National Library of Energy BETA

Sample records for utility rocky mountain

  1. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name: Rocky Mountain Institute Address: 1820 Folsom Street Place: Boulder, Colorado Zip: 80302...

  2. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain Humane Investing Jump to: navigation, search Name: Rocky Mountain Humane Investing Place: Allenspark, Colorado Zip: 80510 Product: Allenspark-based investment...

  3. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    For residential and small commercial customers, net excess generation (NEG) is credited at Rocky Mountain Power's retail rate and carried forward to the next month. For larger commercial and...

  4. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  5. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for its commercial and industrial customers in Idaho to retrofit existing facilities with more efficient equipment. Full details are available on the...

  6. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency in commercial and industrial...

  7. Rocky Mountain Power- wattsmart Business Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's wattsmart Business Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Full details are available on the...

  8. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers in Idaho to install energy efficient equipment in their homes. Full details are available on the program website.

  9. Rocky Mountain Power- wattsmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for residential customers to increase the energy efficiency of homes through the Home Energy Savings Program. Full details are available on the program...

  10. PIA - Rocky Mountain OTC GSS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS PIA - Rocky Mountain OTC GSS PDF icon PIA - Rocky Mountain OTC GSS More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline

  11. Rocky Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho; it is headquartered in Salt Lake...

  12. Rocky Mountain Power- wattsmart New Homes Program

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes. To qualify for this incentive, the new home must meet the Version 2.5...

  13. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tech tool predicts fire behavior in bark beetle-ravaged forests August 9, 2012 Rocky Mountain Research Station and LANL build better computer models LOS ALAMOS, N. M. and FORT COLLINS, CO., August 9, 2012-Fire fighters facing fast-moving wildfires need better tools to predict erratic fire behavior, especially in forests with dead trees caused by massive outbreaks of bark beetles whose predations create an abundance of dead fuel and changes in the tree canopy structure. Tools typically available

  14. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  15. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  16. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  17. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  18. Rocky Mountain Sustainable Enterprises LLC | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Enterprises LLC Jump to: navigation, search Name: Rocky Mountain Sustainable Enterprises LLC Place: Boulder, Colorado Zip: 80302 Product: Colorado-based biofuel...

  19. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  20. Rocky Mountain Power- WattSmart Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers the Home Energy Savings Program for their residential Wyoming customers to improve the energy efficiency of their homes. Full details are available on the program website. 

  1. DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -

    Office of Legacy Management (LM)

    CO 06 Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive

  2. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect (OSTI)

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50°C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  3. Rocky Mountain Electrical League (RMEL) Physical and Cyber Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference - January 26-27, 2016 | Department of Energy Rocky Mountain Electrical League (RMEL) Physical and Cyber Security Conference - January 26-27, 2016 Rocky Mountain Electrical League (RMEL) Physical and Cyber Security Conference - January 26-27, 2016 January 4, 2016 - 11:22am Addthis Power SURGE is joint project between the DOE’s Office of Security Assistance and the Department’s Power Marketing Administrations, led by the Western Area Power Marketing Administration. Power

  4. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Rocky Mountain Oilfield Testing Center . The Rocky Mountain Oilfield Testing Center's APS was consolidated within the Office of Fossil Energy's APS available here. More Documents & Publications 2013 Annual Planning Summary for the

  5. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  6. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  7. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  8. SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119

  9. Preliminary Notice of Violation, Rocky Mountain Remediation Services- EA-97-04

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04)

  10. Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Redelegation Order No. 00-006.02-02 to the Director, Rocky Mountain Oilfield Testing Center by Admin Functional areas: Miscellaneous 00-00602-02-DirRockyMtnOilFldTesting.pd...

  11. NREL Named Corporation of Year by the Rocky Mountain Minority Supplier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development Council - News Releases | NREL Named Corporation of Year by the Rocky Mountain Minority Supplier Development Council March 26, 2010 A minority business advocacy group has named the U.S. Department of Energy's National Renewable Energy Laboratory as its corporation of the year, citing NREL's contracts with minority-owned businesses and its outreach to them. The award was determined by heads of minority-owned businesses who are members of the Rocky Mountain Minority Supplier

  12. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    56.00x109 Btuyr 16.40 GWhyr Delat T 10.00 F Load Factor 0.80 Contact Erwin Young; 719-589-3032 References Oregon Institute of Technology's Geo-Heat Center1 Rocky...

  13. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department of Energy...

  14. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  15. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect (OSTI)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  16. City of Kings Mountain, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Kings Mountain, North Carolina (Utility Company) Jump to: navigation, search Name: City of Kings Mountain Place: North Carolina Phone Number: 704.730.2125 Website:...

  17. Geology of uranium deposits in the southern part of the Rocky Mountain province of Colorado

    SciTech Connect (OSTI)

    Malan, R.C.

    1983-07-01

    This report summarizes the geology of uranium deposits in the southern part of the Rocky Mountains of Colorado, an area of about 20,000 square miles. In January 1966, combined ore reserves and ore production at 28 uranium deposits were about 685,000 tons of ore averaging 0.24 percent U/sub 3/O/sub 8/ (3.32 million pounds U/sub 3/O/sub 8/). About half of these deposits each contain <1,000 tons of ore. The two largest deposits, the Pitch in the Marshall Pass locality southwest of Salida and the T-1 in the Cochetopa locality southeast of Gunnison, account for about 90 percent of all production and available reserves. The probability in excellent for major expansion of reserves in Marshall Pass and is favorable at a few other vein localities. There are six types of uranium deposits, and there were at least four ages of emplacement of these deposits in the southern part of the Colorado Rockies. There are eight types of host rocks of eight different ages. Veins and stratiform deposits each account for about 40 percent of the total number of deposits, but the veins of early and middle Tertiary age account for nearly all of the total reserves plus production. The remaining 20 percent of the deposits include uraniferous pegmatites, irregular disseminations in porphyry, and other less important types. The wall rocks at the large Tertiary vein deposits in the southern part of the Rocky Mountains of Colorado are Paleozoic and Mesozoic sedimentary rocks, whereas Precambrian metamorphic wall rocks predominate at the large veins in the Front Range of the northern Colorado Rockies. Metallogenetic considerations and tectonic influences affecting the distribution of uranium in Colorado and in adjacent portions of the western United States are analyzed.

  18. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  19. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect (OSTI)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  20. City of White Mountain, Alaska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of White Mountain, Alaska (Utility Company) Jump to: navigation, search Name: City of White Mountain Place: Alaska Phone Number: 907-638-2230 Outage Hotline: 907-638-2230...

  1. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  2. Unconformity related traps and production, Lower Cretaceous through Mississippian Strata, central and northern Rocky Mountains

    SciTech Connect (OSTI)

    Dolson, J. )

    1990-05-01

    Unconformities provide a useful means of equating stratigraphic traps between basins. Systematic mapping can define new concepts through analogy, often from geographically separate areas. Lower Cretaceous through Mississippian surfaces in the central and northern Rockies provide examples. Late Mississippian and Early Pennsylvanian surfaces formed at least four paleodrainage basins separated by the Transcontinental arch. Tyler Formation valley fills (Montana, North Dakota) have produced more than 100 million BOE. Analogous targets in Utah remain untested, but the Mid-Continent Morrow trend continues to yield new reserves. Permian and Triassic paleodrainages filled primarily with seals and form regional traps. A breached Madison trap (Mississippian, Colorado), more than 350 million BOE (Permian Minnelusa, Wyoming), more than 8 billion BOE (from the White Rim Sandstone tar deposits Permian Utah), and eastern Williston basin (Mississippian) are examples. Minor basal valley fill trapping also occurs. Transgressive carbonate facies changes have trapped more than 40 million BOE (Permian Phosphoria Formation, Wyoming). Additional deep gas potential exists. Jurassic unconformities control seal distribution over Nugget Sandstone (Jurassic) reservoirs and partially control Mississippian porosity on the Sweetgrass arch (Montana). Minor paleohill trapping also occurs. Lower Cretaceous surfaces have trapped nearly 2 billion BOE hydrocarbons in 10 paleodrainage networks. Undrilled paleodrainage basins remain deep gas targets. The systematic examination of Rocky Mountain unconformities has been understudied. New exploration concepts and reserve additions await the creative interpreter.

  3. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  4. City of Mountain Lake, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lake, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Lake Place: Minnesota Phone Number: (507) 427-2999 Website: www.mountainlakemn.comindex.a...

  5. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  6. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  7. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  8. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  9. Leveraging Utility Resources to Boost Efficiency for the Next...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    describes how Alliant Techsystems, Incorporated (ATK) leveraged utility incentives from Rocky Mountain Power to realize cost savings identified during a DOE plant-wide assessment....

  10. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  11. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  12. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  13. Leveraging Utility Resources to Boost Efficiency for the Next Generation of Space Travel: An Energy Efficiency Case Study of ATK Launch Systems

    Broader source: Energy.gov [DOE]

    This case study describes how Alliant Techsystems, Incorporated (ATK) leveraged utility incentives from Rocky Mountain Power to realize cost savings identified during a DOE plant-wide assessment.

  14. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect (OSTI)

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  15. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect (OSTI)

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  16. Strain monitoring averts line failure in Rockies

    SciTech Connect (OSTI)

    Miller, B.; Bukovansky, M.

    1987-08-10

    The case history of a landslide in the U.S. Rocky Mountains shows that the potential for pipeline monitoring in geologically sensitive areas, those subject to landslides and subsidence, for example. A properly installed monitoring system monitored by the pipeline operator, Western Gas Supply Co. (West Gas), Denver, provided an early warning of increasing line strains. The problem was complicated by rugged topography which is described here. Stability analysis was the key technique utilized in the process.

  17. City of Mountain View, Missouri (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    View Place: Missouri Phone Number: (417) 934-2601 Website: mountainviewmo.comindex.phpg Facebook: https:www.facebook.comCityOfMountainViewMissouri Outage Hotline: (877)...

  18. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect (OSTI)

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  19. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  20. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources’ vulnerability to climate change and air pollution.

  1. Microsoft Word - Rockies Pipelines and Prices.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline

  2. Pumped storage job is a rocky challenge

    SciTech Connect (OSTI)

    Setzer, S.W.

    1994-03-07

    Georgia mountain lives up to its rugged name as excavators fight some unexpected ground conditions. When settlers pushed into the remote valleys of far northwestern Georgia, they had no idea just how apt the name given one odd geologic formation would become to a new generation of pioneers. Rocky Mountain`s 700 ft of diagonally upthrusting limestone, shale and sandstone layers have become the main antagonists in a decade-long struggle to place an 848-Mw pumped storage power project in and around the mountain.

  3. Carbon Capture, Utilization & Storage | Department of Energy

    Energy Savers [EERE]

    Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the

  4. Utility Partnership Webinar Series: Industrial Customer Perspectives on Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Webinar Series Industrial Customer Perspectives on Utility Energy Efficiency Programs February 1, 2011 Industrial Technologies Program eere.energy.gov Speakers and Topics: * ATK Aerospace Systems, Plant Engineer/Energy Manager, Roger Weir will discuss ATK's energy efficiency projects and their relationship with Rocky Mountain Power. * Owens Corning, Plant Energy Leader, Jacob Lane will discuss the Santa Clara, CA Owens Corning facility's energy efficiency projects and Owens Corning,

  5. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  6. Rocky Mountain Power- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    Note: Applications for 2015 were accepted during a two-week period from January 15 to 5:00 PM through January 29, 2015. The program is now closed through the remainder of 2015.

  7. RockyMountainOTC-GSS.pdf

    Energy Savers [EERE]

  8. Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant January 19, 2012 - 5:00pm Addthis Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in the Texas Clean Energy

  9. Rocky flats teams forming

    SciTech Connect (OSTI)

    1994-08-01

    Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

  10. Rocky Flats Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the August 20, 2014 NNMCAB Site Tour Scott Surovchak DOE, Provided Information on Activities that Took Place on the Rocky Flats Site. Information on the Clean-up Process was Also Given.

  11. Cleanup at Rocky Flats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats

  12. Independent Oversight Review, Rocky Flats Environmental Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats...

  13. The effect of a small creek valley on drainage flows in the Rocky Flats region

    SciTech Connect (OSTI)

    Porch, W.

    1996-12-31

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program.

  14. Solid waste recycling programs at Rocky Flats

    SciTech Connect (OSTI)

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  15. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  16. Hydrogeologic characterization report for the Rocky Flats environmental technology site

    SciTech Connect (OSTI)

    Reeder, D.C.; Burcar, S.; Smith, R.

    1996-12-31

    The Denver groundwater basin encompasses approximately 6,700 square miles, extending east from the Front Range of the Rocky Mountains. This structural basin contains four Cretaceous bedrock aquifers overlain by a regional Quaternary alluvial aquifer. The Rocky Flats Site is located on the northwest margin of the basin. The shallow groundwater system at the Rocky Flats Site is divided into upper and lower hydrostratigraphic units (UHSU and LHSU, respectively). The UHSU at the Rocky Flats site comprises Quaternary alluvium, colluvium, valley-fill alluvium, artificial fill, weathered bedrock of the undifferentiated Arapahoe and Laramie formations and all sandstones that are hydraulically connected with overlying surficial groundwater. The LHSU comprises unweathered claystone with interbedded siltstones and sandstones of the undifferentiated Arapahoe and Laramie formations. The contact separating the UHSU and LHSU is identified as the base of the weathered zone. The separation of hydrostratigraphic units is supported by the contrasting permeabilities of the units comprising the UHSU and LHSU, well hydrograph data indicating that the units respond differently to seasonal recharge events, and geochemical data reflecting distinct major ion chemistries in the groundwaters of the UHSU and LHSU. Surface-water/groundwater interactions at the Rocky Flats site generally respond to seasonal fluctuations in precipitation, recharge, groundwater storage, and stream and ditch flow. Effluent conditions are dominant in the spring along western stream segments and influent conditions are common in the late summer and fall along most stream reaches.

  17. Cummins Rocky Mount Engine Plant

    Broader source: Energy.gov [DOE]

    This presentation by Cummins, Inc. at the 2015 World Energy Engineering Congress shares the Rocky Mount Engine Plant’s experience with achieving certification to Superior Energy Performance® (SEP™)...

  18. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army – Project 214 Analysis of Regulations Associated with Implementation of a Rocky Mountain Secure Smart-Grid

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30

    This document describes technical assistance provided by PNNL to further develop a smart grid technologies concept to provide a basis for policies and plans for the US Army. The effort was to analyze the potential to utilize emerging smart grid technologies along with indigenous renewable and other resources to meet the emergency and other power needs of Department of Defense facilities in Colorado and Wyoming.

  19. Independent Oversight Special Review, Rocky Flats Closure Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats...

  20. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Energy Savers [EERE]

    AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications Rocky Flats Overview...

  1. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  2. DOE - Office of Legacy Management -- Rocky Flats External Resources

    Office of Legacy Management (LM)

    External Resources Rocky Flats Site, Colorado External Resources Rocky Flats Stewardship Council Disclaimer Rocky Flats Cold War Museum Disclaimer U.S. Fish and Wildlife Service Rocky Flats National Wildlife Refuge Disclaimer Last Updated: 5/1/2013

  3. DOE - Office of Legacy Management -- Rocky Benefits

    Office of Legacy Management (LM)

    Colorado > Rocky Benefits Rocky Flats Site, Colorado Benefits Administration Rocky Flats Benefits Administration Rocky Flats Benefits Center P.O Box 9735 Providence, RI 02940 Phone - (866) 296-5036 Fax - (888) 501-9768 Medical and Life Insurance Administration Pension Administration General Benefits Questions Death Reporting Address Changes Benefits Issue Resolutions Leanna Nighswonger (509) 373-1419 Leanna_c_Nighswonger@rl.gov Last Updated: 11/20/2014

  4. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    Summer Peak Net Capacity (MW) Winter Peak Net Capacity (MW) Avg. Annual GenerationConsumption Gross Generation (MWh) Generation Delivered to Grid (MWh) Plant Parasitic...

  5. Rocky Mountain Power - New Homes Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount New Construction Whole Home Options Home Performance ENERGY STAR Version 3 Certified Home: 500 (Single Family); 200 (Multifamily) ENERGY STAR...

  6. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  7. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  8. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    saved Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 Lighting Control (Exterior): 70 Air Conditioners and Heat...

  9. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Interior Lighting: 0.08kWh annual savings Induction Fixture (Exterior): 125unit LED OutdoorRoadway Fixture (Exterior): 100unit CFL...

  10. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Only Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 CFL Wallpack (Exterior): 30 Lighting Control (Exterior):...

  11. Rocky Mountain Electrical League (RMEL) Physical and Cyber Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 4, 2016 - 11:22am Addthis Power SURGE is joint project between the DOEs Office of Security Assistance and the Departments Power Marketing Administrations, led ...

  12. Residue management at Rocky Flats

    SciTech Connect (OSTI)

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  13. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 PDF icon Rocky Flats Closure Project-Lessons Learned-August 2006.pdf More Documents & Publications Rocky Flats Overview Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned WC_1995_010__PETITION_FOR_CLASS_WAIVER_for_KAISER_HILL_CO_In.pdf

  14. Revegetation of the Rocky Flats Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats Site Revegetation of the Rocky Flats, Colorado Site PDF icon Revegetation of the Rocky Flats Site More Documents & Publications Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman, Idaho

  15. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    Rocky Flats Site, Colorado A CERCLA and/or RCRA Site RockyFlats2014 Remediation at the Rocky Flats Site was conducted in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or Resource Conservation and Recovery Act (RCRA) regulations. Responsibility for operation and maintenance of the site was transferred to LM in October 2005 and requires operation and maintenance of remedial action systems, routine inspection and maintenance, records-related

  16. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    Rocky Flats Site, Colorado Key Documents and Links Fact Sheet pdf_icon Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2015 pdf_icon Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2015 Presentation pdf_icon Annual Report of Site Surveillance and Maintenance Activities at the Rocky Flats, Colorado, Site Calendar Year 2014 pdf_icon Overview of the Rocky Flats Evaluation of Water Quality Variability: April

  17. Green Mountain Power Corp | Open Energy Information

    Open Energy Info (EERE)

    from Town of Readsboro, Vermont (Utility Company)) Jump to: navigation, search Name: Green Mountain Power Corp Place: Vermont Service Territory: Vermont Phone Number:...

  18. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Southern Rockies Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0) Assessment of Moderate- and High-Temperature...

  19. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: Name Province is situated in northern Idaho...

  20. Rocky Ridge I | Open Energy Information

    Open Energy Info (EERE)

    TradeWind Energy Energy Purchaser Western Farmers Electric Cooperative Location Rocky OK Coordinates 35.055821, -98.838426 Show Map Loading map... "minzoom":false,"mappings...

  1. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect (OSTI)

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  2. Rocky Flats Environmental Technology Site Archived Soil & Groundwater

    Office of Environmental Management (EM)

    Master Reports | Department of Energy Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports PDF icon Rocky Flats Environmental Technology Site - 881 Hillside Drum Storage Area PDF icon Rocky Flats Environmental Technology Site - 903 Pad PDF icon Rocky Flats Environmental Technology

  3. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Office of Environmental Management (EM)

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site PDF icon Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results Monitoring the Performance

  4. Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N. R.; Schubert, A. L.

    2002-02-26

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

  5. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy...

  6. Sustainability Center of the Rockies | Open Energy Information

    Open Energy Info (EERE)

    Sustainability Center of the Rockies Jump to: navigation, search Name: Sustainability Center of the Rockies Address: Post Office Box 2020 Place: Carbondale, Colorado Zip: 81623...

  7. Preliminary Notice of Violation , Rocky Flats Environmental Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violation , Rocky Flats Environmental Technology Site - EA-96-05 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site - EA-96-05 October 7, 1996 Preliminary...

  8. Analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant

    SciTech Connect (OSTI)

    Hodgin, C.R.; Armstrong, C.; Daugherty, N.M.; Foppe, T.L.; Petrocchi, A.J.; Southward, B.

    1990-05-01

    This project plan for Phase II summarizes the design of a project to complete analysis of offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant. Federal, state, and local governments develop emergency plans for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of these plans is to identify EPZs where actions might be necessary to protect public health. Public protective actions include sheltering, evacuation, and relocation. Agencies use EPZs to develop response plans and to determine needed resources. The State of Colorado, with support from the US Department of Energy (DOE) and Rocky Flats contractors, has developed emergency plans and EPZs for the Rocky Flats Plant periodically beginning in 1980. In Phase II, Interim Emergency Planning Zones Analysis, Maximum Credible Accident'' we will utilize the current Rocky Flats maximum credible accident (MCA), existing dispersion methodologies, and upgraded dosimetry methodologies to update the radiological EPZs. Additionally, we will develop recommendations for EPZs for nonradiological hazardous materials releases and evaluate potential surface water releases from the facility. This project will allow EG G Rocky Flats to meet current commitments to the state of Colorado and make steady, tangible improvements in our understanding of risk to offsite populations during potential emergencies at the Rocky Flats Plant. 8 refs., 5 figs., 4 tabs.

  9. BLUE MOUNTAIN | Department of Energy

    Energy Savers [EERE]

    BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN BLUE MOUNTAIN PROJECT SUMMARY In September 2010, the Department of Energy issued a $98.5 million partial loan guarantee under the Financial Institution Partnership Program (FIPP) to finance Blue Mountain, a geothermal power plant. The plant is currently harnessing renewable energy by tapping into an

  10. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This `was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE).

  11. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  12. Yucca Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain We are applying our unique scientific and engineering capabilities to ensure the safety of the nation's first high-level nuclear waste repository. 8 08 FACT SHEET...

  13. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  14. DOE - Office of Legacy Management -- Rocky Flats Regulatory Documents

    Office of Legacy Management (LM)

    Regulatory Documents Rocky Flats Site, Colorado Regulatory Documents All documents are Adobe Acrobat files. pdf_icon Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Third Five-Year Review Report for the Rocky Flats Site Rocky Flats Legacy Management Agreement Environmental Covenant, November 14, 2011 Corrective Action Decision/Record of Decision Amendment for Rocky Flats Plant (USDOE) Central Operable Unit Proposed Plan for the Rocky Flats CAD/ROD Amendment (June 2011)

  15. DOE - Office of Legacy Management -- Rocky Flats SOG

    Office of Legacy Management (LM)

    SOG Rocky Flats Site, Colorado Rocky Flats, Colorado, Site Operations Guide All documents are Adobe Acrobat files. pdf_icon Site Operations Guide Appendixes Appendix A: Annual Site Inspection Checklist Appendix B: Example Contact Record Appendix C: Rocky Flats Site Soil Disturbance Evaluation Procedure Appendix D: Site-Specific Checklist Appendix E: Rocky Flats, Colorado, Site Erosion Control Monitoring and Maintenance Inspection Procedure Appendix F: Erosion Control Plan for Rocky Flats

  16. Rocky Flats beryllium health surveillance

    SciTech Connect (OSTI)

    Stange, A.W.; Furman, F.J.; Hilmas, D.E.

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. 12 refs., 8 tabs.

  17. Decontamination and decommissioning of building 889 at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dorr, K.A.; Hickman, M.E.; Henderson, B.J.; Sexton, R.J.

    1997-09-01

    At the Rocky Flats site, the building 889 decommissioning project was the first large-scale decommissioning project of a radiologically contaminated facility at Rocky Flats. The scope consisted of removal of all equipment and utility systems from the interior of the building, decontamination of interior building surfaces, and the demolition of the facility to ground level. Details of the project management plan, including schedule, engineering, cost, characterization methodologies, decontamination techniques, radiological control requirements, and demolition methods, are provided in this article. 1 fig., 3 tabs.

  18. Rocky Flats Compliance Program; Technology summary

    SciTech Connect (OSTI)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  19. Issues evaluation process at Rocky Flats Plant

    SciTech Connect (OSTI)

    Smith, L.C.

    1992-04-16

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant.

  20. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  1. Cummins Rocky Mount Engine Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Superior Energy Performance » Cummins Rocky Mount Engine Plant Cummins Rocky Mount Engine Plant sep_logo_borderless.jpg This presentation by Cummins, Inc. at the 2015 World Energy Engineering Congress shares the Rocky Mount Engine Plant's experience with achieving certification to Superior Energy Performance® (SEP(tm)) and ISO 50001. PDF icon Cummins Rocky Mount Engine Plant (September 2015) More Documents & Publications SEP Case Study Webinar: Cummins Slides The

  2. Smooth Brome Monitoring at Rocky Flats-2005 Results | Department of

    Energy Savers [EERE]

    Energy Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results Smooth Brome Monitoring at Rocky Flats-2005 Results PDF icon Smooth Brome Monitoring at Rocky Flats-2005 Results More Documents & Publications Project Reports for Northwest Alaska Native Association (NANA) Regional Corporation - 2007 Project EIS-0285-SA-70: Supplement Analysis EIS-0285-SA-71: Supplement Analysis

  3. Independent Oversight Review, Rocky Flats Environmental Technology Site -

    Office of Environmental Management (EM)

    March 2000 | Department of Energy Rocky Flats Environmental Technology Site - March 2000 Independent Oversight Review, Rocky Flats Environmental Technology Site - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program This report provides the results of an independent review of the Transportation Emergency Management Program at the Department of Energy's Rocky Flats Environmental Technology Site that was conducted by the

  4. Independent Oversight Special Review, Rocky Flats Closure Project Site -

    Office of Environmental Management (EM)

    April 2001 | Department of Energy Rocky Flats Closure Project Site - April 2001 Independent Oversight Special Review, Rocky Flats Closure Project Site - April 2001 April 2001 Special Review of the Rocky Flats Closure Project Site This report provides the results of a Special Review at the Rocky Flats Closure Project that was performed U.S. Department of Energy's (DOE) Office of Independent Environment, Safety, and Health Oversight. The Special Review was conducted in February and March 2001

  5. LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database, Office of Legacy Management | Department of Energy Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management PDF icon LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management More Documents &

  6. Rocky Flats resumes shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5:07 p.m. (Mountain Standard Time). The truck, carrying two TRUPACT-II (Transuranic Packaging Transporter Model II) shipping containers, departed RFETS, near Golden, Colo.,...

  7. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants in 84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.

  8. Vascular flora of the Rocky Flats area, Jefferson County, Colorado, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Jody K.

    2010-08-01

    The Rocky Flats Site (Site) is a U.S. Department of Energy (DOE) facility near Golden, Colorado that produced nuclear weapons components during the Cold War. Like many federal properties that have been off-limits to public access for decades, it has become a refugia for biodiversity as surrounding landscapes have been lost to agriculture and urbanization. A floristic study of the area was conducted on approximately 2,505 ha (6,189 ac) and includes the parcels currently managed and operated by DOE and the U.S. Fish and Wildlife Service (Rocky Flats National Wildlife Refuge). A flora of 630 species of vascular plants inmore » 84 families and 340 genera was documented, including 12 species endemic to the southern Rocky Mountains and seven species considered rare or imperiled by the Colorado Natural Heritage Program. The flora of the Site is characterized by a predominantly Western North American floristic element, however, an Adventive floristic element contributes the greatest number of species. The vegetation is dominated by xeric tallgrass prairie and mixed grass prairie, with areas of wetland, shrubland, and riparian woodland.« less

  9. Release fractions for Rocky Flats specific accidents

    SciTech Connect (OSTI)

    Weiss, R.C.

    1992-09-01

    As Rocky Flats and other DOE facilities begin the transition process towards decommissioning, the nature of the scenarios to be studied in safety analysis will change. Whereas the previous emphasis in safety accidents related to production, now the emphasis is shifting to accidents related tc decommissioning and waste management. Accident scenarios of concern at Rocky Flats now include situations of a different nature and different scale than are represented by most of the existing experimental accident data. This presentation will discuss approaches@to use for applying the existing body of release fraction data to this new emphasis. Mention will also be made of ongoing efforts to produce new data and improve the understanding of physical mechanisms involved.

  10. Immobilization of Rocky Flats graphite fines residues

    SciTech Connect (OSTI)

    Rudisill, T.S.; Marra, J.C.; Peeler, D.K.

    1999-07-01

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF{sub 2}), and 12 wt% plutonium oxide (PuO{sub 2}). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO{sub 2} concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF{sub 2} dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO{sub 2}) as a surrogate for PuO{sub 2} and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF{sub 2} and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.

  11. Status Update: Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N.; Schubert, A.

    2003-02-25

    Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

  12. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  13. Basic TRUEX process for Rocky Flats Plant

    SciTech Connect (OSTI)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

  14. Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy

    Energy Savers [EERE]

    Transuranic Waste Shipment Leaves Rocky Flats Final Transuranic Waste Shipment Leaves Rocky Flats April 19, 2005 - 12:23pm Addthis Cleanup Ahead of Schedule, On Track to Save Taxpayers Billions GOLDEN, CO. - A major environmental victory was achieved at the Rocky Flats Site in Golden, Colo., today when the final remaining shipment of radioactive, transuranic (TRU) waste left the property on a truck bound for an underground waste repository in New Mexico. This major milestone is another step

  15. Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Cleanup Agreement State Colorado Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. Parties DOE; US EPA; The State of Colorado Date 7/19/1996 SCOPE * Establish the regulatory framework for achieving the ultimate cleanup of the Rocky Flats Site. * Ensure that the environmental impacts associated with activities at the Site will continue to be investigated and

  16. EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

  17. Rendezvous in the Rockies Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rendezvous in the Rockies Sector Geothermal energy Type Pool and Spa Location Buena Vista, Colorado Coordinates 38.8422178, -106.1311288 Show Map Loading map......

  18. DOE Certifies Rocky Flats Cleanup "Complete" | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as an example for the other similar projects around the country." Between 1951 and 1989, Rocky Flats produced the trigger mechanism for nearly every nuclear weapon built in...

  19. Unique process combination decontaminates mixed wastewater at Rocky Flats

    SciTech Connect (OSTI)

    Kelso, William J.; Cirillo, J. Russ

    1999-08-01

    This paper describes the Sitewide Water Treatment Facility (SWTF) used to process environmental remediation wastewaters found at the Rocky Flats Environmental Technology Site.

  20. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  1. King Mountain | Open Energy Information

    Open Energy Info (EERE)

    Mountain Jump to: navigation, search Name King Mountain Facility King Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  2. BLUE MOUNTAIN | Department of Energy

    Energy Savers [EERE]

    BLUE MOUNTAIN BLUE MOUNTAIN PDF icon DOE-LPO_Project-Posters_GEO_Blue-Mountain.pdf More Documents & Publications ORMAT NEVADA GRANITE RELIABLE USG OREGON

  3. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  4. Repackaging Rocky Flats Legacy Transuranic Waste

    SciTech Connect (OSTI)

    McTaggart, Jerri Lynne

    2008-01-15

    Repackaging legacy Transuranic (TRU), Transuranic Mixed (TRM), Low Level Waste (LLW), and Low Level Mixed (LLM) waste requires good characterization skills and the ability to adapt to less than ideal conditions. Repackaging legacy waste in a facility that is not undergoing Decontamination and Decommission (D and D) is optimum. However, repackaging any waste in a D and D facility, under cold and dark conditions, can be difficult. Cold and dark conditions are when the heating and air conditioning are no longer in service and the lighting consists of strands of lights hung throughout each of the rooms. Working under these conditions adds an additional level of stress and danger that must be addressed. The use of glovebags was very useful at Rocky Flats during the D and D of many buildings. Glovebags can be adapted for many different types of wastes and unusual conditions. Repackaging of legacy TRU waste, in a D and D facility, can be accomplished safely and cost effectively with the use of glovebags. In conclusion: the use of glovebags to repackage legacy TRU, TRM, LLW, or LLM waste was done safely and cost effectively at Rocky Flats. The cost of using glovebags was minimal. Glovebags are easily adaptable to whatever the waste configuration is. The use of glovebags, for repackaging of Legacy waste, allows D and D efforts to stay on schedule and on task. Without the use of glovebags, additional gloveboxes would have been required at Rocky Flats. Larger items, such as the HEPA filters, would have required the construction of a new large item repackaging glovebox. Repackaging in glovebags allows the freedom to either locate the glovebag by the waste or locate the glovebag in a place that least impacts D and D efforts. The use of glovebags allowed numerous configurations of waste to be repackaged without the use of gloveboxes. During the D and D of the Rocky Flats facility, which was in a cold and dark stage, D and D work was not impacted by the repackaging activity. Glovebags work well in facilities that are in the process of D and D or still in full operations because glovebags are very safe and cost effective.

  5. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  6. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  7. Risk, media, and stigma at Rocky Flats

    SciTech Connect (OSTI)

    Flynn, J.; Peters, E.; Mertz, C.K.; Slovic, P.

    1998-12-01

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.

  8. Department of Energy Awards $300,000 Block Grant to the Rocky...

    Broader source: Energy.gov (indexed) [DOE]

    Block Grant to the Rocky Flats Community Reuse Organization Department of Energy Awards 300,000 Block Grant to the Rocky Flats Community Reuse Organization More Documents &...

  9. Immobilization of Rocky Flats Graphite Fines Residues

    SciTech Connect (OSTI)

    Rudisill, T. S.

    1998-11-06

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt percent graphite, 15 wt percent calcium fluoride (CaF2), and 12 wt percent plutonium oxide (PuO2). Approximately 950 kilograms of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 degrees C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt percent, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines.In general, the recovery of cerium from the full-scale waste forms was higher than for smaller scale experiments. The presence of CaF2 also caused a dramatic increase in cerium recovery not seen in the small-scale experiments. However, the results from experiments with actual graphite fines were encouraging. A 4:1 frit to residue ratio, a temperature of 700 degrees C, and a 2 hr heating time produced waste forms with plutonium recoveries of 4 plus/minus 1 g/kg. With an increase in the frit to residue ratio, waste forms fabricated at this scale should meet the Rocky Flats product specification. The scale-up of the waste form fabrication process to nominally 3 kg is expected to require a 5:1 to 6:1 frit to residue ratio and maintaining the waste form centerline temperature at 700 degrees C for 2 hr.

  10. Fiscal year 1990 Rocky Flats Plant Environmental Restoration program Current-Year Work Plan

    SciTech Connect (OSTI)

    Nielsen, T. ); Waage, E.; Miller, D. Corp., Boulder, CO )

    1990-01-01

    The Rocky Flats Plant (RFP) is a nuclear weapons manufacturing facility currently operated by EG G for the US Department of Energy (DOE). RFP is located at the foot of the Rocky Mountains in Jefferson Country, Colorado. The Fiscal Year 1990 (FY90) Current-Year Work Plan (CYWP) is intended to serve as a guidance document for the Environmental Restoration (ER) and RCRA Compliance programs that will be implemented at RFP. The CYWP provides in one document any cross-references necessary to understand the interrelationships between the CYWP and the DOE Five-Year Plan (FYP), Site-Specific Plan (SSP), and other related documents. The scope of this plan includes comparison of planned FY90 ER activities to those actually achieved. The CYWP has been updated to include Colorado Department of Health (CDH), US Environmental Protection Agency (EPA), and DOE Inter-Agency Agreement ER activities. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. The CYWP also addresses facilities and sites contaminated with or used in management of those wastes.

  11. Creative problem solving at Rocky Reach

    SciTech Connect (OSTI)

    Bickford, B.M.; Garrison, D.H.

    1997-04-01

    Tainter gate inspection and thrust bearing cooling system problems at the 1287-MW Rocky Reach hydroelectric project on the Columbia River in Washington are described. Gate inspection was initiated in response to a failure of similar gates at Folsom Dam. The approach involved measuring the actual forces on the gates and comparing them to original model study parameters, rather than the traditional method of building a hydraulic model. Measurement and visual inspection was completed in one day and had no effect on migration flows. Two problems with the thrust bearing cooling system are described. First, whenever a generating unit was taken off line, cooling water continued circulating and lowered oil temperatures. The second problem involved silt buildup in flow measuring device tubes on the cooling water system. Modifications to correct cooling system problems and associated costs are outlined.

  12. Rocky Flats Closure Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P.C.; Skokan, B.

    2007-07-01

    The Rocky Flats Closure Project has completed the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, remediating environmental media and closing the Rocky Flats Site (Site). The project cost approximately $4.1 B and included the decommissioning of over 700 structures including 5 major plutonium facilities and 5 major uranium facilities, shipping over 14,600 cubic meters of transuranic and 565,000 cubic meters of low level radioactive waste, and remediating a 385-acre industrial area and the surrounding land. Actual costs were collected for a large variety of closure activities. These costs can be correlated with metrics associated with the facilities and environmental media to capture cost factors from the project that could be applicable to a variety of other closure projects both within and outside of the Department of Energy's weapons complex. The paper covers four general topics: the process to correlate the actual costs and metrics, an example of the correlated data for one large sub-project, a discussion of the results, and the additional activities that are planned to correlate and make this data available to the public. The process to collect and arrange the project control data of the Closure Project relied on the actual Closure Project cost information. It was used to correlate these actual costs with the metrics for the physical work, such as building area or waste generated, to support the development of parametric cost factors. The example provides cost factors for the Industrial Sites Project. The discussion addresses the strengths and weaknesses of the data, followed by a section identifying future activities to improve and extend the analyses and integrate it within the Department's Environmental Cost Analysis System. (authors)

  13. Microsoft Word - RockyFlatsPropLR111406.doc

    Office of Environmental Management (EM)

    DATE: November 15, 2006 REPLY TO ATTN OF: IG-40 SUBJECT: Letter Report on "Alleged Waste of Funds Involving Excess Property at Rocky Flats" (INS-L-07-03) TO: Assistant Secretary for Environmental Management This is to advise you of the results of an Office of Inspector General inspection of alleged waste of funds involving excess property at the Department of Energy's (DOE's) Rocky Flats site. BACKGROUND Nuclear weapons production operations at Rocky Flats were discontinued in 1992.

  14. Observed Impacts on Plants Sprayed with Tordon 22K at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Nelson, Jody K.

    1999-10-21

    Newsletter article for The Central Rockies Chapter of the Society for Ecological Restoration newsletter

  15. Rebaselining seismic risks for resumption of Building 707 plutonium operations at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Elia, F. Jr.; Foppe, T.; Stahlnecker, E.

    1993-08-01

    Natural phenomena risks have been assessed for plutonium handling facilities at the Rocky Flats Plant, based on numerous studies performed for the Department of Energy Natural Phenomena Hazards Project. The risk assessment was originally utilized in the facilities Final Safety Analysis Reports and in subsequent risk management decisions. Plutonium production operations were curtailed in 1989 in order for a new operating contractor to implement safety improvements. Since natural phenomena events dominated risks to the public, a re-assessment of these events were undertaken for resumption of plutonium operations.

  16. Rocky Hill, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Rocky Hill is a borough in Somerset County, New Jersey. It falls under New Jersey's 7th...

  17. Rocky Hill, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Hill, Connecticut: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 41.6648216,...

  18. Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site

    Broader source: Energy.gov [DOE]

    In August of this year the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Rocky Flats, site took advantage of an existing water diversion structure that was no longer needed, to...

  19. Rocky Flats Site Expands Solar Power for Treating Groundwater

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) recently added a 6 kilowatt solar photovoltaic system to provide power to operate an enhanced treatment system that removes volatile organic compounds (VOC) from contaminated groundwater at the Rocky Flats, Colorado, Site.

  20. Rocky Ripple, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Rocky Ripple is a town in Marion County, Indiana. It falls under Indiana's 7th congressional district.12 References...

  1. Rocky Flats 100th Shipments Arrives at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immediate Release Contact: Karen Lutz, DOE RFFO, 303966-4546 01-08 Jennifer Thompson, Kaiser-Hill, 303966-6285 Kate Foster, Westinghouse TRU Solutions, 505234-7589 Rocky Flats'...

  2. Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lessons Learned | Department of Energy at Rocky Flats: Early Experiences and Lessons Learned Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned PDF icon Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned More Documents & Publications Rocky Flats Overview EA-1747: Final Environmental Assessment The Use of

  3. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson PDF icon Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA More Documents & Publications Smooth Brome Monitoring at Rocky Flats-2005 Results EA-0847: Final Environmental Assessment Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site

  4. Benchmarking and performance improvement at Rocky Flats Technology Site

    SciTech Connect (OSTI)

    Elliott, C.; Doyle, G.; Featherman, W.L.

    1997-03-01

    The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

  5. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed Biocontrol Monitoring Report Dalmatian Toadflax Monitoring Report High-Value Vegetation Monitoring Report Revegetation Monitoring Report Present and Original Landfill Revegetation Monitoring Report Frog Vocalization Monitoring Report Appendix A (Files below comprise Appendix A for the above listed reports.) Rocky Flats Flora

  6. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance

    Office of Legacy Management (LM)

    Second Quarter Calendar Year 2013 October 2013 LMS/RFS/S10694 This page intentionally left blank LMS/RFS/S10694 Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Second Quarter Calendar Year 2013 October 2013 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-2nd Quarter CY 2013 October 2013 Doc. No. S10694 Page i Contents Abbreviations

  7. Review of Beryllium Management Practices at Rocky Flats During Closure

    Energy Savers [EERE]

    Operations | Department of Energy Review of Beryllium Management Practices at Rocky Flats During Closure Operations Review of Beryllium Management Practices at Rocky Flats During Closure Operations Administrative and engineering controls, along with detailed medical and training programs and strict adherence to all characterization, sampling, and work procedures ensured that exposure to beryllium by RFETS employees was minimized to the highest extent possible. PDF icon Review of Beryllium

  8. DOE - Office of Legacy Management -- Rocky Flats Archive

    Office of Legacy Management (LM)

    Archive Rocky Flats Site, Colorado Key Document Archive All documents are Adobe Acrobat files. pdf_icon NEPA - Rocky Flats Surface Water Configuration Environmental Assessment (EA) Site-Specific Uranium Standards Petition Site Surveillance and Maintenance Reports Quarterly Reports 2015 3rd Quarter 2nd Quarter Overview 1st Quarter Overview 2014 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2013 3rd Quarter Overview 2nd Quarter Overview 1st Quarter Overview 2012 3rd Quarter

  9. Jemez Mountains Headwaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jemez Mountains Headwaters Jemez Mountains Headwaters Rainfall in the Jemez Mountains flows to the Valles Caldera and eastward onto Laboratory lands. August 1, 2013 Rafts full of people and equipment on the banks of the Rio Grande near Otowi Bridge Water sampling trip embarks downstream from Otowi Bridge onto the Rio Grande. RELATED IMAGES http://farm4.staticflickr.com/3782/9573883786_60ba7b82e3_t.jpg Enlarge

  10. Mountainous | Open Energy Information

    Open Energy Info (EERE)

    Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous...

  11. Back The Pico Mountain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores...

  12. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  13. Elemental compositions of two extrasolar rocky planetesimals

    SciTech Connect (OSTI)

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1562 (United States); Koester, D., E-mail: sxu@astro.ucla.edu, E-mail: jura@astro.ucla.edu, E-mail: kleinb@astro.ucla.edu, E-mail: ben@astro.ucla.edu, E-mail: koester@astrophysik.uni-kiel.de [Institut fur Theoretische Physik und Astrophysik, University of Kiel, D-24098 Kiel (Germany)

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted onto G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.

  14. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  15. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power (PacifiCorp) has developed an interconnection application for net metering. All other electric utilities in Wyoming -- investor-owned utilities and rural electric associations...

  16. 87th regular meeting of the Rocky Mountain Coal Mining Institute: Proceedings

    SciTech Connect (OSTI)

    Finnie, D.G.

    1991-01-01

    Eleven papers are included in these proceedings. Topics include management of coal mining operations, improving mine health and safety, new technologies for longwall mining, coal haulage, coal drying, a demonstration of the LFC process, and state of the art in mining automation. All eleven papers have been processed for inclusion on the data base.

  17. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    SciTech Connect (OSTI)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  18. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  19. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect (OSTI)

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  20. Yucca Mountain - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yucca Mountain In 2009, the Department of Energy announced it was halting work on Yucca Mountain in the Nevada desert which The Nuclear Waste Policy Act of 1982 established as the preferred and only site for permanent storage of nuclear waste. The law also committed the federal government to accept defense waste and commercial spent fuel for long-term storage. When the waste finally reached the depths of Yucca Mountain, it would be safe and secure. It was a solution forever sealed from human

  1. Rocky Flats Plant Site Environmental Report, January--December 1990

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Costain, D.B.

    1990-12-31

    This report provides information to the public about the impact of the Rocky Flats Plant on the environment and public health. The report contains a compliance summary, a description of environmental monitoring programs, and radiation dose estimates for the surrounding population for the period January 1 through December 31, 1990. An environmental surveillance program has been ongoing at the Rocky Flats Plant since the 1950s. Early programs focused on radiological impacts to the environment. The current program examines potential impacts to air, surface water, groundwater, and soils from radiological and nonradiological sources. Environmental operations at Rocky Flats Plant are under the jurisdiction of several local, state, and federal agencies, most notably the Colorado Department of Health, Environmental Protection Agency, and Department of Energy. A variety of reports are prepared at different intervals for these and other agencies in addition to the annual environmental report.

  2. Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Elliott, C. , Doyle, D. , Featherman, W.D.

    1997-12-31

    The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

  3. YUCCA MOUNTAIN SITE DESCRIPTION

    SciTech Connect (OSTI)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  4. The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1998-08-01

    This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

  5. The Cummins Rocky Mount Engine Plant Case Study | Department of Energy

    Energy Savers [EERE]

    Technical Assistance » Superior Energy Performance » The Cummins Rocky Mount Engine Plant Case Study The Cummins Rocky Mount Engine Plant Case Study sep_logo_borderless.jpg The Cummins Rocky Mount Engine Plant (RMEP) in Rocky Mount, North Carolina is saving over $700,000 annually and achieved a 12.6% energy performance improvement after implementing SEP. (July 2015) PDF icon Cummins' Case Study for Superior Energy Performance More Documents & Publications SEP Case Study Webinar: Cummins

  6. Rocky Flats Cleanup Agreement implementation successes and challenges

    SciTech Connect (OSTI)

    Shelton, D.C.

    1997-02-01

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

  7. TGS measurements of pyrochemical salts at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D. J.; Hansen, J. S.; Lestone, J. P.; Prettyman, T. H.

    2001-01-01

    A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

  8. Site wide integration of the Rocky Flats closure project

    SciTech Connect (OSTI)

    Burdge, L.F.; Golan, P.

    1998-06-01

    The prime contractor for the Rocky Flats Closure Project (RFCP), Kaiser-Hill, in concert with the Department of Energy--Rocky Flats Field Office (DOE-RFFO) has applied a fully integrated, life-cycle, critical path schedule and work planning system to manage the work that is required to close the Site. The closure of the Site is complex, in that it houses over 700 facilities, 19,600 kilograms of Special Nuclear Material (Plutonium and Uranium), and over 160,000 cubic meters of Transuranic, Low Level, and Hazardous Waste. The deactivation, decommissioning, decontaminating, and demolition of this large number of facilities, while at the same time accommodating difficult on-going activities, significantly increases the sophistication required in the planning process. The Rocky Flats team has overcome these difficulties by establishing a money oriented critical path process, to provide a least-cost avenue to supporting on-going activities and a line-of-balance process for production oriented activities. These processes, when integrated with a typical activity-based project planning system, guide the way to the shortest and most cost-effective course for the closure of the Rocky Flats Site.

  9. Adsorption study for uranium in Rocky Flats groundwater

    SciTech Connect (OSTI)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

  10. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L.

    1992-12-31

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  11. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  12. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  14. Mountain View Grand | Open Energy Information

    Open Energy Info (EERE)

    Mountain View Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  15. Kibby Mountain II | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under...

  16. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  17. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  18. Photo of the Week: Rocky Flats Wildlife Refuge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rocky Flats Wildlife Refuge Photo of the Week: Rocky Flats Wildlife Refuge December 21, 2012 - 11:27am Addthis The Rocky Flats Plant was first established in 1951 as a nuclear weapons manufacturing facility. Today, almost 4,000 acres make up the Rocky Flats National Wildlife Refuge. Located just 16 miles northwest of Denver, Colorado, the refuge provides a habitat for migratory birds and mammals. | Photo courtesy of the U.S. Department of Energy. The Rocky Flats Plant was first established in

  19. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  20. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  1. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-01-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  2. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  3. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  4. Utility Partnership Program Utility Partners

    Broader source: Energy.gov [DOE]

    Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals.

  5. Idaho/Transmission | Open Energy Information

    Open Energy Info (EERE)

    for the grid that links all of these service territories. Idaho Power, Bonneville Power Administration, Rocky Mountain Power, and Avista are the investor owned utilities in...

  6. Colorado and the Accelerated Cleanup at Rocky Flats

    SciTech Connect (OSTI)

    Spreng, C.

    2007-07-01

    When the Rocky Flats closure project was declared complete in October 2005, it was the largest environmental cleanup to date. Even more impressive, it was ahead of schedule and well under budget. Several factors combined to produce this success including a performance-based contract with financial incentives, development and application of innovative technologies, and a regulator-backed accelerated approach to the cleanup process. The factor in this success in which the State of Colorado had the largest role was in developing and enforcing the Rocky Flats Cleanup Agreement. In compliance with this agreement, cleanup was accomplished by means of multiple interim actions that led to a comprehensive final decision at the end. A key element that allowed the accelerated cleanup was constant consultation among DOE, its contractor, and the regulators plus collaboration with stakeholders. (authors)

  7. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  8. Actinide solution processing at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1039, for radioactive solution removal and processing at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for solution removal and processing is in response to independent safety assessments and an agreement with the State of Colorado to remove mixed residues at Rocky Flats and reduce the risk of future accidents. Monthly public meetings were held during the scoping and preparation of the EA. The scope of the EA included evaluations of alternative methods and locations of solution processing. A comment period from February 20, 1995 through March 21, 1995 was provided to the public and the State of Colorado to offer written comment on the EA. Comments were received from the State of Colorado and the U.S. Environmental Protection Agency. A response to the agency comments is included in the Final EA.

  9. DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Dorr, K. A.; Hoover, J.

    2002-02-25

    This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

  10. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  11. DOE - Office of Legacy Management -- Rocky Flats Petition

    Office of Legacy Management (LM)

    Petition Rocky Flats Site, Colorado Site-Specific Uranium Standards Petition All documents are Adobe Acrobat files. pdf_icon U.S. Department of Energy's Proponent's Pre-Hearing Statement for Proposed Revisions to Segments 4a, 4b, and 5 of Big Dry Creek (Walnut and Woman Creeks) Regulation #38 (5 CCR 1002-38) Figure 1 Figure 2 Thermal Ionization Mass Spectrometry Uranium Results for November 2008 RFETS Waters Thermal Ionization Mass Spectrometry Uranium Results for September 2008 RFETS Waters

  12. Overview of the Third Quarter 2014 Surveillance and Maintenance Report for the LM Rocky Flats Site

    Office of Legacy Management (LM)

    4 Surveillance and Maintenance Report for the LM Rocky Flats Site July-September 2014 Quarterly Monitoring and Reporting  Quarterly reports are required under the Rocky Flats Legacy Management Agreement (RFLMA) to document that the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedy continues to be protective * Primary goal is protection of surface water  Response action under the final remedy for Rocky Flats * Maintain two landfill covers * Maintain four

  13. Hydraulic model analysis of water distribution system, Rockwell International, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Perstein, J.; Castellano, J.A.

    1989-01-20

    Rockwell International requested an analysis of the existing plant site water supply distribution system at Rocky Flats, Colorado, to determine its adequacy. On September 26--29, 1988, Hughes Associates, Inc., Fire Protection Engineers, accompanied by Rocky Flats Fire Department engineers and suppression personnel, conducted water flow tests at the Rocky Flats plant site. Thirty-seven flows from various points throughout the plant site were taken on the existing domestic supply/fire main installation to assure comprehensive and thorough representation of the Rocky Flats water distribution system capability. The analysis was completed in four phases which are described, together with a summary of general conclusions and recommendations.

  14. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  15. Rocky Flats Neutron Detector Testing at Valduc, France

    SciTech Connect (OSTI)

    Kim, S S; Dulik, G M

    2011-01-03

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  16. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington...

  17. Georgia Mountain | Open Energy Information

    Open Energy Info (EERE)

    Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351, -73.067991 Show Map Loading map... "minzoom":false,"map...

  18. Final Land Configuration for the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Stegen, R. L.; Kapinos, J. M.; Wehner, J. P.; Snyder, B.; Davis, R. W.

    2006-07-01

    Closure of the Rocky Flats Environmental Technology Site (RFETS) has been completed. The future land use of the site is designated as a National Wildlife Refuge. A joint effort between Kaiser-Hill, Department of Energy, U.S. Fish and Wildlife Service, Environmental Protection Agency, State of Colorado, and other stakeholders was initiated to provide direction for developing the final land configuration. Through early identification of issues and developing mutually agreeable solutions, the final land configuration of the site was successfully completed. (authors)

  19. Health Surveillance Outcomes in Former Rocky Flats Radiation Workers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surveillance of Rocky Flats Radiation Workers Janice P. Watkins 1 , Elizabeth D. Ellis 1 , F. Joseph Furman 2 , Roger B. Falk 2 , Joe M. Aldrich 2 , and Donna L. Cragle 1 ORAU Technical Report # 2006-0408 1 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; P.O. Box 117; Oak Ridge, TN 37831-0117 2 Oak Ridge Institute for Science and Education, Center for Epidemiologic Research; 9950 W. 80 th Avenue, Suite 17; Arvada, CO 80005-3914 This report was funded by

  20. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect (OSTI)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  1. Microsoft Word - FINAL Rocky Flats LBNL report Batch #1.docx

    Office of Legacy Management (LM)

    the First Batch of Rocky Flats Water Samples Submitted to LBNL John N. Christensen Report date 9/16/13 Thirteen samples were submitted by SM Stoller to Lawrence Berkeley National Laboratory for uranium isotopic and concentration analysis- 12 surface water samples from two sites (WALPOC and GS10) covering the period Sept. 2011 to April 2013, and one groundwater sample taken on 5/14/12 from well 79102 (Table 1). Uranium isotopic compositions of the samples were determined at LBNL by MC- ICPMS

  2. ADVANCES IN YUCCA MOUNTAIN DESIGN

    SciTech Connect (OSTI)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-02-27

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

  3. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  4. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect (OSTI)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  5. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  6. Preliminary surficial geologic map of the Rocky Flats Plant and vicinity, Jefferson and Boulder Counties, Colorado

    SciTech Connect (OSTI)

    Shroba, R.R.; Carrara, P.E.

    1994-11-01

    This report contains a 1:6000 scale map of the 3-mile by 4-mile rectangular area surrounding the Rocky Flats Plant. The map shows the surface deposits estimated to be at least one meter thick. The accompanying report contains a detailed description of the map units, a discussion of the Rocky Flats alluvium and landslides, and cited references. 37 references.

  7. Sand Mountain Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Sand Mountain Electric Coop Jump to: navigation, search Name: Sand Mountain Electric Coop Place: Alabama Phone Number: Rainsville Area: 256---638---2153; Henagar Area:...

  8. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Maine Mountain Power | Open Energy Information

    Open Energy Info (EERE)

    Maine Mountain Power Jump to: navigation, search Name: Maine Mountain Power Place: Yarmouth, Maine Zip: 4096 Sector: Wind energy Product: Wind farm development company focused on...

  10. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  11. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  12. BRMF Georgia Mountain Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  13. Mountain Parks Electric, Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Mountain Parks Electric, Inc Place: Colorado Website: www.mpei.com Facebook: https:www.facebook.comMountainParksElectric Outage Hotline: (970) 887-3378...

  14. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    SciTech Connect (OSTI)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

  15. Analysis of offsite Emergency Planning Zones for Rocky Flats Plant

    SciTech Connect (OSTI)

    Inger, J.R. ); Brown-Strattan, M.A. . Rocky Flats Plant)

    1991-01-01

    The purpose of this quality assurance program was to ensure the quality and technical adequacy of Phase 2 of the Analysis of Offsite Emergency Planning Zones (EPZ) for the Rocky Flats Plant project. Quality assurance was accomplished by managing and controlling the processes in the development of the product. The quality assurance task team conducted audits, reviews, and surveillances of project and related activities. This process contributed to identifying areas where the quality assurance plan was not fully implemented, areas needing improvement, and/or corrective actions resulting in a improved product. During the reviews and audits, several key areas were identified where quality assurance plan implementation needed to be improved. These areas included maintaining adequate documentation, reviewing technical results, making inputs traceable to technical results, and understanding that all personnel are responsible for quality.

  16. Sitewide risk perspectives for the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Olinger, S.J.; Foppe, T.L.

    1998-05-01

    The US Department of Energy (DOE) has recently finalized a closure plan (originally called the Ten Year Plan) for closure and environmental cleanup of previous nuclear weapons facilities. The DOE Rocky Flats Field Office has established priorities for risk reduction work to Support closure activities, as well as addressing those hazards associated with storage and management of radioactive materials and hazardous chemicals. To provide information for future National Environmental Policy Act (NEPA) or other regulatory assessments of specific risk reduction projects identified in the Closure Plan, a risk assessment of normal operations and potential accidents was recently prepared to provide an updated baseline of the cumulative impacts to the worker, public and environment due to the Site`s operations, activities, and environmental conditions in light of the Site`s change in mission, and of future closure projects. This paper summarizes the risk assessment approach, results, and conclusions.

  17. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    SciTech Connect (OSTI)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  18. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  19. Properties of vitrified Rocky Flats TRUW with different waste loadings

    SciTech Connect (OSTI)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Miley, D.V.; Erickson, A.W.; Fransworth, R.N.; Larsen, E.D.

    1994-07-01

    One of the major waste streams at the Idaho National Laboratory (INEL) is a combination of the Rocky Flats Plant 1st and 2nd stage sludges (hydrated metal oxides or H-series), which constitutes about 20 wt % of the buried waste. A similar mass fraction is in interim storage. The buried waste is commingled with about five times as much soil that has become contaminated as the containers have deteriorated. The purpose of this paper is to report on waste form property variations of the H-series waste melted with various fractions of soil, plus volatile and hazardous metals and transuranic surrogates. Optimally, the waste form will minimize the bulk leach rate, maximize the volume reduction, minimize the additives needed, and stabilize the transuranic nuclides. Topics to be discussed include the input and final compositions, the melting and crystallization processes, the test results, and conclusions.

  20. State geothermal commercialization programs in seven Rocky Mountain States. Semi-annual progress report, January-June 1980

    SciTech Connect (OSTI)

    Tuttle, J.; Coe, B.A.; Gertsch, W.D.; Meyer, R.T.

    1980-12-01

    The following are included: a summary of the state projects, a summary of findings, public outreach, and a description of the major conclusions and recommendations. The commercialization activities carried out by the state teams are described for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  1. February 14, 2002: Yucca Mountain

    Broader source: Energy.gov [DOE]

    February 14, 2002Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level...

  2. Yucca Mountain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, Data Center Equipment, LED Lighting, Commercial Refrigeration Equipment Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power provides incentives...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power's wattsmart Program...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roofs, LED Lighting, Commercial Refrigeration Equipment Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power's wattsmart Program includes incentives and...

  6. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  7. Preliminary Notice of Violation, Rocky Flats Environmental Technology Site- EA-96-05

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Safe Sites of Colorado related to Radiological and Work Control Deficiencies associated with Two Radiological Release Events at the Rocky Flats Environmental Technology Site, (EA-96-05)

  8. Evolution of a Groundwater Treatment System—Rocky Flats, Colorado, Site

    Broader source: Energy.gov [DOE]

    A project to reconfigure the East Trenches Plume Treatment System (ETPTS) at the Rocky Flats site, to improve treatment effectiveness and meet the strict water quality standards in the area, is...

  9. VWZ-0008- In the Matter of EG&G Rocky Flats, Inc.

    Broader source: Energy.gov [DOE]

    This decision will consider a Motion for Partial Dismissal and Limitation on Scope of Complainant's Claims filed by EG&G Rocky Flats, Inc. (EG&G) on June 13, 1997. In its motion, EG&G...

  10. DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year By Project Management Institute

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental...

  11. Comparison and evaluation of turbulence estimation schemes at Rocky Flats Plant

    SciTech Connect (OSTI)

    Bowen, B.M.; Pamp, S.E.

    1993-10-01

    The Rocky Flats Plant (RFP) routinely measures meteorological data to support Air Quality and Emergency Response activities. These data help to characterize the transport and dispersion of actual or potential airborne releases of radionuclides or other hazardous materials.

  12. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  13. DOE's Former Rocky Flats Weapons Production Site to Become National Wildlife Refuge

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the transfer of nearly 4,000 acres of its former Rocky Flats nuclear weapons production site to the Department of the Interior's...

  14. King Mountain Wind Ranch I | Open Energy Information

    Open Energy Info (EERE)

    Mountain Wind Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Armenia Mountain Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  16. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  17. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  18. Supercompaction and Repackaging Facility for Rocky Flats Plant transuranic waste

    SciTech Connect (OSTI)

    Barthel, J.M.

    1988-01-01

    The Supercompaction and Repackaging Facility (SaRF) for processing Rocky Flats Plant (RFP) generated transuranic (TRU) waste was conceptualized and has received funding of $1.9 million. The SaRF is scheduled for completion in September, 1989 and will eliminate a labor intensive manual repackaging effort. The semi-automated glovebox-contained SaRF is being designed to process 63,500 cubic feet of TRU waste annually for disposal at the Waste Isolation Pilot Plant (WIPP). Waste will enter the process through an airlock or drum dump and the combustible waste will be precompacted. Drums will be pierced to allow air to escape during supercompaction. Each drum will be supercompacted and transferred to a load out station for final packaging into a 55 gallon drum. Preliminary evaluations indicate an average 5 to 1 volume reduction, 2 to 1 increased processing rate, and 50% reduction in manpower. The SaRF will produce a significant annual savings in labor, material, shipping, and burial costs over the projected 15 year life, and also improve operator safety, reduce personnel exposure, and improve the quality of the waste product. 1 ref., 10 figs., 3 tabs.

  19. Risk-Quantified Decision-Making at Rocky Flats

    SciTech Connect (OSTI)

    Myers, Jeffrey C.

    2008-01-15

    Surface soils in the 903 Pad Lip Area of the Rocky Flats Environmental Technology Site (RFETS) were contaminated with {sup 239/240}Pu by site operations. To meet remediation goals, accurate definition of areas where {sup 239/240}Pu activity exceeded the threshold level of 50 pCi/g and those below 50- pCi/g needed definition. In addition, the confidence for remedial decisions needed to be quantified and displayed visually. Remedial objectives needed to achieve a 90 percent certainty that unremediated soils had less than a 10 percent chance of {sup 239/240}Pu activity exceeding 50-pCi/g. Removing areas where the chance of exceedance is greater than 10 percent creates a 90 percent confidence in the remedial effort results. To achieve the stipulated goals, the geostatistical approach of probability kriging (Myers 1997) was implemented. Lessons learnt: Geostatistical techniques provided a risk-quantified approach to remedial decision-making and provided visualizations of the excavation area. Error analysis demonstrated compliance and confirmed that more than sufficient soils were removed. Error analysis also illustrated that any soils above the threshold that were not removed would be of nominal activity. These quantitative approaches were useful from a regulatory, engineering, and stakeholder satisfaction perspective.

  20. Environmental Survey preliminary report, Rocky Flats Plant, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This report presents the preliminary findings of the Environmental Survey of the United States Department of Energy (DOE), Rocky Flats Plant (RFP), conducted August 11 through 22, 1986. The Survey is being conducted by an multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the RFP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data observations of the operations carried on at RFP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activates. The Sampling and Analysis Plan is being executed by DOE's Oak Ridge National Laboratory. When completed, the results will be incorporated into the RFP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the RFP Survey. 75 refs., 24 figs., 33 tabs.

  1. Washing of Rocky Flats Combustible Residues (Conducted March - May 1995)

    SciTech Connect (OSTI)

    Mary E. Barr; Ann R. Schake; David A. Romero; Gordon D. Jarvinen

    1999-03-01

    The scope of this project is to determine the feasibility of washing plutonium-containing combustible residues using ultrasonic disruption as a method for dislodging particulate. Removal of plutonium particulate and, to a lesser extent, solubilized plutonium from the organic substrate should substantially reduce potential fire, explosion or radioactive release hazards due to radiolytic hydrogen generation or high flammability. Tests were conducted on polypropylene filters which were used as pre-filters in the rich-residue ion-exchange process at the Los Alamos Plutonium Facility. These filters are similar to the Ful-Flo{reg_sign} cartridges used at Rocky Flats that make up a substantial fraction of the combustible residues with the highest hazard rating. Batch experiments were run on crushed filter material in order to determine the amount of Pu removed by stirring, stirring and sonication, and stirring and sonication with the introduction of Pu-chelating water-soluble polymers or surfactants. Significantly more Pu is removed using sonication and sonication with chelators than is removed with mechanical stirring alone.

  2. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  3. Technical Safety Appraisal of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Brown, Blake P.

    1989-01-01

    This report provides the results of a Technical Safety Appraisal (TSA) of the Rocky Flats Plant (RFP) conducted November 14 to 18 and November 28 to December 9, 1988. This appraisal covered the effectiveness and improvements in the RFP safety program across the site, evaluating progress to date against standards of accepted practice. The appraisal included coverage of the timeliness and effectiveness of actions taken in response to the recommendations/concerns in three previous Technical Safety Appraisals (TSAs) of RFP Bldg. 707 conducted in July 1986, Bldgs. 771/774 conducted in October/November 1986, and Bldgs. 776/777 conducted in January/February 1988. Results of this appraisal are given in Section IV for each of 14 technical safety areas at RFP. These results include a discussion, conclusions and any new safety concerns for each technical safety area. Appendix A contains a description of the system for categorizing concerns, and the concerns are tabulated in Appendix B. Appendix C reports on the evaluation of the contractor's actions and the current status of each of the 230 recommendations and concerns contained in the three previous TSA reports.

  4. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  5. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  6. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...

  7. Ute Mountain Tribe- 1994 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute tribe in southwestern Colorado brings in considerable income from its cattle-ranching operation, with a herd of nearly 2,000 head. Since annual rainfall is only 10-15 inches and the only stream is dry part of the year, the tribe must rely on groundwater for cattle watering.

  8. Ute Mountain Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Ute Mountain Ute Tribe has the renewable resources and the opportunity to become a national leader in renewable energy production through its local and commercial-scale solar developments due to its proximity to key interconnections in the Four Corners area and interest from various companies that can fund such projects.

  9. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    SciTech Connect (OSTI)

    Hendrickson, D.W.; Biyani, R.K.; Brown, C.M.; Teter, W.L.

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  10. FINAL REPORT FORMER RADIATION WORKER MEDICAL SURVEILLANCE PROGRAM AT ROCKY FLATS For Department of Energy Programs

    SciTech Connect (OSTI)

    Joe M. Aldrich

    2004-11-01

    The Former Radiation Worker Medical Surveillance Program at Rocky Flats was conducted in Arvada, CO, by Oak Ridge Associated Universities through the Oak Ridge Institute for Science and Education under DOE Contract DE-AC05-00OR22750. Objectives of the program were to obtain information on the value of medical surveillance among at-risk former radiation workers and to provide long-term internal radiation dosimetry information to the scientific community. This program provided the former radiation workers of the Rocky Flats Environmental Technology Site (formerly Rocky Flats Plant) an opportunity to receive follow-up medical monitoring and a re-evaluation of their internal radiation dose. The former Rocky Flats radiation worker population is distinctive because it was a reasonably stable work force that received occupational exposures, at times substantial, over several decades. This report reflects the summation of health outcomes, statistical analyses, and dose assessment information on former Rocky Flats radiation workers to the date of study termination as of March 2004.

  11. Long-term risk stabilization of the Rocky Flats Plant residues

    SciTech Connect (OSTI)

    Melberg, T.A.

    1994-12-31

    The liquid and solid residues continue to be a concern at Rocky Flats, primarily due to safety aspects of long-term storage and of the need for processing them into a form for ultimate disposal. Currently, Rocky Flats is processing the low-level solutions from bottles and tanks by direct cementation for storage and disposal. Plans for actinide precipitation of the high-level solutions are being finalized with an anticipated completion date of 2 to 3 yr. The solid residues present a more difficult challenge because of the numerous forms that these exist. Rocky Flats is developing several strategies to handle these materials for safe long-term storage and eventual disposal.

  12. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  13. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  14. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Litaor, M.I.

    1999-02-01

    Spatial analysis of the {sup 240}Pu:{sup 239}Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 {+-} 0.003 to 0.169 {+-} 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio {ge}0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio {le}0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

  15. Comprehensive appraisal of {sup 239+240}Pu in soils around Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Litaor, M.I.; Allen, L.; Ellerbroek, D.

    1995-12-01

    Plutonium contamination of soils around Rocky Flats Environmental & Technology Site, near Golden, Colorado, resulted from past outdoor storage practices and subsequent remobilization due to inadequate cleanup practices. Until now human-health risk assessment has not been performed because of a lack of sufficient information regarding the spatial extent of {sup 239+240}Pu in soils. The purpose of this work was to elucidate the extent of plutonium contamination in surface soils, and to assess the uncertainty associated with the spatial distribution of {sup 239+240}Pu around Rocky Flats Environmental & Technology Site.

  16. Future is new focus at energy department`s Rocky Flats facility

    SciTech Connect (OSTI)

    Lobsenz, G.

    1993-11-12

    After several years of intensive effort to address radioactive pollution threatening nearby communities, officials at the Energy Department`s Rocky Flats plant now are turning their attention to the site`s plutonium buildings and finding a cleanup challenge of equally daunting proportions. Containing and mopping up off-site soil and water contamination remains the first priority at the Colorado facility, but site environmental managers say the huge volumes of plutonium and associated radioactive waste stored in Rocky Flats` aging building pose increasingly urgent safety concerns.

  17. Evaluation of an emergency response model for the Rocky Flats Plant: Charter

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This Charter provides a basis for a cooperative, interagency effort to evaluate the Terrain-Responsive Atmospheric Code for emergency response and emergency planning for the Rocky Flats Plant. This document establishes the foundation for the project entitled, Evaluation of an Emergency Response Model for the Rocky Flats Plant'' (to be referred to as the Project). This document meets the following objectives: Identify the Project; establish the project management structure, organizational responsibilities, and organizational commitments for reaching the goals of the Project, and identify a process for model revision and revelation for acceptance. 2 figs.

  18. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  19. Microbial activity at Yucca Mountain

    SciTech Connect (OSTI)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  20. Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned

    SciTech Connect (OSTI)

    Surovchak, S.; Kaiser, L.; DiSalvo, R.; Boylan, J.; Squibb, G.; Nelson, J.; Darr, B.; Hanson, M.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Rocky Flats Site was established in 1951 as part of the United States' nationwide nuclear weapons complex to manufacture nuclear weapons components. In 1992 weapons production halted, and the Rocky Flats mission changed to include environmental investigations, cleanup, and site closure. In October 2005, DOE and its contractor completed an accelerated 10-year, $7 billion cleanup of chemical and radiological contamination left from nearly 50 years of production. The cleanup required the decommissioning, decontamination, demolition, and removal of more than 800 structures; removal of more than 500,000 cubic meters of low-level radioactive waste; and remediation of more than 360 potentially contaminated environmental sites. The final remedy for the site was selected in September 2006 and included institutional controls, physical controls, and continued monitoring for the former industrial portion of the site. The remainder of the site, which served as a buffer zone surrounding the former industrial area, was transferred to the U.S. Fish and Wildlife Service in July 2007 for a national wildlife refuge. DOE's Office of Legacy Management is responsible for the long-term surveillance and maintenance of Rocky Flats, which includes remedy implementation activities and general site maintenance. Several factors have complicated the transition from closure to post-closure at Rocky Flats. The early experiences associated with the two years since the physical cleanup and closure work were completed have led to several valuable lessons learned. (authors)

  1. Radiological/Health physics program assessement at Rocky Flats, the process

    SciTech Connect (OSTI)

    Psomas, P.O.

    1996-06-01

    The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings.

  2. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect (OSTI)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  3. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  4. EIS-0064: Rocky Flats Plant Site, Jefferson County, Golden, Colorado (see also ERDA-1545-D)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the site specific environmental impacts of continuing to conduct nuclear weapons production activities at the Rocky Flats Plant; alternatives for the conduct of such activities; and environmental impacts of the U.S. policy to produce nuclear weapons.

  5. Rocky Flats Plant site environmental report for 1988, January through December 1988

    SciTech Connect (OSTI)

    Daugherty, N.M.

    1989-05-01

    This report documents the 1988 environmental surveillance program at the Rocky Flats Plant. The report includes an evaluation of plant compliance with all appropriate guides, environmental limits, and standards. Potential radiation dose to the public was calculated from average radionuclide concentrations measured at the plant property boundary and in surrounding communities. 37 refs., 14 figs., 32 tabs.

  6. Yucca Mountain Press Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the

  7. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  8. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  9. Mountain Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Delhi (NCT), India Sector: Hydro Product: Delhi-based investment vehicle set-up to invest specifically in Indian small hydro power generation assets. References: Mountain...

  10. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  11. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

  12. Squirrel Mountain Valley, California: Energy Resources | Open...

    Open Energy Info (EERE)

    Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866, -118.4098058 Show Map Loading map......

  13. Green Mountain Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas Website: www.greenmountainenergy.com Twitter: @GreenMtnEnergy Facebook: https:...

  14. International Centre for Integrated Mountain Development (ICIMOD...

    Open Energy Info (EERE)

    Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learnedbest practices Website http:www.icimod.org Country Afghanistan,...

  15. West Mountain Energy Capital | Open Energy Information

    Open Energy Info (EERE)

    Energy Capital Jump to: navigation, search Name: West Mountain Energy Capital Place: Salisbury, Connecticut Zip: 6070 Sector: Renewable Energy Product: Provides renewable resource...

  16. Mountain Island Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Mountain Island Energy, LLC Place: Soda Springs, Idaho Zip: 83276 Product: Energy and mining development company focused on next generation "clean technology". References:...

  17. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  18. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  19. Getting Beyond Yucca Mountain - 12305

    SciTech Connect (OSTI)

    Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 89706 (United States); Williams, James M. [Western Interstate Energy Board, Denver, CO 80202 (United States)

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However, the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)

  20. Mountain

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD)" ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  1. Kibby Mountain Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Kibby Mountain Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale...

  2. Woodward Mountain I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type...

  3. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  4. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats; Appendix A

    SciTech Connect (OSTI)

    1992-12-31

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems.

  5. Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mountain Spa Resort Pool & Spa Low Temperature Geothermal Facility Facility Mountain Spa...

  6. Turtle Mountain Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates...

  7. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  8. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  9. Buffalo Mountain Wind Energy Center I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  10. Buffalo Mountain Wind Energy Center II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Buffalo Mountain Wind Energy Center II Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  11. Mountain View Power Partners III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    III Wind Farm Jump to: navigation, search Name Mountain View Power Partners III Wind Farm Facility Mountain View Power Partners III Sector Wind energy Facility Type Commercial...

  12. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  13. EA-1746: Blue Mountain Geothermal Development Project, Humboldt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3,...

  14. Mountain View Power Partners II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Mountain View Power Partners II Wind Farm Facility Mountain View Power Partners II Sector Wind energy Facility Type Commercial Scale...

  15. Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area...

  16. Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010...

    Open Energy Info (EERE)

    Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm,...

  17. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  18. Motion to Withdraw from Yucca Mountain application | Department...

    Office of Environmental Management (EM)

    DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. PDF icon Motion to Withdraw from Yucca Mountain...

  19. Dongbai Mountain Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

  20. Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...

    Open Energy Info (EERE)

    the Blue Mountain geothermal system integrating data from previous studies. References James E. Faulds, Glenn Melosh (2008) A Preliminary Structural Model for the Blue Mountain...

  1. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE GTP) Exploration...

  2. Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  3. Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Mcgee Mountain Area (DOE GTP) Exploration Activity...

  4. Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Mcgee Mountain Area (DOE GTP)...

  5. Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Exploration...

  6. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  7. Turtle Mountain Band of Chippewa Indians - Development of a Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" Turtle Mountain Band of Chippewa Indians "First Steps to Implement Strategic Energy Plan" ...

  8. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  9. EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential alternatives and impacts associated with a proposal to process certain plutonium residues and all of the scrub alloy currently stored at Rocky Flats. While ongoing...

  10. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Shelton, D.C.; Brooks, L.M.

    1998-11-01

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy`s Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work.

  11. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  12. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    SciTech Connect (OSTI)

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  13. Rocky Flats 1990--91 winter validation tracer study: Volume 1

    SciTech Connect (OSTI)

    Brown, K.J.

    1991-10-01

    During the winter of 1990--91, North American Weather Consultants (NAWC) and its subcontractor, ABB Environmental Services (ABBES), conducted a Winter Validation Study (WVS) for EG&G Rocky Flats involving 12 separate tracer experiments conducted between February 3 and February 19, 1991. Six experiments were conducted during nighttime hours and four experiments were conducted during daytime hours. In addition, there was one day/night and one night/day transitional experiment conducted. The primary purpose of the WVS was to gather data to further the approval process for the Terrain Responsive Atmospheric Code (TRAC). TRAC is an atmospheric dispersion model developed and operated at the Department of Energy`s (DOE`s) Rocky Flats Plant (RFP) north of Denver, Colorado. A secondary objective was to gather data that will serve to validate the TRAC model physics.

  14. Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant PURPOSE The U.S. Department of Energy (DOE) is proposing to revise its approach for managing approximately 0.97 metric tons (MT) of plutonium-bearing materials (containing about 0.18 MT of surplus plutonium) located at the Rocky Flats Environmental Technology Site (RFETS). DOE is proposing to repackage and transport these materials for direct disposal at the Waste Isolation

  15. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013

    Office of Legacy Management (LM)

    3 January 2014 LMS/RFS/S11334 This page intentionally left blank LMS/RFS/S11334 Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013 January 2014 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-3rd Quarter CY 2013 January 2014 Doc. No. S11334 Page i Contents Abbreviations

  16. Review of Beryllium Management Practices at Rocky Flats During Closure Operations

    Office of Environmental Management (EM)

    DOE-Environmental Management DOE - Complex Wide Review of Beryllium Management Practices at Rocky Flats During Closure Operations Challenge Beryllium (Be) metal is used by DOE in weapons production, as a reactor moderator or reflector, and as a fuel element cladding. Workers who are exposed to high concentrations of beryllium often develop acute beryllium disease caused by the inhalation of beryllium dust or particles which can cause Be sensitivity or chronic Be disease (CBD), a disabling and

  17. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  18. Waste drum gas generation sampling program at Rocky Flats during FY 1989

    SciTech Connect (OSTI)

    Roggenthen, D.K.; Nieweg, R.G.

    1990-10-01

    Rocky Flats Plant transuranic waste drums were sampled for gas composition. Glass, metal, graphite, and solidified inorganic sludge transuranic waste forms were sampled. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values were calculated for the waste drums. G(H{sub 2}) was below 0.6 and G(Total) was below 1.3 for all waste forms discussed in this report. 5 refs., 3 figs., 3 tabs.

  19. Tomographic gamma scanning of uranium-contaminated waste at Rocky Flats

    SciTech Connect (OSTI)

    Mercer, D.J.; Betts, S.E.; Prettyman, T.H.; Rael, C.D.

    1998-12-31

    A tomographic gamma-ray scanning (TGS) instrument was deployed at Rocky Flats Environmental Technology Site (RFETS) to assist with the deactivation of Building 886. Many 208-L drums containing waste contaminated with highly enriched uranium were measured in order to certify these sites for shipment and disposal. This project marks a successful cooperation between RFETS and Los Alamos National Laboratory and is the first major field experience using TGS technology to assay uranium.

  20. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  2. Analysis of offsite emergency planning zones for the Rocky Flats Plant

    SciTech Connect (OSTI)

    Hodgin, C.R.; Daugherty, N.M.; Smith, M.L. . Rocky Flats Plant); Bunch, D.; Toresdahl, J.; Verholek, M.G. )

    1991-01-01

    The objective of this report is to fully document technical data and information that have been developed to support offsite emergency planning by the State of Colorado for potential accidents at the Rocky Flats Plant. Specifically, this report documents information and data that will assist the State of Colorado in upgrading its radiological emergency planning zones for Rocky Flats Plant. The Colorado Division of Disaster Emergency Services (DODES) and the Colorado Department of Health (CDH) represent the primary audience for this report. The secondary audience for this document includes the Rocky Flats Plant; federal, State, and local governmental agencies; the scientific community; and the interested public. Because the primary audience has a pre-existing background on the subject, this report assumes some exposure to emergency planning, health physics, and dispersion modeling on the part of the reader. The authors have limited their assumptions of background knowledge as much as possible, recognizing that the topics addressed in the report may be new to some secondary audiences.

  3. The role of macrobiota in structuring microbial communities along rocky shores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  4. Environment, safety and Health Progress Assessment of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the DOE Rocky Flats Plant (RFP) in Golden, Colorado. The assessment, which was conducted during the period of May 17 through May 28, 1993, included a selective review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices (Defense Programs (DP) and Environmental Restoration and Waste Management (EM)), the DOE Rocky Flats Office (RFO), and the site contractor, EG&G Rocky Flats, Inc. (EG&G). Despite the near constant state of flux under which RFP has been required to operate, the Progress Assessment Team has concluded that significant progress has been made in correcting the deficiencies identified in the 1989 Assessment and in responding responsibly to regulations, and DOE directives and guidance that have been issued since that time. The Team concluded that the improvements have been concentrated in the activities associated with plutonium facilities and in regulatory driven programs. Much remains to be done with respect to implementing on a sitewide basis those management systems that anchor an organization`s pursuit of continuous ES&H improvement. Furthermore the Team concluded that the pace of improvement has been constrained by a combination of factors that have limited the site`s ability to manage change in the pursuit of sitewide ES&H excellence.

  5. The role of macrobiota in structuring microbial communities along rocky shores

    SciTech Connect (OSTI)

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.

  6. Utilities Offering Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    The Energy Policy Act of 1992, codified as 42 USC Section 8256 (c) Utility Incentive Programs, authorizes and encourages agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities.

  7. April 25, 1997: Yucca Mountain exploratory drilling | Department of Energy

    Energy Savers [EERE]

    5, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada

  8. EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing

    Office of Environmental Management (EM)

    County, NV | Department of Energy 46: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV EA-1746: Blue Mountain Geothermal Development Project, Humboldt & Pershing County, NV December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain Geothermal Development Project, Humboldt and Pershing Counties, Nevada

  9. Testimony of Greg Friedman Yucca Mountain

    Broader source: Energy.gov (indexed) [DOE]

    ... at Yucca Mountain IG-0366 1995-02-15 27. TRW Environmental ... of Costs Claimed by and Reimbursed to TRW Environmental Safety Systems, Inc. Under Department of Energy Contract ...

  10. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  11. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic

  12. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  13. Building America Whole-House Solutions for New Homes: Pine Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia Case study of Pine Mountain Builders who worked with Building America research ...

  14. A three-dimensional spatial model of plutonium in soil near Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Webb, S.B.; Ibrahim, S.A.; Whicker, F.W.

    1997-08-01

    The horizontal and depth distribution of plutonium was measured in soil east of the Rocky Flats Environmental Technology Site (formerly the Rocky Flats Plant) near Denver, Colorado, during 1992-1994. The study area was centered on the eastern plume of plutonium contamination and included transacts extending from 0.2 km east of the primary origin of the contamination (the 903 Pad) to distances of up to 19 km northeast, east, southeast and south-southeast of the 903 Pad. Soil was collected in 3 cm layers down to 21 cm at exponentially increasing distances along the four transacts. Plutonium concentrations decreased rapidly with depth, distance from the 903 Pad, and angle from due east. Depth distributions were independent of distance and angle from the 903 Pad, and our profile model can be used to adjust to a common basis, historical measurements made from sampling to different depths. Based on a total of {approximately}1,400 independent measurements, mathematical functions were developed to describe the distance, directional, and depth relationships. These equations, combined with soil density and rock measurements, provided a new method to estimate the plutonium concentration or total deposition per unit area anywhere within the study area. Total deposition per unit area measurements at 50 sites provided an independent test of the model`s predictive accuracy. Sampling coefficients of variation based on replicate samples at the main sampling locations averaged 33%, but ranged from 12 to 98%. The analytical measurement coefficient of variation averaged 8%. Mean 0-3 cm soil concentrations of {sup 239}Pu among 10 Front Range {open_quotes}background{close_quotes} and 11 community locations near Rocky Flats were 2.1 and 2.3 Bq kg{sup -1}, respectively. 45 refs., 8 figs., 1 tab.

  15. Improvements to the Rocky Flats Metrology Laboratories Velocity Meter Calibration System

    SciTech Connect (OSTI)

    Abercrombie, K.R.

    1992-03-12

    The Rocky Flats Standards Laboratory has undertaken a project to improve calibration of air velocity meters by reducing the uncertainty of the Velocity Meter Calibration System. The project was accomplished by analyzing the governing equation in order to determine which areas within the system contributed most to the overall system uncertainty. Then, based upon this new analysis, new components were selected to replace the components identified in the analysis. Finally, the system was re-evaluated to determine the new systematic uncertainty for the system.

  16. HYDROGEN DATA FROM LOS ALAMOS [LANL] & SAVANNAH RIVER [SRC] & ROCKY FLATS [RFE] [SEC 1 & 2

    SciTech Connect (OSTI)

    DAYLEY, L.

    2001-11-19

    A DOE letter dated August 14, 2001 requested that a detailed analysis of the expected probability of accumulation of significant quantities of hydrogen gas in unvented drums and a plan and schedule for venting drums be prepared and submitted. In response to the letter a document was prepared that included data of hydrogen concentrations in TRU waste drums. Data was collected from Savannah River Site, Los Alamos National Laboratory, and Rocky Flats Environmental Technology Site. These data were analyzed to provide the basis for evaluating the probability that significant quantities of hydrogen will accumulate in the unvented TRU drums stored at Hanford.

  17. Implementation of IAEA safeguards at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Giacomini, J.J.; Finleon, C.A.; Larsen, R.K.; Lucas, M.; Langner, D.

    1995-07-01

    When President Clinton spoke to the United Nations General Assembly in September 1993, he offered to place US excess defense nuclear material under International Atomic Energy Agency (IAEA) safeguards, before the next Nuclear Nonproliferation Treaty (NPT) Extension Conference. This set in motion a flurry of activities at three DOE facilities, including Rocky Flats Environmental Technology Site (Site). With general guidance from DOE Headquarters, the facility selected a suitable storage area, identified appropriate materials, and acquired the necessary instrumentation to implement full-scale IAEA safeguards on excess plutonium oxide.

  18. Meteorological conditions during the winter validation study at Rocky Flats, Colorado: An overview

    SciTech Connect (OSTI)

    Hodgin, C.R.

    1991-11-06

    The objective for the Winter Validation Study was to gather field data for validation of the Terrain-Responsive Atmospheric Code (TRAC) under winter time meteorological conditions. Twelve tracer tests were conducted during a two-week period in February 1991. Each test lasted 12 hours, with releases of SF{sub 6} tracer from the Rocky Flats Plant near Golden, Colorado. The tests included ground-based and airborne sampling to 16 km from the release point. This presentation summarizes meteorological conditions during the testing period. Forty six viewgraphs are included.

  19. Overview of the Second Quarter 2011 Surveillance and Maintenance Report for the LM Rocky Flats Site

    Office of Legacy Management (LM)

    of the Second Quarter 2012 Surveillance and Maintenance Report for the LM Rocky Flats Site April-June 2012 Surface Water Monitoring and Operations 2 Second Quarter 2012 2 Pond Operations - Second Quarter 2012  Terminal Pond Discharges: * Valves at A-4, B-5, and C-2 were opened in 2011; all Terminal Ponds are now operated in a flow-through mode  Pond Levels: * As of June 30, 2012, the Terminal Ponds were holding approximately 5.0 MG (6.4 percent of capacity) 3 3 October 15, 2012, Pond

  20. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    SciTech Connect (OSTI)

    Nelson, Jody K.

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol insects have been released to assist with control of different target weed species. Monitoring is conducted to evaluate the effectiveness of control efforts and to provide information for future control efforts. The effective implementation of this integrated approach has reduced the infestation levels of many species and has kept several newly discovered invasive species from spreading and becoming larger problems at the site. (authors)

  1. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  2. Navajo Tribal Utility Authority Moves Forward with First Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, ...

  3. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  4. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    SciTech Connect (OSTI)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A.

    1990-11-09

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG&G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort.

  5. Rocky Flats Closure: the Role of Models in Facilitating Scientific Communication With Stakeholder Groups

    SciTech Connect (OSTI)

    Clark, D.L.; Choppin, G.R.; Dayton, C.S.; Janecky, D.R.; Lane, L.J.; Paton, I.

    2009-05-28

    The Rocky Flats Environmental Technology Site (RFETS) was a U.S. Department of Energy (DOE) environmental cleanup site for a previous manufacturing plant that made components for the U.S. nuclear weapons arsenal. The facility was shut down in 1989 to address environmental and safety concerns, and left behind a legacy of contaminated facilities, soils, surface and ground water. In 1995, the Site contractor established the Actinide Migration Evaluation (AME) advisory group to provide advice and technical expertise on issues of actinide behavior and mobility in the air, surface water, groundwater, and soil. Through a combination of expert judgment supported by state-of-the-art scientific measurements, it was shown that under environmental conditions at Rocky Flats, plutonium and americium form insoluble oxides that adhere to small soil, organic, and mineral particles and colloids, or are colloidal materials themselves. A series of models ranging from conceptual, geostatistical, and large-scale wind and surface water erosion models were used to guide stakeholder interactions. The nature of these models, and their use in public communication is described.

  6. Safety analyses performed in the Systematic Evaluation Program at Rocky Flats

    SciTech Connect (OSTI)

    Badwan, F.M.; Persinko, D.; Haga, P.B.

    1994-06-01

    Structures, systems, and components (SSC) at Rocky Flats were designed and put into operation before current standards and criteria applicable to these SSCs were developed. The purpose of the Systematic Evaluation Program (SEP) at Rocky Flats (RF) is to systematically compare the design of SSCs to current design requirements and assess the differences to assure that a balanced and integrated level of safety is achieved to support long-term operation of the facilities. The SEP is being performed in three phases. Phase 1, selection of technical subjects (topics) and development of evaluation plans is complete. Phase 2, comparison of the design of structures, systems and components to current design requirements (CDR), is in progress. It is being performed in two parts, Phase 2A and Phase 2B. An Integrated Assessment of the recommendations from Phase 2 will be performed in Phase 3. The RF SEP is not necessarily used to bring the RF facilities into compliance with newer standards, but to ensure that the safety issues addressed by current requirements either do not exist, are acceptably addressed by existing designs, or are addressed by backfit of existing standards into older facilities to the extent appropriate to the concern. For example, administrative controls may provide adequate resolution of issues addressed by design features in more modern facilities.

  7. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    SciTech Connect (OSTI)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth`s surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats.

  8. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect (OSTI)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  9. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    SciTech Connect (OSTI)

    Laul, J.C.

    1994-02-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from <0.2 to 69 pCi/I (IpCi = 3 ug). However, the activity U-234/U-238 ratios are low and range mostly 1.2 to 2.7. The low activity ratios can be interpreted to suggest that the groundwaters are moving slow (

  10. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventory at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.

  11. Waste drum gas generation sampling program at Rocky Flats during FY 1988

    SciTech Connect (OSTI)

    Roggenthen, D.K.; McFeeters, T.L.; Nieweg, R.G.

    1991-02-11

    Rocky Flats Plant Transuranic Waste Drums were sampled for gas composition. Combustibles, plastics, Raschig rings, solidified organic sludge, and solidified inorganic sludge transuranic waste forms were sampled. Plastic bag material and waste samples were also taken from some solidified sludge waste drums. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values (gas generation) were calculated for the waste drums. Analytical results indicate that very low concentrations of potentially flammable or corrosive gas mixtures will be found in vented drums. G(H{sub 2}) was usually below 1.6, while G(Total) was below 4.0. Hydrogen permeability tests on different types of plastic waste bags used at Rocky Flats were also conducted. Polyvinylchloride was slightly more permeable to hydrogen than polyethylene for new or creased material. Permeability of aged material to hydrogen was slightly higher than for new material. Solidified organic and inorganic sludges were sampled for volatile organics. The analytical results from two drums of solidified organic sludges showed concentrations were above detection limits for four of the 36 volatile organics analyzed. The analytical results for four of the five solidified inorganic sludges show that concentrations were below detection limits for all volatile organics analyzed. 3 refs., 5 figs., 2 tabs.

  12. History of Uranium-233(sup233U)Processing at the Rocky Flats Plant. In support of the RFETS Acceptable Knowledge Program

    SciTech Connect (OSTI)

    Moment, R.L.; Gibbs, F.E.; Freiboth, C.J.

    1999-04-01

    This report documents the processing of Uranium-233 at the Rocky Flats Plant (Rocky Flats Environmental Technology Site). The information may be used to meet Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC)and for determining potential Uranium-233 content in applicable residue waste streams.

  13. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  14. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  15. Rich Mountain Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Rich Mountain Elec Coop, Inc Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Arkansas Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline:...

  16. Mountain Electric Coop, Inc (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    Mountain Electric Coop, Inc (North Carolina) Jump to: navigation, search Name: Mountain Electric Coop, Inc Place: North Carolina Phone Number: 423-733-0159 or 423-772-3521 or...

  17. Green Mountain Energy Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Green Mountain Energy Wind Farm II Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  18. Green Mountain Energy Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Green Mountain Energy Wind Farm I Facility AMP-OhioGreen Mountain Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind...

  19. Mountain View Power Partners I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind...

  20. New Yucca Mountain Repository Design to be Simpler, Safer and...

    Office of Environmental Management (EM)

    New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective PDF icon...

  1. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  2. Utility Partnerships Program Overview

    SciTech Connect (OSTI)

    2014-10-03

    Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program.

  3. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE, Food Service Equipment, Vending Machine Controls, Reflective Roofs, LED Lighting Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power provides incentives...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Other EE, Vending Machine Controls, Reflective Roofs Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power provides incentives...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dishwasher Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Rocky Mountain Power- wattsmart New Homes Program The Rocky Mountain Power ENERGY STAR New Homes program...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing, Building Insulation, Windows, Roofs, Other EE, Reflective Roofs Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power provides incentives...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Roofs, Other EE, Reflective Roofs, Pool Pumps, LED Lighting Rocky Mountain Power- wattsmart Residential Efficiency Program Rocky Mountain Power provides...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reflective Roofs Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Rocky Mountain Power- wattsmart Business Program Rocky Mountain Power provides incentives for its...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive MeasuresWhole Building, CustomOthers pending approval, Pool Pumps Rocky Mountain Power- wattsmart Residential Efficiency Program Rocky Mountain Power provides...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    of Ethane-Ethylene (Thousand Barrels)","Rocky Mountain (PADD 4) Imports of Ethane-Ethylene (Thousand Barrels)","Rocky Mountain (PADD 4) Net Receipts by Pipeline, Tanker,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rocky Mountain Power- FinAnswer Express Rocky Mountain Power's FinAnswer Express Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Rocky Mountain Power- New Homes Program The Rocky Mountain Power ENERGY STAR New Homes program offers cash incentives to contractors who build energy-efficient homes....

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Nigeria of Crude Oil and Petroleum Products (Thousand Barrels)","Rocky Mountain (PADD 4)...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Roofs, Comprehensive MeasuresWhole Building, Other EE, Personal Computing Equipment, Pool Pumps Rocky Mountain Power- FinAnswer Express Rocky Mountain...

  16. Environmental Entrepreneurs (E2) | Open Energy Information

    Open Energy Info (EERE)

    Entrepreneurs (E2) Jump to: navigation, search Logo: Environmental Entrepreneurs (E2) Rocky Mountains Chapter Name: Environmental Entrepreneurs (E2) Rocky Mountains Chapter...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (Thousand Barrels)","Rocky Mountain (PADD 4) Imports by PADD of Processing from Egypt of Crude Oil and Petroleum Products (Thousand Barrels)","Rocky Mountain (PADD 4)...

  18. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details...

  19. GreenMountain Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 94107 Product: Consulting firm specializing in clean technology product design and manufacturing development. References: GreenMountain Engineering,...

  20. Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979) Exploration Activity...

  1. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  2. Alternative Fuels Data Center: Smoky Mountains Leads the Way in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Implementing Alternative Fuels Smoky Mountains Leads the Way in Implementing Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Smoky Mountains Leads the Way in Implementing Alternative Fuels on Google Bookmark Alternative Fuels Data

  3. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  4. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  5. Community Surveys: Low Dose Radiation. Fernald, Ohio and Rocky Flats, Colorado

    SciTech Connect (OSTI)

    C. K. Mertz; James Flynn; Donald G. MacGregor; Theresa Satterfield; Stephen M. Johnson; Seth Tuler; Thomas Webler

    2002-10-16

    This report is intended to present a basic description of the data from the two community surveys and to document the text of the questions; the methods used for the survey data collection; and a brief overview of the results. Completed surveys were conducted at local communities near the Rocky Flats, Colorado and the Fernald, Ohio sites; no survey was conducted for the Brookhaven, New York site. Fernald. The Fernald sample was randomly selected from 98% of all potential residential telephones in the townships of Ross, Morgan, and Crosby. The only telephone exchanges not used for the Fernald study had 4%, or fewer, of the holders of the telephone numbers actually living in either of the three target townships. Surveying started on July 24, 2001 and finished on August 30, 2001. A total of 399 completed interviews were obtained resulting in a CASRO response rate of 41.8%. The average length of an interview was 16.5 minutes. Rocky Flats. The sample was randomly selected from all potential residential telephones in Arvada and from 99% of the potential telephones in Westminster. Surveying started on August 10, 2001 and finished on September 25, 2001. A total of 401 completed interviews were obtained with a CASRO response rate of 32.5%. The average length of an interview was 15.7 minutes. Overall, respondents hold favorable views of science. They indicate an interest in developments in science and technology, feel that the world is better off because of science, and that science makes our lives healthier, easier, and more comfortable. However, respondents are divided on whether science should decide what is safe or not safe for themselves and their families. The majority of the respondents think that standards for exposure to radiation should be based on what science knows about health effects of radiation and on what is possible with today's technology. Although few respondents had visited the sites, most had heard or read something about Fernald or Rocky Flat s in the media. Impressions of the sites tend to be negative. Most respondents feel that overall their community would be better off without the site. However, when asked about the economic future of their community after cleanup and closure of the site, only 31-43% thought that it will be better, 47-56% thought their local economy will be about the same.

  6. Case History of a Clean Water Act Compliance Agreement at the Rocky Flats Environmental Technology Site near Golden, Colorado

    SciTech Connect (OSTI)

    Thompson, J.S.

    1995-08-01

    A major Clean Water Act (CWA) Federal Facilities Compliance Agreement was signed on March 25, 1991 by the US Department of Energy, Rocky Flats Field Office (DOE, RFFO) and the Water Enforcement Division of the Environmental Protection Agency (EPA), Region VIII. The agreement revised the Rocky Flats Plant`s National Pollutant Discharge Elimination System (NPDES) permit and arose from pemittee-requested changes in effluent monitoring points and permit violations, most notably the February 22, 1989 Chromic Acid Incident. The Rocky Flats Plant, now called the Rocky Flats Environmental Technology Site (Site) near Golden Colorado was operated at that time by Rockwell International Corporation, who later plead guilty to six misdemeanor and felony counts of the CWA (the aforementioned NPDES permit violations) and paid a $4 million fine on March 26, 1992. The Compliance Agreement, hereafter referred to as the NPDES FFCA, called for three separate remedial action plans and contained a schedule for their submittal to the EPA. The compliance plans focussed on: (1) Waste Water Treatment Plant (WWTP) performance upgrades, (2) source control and surface water protection, and (3) characterization of the impacts from past sludge disposal practices. Projects that implemented the compliance plans were initiated soon after submittal to the EPA and are forecast to complete in 1997 at a total cost of over $35 million. This paper presents a case history of NPDES FFCA compliance projects and highlights the successes, failures, and lessons learned.

  7. Rocky Flats Site, Colorado, Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013

    Office of Legacy Management (LM)

    Quarterly Report of Site Surveillance and Maintenance Activities Second Quarter Calendar Year 2015 October 2015 LMS/RFS/S13352 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-2nd Quarter CY 2015 October 2015 Doc. No. S13352 Page i Contents Abbreviations ................................................................................................................................. iv 1.0 Introduction

  8. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013

    Office of Legacy Management (LM)

    Third Quarter Calendar Year 2014 January 2015 LMS/RFS/S12555 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-3rd Quarter CY 2014 January 2015 Doc. No. S12555 Page i Contents Abbreviations ................................................................................................................................. iv 1.0 Introduction

  9. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013

    Office of Legacy Management (LM)

    Site Surveillance and Maintenance Activities First Quarter Calendar Year 2015 July 2015 LMS/RFS/S13091 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-1st Quarter CY 2015 July 2015 Doc. No. S13091 Page i Contents Abbreviations ................................................................................................................................. iv 1.0 Introduction

  10. Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2015

    Office of Legacy Management (LM)

    Colorado, Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2015 January 2016 LMS/RFS/S13687 This page intentionally left blank U.S. Department of Energy Rocky Flats Site Quarterly Report of Site Surveillance and Maintenance Activities-3rd Quarter CY 2015 January 2016 Doc. No. S13687 Page i Contents Abbreviations ................................................................................................................................. iv 1.0

  11. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  12. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect (OSTI)

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  13. Retrospective beryllium exposure assessment at the Rocky Flats Environmental Technology site

    SciTech Connect (OSTI)

    Barnard, A.E.; Torma-Krajewski, J.; Viet, S.M.

    1997-05-01

    Since the 1960`s, beryllium machining was performed to make nuclear weapon components at the Department of Energy (DOE) Rocky Flats Plant. Beryllium exposure was assessed via fixed airhead (FAH) sampling in which the filter cassette was affixed to the machine, generally within a few feet of the worker`s breathing zone. Approximately 500,000 FAH samples were collected for beryllium over three decades. From 1984 to 1987, personal breathing zone (PBZ) samples were also collected as part of the evaluation of a new high velocity/low volume local exhaust ventilation (HV/LV LEV) system. The purpose of this study was to determine how the two types of sampling data could be used for an exposure assessment in the beryllium shop.

  14. Analysis of offsite Emergency Planning Zones (EPZs) for the Rocky Flats Plant. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    A quality assurance plan (QAP) is a documented description or a listing of the controls to be implemented to assure that an operation or activity is accomplished in a consistent manner and in accordance with requirements. Federal, state, and local governments require emergency planning for facilities that may affect the public in the event of an accidental release of nuclear or hazardous materials. One of the purposes of this EG G Rocky Flats Plant (RFP) Analysis of Offsite Emergency Planning Zones (EPZ) project is to identify the EPZs where actions could be necessary to protect public health. The RFP EPZ project is developing an interim basis for potential sheltering and evacuation recommendations in the event of an accidental release of radionuclides to the atmosphere from this facility. Also, RFP is developing EPZs for accidental releases of major nonradiological hazardous substances to the atmosphere, and will analyze the impacts of an unplanned surface water release from the facility.

  15. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1995-02-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams.

  16. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect (OSTI)

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  17. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1992--September 30, 1992, Number 7

    SciTech Connect (OSTI)

    1992-12-01

    In accordance with section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the Department has prepared the seventh in a series of reports on the progress of site characterization at the Yucca Mountain candidate site. The Civilian Radioactive Waste Management Program made significant progress during the reporting period at the Yucca Mountain Site Characterization Project. Several important advances were made in the surface-based testing program including: initiation of borehole drilling utilizing the new, state-of-the-art LM-300 drill rig which employs dry drilling and coring techniques; neutron access borehole drilling to evaluate infiltration processes; excavations to aid geologic mapping; and trenching in Midway Valley to study Quaternary faulting. A Floodplain Assessment and Statement of Findings was published in the Federal Register which concluded there would be no significant impact nor cumulative impacts on floodplains resulting from Exploratory Studies Facility activities. The National Academy of Sciences` National Research Council released its report entitled ``Ground Water at Yucca Mountain: How High Can It Rise?`` which concluded that none of the evidence cited as proof of groundwater upwelling in and around Yucca Mountain could be reasonably attributed to that process and that significant water table excursions to the repository design level are not shown by the geologic record. The June 29, 1992, earthquake near Yucca Mountain provided scientists with a wealth of information relevant to understanding the neotectonics of the area and the geometry of faults at depth. Early findings suggest that accelerations recorded were well within proposed design limits for the surface waste handling facilities.

  18. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  19. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  20. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  1. When Utility Bills Attack!

    Broader source: Energy.gov [DOE]

    As proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills.

  2. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  3. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  4. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  5. USET Tribal Utility Summit

    Broader source: Energy.gov [DOE]

    The United South and Eastern Tribes (USET) is hosting its annual Tribal Utility Summit at the Harrah's Cherokee Casino and hosted by Eastern Band of Cherokee Indians.

  6. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  7. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UESCs help utilities improve key customer load profles, meet effciency and renewable energy portfolio standards, and provide exemplary customer service. Federal sites beneft from ...

  8. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  9. Dalton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Dalton Utilities Jump to: navigation, search Name: Dalton Utilities Place: Georgia Phone Number: 706-278-1313 Website: www.dutil.comresidentialinde Twitter: @DaltonUtilities...

  10. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  11. White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  12. Testimony of Greg Friedman Yucca Mountain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste

  13. Microsoft Word - Yucca Mountain Press Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Angela Hill, (202) 586-4940 Tuesday, June 3, 2008 Remarks as Prepared for Delivery for Energy Secretary Samuel Bodman Yucca Mountain Press Conference National Press Club Washington, D.C. Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive

  14. Teuchos Utility Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Teuchos is designed to provide portable, object-oriented tools for Trillnos developers and users. This includes templated wrappers to BLAS/LAPACK, a serial dense matrix class, a parameter list, XML parsing utilities, reference counted pointer (smart pointer) utilities, and more. These tools are designed to run on both serial and parallel computers.

  15. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling

    SciTech Connect (OSTI)

    1995-08-01

    This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

  16. Build Rocky Flats Environmental Technology site production prototype modular treatment system for stand alone core capability for residue unpack, sort, assay, repack

    SciTech Connect (OSTI)

    Hildner, R.A.; Zygmunt, S.J.

    1997-01-01

    This document describes a portable and modular suit of equipment that upfront and near-term accomplishes a sorting process that documents and removes Rocky Flats Environmental Technology Site (RFETS) residue and waste from site inventory.

  17. New Whole-House Solutions Case Study: Pine Mountain Builders, Pine Mountain, Georgia

    Energy Savers [EERE]

    Pine Mountain Builders began working with Building America research partners IBACOS and Southface Energy Institute in 2005 to design energy-efficient homes for a green community of 140 homes in western Georgia. Their designs have yielded homes with HERS scores as low as 59, electric bills as low as $50 a month (or half the state average), and 30% energy savings compared to homes built to the Georgia state energy code. The thermal envelopes of Pine Mountain's homes are built to be airtight.

  18. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant`s (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF`s traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG&G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  19. Resumption of thermal stabilization of plutonium oxide in Building 707, Rocky Flats Plant, Golden, Colorado. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy is proposing thermal stabilization to enhance the safe storage of plutonium at Rocky Flats Plant until decisions are made on long-term storage and disposition of the material. The proposed action is to resume thermal stabilization of pyrophoric plutonium in Building 707 at Rocky Flats Plant. Thermal stabilization would heat the pyrophoric plutonium under controlled conditions in a glovebox furnace to promote full oxidation and convert the material into stable plutonium oxide in the form of PuO{sub 2}. Other activities associated with thermal stabilization would include post-stabilization characterization of non-pyrophoric plutonium and on-site movement of pyrophoric and non-pyrophoric plutonium. This report covers; purpose and need; proposed action; alternatives to the proposed action; affected environment; environmental effects of proposed action and no action alternative; agencies and person consulted; and public participation.

  20. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant's (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF's traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  1. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  2. Department of Energy Files Motion to Withdraw Yucca Mountain License

    Energy Savers [EERE]

    Application | Department of Energy Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the

  3. DOE Announces Yucca Mountain License Application Schedule | Department of

    Energy Savers [EERE]

    Energy Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative

  4. 2014 FIRST Robotics Smoky Mountain Regionals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 FIRST Robotics Smoky Mountain Regionals 2014 FIRST Robotics Smoky Mountain Regionals Addthis 1 of 8 Students from Hardin Valley Academy in Tennessee prepare their robot for the FIRST Robotics Smoky Mountain regionals. The FIRST robotics competition challenges high school students to design, build and program a complex robot that can compete in that year's game. The team, called the RoHAWKtics, used 3D printing and carbon fiber reinforced plastic to build their robot this year. Image:

  5. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  6. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  7. The September 1957 Rocky Flats fire: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-07-19

    The primary purpose of this guide is to help the DOE locate and make available information relating to the 1957 Rocky Flats fire. The records are arranged into six categories: administrative and general; facilities and equipment; production and materials handling; waste management; workplace and environmental monitoring; and employee occupational exposure and health. A brief explanation of each category follows. The administrative and general section pertains to the administration of individual contractor organizations and DOE divisions at Rocky Flats. It also contains records which encompass several different subject areas and therefore can not be placed in a single category. The facilities and equipment category relates to the routine construction and maintenance of plant buildings as well as the purchase and installation of equipment. The production and materials handling records relate primarily to the inventory and production of nuclear materials and weapons components. The waste management records series found under this heading relate to the storage, handling, treatment, and disposal of radioactive, chemical or mixed materials produced or used at Rocky Flats. The records consist mostly of waste sampling and shipment records. The workplace and environmental monitoring records series found in this section pertain to monitoring of the workplace. The section also includes records that document efforts to monitor the environment outside of buildings, either onsite or offsite. Records in this category consist of sampling data and environmental impact reports. The employee occupational exposure and health section pertains to documentation relating to the health and occupational exposures of employees and visitors at Rocky Flats. Records series consist generally of dosimeter data, radiation exposure records, and medical records. Many of the records contain personal data pertaining to individual employees and may therefore be Privacy Act systems and records.

  8. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    SciTech Connect (OSTI)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  9. Report on "Audit of the Contractor Incentive Programs at the Rocky Flats Environmental Technology Site, IG-0411

    Energy Savers [EERE]

    August 13, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Contractor Incentive Programs at the Rocky Flats Environmental Technology Site" BACKGROUND: The Department of Energy (Department) is using performance-based contracts to solve problems associated with its traditional management and operating contracts. These performance-based contracts are to include cost reduction incentive programs to motivate contractors

  10. Hualapai Tribal Utility Project

    Office of Environmental Management (EM)

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  11. Turtle Mountain Band of Chippewa Indians 10 Y Energy, Environmental, and Economic Development Platform

    Energy Savers [EERE]

    Turtle Mountain Band of Chippewa Indians - TMBCI 10Y Energy, Environmental and Economic Development Platform DOE Office of Indian Energy Tribal Leader Forum Series Indian Pueblo Cultural Center - Albuquerque, NM July 27, 2015 10Y Governance, Financial and Environmental Impacts TMBCI Current Annual Energy Spend: $6.5 Million est. Daily Demand: 18MW est. 0 50 100 150 200 10Y1 10Y2 10Y3 10Y4 10Y5 10Y6 10Y7 10Y8 10Y9 10Y10 10Y Growth Projection Non-tribal Utility Hydrocarbons TMBCI Efficiency and

  12. Snowflake White Mountain Power Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Map Retrieved from "http:en.openei.orgwindex.php?titleSnowflakeWhiteMountainPowerBiomassFacility&oldid398118" Feedback Contact needs updating Image needs updating...

  13. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  14. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IPelectrical resistivity traversing. These...

  15. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Ross...

    Open Energy Info (EERE)

    R. Langton, Brian D. Fairbank, Claron E. Mackelprang (1999) Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Additional References...

  16. Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et...

    Open Energy Info (EERE)

    model of blue mountain. References Glenn Melosh, William Cumming, John Casteel, Kim Niggemann, Brian Fairbank (2010) Seismic Reflection Data and Conceptual Models for...

  17. Mountain Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Mesa, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6393975, -118.4056391 Show Map Loading map......

  18. Mountain View Acres, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mountain View Acres, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.496663, -117.3489352 Show Map Loading map......

  19. Mountain View, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain View, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3860517, -122.0838511 Show Map Loading map......

  20. Mountain Lakes, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8948212, -74.4329314 Show Map Loading map......

  1. Mountain View, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain View, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7744311, -105.0555389 Show Map Loading map... "minzoom":false,"mapp...

  2. Battle Mountain, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Battle Mountain, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6421334, -116.9342671 Show Map Loading map... "minzoom":false,"mapp...

  3. Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...

    Open Energy Info (EERE)

    Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Glass...

  4. Stone Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stone Mountain, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8081608, -84.170196 Show Map Loading map... "minzoom":false,"mappin...

  5. Pine Mountain Club, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Pine Mountain Club, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8469211, -119.1567751 Show Map Loading map......

  6. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  7. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  8. Lookout Mountain, Tennessee: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Lookout Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9942422, -85.3494027 Show Map Loading map......

  9. Mountain City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain City, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.037159, -97.8869497 Show Map Loading map... "minzoom":false,"mappingse...

  10. Casper Mountain, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Casper Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199, -106.3266921 Show Map Loading map... "minzoom":false,"map...

  11. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration...

  12. Geothermometry At Blue Mountain Geothermal Area (Casteel, Et...

    Open Energy Info (EERE)

    Details Location Blue Mountain Geothermal Area Exploration Technique Geothermometry Activity Date 2010 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis A water...

  13. Subsurface Temperature Data in Jemez Mountains, New Mexico |...

    Open Energy Info (EERE)

    Subsurface Temperature Data in Jemez Mountains, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Subsurface Temperature Data in Jemez...

  14. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

  15. Rib Mountain, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleRibMountain,Wisconsin&oldi...

  16. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis Cores...

  17. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Blue...

  18. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  19. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue...

  20. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details...

  1. Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Blue...

  2. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

  4. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  5. Data Acquisition-Manipulation At Socorro Mountain Area (Kooten...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Socorro Mountain Area (Kooten, 1987) Exploration Activity...

  6. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity...

  7. Geophysical Setting of the Blue Mountain Geothermal Area, North...

    Open Energy Info (EERE)

    the location of the geothermal prospect and the spatially associated epithermal gold depositon the western flank of Blue Mountain. Other epithermal gold deposits in...

  8. Battle Mountain Band - Te-Moak: Solar Energy Park

    Office of Environmental Management (EM)

    Battle Mountain Band - Te-Moak Chairman Joseph Holley and Vice-chairman Mark Oppenhein, Members Donna Hill, Delbert Holley, Lydia Johnson, and Lydell Oppenhein Solar Energy Park ...

  9. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  10. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  11. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona...

    Broader source: Energy.gov (indexed) [DOE]

    Record of Decision September 30, 2014 EIS-0417: Final Environmental Impact Statement More Information http:azdot.govprojectsphoenix-metro-arealoop-202-south-mountain-freeway...

  12. Analysis of offsite emergency planning zones for the Rocky Flats Plant. Evaluation of radiological materials, Volume 1

    SciTech Connect (OSTI)

    Hodgin, C.R.; Daugherty, N.M.; Smith, M.L.; Bunch, D.; Toresdahl, J.; Verholek, M.G.

    1991-01-01

    The objective of this report is to fully document technical data and information that have been developed to support offsite emergency planning by the State of Colorado for potential accidents at the Rocky Flats Plant. Specifically, this report documents information and data that will assist the State of Colorado in upgrading its radiological emergency planning zones for Rocky Flats Plant. The Colorado Division of Disaster Emergency Services (DODES) and the Colorado Department of Health (CDH) represent the primary audience for this report. The secondary audience for this document includes the Rocky Flats Plant; federal, State, and local governmental agencies; the scientific community; and the interested public. Because the primary audience has a pre-existing background on the subject, this report assumes some exposure to emergency planning, health physics, and dispersion modeling on the part of the reader. The authors have limited their assumptions of background knowledge as much as possible, recognizing that the topics addressed in the report may be new to some secondary audiences.

  13. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  14. Factors Affecting the Disposal Capacity of a Repository at Yucca Mountain

    SciTech Connect (OSTI)

    Nutt, W.M.; Peters, M.T.; Wigeland, R.A.; Kouts, C.; Kim, D.; Gomberg, S.

    2007-07-01

    The development of a repository at Yucca Mountain is proceeding in accordance with the Nuclear Waste Policy Act (NWPA). The current design of the proposed repository emplaces 63,000 metric tons of heavy metal (MTHM) of commercial spent nuclear fuel and 7,000 MTHM-equivalent of Department of Energy-owned spent nuclear fuel and high level nuclear waste. Efforts are underway to complete the pre-closure and postclosure safety analyses in accordance with 10 CFR 63. This will be included in a license application for construction of the repository that is currently planned to be submitted to the U.S. Nuclear Regulatory Commission (NRC) no later than June of 2008. The Global Nuclear Energy Partnership (GNEP) aims to 'recycle nuclear fuel using new proliferation-resistant technologies to recover more energy and reduce waste'. The Nation's decision to choose to recycle spent nuclear fuel in an advanced nuclear fuel cycle, such as that being considered under the GNEP, would present the opportunity to change the current approach for managing and disposing nuclear waste. The total amount of waste that could be disposed in a repository at Yucca Mountain would be a key component of a new waste management strategy should a decision be made in the future to utilize the proposed Yucca Mountain repository to dispose of wastes generated under the GNEP. (authors)

  15. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect (OSTI)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  16. Review of Yucca Mountain Disposal Criticality Studies

    SciTech Connect (OSTI)

    Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2011-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

  17. Mineralogic summary of Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Vaniman, D.T.

    1985-10-01

    Quantitative x-ray powder diffraction analysis of tuffs and silicic lavas, using matrix-flushing techniques, has been used to obtain a model of three-dimensional mineral distributions at Yucca Mountain, Nevada. This method of analysis is especially useful in tuff, where the most abundant phases are commonly too fine grained for optical determination. The three-dimensional distributions of primary glass and of tridymite are particularly well constrained. Vitric nonwelded glasses occur above and below the welded devitrified Topopah Spring Member, but the glass in the lower nonwelded vitric zone is progressively altered to zeolites to the east where the zone is closer to the static water level. The zeolites clinoptilolite, mordenite, heulandite, and erionite have all been found at Yucca Mountain, but only mordenite and clinoptilolite are abundant and can be mapped between many drill holes and at many depths. Heulandite distribution is also mappable, but only below the densely welded devitrified part of the Topopah Storing Member. Erionite has been confirmed only once, as a fracture coating. There is a fairly continuous smectite-rich interval immediately above the basal vitrophyre of the Topopah Spring Member, but no evidence suggests that the smectites can provide information on the paleogroundwater table. There are at least four mappable zeolitized zones in Yucca Mountain, and the thicker zones tend to coincide with intervals that retained glass following early tuff devitrification. Problems in extrapolation occur where zones of welding pinch out. No phillipsite has been found, and some samples previously reported to contain phillipsite or erionite were reexamined with negative results. The deeper alteration to albite and analcime was not sampled in every drill hole, and the distribution of these phases is difficult to map.

  18. The Occurrence of Erionite at Yucca Mountain

    SciTech Connect (OSTI)

    NA

    2004-07-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite with opal-A, opal-CT, and moganite suggests that erionite formed at a high silica activity.

  19. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Hranac, K.C.; Chromec, F.W.; Fiehweg, R.; Hopkins, J.

    1998-07-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

  20. Rocky Flats 10 year plan: over 500 structures to be demolished

    SciTech Connect (OSTI)

    Evans, B.; Bengel, P.

    1997-03-01

    Rocky Flats Environmental Technology Site has prepared a Ten Year Plan (Plan) that demonstrates how the Site would achieve accelerated cleanup and rapidly reduce the risks the Site currently poses to its workers, the public, and the environment. A major element of the Plan is the decontamination and demolition of over 500 Site facilities, including all of the former nuclear production facilities, by the end of 2006. Facilities used for the storage of plutonium, treatment of low-level mixed waste, and several office building would remain until the plutonium is removed or there is no longer a need for the facility, in which case it would be demolished. While the Plan considers all aspects of the cleanup and closure, this paper focuses on the challenges posed by the removal of highly contaminated equipment and the demolition of structures. This paper describes near- term decommissioning projects as well as the long range plans and budgets. Cash flow ultimately controls schedule, and sharing of budget priorities among processing of special nuclear material, disposing of waste, and cleaning up the environment has to be juggled carefully to attain the goals of the Plan. The total cost of the Plan exceeds $5 billion, and over $1 billion will be spent on decommissioning activities. Following removal of the plutonium and the demolition of the plutonium storage and remaining Site facilities by the end of 2015, the cost to perform the long-term environmental monitoring at the Site is estimated to be $10 million per year.