide a review of the substantive and procedural laws of each regulatory jurisdiction that may affect implementation of the PURPA standards, and to summarize the current state of consideration and implementation of policies and rate designs similar or identical to the PURPA standards by state regulatory agencies and nonregulated utilities. This report is divided into three sections. The first section, the Introduction, summarizes the standards promulgated by PURPA and the results of the legal study. The second section, State Regulatory Law and Procedure, summarizes for each state or other ratemaking jurisdiction: (1) general constitutional and statutory provisions affecting utility rates and conditions of service; (2) specific laws or decisions affecting policy or rate design issues covered by PURPA standards; and (3) statutes and decisions governing administrative procedures, including judicial review. A chart showing actions taken on the policy and rate design issues addressed by PURPA is also included for each jurisdiction, and citations to relevant authorities are presented for each standard. State statutes or decisions that specifically define a state standard similar or identical to a PURPA standard, or that refer to one of the three PURPA objectives, are noted. The third section, Nonregulated Electric Utilities, summarizes information available on nonregulated utilities, i.e., publicly or cooperatively owned utilities which are specifically exempted from state regulation by state law.

  11. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    all-in, first-year 2012 cost for wind energy under a powerO&M) costs for utility-sponsored wind and biofuel projectsovernight capital cost of the wind facility and the biofuel

  12. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    first-year 2012 cost for wind energy under a power purchasecosts, we assumed that the super-utility had a preference for wind energy.Cost Study of the 2015 Wind Challenge: An Assessment of Wind Energy

  13. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  14. Utility spot pricing study : Wisconsin

    E-Print Network [OSTI]

    Caramanis, Michael C.

    1982-01-01T23:59:59.000Z

    Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

  15. The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor

    E-Print Network [OSTI]

    Williams, Monte Glen

    1994-01-01T23:59:59.000Z

    of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design...

  16. PILOT-SCALE FIELD VALIDATION OF THE LONG ELECTRODE ELECTRICAL RESISTIVITY TOMOGRAPHY METHOD

    SciTech Connect (OSTI)

    GLASER DR; RUCKER DF; CROOK N; LOKE MH

    2011-07-14T23:59:59.000Z

    Field validation for the long electrode electrical resistivity tomography (LE-ERT) method was attempted in order to demonstrate the performance of the technique in imaging a simple buried target. The experiment was an approximately 1/17 scale mock-up of a region encompassing a buried nuclear waste tank on the Hanford site. The target of focus was constructed by manually forming a simulated plume within the vadose zone using a tank waste simulant. The LE-ERT results were compared to ERT using conventional point electrodes on the surface and buried within the survey domain. Using a pole-pole array, both point and long electrode imaging techniques identified the lateral extents of the pre-formed plume with reasonable fidelity, but the LE-ERT was handicapped in reconstructing the vertical boundaries. The pole-dipole and dipole-dipole arrays were also tested with the LE-ERT method and were shown to have the least favorable target properties, including the position of the reconstructed plume relative to the known plume and the intensity of false positive targets. The poor performance of the pole-dipole and dipole-dipole arrays was attributed to an inexhaustive and non-optimal coverage of data at key electrodes, as well as an increased noise for electrode combinations with high geometric factors. However, when comparing the model resolution matrix among the different acquisition strategies, the pole-dipole and dipole-dipole arrays using long electrodes were shown to have significantly higher average and maximum values than any pole-pole array. The model resolution describes how well the inversion model resolves the subsurface. Given the model resolution performance of the pole-dipole and dipole-dipole arrays, it may be worth investing in tools to understand the optimum subset of randomly distributed electrode pairs to produce maximum performance from the inversion model.

  17. Public Utility Regulatory Policies Act of 1978 (PURPA) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Utility Regulatory Policies Act of 1978 (PURPA) Public Utility Regulatory Policies Act of 1978 (PURPA) "List of Covered Electric Utilities" under the Public Utility...

  18. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    business model for energy efficiency inclusive of both a lost fixed costand energy costs. The Benefits Calculator uses inputs provided in the Utility Characterization to produce a “business-cost recovery: Impact on stakeholders under federal CERES ..9 3.3 Energy efficiency with a comprehensive business

  19. Illinois Municipal Electric Agency- Electric Efficiency Program

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electric Agency (IMEA) offers rebates to member municipal utilities* (those who purchase wholesale electric service from IMEA) and retail customers for energy efficiency...

  20. A Response to Two Recent Studies that Purport to Calculate Electric Utility Restructuring Benefits Captured by Consumers

    SciTech Connect (OSTI)

    Spinner, Howard M.

    2006-02-01T23:59:59.000Z

    Recent studies by Global Energy Decisions and Cambridge Energy Research Associates offered high 'headline impact' in finding that wholesale electric competition is fulfilling its promises and restructuring is benefiting consumers to the tune of billions of dollars. But both studies share a fundamental problem tied to the fact that portions of those 'savings' to consumers accrue from losses suffered by the competitive generation sector.

  1. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  2. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01T23:59:59.000Z

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  3. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-08-01T23:59:59.000Z

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  4. Nickel and Sulfur Speciation of Residual Oil Fly Ashes from Two Electric Utility Steam-Generating Units

    SciTech Connect (OSTI)

    Galbreath,K.; Schulz, R.; Toman, D.; Nyberg, C.; Huggins, F.; Huffman, G.; Zillioux, E.

    2005-01-01T23:59:59.000Z

    Representative duplicate fly ash samples were obtained from the stacks of 400- and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned 0.9 and 0.3 wt % S residual (No. 6 fuel) oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for Ni concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and X-ray diffraction.

  5. A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders

    E-Print Network [OSTI]

    Sanders, Seth

    as the generator rotor. The design allows for thermal insulation between the stator and combustion chamber, simple- or mi- croscale poses considerable challenges in thermal and fluid management, combustion processes stator to the silicon engine housing, and utilizing the engine rotor as the generator roto

  6. Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation

    E-Print Network [OSTI]

    Brennan, Sean

    Michael D. Petersheim, Sean N. Brennan * Department of Mechanical and Nuclear Engineering-going vessels, sus- pension systems, earthquake-proof buildings, powertrain control- lers, unmanned underwater as a type of HIL system. HIL testing is increasingly useful in applications involving hy- brid electric

  7. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect (OSTI)

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

    2009-05-15T23:59:59.000Z

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  8. Electric field based fabrication methods for multi-scale structured surfaces

    E-Print Network [OSTI]

    Joung, Young Soo

    2014-01-01T23:59:59.000Z

    Control of micro/nano scale surface structures and properties is crucial to developing novel functional materials. From an engineering point of view, the development of scalable and economical micro/nano-fabrication methods ...

  9. Quality of Service, Efficiency and Scale in Network Industries: An analysis of European electricity distribution

    E-Print Network [OSTI]

    Growitsch, Christian; Jamasb, Tooraj; Pollitt, Michael G.

    2006-03-14T23:59:59.000Z

    quality. We also show that incorporating quality of service does not alter scale economy measures. Quality of service should be an integrated part of efficiency analysis and incentive regulation regimes, as well as in the economic review of market...

  10. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOE Patents [OSTI]

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16T23:59:59.000Z

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  11. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  12. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  13. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  14. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30T23:59:59.000Z

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  15. agriculture cea utilizing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan ofthe Ukiah Electric Utility (Ukiah), as required for compliance Procurement Plan that requires the utility to procure a minimum quantity of electricity products from...

  16. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

  17. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity...

  18. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  19. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Broader source: Energy.gov [DOE]

    '''''Note: The municipal electric utilities serving New Castle, Clayton, Lewes, Middletown, Smyrna, and Seaford do not offer any rebates for individual renewable energy systems. Please see the...

  20. Validation of the Electrical Properties of the ITER ICRF Antenna using Reduced-Scale Mock-Ups

    SciTech Connect (OSTI)

    Dumortier, Pierre; Durodie, Frederic; Grine, Djamel; Kyrytsya, Volodymyr; Louche, Fabrice; Messiaen, Andre; Vervier, Michel; Vrancken, Mark [LPP-ERM/KMS, EURATOM-Belgian State Association, CYCLE, Trilateral Euregio Cluster, B-1000 Brussels (Belgium)

    2011-12-23T23:59:59.000Z

    Experimental measurements on reduced-scale mock-ups allow validating the electrical properties and RF numerical optimization of the ITER ICRF antenna. Frequency response in the different regions of the antenna is described and key parameters for performance improvement are given. Coupling is improved by acting on the front-face geometry (strap width, antenna box depth and vertical septa recess). The 4-port junction acts as a frequency filter and together with the service stub performs pre-matching in the whole frequency band. Influence of the Faraday screen on coupling is limited. The effect of voltage limitation on the maximum total radiated power is given. The importance of a good decoupling network and of grounding is emphasized. Finally the control of the antenna wave spectrum is performed by implementing feedback controlled load-resilient matching and decoupling options and control algorithms are tested.

  1. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  2. The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-

    E-Print Network [OSTI]

    Fisher, Kathleen

    of solely in terms of meter solutions. However, the smart grid encompasses the entire grid--it must be used's environmental footprint.While the smart grid is starting with meter reads and outage information, it will soonThe key to fully tapping the promise of the smart grid in the electric utility industry is highly

  3. Electrical and Computer Engineering Electrical Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    Electrical and Computer Engineering Electrical Engineering Department Website: www.iit.edu/engineering/ece Electrical engineering is concerned with the generation, transmission, and utilization of electrical energy and with the transmitting and processing of information. Electrical engineers are involved in the analysis, design, and pro

  4. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  5. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  6. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

  8. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  9. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  10. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    E-Print Network [OSTI]

    LaCommare, Kristina H.

    2008-01-01T23:59:59.000Z

    and Electronics Engineers (IEEE) Distribution Reliabilityand Electronics Engineers (IEEE) Standard 1366-2003, IEEE Guide for Electric Power Distribution Reliabilityand Electronics Engineers (IEEE) Standard 1366-2003, IEEE Guide for Electric Power Distribution Reliability

  11. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  12. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01T23:59:59.000Z

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  13. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides commercial electric incentives for the following Michigan utilities:

  14. Energy Optimization (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Optimization Programs, administered by WECC, provides residential electric incentives for the following Michigan utilities:

  15. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  16. Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999

    SciTech Connect (OSTI)

    Kreutz, Thomas G.; Ogden, Joan M.

    2000-07-01T23:59:59.000Z

    In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

  17. Economic Consequences of Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets

    E-Print Network [OSTI]

    Sioshansi, Ramteen; O'Neill, Richard; Oren, Shmuel S

    2008-01-01T23:59:59.000Z

    commitment in competitive electricity markets,” Util. Pol. ,of market design,” in Electricity Market Reform: Anrestructured competitive electricity markets. and variable

  18. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  19. Multi-scale electrical and thermal properties of aligned multi-walled carbon nanotubes and their composites

    E-Print Network [OSTI]

    Yamamoto, Namiko

    2011-01-01T23:59:59.000Z

    Carbon nanotubes (CNTs) are a potential new component to be incorporated into existing aerospace structural composites for multi-functional (mechanical, electrical, thermal, etc.) property enhancement and tailoring. ...

  20. Fatal Flaw Analysis of Utility-Scale Wind Turbine Generators at the West Haymarket Joint Public Agency. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-08-01T23:59:59.000Z

    Fatal flaw analysis of utility-scale wind turbines at the West Haymarket Joint Public Agency brownfields site in Lincoln, Nebraska, funded by EPA.

  1. Technical and Economic Feasibility Study of Utility-Scale Wind at the Doepke-Holliday Superfund Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-05-01T23:59:59.000Z

    This report is a technical and financial feasibility study of a utility-scale wind turbine on the Doepke Superfund site.

  2. Feather release force and rigor mortis development in soft-scaled broilers stunned with carbon dioxide or electricity

    E-Print Network [OSTI]

    Krupala, Jason Kyle

    1998-01-01T23:59:59.000Z

    Broilers were stunned with carbon dioxide or Micrographics. electricity prior to slaughter to evaluate feather release force (FRF), and shear value, pH, and R-value of Pectoralis. Broilers (n = 72) were stunned using an electrical saline stunner (35...

  3. Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while providing increased reliability, security, and...

  4. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District Dairy...

  5. Electric sales and revenue 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  6. The Gas/Electric Partnership 

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    1997-01-01T23:59:59.000Z

    as this occurs. Through an Electric Power Research Institute initiative, an inter-industry organization, the Gas/Electric Partnership, has formed between the electric utilities and gas pipelines. The initial focus of this partnership is to explore issues...

  7. Economic regulation of electricity distribution utilities under high penetration of distributed energy resources : applying an incentive compatible menu of contracts, reference network model and uncertainty mechanisms

    E-Print Network [OSTI]

    Jenkins, Jesse D. (Jesse David)

    2014-01-01T23:59:59.000Z

    Ongoing changes in the use and management of electricity distribution systems - including the proliferation of distributed energy resources, smart grid technologies (i.e., advanced power electronics and information and ...

  8. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  9. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  10. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17T23:59:59.000Z

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of Wisconsin-Milwaukee Submitted to the Electric Power Research Institute August 2009 UWM Center for By-Products-Strength Materials) for help in reducing global warming. Concrete mixtures having slump in the range of three to fourCenter for By-Products Utilization CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS By Tarun R

  12. Physical Plant Utility Department

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of Massachusetts Amherst Electrical Distribution & Outdoor Lighting 3.0 Table of Contents Page 1 UMass Medium buses at the Eastside sub-station. The Eastside sub-station is comprised of two separate buses with a normally open bus tie. Each bus is automatically backed up by separate utility feeds. The Eastside Sub-station

  13. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc coal combustion waste material (fly ash) to the maximum extent possible while minimizing costs (e

  14. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  15. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible...

  16. Electric power annual 1995. Volume II

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  17. Spot pricing of public utility services

    E-Print Network [OSTI]

    Bohn, Roger E.

    1982-01-01T23:59:59.000Z

    This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

  18. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at West Texas A&M University (WTAMU) Canyon, Texas

    E-Print Network [OSTI]

    Zhu, Y.; Bryant, J.; Turner, W. D.; Claridge, D. E.

    1999-01-01T23:59:59.000Z

    system receives pulse data from both of the main electrical substations. The KYZ pulse from the north sub-station is direct wired to the powerhouse DDC panel and the south sub-station pulse is wired to the DDC panel in the Activity Center. WTAMU... technician offered to set up long term trend logs for both of the sub- station electrical feeds and the powerhouse gas consumption. The data could be accessed via modem directly from the JCI Metasys system. JCI currently does this type of trending to check...

  19. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  20. Dover Public Utilities- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  1. TVA Partner Utilities- eScore Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) in partnership with local electric utilities offers eScore program, which provides homeowners financial incentives to increase the energy efficiency of existing...

  2. Lassen Municipal Utility District- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the...

  3. Energy Department Works with Sacramento Municipal Utility District...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Initiatives & Projects Energy Transition Initiative Energy Department Works with Sacramento Municipal Utility District on Renewable Electricity Generation and...

  4. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell

    E-Print Network [OSTI]

    -term test demonstrated improved electricity production at higher recirculation rates. The water produced via required for wastewater treatment processes; therefore, the bioenergy-producing process has advantages over then migrate to the cathode and react with oxygen (an electron acceptor) to produce water. The electron flow

  5. Supply-side utility economics

    SciTech Connect (OSTI)

    Platt, H.D.

    1985-06-27T23:59:59.000Z

    This article makes two main points: that electricity is a necessary resource, and that utilities respond to incentives as do individuals. From them, the author deduces that the US will have a power shortage within the foreseeable future unless utility regulators begin to consider future power plant needs realistically.

  6. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01T23:59:59.000Z

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  7. Status of State Electric Industry Restructuring Activity

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Presents an overview of the status of electric industry restructuring in each state. Restructuring means that a monopoly system of electric utilities has been replaced with competing sellers.

  8. Aggregated Data for Investor-Owned Utilities, Publicly Owned Utilities, and Combined Utilities

    E-Print Network [OSTI]

    Utilities: Electric Energy Consumption Electric Peak Demand Natural Gas Consumption #12;Sources: Data,000 300,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Year GWh CEC 2007 Forecast-Staff Draft that the incremental savings is kept equal to the annual savings in 2013. The CEC 2007 Forecast has incorporated

  9. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect (OSTI)

    Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

    2014-12-30T23:59:59.000Z

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  10. Hybrid opto-electric manipulation in microfluidics - opportunities and challenges

    SciTech Connect (OSTI)

    Kumar, Aloke [ORNL; Williams, Stuart J. [University of Louisville, Louisville; Chuang, Han-sheng [University of Pennsylvania; Green, Nicolas [University of Southampton, England; Wereley, Steven G. [Purdue University

    2011-01-01T23:59:59.000Z

    Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of technologies that employ both optical and electrical forces to achieve particle or fluid manipulation at the micro and nano scale. These technologies, which have emerged primarily over the last decade, have provided a revolutionary and fresh perspective at fundamental electrokinetic processes, as well as have engendered a novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimeter-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various techniques that have emerged over the last decade under a unified umbrella.

  11. Electric Restructuring Outreach Activities and Information Disseminati...

    Office of Environmental Management (EM)

    Restructuring Outreach Activities and Information Dissemination to State Public Utility Regulators Electric Restructuring Outreach Activities and Information Dissemination to State...

  12. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  13. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  14. Types of Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Several types of contracts are used as utility energy service contracts (UESCs). Many agency sites procure electricity services under a contract with the local utility, and most of these contracts have provisions that can also cover energy efficiency projects. Agencies not covered by such agreements may enter contracts with the utility for the sole purpose of implementing energy projects.

  15. Lakeland Electric- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

  16. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25T23:59:59.000Z

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  17. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  18. Electrical Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  19. Electric Power annual 1996: Volume II

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  20. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect (OSTI)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01T23:59:59.000Z

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  1. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18UnrevisedCoolUsingDepartment ofPartnerships

  2. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29T23:59:59.000Z

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 9,060 35 Electric Utilities 152 46...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,235 50 Electric Utilities 329 45...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,849 16 Electric Utilities 20,626...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,083 18 Electric Utilities 21,280...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRORFCSERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 45,146 5 Electric Utilities 5,274 34...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    1. 2012 Summary statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,924 22 Electric Utilities 517 43...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Summary statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,323 44 Electric Utilities 1,121 41...

  10. Electrical Engineer (Litigation)

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Administrative Litigation (OAL). As the Commissions trial staff, OAL seeks to assist entities such as electric utilities, natural gas pipelines and...

  11. Intraclass Price Elasticity & Electric Rate Design

    E-Print Network [OSTI]

    Gresham, K. E.

    INTRACLASS PRICE ELASTICITY &ELECTRIC RATE DESIGN KEVIN E. GRESHAM Senior Research Analyst Houston Lighting & Power Company Houston, Texas ABSTRACT PRICE ELASTICITY Electric ~ate design relies on cost incur rance for pricing and pricing... industries are already affecting electric utilities. Cogeneration is one example of competition which effects electric utilities. Utilities now have a competing source of generation which often causes load and revenue losses. Competition has specifically...

  12. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  14. Small-scale hydroelectric power demonstration project: Broad River Electric Cooperative, Inc. , Cherokee Falls Hydroelectric Project: Final technical and construction cost report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    The purpose of this report is to fulfill part of the requirement of the US Department of Energy (DOE) Cooperative Agreement Number FC07-80ID12125 of the Small Scale Hydropower Program and is submitted on behalf of the Broad River Electric Cooperative, Inc. of Gaffney, South Carolina. The project was initially studied in 1978 with construction commencing in January, 1984. The primary work elements of the project consisted of the renovation of an existing dam and a new powerhouse. The dam was rehabilitated and flashboards were installed along the top of the structure. The powerhouse was supplied with a single open pit turbine and a new substation was constructed. The project generated power in December of 1985 but has been plagued with numerous problems compounded by a flood in March, 1987 causing extensive damages. The flood of March, 1987 resulted in filing of litigative action by the developers against their project managers and engineers which has yet to reach settlement and will possibly culminate in court sometime during the fall of 1988.

  15. PNNL-SA-XXXXX Ultra Large-Scale Power System Control and

    E-Print Network [OSTI]

    Low, Steven H.

    PNNL-SA-XXXXX Ultra Large-Scale Power System Control and Coordination Architecture A Strategic Institute of Technology Rick Geiger Utilities and Smart Grid Cisco Systems #12;#12;PNNL-SA-XXXXX #12;PNNL Richland, Washington 99352 #12;PNNL-SA-XXXXX #12;#12;PNNL-SA-XXXXX 1.0 Introduction Electric power grids

  16. The Gas/Electric Partnership

    E-Print Network [OSTI]

    Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

    The GaslElectric Partnership W. Richard Schmeal Dwight Royall K. Fred Wrenn, Jr. EPRI Chemical & Petroleum Center TU Electric Columbia Gas Transmission Corp. Houston, Texas Dallas, Texas Charleston, West Virginia The electric and gas industries... of information about emergmg technologies Cultural Issues A number of electric utilities formed an Electric Power For Compression Working Group with EPRI to address these issues openly and honestly to see if the issues were real and, if so to see...

  17. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

  18. americans land electricity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner Pjm Interconnection Llc;...

  19. Liberty Utilities (Electric) - Commercial New Construction Rebate...

    Open Energy Info (EERE)

    Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Motors, Geothermal Heat Pumps, Control Sensors, Economizers Active Incentive Yes...

  20. Electric Utility Demand-Side Evaluation Methodologies

    E-Print Network [OSTI]

    Treadway, N.

    of many publ ic projects because it provides a framework for public agency appraisal of noncommercial activities. Its application allows a summary of the benefits and costs of an activity from the perspective of society and the taxpayer or... of the rate impact at one point in tim.e. Rates do not change for ':the nonparticipant, or? for anyone ~lse unti 1. ?autil.ity' requests and receives a rate change. In Texas;.? r?atesar.e? based on the average embedded costs of a? one year historic time...

  1. Ashland Electric Utility- Commercial Conservation Loan Program

    Broader source: Energy.gov [DOE]

    City of Ashland Conservation District has no-interest loans to help commercial customers finance energy efficiency improvements in facilities. The loans can be used for lighting retrofits, water...

  2. POLITICAL INSTITUTIONS AND ELECTRIC UTILITY INVESTMENT

    E-Print Network [OSTI]

    California at Berkeley. University of

    the Institute for Policy Reform (IPR) and the Agency for International Development (USAID), Cooperative

  3. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey)GainSpan Corporation

  4. Whitehall Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadowOpenWhitefish,

  5. Wisconsin Dells Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown

  6. Columbia Utilities Electricity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial IndustriaColumbiaColumbia

  7. PPL Electric Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to: navigation, searchPPL

  8. Page Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD NoPage EditPacificPage

  9. Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnual Financial Report |Programs | Department of

  10. Liberty Utilities (Electric) - Residential Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnual Financial Report |Programs | Department

  11. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrillingProjectDublin

  12. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson, New5661°, -86.0529604° Show MapTipton

  13. Tatitlek Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie Valley E PEnergyTaoTatitlek

  14. Hudson Municipal Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubei Xinda Bio

  15. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. (IT Corp., Cincinnati, OH (United States))

    1992-03-01T23:59:59.000Z

    Experimental data for 120 flue gas desulfurization systems of fossil-fuel power plants of US electrical utilities with information on the design and performance. No text--all data.

  16. Energy Efficiency in Process Plant Utilities

    E-Print Network [OSTI]

    Aggarwal, S.

    This article highlights some aspects of utility systems design and operations for energy efficiency. After years of relative stability, the energy costs have risen substantially. Electricity rates vary by the hour and in some cases are tied...

  17. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the...

  18. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  19. The Utilities' Role in Conservation and Cogeneration

    E-Print Network [OSTI]

    Mitchell, R. C., III

    1982-01-01T23:59:59.000Z

    The electric utility industry is uniquely qualified and positioned to serve as an effective 'deliverer' of energy conservation services and alternative energy supply options, such as cogeneration, rather than merely as a 'facilitator...

  20. BPA and new public utilities.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the recent increases in electric utility costs and the promises of more increases to come, grassroots groups in the state of Washington have begun to investigate the possibility of...