Powered by Deep Web Technologies
Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

2

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

3

Utility solar water heating workshops  

DOE Green Energy (OSTI)

The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

Barrett, L.B. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

1992-01-01T23:59:59.000Z

4

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Scale Solar Inc Jump to: navigation, search Name Utility Scale Solar Inc Place Palo Alto, California Zip 94301 Product California-based PV tracker maker. References Utility...

5

Orlando Utilities Commission - Residential Solar Loan Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Solar PV: 20,000 Solar Thermal: 7,500 Program Information Florida Program Type Utility...

6

Utility Solar Generation Valuation Methods  

DOE Green Energy (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

7

Solar Energy Utilization  

E-Print Network (OSTI)

On the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solidstate devices — applying the principles of photosynthesis to the production of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide.

unknown authors

2005-01-01T23:59:59.000Z

8

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008: Zerull Location: San Rafael, CA System size: 14 kW Funded by the California Solar Initiative

9

California Public Utilities Commission California Solar Initiative  

E-Print Network (OSTI)

California Public Utilities Commission California Solar Initiative Program Handbook September 2012Power #12;Table of Contents i California Solar Initiative Program Handbook September 2012 1. Introduction: California Solar Initiative Program....................................................................1 1

10

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

11

Building Technologies Office: Utility Solar Water Heating Initiative  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utility Solar Water Heating Initiative Search Search Help Utility Solar Water Heating Initiative EERE Building Technologies Office Utility Solar Water Heating Initiative...

12

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

13

Orlando Utilities Commission - Residential Solar Water Heater...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Florida) < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 1,000 Program Info State Florida Program Type Utility...

14

The Sacramento power utility experience in solar  

SciTech Connect

An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

1993-12-31T23:59:59.000Z

15

Solar energy: some variables influencing increased utilization  

SciTech Connect

The mid 1970s energy crisis encouraged the growth of alternative fuels. Through the late 1970s and 1980s, solar energy was the primary alternative fuel. Federal and state programs encouraged the growth of residential solar installations through the use of tax credits. This dissertation used data from the eleven western states to assess tax credits' influence on residential solar installations. A Spearman's r was used to evaluate the role of tax credits on the percent increase in solar systems from 1980 to 1984. The r/sub s/ was .93. The second portion of the analysis used contingency tables to see if variables other than tax credits influence solar installations; the results showed tax credits + solar radiation and fuel mix are the significant variables. The final chapter looks at municipal solar utilities, tax on excessive energy use, a public/private solar research lab, and building rating system as means to supplement solar energy tax credits.

Born, B.E.

1986-01-01T23:59:59.000Z

16

Solar Utility SpA | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Solar Utility SpA Place Italy Sector Solar Product Italy-based solar PV project developer. References Solar Utility SpA1 LinkedIn Connections...

17

Fort Pierce Utilities Authority - Solar Water Heating Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) < Back Eligibility Residential Savings...

18

An Evaluation of Solar Valuation Methods Used in Utility Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Title An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement...

19

Exploring How Municipal Utilities Fund Solar Energy Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring How Municipal Utilities Fund Solar Energy Projects Webinar Exploring How Municipal Utilities Fund Solar Energy Projects Webinar February 19, 2013 1:00PM MST Webinar This...

20

Utility Wind Integration Group Distributed Wind/Solar Interconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed WindSolar Interconnection Workshop Utility Wind Integration Group Distributed WindSolar Interconnection Workshop May 21, 2013 8:00AM...

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Mining Company - Solar Utility Program (Wisconsin) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

22

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

23

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

24

Basic Research Needs for Solar Energy Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Cover: the Cover: One route to harvesting the energy of the sun involves learning to mimic natural photosynthesis. Here, sunlight falls on a porphyrin, one member of a family of molecules that includes the chlorophylls, which play a central role in capturing light and using its energy for photosynthesis in green plants. Efficient light-harvesting of the solar spectrum by porphyrins and related molecules can be used to power synthetic molecular assemblies and solid- state devices - applying the principles of photosynthesis to the produc- tion of hydrogen, methane, ethanol, and methanol from sunlight, water, and atmospheric carbon dioxide. BASIC RESEARCH NEEDS FOR SOLAR ENERGY UTILIZATION Report on the Basic Energy Sciences Workshop on Solar Energy Utilization

25

NREL Webinar: Treatment of Solar Generation in Electric Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their...

26

Clark Public Utilities - Solar Energy Equipment Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Loan Energy Equipment Loan Clark Public Utilities - Solar Energy Equipment Loan < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $30,000 Solar Pool Heaters and Solar Water Heaters: $10,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Solar PV: up to $30,000 Solar Pool Heaters and Solar Water Heaters: up to $10,000 Provider Clark PUD Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and solar water heaters and up to $30,000 for photovoltaic systems. Solar water heater loans, solar pool heater loans and solar PV loans under

27

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

DOE Green Energy (OSTI)

Summarizes the activities that the DOE Solar Energy Technologies Program conducts to collaborate with and benenfit utilities with the goal of accelerating solar technologies adoption by removing barriers to solar deployment.

Not Available

2009-07-01T23:59:59.000Z

28

Exploring How Municipal Utilities Fund Solar Energy Projects Webinar |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploring How Municipal Utilities Fund Solar Energy Projects Exploring How Municipal Utilities Fund Solar Energy Projects Webinar Exploring How Municipal Utilities Fund Solar Energy Projects Webinar February 19, 2013 1:00PM MST Webinar This free webinar presented by the DOE Office of Energy Efficiency and Renewable Energy will take place on February 19, 2013, from 1-2:15 p.m. MST. It will provide information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy will also discuss their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

29

Owatanna Public Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Owatanna Public Utilities - Solar Rebate Program Owatanna Public Utilities - Solar Rebate Program Owatanna Public Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: $1,200 Program Info Start Date 09/2010 State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: $15 per square foot of collector area Provider Owatonna Public Utilities Owatanna Public Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt; eligible solar water

30

Rochester Public Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Solar Rebate Program Rochester Public Utilities - Solar Rebate Program Rochester Public Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: 1,200 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: 15 per square foot of collector area Provider Rochester Public Utilities Rochester Public Utilities provides incentives for residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt while eligible solar water heating systems can earn $15 per square foot of collector area.

31

Austin Utilities - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities - Solar Rebate Program Austin Utilities - Solar Rebate Program Austin Utilities - Solar Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $10,000 Solar Water Heating: $1,200 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount PV: $1 per watt Solar Water Heating: $15 per square foot of collector area Provider Austin Utilities Austin Utilities provides incentives for their residential and commercial customers to install photovoltaic (PV) and solar water heating systems. Qualifying PV systems can earn $1 per watt; eligible solar water heating systems can earn $15 per square foot of collector area. Incentives are

32

City of Tallahassee Utilities - Solar Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Loans Tallahassee Utilities - Solar Loans City of Tallahassee Utilities - Solar Loans < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $20,000 Other Measures: $10,000 Program Info State Florida Program Type Utility Loan Program Rebate Amount Solar PV: up to $20,000 Other Measures: up to $10,000 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers loans with an interest rate of 5% for a variety of energy-saving measures, including photovoltaic (PV) systems and solar water-heating systems. Under this program, customers may borrow up to $20,000 for PV systems and $10,000 for solar water-heating systems (including pool heating). Loan payments are to be made on monthly

33

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

34

Clark Public Utilities - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities - Solar Water Heater Rebate < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $500 Provider Clark PUD Clark Public Utilities offers a rebate of $500 to customers who install a solar water heating system. Customers must own the residence or business where the solar water heating system is installed and must have an electric water heater. In addition, Clark Public Utilities offers a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA29F&re=1&ee=1 loan program] for eligible solar water heater equipment. For additional information, call Energy Services at (360) 992-3355.

35

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 19, 2013 Webinar: Exploring How Municipal Utilities Fund February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects February 19, 2013 Webinar: Exploring How Municipal Utilities Fund Solar Energy Projects This webinar was held February 19, 2013, and provided information on Concord Light, the municipal electric utility serving Concord, Massachusetts, and their solar photovoltaic (PV) rebate program. Austin Energy also discussed their innovative "Residential Solar Rate," which replaced net energy metering based on a value of solar analysis. Download the presentations below, watch the webinar (WMV 148 MB), or view the text version. Find more CommRE webinars. Funding Solar PV Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these

36

City of Tallahassee Utilities - Solar Water Heating Rebate | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tallahassee Utilities - Solar Water Heating Rebate Tallahassee Utilities - Solar Water Heating Rebate City of Tallahassee Utilities - Solar Water Heating Rebate < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount 450 Provider City of Tallahassee Utilities The City of Tallahassee Utilities offers a $450 rebate to homeowners* and homebuilders who install a solar water-heating system. This rebate may be applied to a first-time installation or to the replacement of an older solar water-heating system. Homebuilders may also apply for the rebate when installing a solar water heater on a new home. Pool heating systems are not eligible for the rebate. The homeowner must allow the City of Tallahassee to conduct an energy audit

37

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

38

Case against private utility involvement in solar/insulation programs  

SciTech Connect

The arguments against private utility involvement are arranged under the following headings: excessive profit-taking, monopolization/favoritism, increased cost to consumers, homeowners would pay twice, the lack of accountability, the lack of commitment to solar by utilities, solar/political/ethical considerations, solar/conservation technologies are inherently decentralized, and the other alternatives. (MHR)

Bossong, K.

1977-06-08T23:59:59.000Z

39

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

for solar energy by dramatically reducing the cost of solar. As part of the statewide solar effort, the CPUC of the state's solar offerings, such as the California Energy Commission's (Energy Commission) New Solar Homes Renewable Energy Council (IREC) released Larry Sherwood's U.S. Solar Market Trends for 2007 report

40

Solar: A Clean Energy Source for Utilities (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

Not Available

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Orlando Utilities Commission - Solar Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs Orlando Utilities Commission - Solar Programs < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate No maximum specified Program Info State Florida Program Type Performance-Based Incentive Rebate Amount Solar Thermal (Commercial): 0.03/kWh PV (Commercial and Residential): 0.05/kWh Provider Orlando Utilities Commission (OUC) The Orlando Utilities Commission (OUC), through its Solar Program, offers to purchase the environmental attributes or renewable energy credits (RECs) from customers who install a photovoltaic (PV) and/or solar thermal energy system on their property. Incentive payments are equal to $0.05 per killowatt-hour (kWh) for commercial and residential PV systems and

42

New Braunfels Utilities - Residential Solar Water Heater Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Braunfels Utilities - Residential Solar Water Heater Rebate New Braunfels Utilities - Residential Solar Water Heater Rebate Program New Braunfels Utilities - Residential Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Utility Rebate Program Rebate Amount $0.265/kWh Provider New Braunfels Utilities New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available to these customers. The maximum rebate amount is $900 for participating customers. Applicants must have an active residential electric service account with NBU in order to be eligible. Solar water heaters must preheat water for an electric

43

Opportunities for utility involvement with solar domestic hot water  

SciTech Connect

Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

Carlisle, N.; Christensen, C. [National Renewable Energy Lab., Golden, CO (United States); Barrett, L. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

1992-05-01T23:59:59.000Z

44

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

45

Clark Public Utilities - Solar Energy Equipment Loan (Washington...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Clark Public Utilities - Solar Energy Equipment Loan (Washington) This is the approved revision of this page, as...

46

Solar and Wind Energy Utilization and Project Development Scenarios  

Open Energy Info (EERE)

Utilization and Project Development Scenarios

(Abstract):  Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of...

47

Orlando Utilities Commission- Residential Solar Water Heater Rebate Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Orlando Utilities Commission (OUC) offers residential electric customers a point-of-sale rebate of $1,000 for new solar water heating systems.

48

title Utility Scale Solar An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States year month institution LBNL abstract p Berkeley Lab hosted a webinar...

49

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

50

City of Tallahassee Utilities - Solar Loans (Florida) | Open...  

Open Energy Info (EERE)

and send it to the utility Energy Services. A city energy audit is required for all solar technology installations. Installation work should not begin until after a signed...

51

Concentrating solar power technologies offer utility-scale power ...  

U.S. Energy Information Administration (EIA)

Concentrating solar power (CSP) is a utility-scale renewable energy option for generating electricity that is receiving considerable attention in the southwestern ...

52

A Guide to Community Shared Solar: Utility, Private, and Nonprofit...  

NLE Websites -- All DOE Office Websites (Extended Search)

start. First of all, utilities are likely to have the legal, financial, and program management infrastructure to handle organizing and implementing a community shared solar...

53

The Solar America Initiative (SAI): Role of Utilities  

SciTech Connect

Fact sheet introduces the utility audience to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how utilities can benefit from and contribute to the SAI.

2006-10-01T23:59:59.000Z

54

The Solar America Initiative (SAI): Role of Utilities  

DOE Green Energy (OSTI)

Fact sheet introduces the utility audience to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how utilities can benefit from and contribute to the SAI.

Not Available

2006-10-01T23:59:59.000Z

55

Port Angeles Public Works and Utilities - Solar Energy Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Port Angeles Public Works and Utilities - Solar Energy Loan Program Port Angeles Public Works and Utilities - Solar Energy Loan Program Port Angeles Public Works and Utilities - Solar Energy Loan Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Not specified Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Not specified Provider Port Angeles Public Works and Utilities The City of Port Angeles Public Works and Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for installation of solar water heating and photovoltaic systems. All improvements must be approved by the City in advance of any work performed. All improvements must meet the

56

Lake Worth Utilities - Residential Solar Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Residential Solar Water Heating Rebate Lake Worth Utilities - Residential Solar Water Heating Rebate Program Lake Worth Utilities - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $450 Rebates must not exceed purchase price Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider City of Lake Worth Utilities The City of Lake Worth Utilities (CLWU), in conjunction with Florida Municipal Power Agency, offers rebates to customers who purchase and install a solar water heating system for residential use. A rebate of $450 per system is available to eligible applicants. Eligible equipment must be located on customer premises within the CLWU service territory, and must

57

Case for utility involvement in solar-domestic water heating  

SciTech Connect

Credibility of system performance over an extended period of time is still a major concern for prospective buyers of solar-collector systems. Although Congress has enacted solar legislation with the intention of assisting homeowners in the adoption of solar energy, it apparently did not consider which organizational entities could best address the concerns of the consumer and accelerate the adoption of solar energy for domestic hot water heating. This article points out that legislation which does not encourage full participation by utilities in the marketing of solar energy has produced very low adoption rates compared to the size of the solar market potential. It also describes some of the empirical results of one utility company's efforts with a large-scale solar demonstration program, and presents some findings for the investor-owned utility industry to consider before Congress takes additional legislative action in this area. 11 references, 2 figures, 2 tables.

Smackey, B.M.

1982-04-01T23:59:59.000Z

58

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

59

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

60

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

62

Utilization of solar thermal sources for thermochemical hydrogen production  

DOE Green Energy (OSTI)

The utilization of high temperature solar heat for the production of electricity and/or fuels is a popular concept. However, since solar concentrator systems are expensive and solar radiation intermittent, practical utilization requires processes that exhibit high conversion efficiencies and also incorporate energy storage. The production of hydrogen fulfills the requirement for energy storage and can fulfill the requirement for efficient heat utilization if thermochemical cycles are developed where the temperature and heat requirements of the process match the heat delivery characteristics of the solar receiver system. Cycles based on solid sulfate decomposition reactions may lead to efficient utilization of solar heat at practical temperatures. Higher temperature cycles involving oxide decomposition may also become feasible.

Bowman, M.G.

1980-01-01T23:59:59.000Z

63

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

Science Conference Proceedings (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

64

Homeowners survey: gas utilities and the residential solar market  

Science Conference Proceedings (OSTI)

The market potential for a gas/solar energy market in the residential sector prompted the American Gas Association's Solar Energy Committee to analyze national homeowner data collected by Gallup for the Solar Energy Research Institute to see if it applies to gas-utility diversification. The survey results show that the public is interested in utility involvement. Key findings in the survey cover not only attitudes, but profile potential buyers, project market shares, and note regional-attitude differences. The utilities that diversify in this way could improve their relations with both customers and regulators as well as increasing their profits. 4 figures, 17 tables. (DCK)

Pilgrim, B.F.

1982-04-01T23:59:59.000Z

65

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

66

Municipal solar utilities in California: marketing, financial and legal issues  

Science Conference Proceedings (OSTI)

A Municipal Solar Utility, a municipal-level organization, designed to promote the use of solar technologies within the local marketplace is discussed. Over the past 14 months, the cities of Bakersfield, Oceanside, Palo Alto, San Dimas, Santa Monica and Ukiah have worked on implementation plans to develop MSUs for their respective communities. An analysis of specific marketing, financial, and legal issues associated with the development of Municipal Solar Utilities is presented. Three service delivery packages are analyzed: (1) full service or direct model; (2) low-interest loan; and (3) facilitation or brokerage model. These models represent a variety of potential organizational and program initiatives ranging from consumer education, capitalization and financing methods, to consumer protection from liabilities of owning, installing, and leasing solar equipment. The feasibility of local-level Municipal Solar Utility programs is demonstrated and the capability of communities to successfully initiate total energy programs is addressed.

Sanger, J.M.; Epstein, P.B.

1980-12-01T23:59:59.000Z

67

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

68

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

69

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

70

Gainesville Regional Utilities - Solar Feed-In Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar Feed-In Tariff Gainesville Regional Utilities - Solar Feed-In Tariff Gainesville Regional Utilities - Solar Feed-In Tariff < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2009 State Florida Program Type Performance-Based Incentive Rebate Amount 2013 Contracts: Rooftop- or pavement-mounted systems Ground-mounted systems Rooftop- or pavement-mounted systems >10kW to 300kW: $0.18/kWh Ground-mounted systems >10kW to 25kW: $0.18/kWh Ground-mounted systems >25kW to 1,000kW: $0.15/kWh Provider Gainesville Regional Utilities NOTE: This program will re-open to new applicants from January 4, 2013

71

Austin Utilities - Solar Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

72

Gainesville Regional Utilities- Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Gainesville Regional Utilities (GRU) Solar Rebate Program, established in early 1997 as part of GRU's demand-side management initiatives, provides rebates of $500 to residential customers of...

73

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

74

Sacramento Municipal Utility District Solar Array | Open Energy Information  

Open Energy Info (EERE)

Utility District Solar Array Utility District Solar Array Jump to: navigation, search Name Sacramento Municipal Utility District Solar Array Facility Sacramento Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Treatment of Solar Generation in Electric Utility Resource Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

76

Guide to Community Solar: Utility, Private, and Non-Profit Project Development (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the DOE Solar America Communities report Guide to Community Solar: Utility, Private, and Non-profit Project Development.

Ruckman, K.

2011-03-01T23:59:59.000Z

77

Solar and Wind Energy Utilization and Project Development Scenarios |  

Open Energy Info (EERE)

Utilization and Project Development Scenarios Utilization and Project Development Scenarios Dataset Summary Description (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of the primary reasons for under consideration of these resources are lack of awareness of their potential in the country, the role they can have in the overall energy mix and the social benefits associated with them. Knowledge of the exploitable potential of these resources and identification of potential regions for development will help energy planners and developers to incorporate these resources as alternative means of supplying energy by conducting a more accurate techno-economic analysis which leads to more realistic economic projections. (Purpose): The ultimate objective of this study is to produce a document that comprises country background information on solar and wind energy utilization and project scenarios which present solar and wind energy investment opportunities to investors and decision makers. It is an integrated study with specific objectives of resource documentation including analysis of barriers and policies, identification of potential areas for technology promotion, and nationwide aggregation of potentials and benefits of the resource. The

78

Utility market and requirements for a solar thermophotovoltaic system  

Science Conference Proceedings (OSTI)

There is a growing need for clean affordable electric power generation in both the U.S. and internationally and solar thermophotovoltaic (STPV) can meet the needs of this market. This paper investigates the utility grid market applicable to a solar thermophotovoltaic power generating system. It finds that a large international electrical market and a smaller U.S. electrical market exist today but the U.S. market will grow by the year 2005 to a level that would easily support the high production level required for solar systems to be cost effective. Factors which could influence this market and the system characteristics considered by utilities in selecting future power systems such as levelized energy cost, dispatchability, environmental, etc., for both the grid and remote market are discussed. The main competition for this market and the operating performance of this competition are described. A conceptual design of a STPV power system is presented, the operation is described, and how the performance meets the utility requirements is discussed. The relationship between the cost of the TPV conversion unit and the system efficiency of the STPV system is given for both the grid and remote markets that it must meet in order to be competitive. {copyright} {ital 1996 American Institute of Physics.}

Stone, K. [McDonnell Douglas Aerospace, 5301 Bolsa Avenue, Huntington Beach, California 92647 (United States); McLellan, S. [Arizona Public Service, P.O. Box 53999 Phoenix, Arizona (United States)

1996-02-01T23:59:59.000Z

79

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller  

E-Print Network (OSTI)

Utilizing Solar Power in Wireless Sensor Networks Thiemo Voigt, Hartmut Ritter, Jochen Schiller propose to utilize solar power in wireless sensor networks, establishing a topology where ­ changing over show that both protocols provide significant energy savings when utilizing solar power. The paper shows

Voigt, Thiemo

80

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY Mechanical Engineering Department , Philadelphia University, Amman Jordan, e-mail  

E-Print Network (OSTI)

SOLAR COOKER UTILIZING SATELLITE DISH TECHNOLOGY A. Saleh1 A. Badran2 1 Mechanical Engineering dish­type solar cooker was built and tested utilizing satellite dish technology. A common satellite-TV dish was utilized as a solar cooker after covering it with a highly­reflective aluminum foil, which

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Utilization requirements. A Southern California gas company project SAGE report: utilization requirements. [Solar Assisted Gas Energy  

SciTech Connect

Utilization requirements are given and comparisons made of two phase III SAGE (solar assisted gas energy) installations in California: (1) a retrofit installation in an existing apartment building in El Toro, and (2) an installation in a new apartment building in Upland. Such testing in the field revealed the requirements to be met if SAGE-type installations are to become commercially practical on a widespread basis in electric and gas energy usage.

Barbieri, R.; Schoen, R.; Hirshberg, A.S.

1978-01-01T23:59:59.000Z

82

Implementation of solar-reflective surfaces: Materials and utility programs  

SciTech Connect

This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

1992-06-01T23:59:59.000Z

83

Clark Public Utilities - Solar Energy Equipment Loan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: 30,000 Solar Pool Heaters and Solar Water Heaters: 10,000 Program Information...

84

Regulated utilities and solar energy: a legal-economic analysis of the major issues affecting the solar commercialization effort  

DOE Green Energy (OSTI)

The reaction of public utilities to the addition (and competitive) sources of energy supplied by solar technologies will have a significant impact on the commercialization of solar energy. Decentralized applications of solar energy need utility-produced power to back up the energy produced by solar means. The cost and availability of this power will largely determine the acceptance of solar energy. There are three legal issues surrounding the role of utilities in the solar commercialization effort: (1) the extent to which utilities may own, sell, lease, finance, or service solar devices for utility customers; (2) the degree to which solar-powered utilities may be able to compete with existing utilities; and (3) the degree to which various utility rate structures will be allowed to penalize decentralized solar users. The impact of state constitutional and statutory provisions upon these issues is examined, along with relevant federal constitutional doctrines. Finally, the statutes of the National Energy Act, many of which specifically address the above issues, are discussed.

Laitos, J.; Feuerstein, R. J.

1979-06-01T23:59:59.000Z

85

Solar two: Utility-scale power from the sun  

DOE Green Energy (OSTI)

Information is presented on the Solar Two solar-powered electric generating plant located east of Barstow California.

NONE

1996-02-01T23:59:59.000Z

86

Turbidity study of solar ponds utilizing seawater as salt source  

Science Conference Proceedings (OSTI)

A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

Li, Nan; Sun, Wence; Shi, Yufeng [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023 (China); Yin, Fang [YLab, 358 South 700 East, Suit B-139, Salt Lake City, UT 84102 (United States); Zhang, Caihong [Dalian Thermoelectric Group Co. Ltd., Dalian 116001 (China)

2010-02-15T23:59:59.000Z

87

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-08-01T23:59:59.000Z

88

Reliability analysis of a utility-scale solar power plant  

DOE Green Energy (OSTI)

This paper presents the results of a reliability analysis for a solar central receiver power plant that employs a salt-in-tube receiver. Because reliability data for a number of critical plant components have only recently been collected, this is the first time a credible analysis can be performed. This type of power plant will be built by a consortium of western US utilities led by the Southern California Edison Company. The 10 MW plant is known as Solar Two and is scheduled to be on-line in 1994. It is a prototype which should lead to the construction of 100 MW commercial-scale plants by the year 2000. The availability calculation was performed with the UNIRAM computer code. The analysis predicted a forced outage rate of 5.4% and an overall plant availability, including scheduled outages, of 91%. The code also identified the most important contributors to plant unavailability. Control system failures were identified as the most important cause of forced outages. Receiver problems were rated second with turbine outages third. The overall plant availability of 91% exceeds the goal identified by the US utility study. This paper discuses the availability calculation and presents evidence why the 91% availability is a credible estimate. 16 refs.

Kolb, G.J.

1992-01-01T23:59:59.000Z

89

Guide to Community Solar: Utility, Private, and Non-profit Project Development  

DOE Green Energy (OSTI)

This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers.

Not Available

2011-01-01T23:59:59.000Z

90

Studies of solar hybrid repowering of utility electric-power plants (interim report)  

DOE Green Energy (OSTI)

A baseline repowering configuration used as a reference is defined, and the potential benefits of repowering are outlined from the programmatic, utility, and national viewpoints. The market size for solar repowering is reviewed with the split by plants and their requirements imposed on solar technology and plant design. Various solar technology implementation options are discussed. Highlights of the key results of studies on the economics of integration of solar repowered plants into utility systems are presented. (LEW)

Not Available

1980-01-01T23:59:59.000Z

91

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network (OSTI)

of advanced concept solar power plants. For conditions offor the operation of a solar power plant is very small.success or failure of the solar thermal power program may be

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

92

Småhusutformning och solenergiutnyttjande; Villa Design and Solar Energy Utilization.  

E-Print Network (OSTI)

?? This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the… (more)

Olofsson, Martin

2013-01-01T23:59:59.000Z

93

City of Tallahassee Utilities - Solar Water Heating Rebate (Florida...  

Open Energy Info (EERE)

certified by the Florida Solar Energy Center (FSEC), and installed by a state-licensed solar or plumbing contractor. For installations arranged by homeowners, the contractor...

94

Inverted amorphous silicon solar cell utilizing cermet layers  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

95

Solar thermal repowering utility value analysis. Final report  

DOE Green Energy (OSTI)

The retrofit of solar central receiver energy supply systems to existing steam-electric generating stations (repowering) is being considered as a major programmatic thrust by DOE. The determination of a government response appropriate to the opportunities of repowering is an important policy question, and is the major reason for the analysis. The study objective is to define a government role in repowering that constitutes an efficient program investment in pursuit of viable private markets for heliostat-based energy systems. In support of that objective, the study is designed to identify the scope and nature of the repowering opportunity within the larger context of its contributions to central receiver technology development and commercialization. The Supply and Integration Tasks are documented elsewhere. This report documents the Demand Task, determining and quantifying the sources of the value of repowering and of central receiver technology in general to electric utilities. The modeling tools and assumptions used in the Demand Task are described and the results are presented and interpreted. (MCW)

Taylor, R.; Day, J.; Reed, B.; Malone, M.

1979-12-01T23:59:59.000Z

96

Utility rates and service policies as potential barriers to the market penetration of decentralized solar technologies  

DOE Green Energy (OSTI)

At present, economic and institutional concerns dictate that decentralized solar technologies generally require an auxiliary energy source to assure continuous service through periods of adverse weather. Utility rates and service policies regarding auxiliary energy service have a significant impact upon solar system economics, and thus the commercialization of solar energy. The scope of this paper evaluates three basic issues: (1) whether a utility can refuse to provide auxiliary service to solar users, (2) whether a utility can charge higher or lower than traditional rates for auxiliary service, and (3) whether a utility can refuse to purchase excess power generated by small power producers utilizing electricity-producing solar technologies. It appears that a utility cannot refuse to provide auxiliary service to a solar user unless the company can demonstrate that to provide such service, substantial harm would result to its existing customers. Statutes or case decisions also provide that utilities cannot unreasonably discriminate in rates charged to customers for the same service under like conditions. The ability of a utility to provide solar users lower than traditional rates may depend upon the jurisdiction's view of promotional rates. 681 references.

Feuerstein, R. J.

1979-08-01T23:59:59.000Z

97

Adapting Utility Solar Strategies for a Changing Electricity Landscape: Innovative Business Approaches for Consideration  

Science Conference Proceedings (OSTI)

This report considers the need for “outside-the-box” electric utility strategies that manage future deployment of distributed solar. Business models are discussed that offer potential to technically and financially align with utility interests and inform future planning and program development. For example, benefits and challenges of utility approaches that foster collaboration with third-party solar operators (TPO) are examined. In addition, the merits and technical feasibility of ...

2013-12-20T23:59:59.000Z

98

Utility-scale installations lead solar photovoltaic growth ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... led by particularly strong growth in both utility-scale PV and ... Because the utilization rate for ...

99

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network (OSTI)

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors, and therefore become multifunctional. In addition, solar collectors can be used to enhance the appearance of the façade when considering aesthetic compatibility. Currently, the feasible approach for integration of solar collectors into buildings is to install collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered integrated energy systems in public buildings. Then suggestions are given. In cities of China, an ideal opportunity to carry out solar renovation with roof-integrated collectors is in combination with the rebuilding of apartment roofs, from flat to inclined. With regard to multi-story residential buildings, a central hot water supply system and central-individual hot water supply system are more appropriate in view of aesthetic compatibility of solar collectors with building roof and convenience of management. As for public buildings, it is highly recommended to design solar-powered integrated energy systems for the purpose of high solar fraction.

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

100

SunShot Initiative: Solar Utility Networks: Replicable Innovations...  

NLE Websites -- All DOE Office Websites (Extended Search)

in California that can be realized from forecasts of behind-the-meter distributed (rooftop) solar photovoltaic (PV) generation. This project will reduce the costs of...

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

According to EIA's new survey-based estimate of total solar capacity, total on-grid photovoltaic (PV) capacity nearly doubled in 2011, led by particularly strong ...

102

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

103

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal and State Structures to Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Technical Report NREL/TP-6A20-48685 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them Michael Mendelsohn and Claire Kreycik Prepared under Task No. CP09.2320

104

New, Cost-Competitive Solar Plants for Electric Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix to develop its 7700 Amonix to develop its 7700 system, which drastically reduces the requirement for costly solar cells by using Fresnel lenses to concentrate sunlight 500 times onto small, highly efficient photovoltaic cells. This reduces the cell area so that expensive solar cell materials can be replaced with inexpensive plastic lenses. Amonix Inc. (Torrance, CA), founded in 1989, develops and

105

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

106

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network (OSTI)

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence of residential solar water heating on electric utility demand. The electric demand of solar water hears was found to be approximately 0.39 kW lass than conventional electric water heaters during the late late afternoon, early evening period in the summer months when the Austin utility experiences its peak demand. The annual load factor would be only very slightly reduced if there were a major penetration of solar water heaters in the all electric housing sector. Thus solar water heating represents beneficial load management for utilities experiencing summer peaks.

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

107

A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Guide to Community Shared Solar: Utility, Private, and Nonprofit A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model. 54570.pdf More Documents & Publications Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project

108

TY RPRT T1 Utility Scale Solar An Empirical Analysis of Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States A1 Mark Bolinger A1 Samantha Weaver AB p Berkeley Lab hosted a webinar...

109

A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Guide to Community Shared Solar: Utility, Private, and Nonprofit A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE) This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model. 54570.pdf More Documents & Publications Tribal Renewable Energy Advanced Course: Community Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project

110

City of Palo Alto Utilities - Solar Water Heating Program (California...  

Open Energy Info (EERE)

All systems must have a minimum of a 10-year manufacturer's warranty on the solar collector(s), minimum of 1-year and up to 5-years based on manufacturer's warranty...

111

Austin Utilities - Solar Choice Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Active Incentive No Incentive Inactive Date 09012011 Implementing Sector Utility Energy Category Renewable Energy Incentive Programs Amount Varies; determined by amount...

112

Workshop title: Transmission and Utility Scale Solar Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

process requirements for FERC Order 890 as outlined in Western's Open Access Transmission Tariff. Who Should Attend: Western customers, electric utilities, Tribes, generation and...

113

A Guide to Community Solar: Utility, Private, and Non-profit Project  

Open Energy Info (EERE)

Utility, Private, and Non-profit Project Utility, Private, and Non-profit Project Development Jump to: navigation, search Name A Guide to Community Solar: Utility, Private, and Non-profit Project Development Agency/Company /Organization U.S. Department of Energy Partner National Renewable Energy Laboratory, Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, Bonneville Environmental Foundation Sector Energy Focus Area People and Policy, Solar Phase Evaluate Options, Develop Finance and Implement Projects Resource Type Guide/manual Availability Free; publicly available Publication Date 11/1/2010 Website http://www.nrel.gov/docs/fy11o References A Guide to Community Solar: Utility, Private, and Non-profit Project Development[1] Overview This guide provides information for communities interested in developing

114

Public utilities supply solar energy to eager customers  

DOE Green Energy (OSTI)

This articles examines how photovoltaic power is an alternative source of energy that can help utilities earn goodwill from their customers for being innovative, saving money, and reducing harmful emissions. Planners at municipal utilities are discovering the advantages that photovoltaic (PV) power offers. In addition to the thousands of private, federal, state, and commercial PV systems installed during the last 20 years, more than 65 cities in 24 states also have installed such systems. PV power is cost effective in selected utility applications today, and those applications are expanding every year. PV can be useful in applications ranging from low-power uses to decentralized applications to large, central stations. Public utilities in Austin and Sacramento are among those successfully using PV power for all three types of applications.

NONE

1995-01-01T23:59:59.000Z

115

Port Angeles Public Works & Utilities- Solar Energy Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Port Angeles Public Works & Utilities offers a low-interest loan to its residential and commercial customers for certain renewable energy projects. The loan is available for...

116

Federal and State Structures to Support Financing Utility-Scale Solar Projects and the Business Models Designed to Utilize Them  

DOE Green Energy (OSTI)

Utility-scale solar projects have grown rapidly in number and size over the last few years, driven in part by strong renewable portfolio standards (RPS) and federal incentives designed to stimulate investment in renewable energy technologies. This report provides an overview of such policies, as well as the project financial structures they enable, based on industry literature, publicly available data, and questionnaires conducted by the National Renewable Energy Laboratory (NREL).

Mendelsohn, M.; Kreycik, C.

2012-04-01T23:59:59.000Z

117

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

118

Assessment of the potential of solar thermal small power systems in small utilities. Final report  

DOE Green Energy (OSTI)

This study involved an assessment of the potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities. Five different solar thermal small power system configurations were considered in the study representing three different solar thermal technologies. The configurations included: (1) 1-MW, 2-MW, and 10-MW parabolic dish concentrators with a 15-kW heat engine mounted at the focal point of each dish. These systems utilized advanced battery energy storage. (2) A 10-MW system with variable slat concentrators and central steam Rankine energy conversion. This system utilized sensible thermal energy storage. (3) A 50-MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system. This system also utilized sensible thermal storage. The approach used in determining the potential for solar thermal small power systems in the small utility market involved a comparison of the economics of power supply expansion plans for seven hypothetical small utilities through the year 2000 both with and without the solar thermal small power systems. Insolation typical of the Southwestern US was assumed. A comparison of the break-even capital costs with the range of plant costs estimated in this study yields the following conclusions: (1) The parabolic dish concentrator systems could be economically competitive with conventional generation if the lowest capital costs can be achieved. (2) The variable slat concentrator and central receiver systems would have to achieve lower costs than the lowest in the cost ranges generally assumed in the study to become economically competitive. (3) All of the solar thermal plant types are potentially more competitive in utilities which are heavily dependent upon oil.

Steitz, P.; Mayo, L.G.; Perkins, S.P. Jr.

1978-11-01T23:59:59.000Z

119

City of Palo Alto Utilities - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Program Solar Water Heating Program City of Palo Alto Utilities - Solar Water Heating Program < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family residential gas-displacing systems: $2,719 Single-family residential electricity or propane-displacing systems: $1,834 Commercial/Industrial/Multi-family: $100,000 One contractor can have no more than $150,000 in incentive reservations at any given time. Program Info State California Program Type Utility Rebate Program Rebate Amount Single-family residential gas-displacing systems: $18.59 per therm displaced Single-family residential electricity or propane-displacing systems: $$0.54 per kWh displaced Multi-family and commercial gas-displacing systems: $14.53 per therm

120

Utility Solar Financing Programs (ACE, JCP&L, RECO) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Utility Solar Financing Programs (ACE, JCP&L, RECO) Utility Solar Financing Programs (ACE, JCP&L, RECO) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date August 2009 (first solicitation for projects) State New Jersey Program Type Other Incentive Provider NERA Economic Consulting Note: As of this writing there are no further solicitations scheduled under the current program. The summary below describes the program as it existed prior to its suspension and is included for informational purposes only. In May 2012 the New Jersey Board of Public Utilities (BPU) issued an order

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Two New Reports on Utility-Scale Solar from NREL | OpenEI Community  

Open Energy Info (EERE)

Two New Reports on Utility-Scale Solar from NREL Two New Reports on Utility-Scale Solar from NREL Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 June, 2012 - 14:33 imported OpenEI Article courtesy of the NREL Finance Blog Utility-scale solar is still something of a novelty in the renewable energy ecosystem. Large-scale deployment of these multi-megawatt (MW) installations has only recently been enabled in the United States by two key pieces of federal legislation and state-level implementation of renewable energy standards. The market boomed in 2011, adding more than 760 MW of capacity and ending the year with a bullish outlook for 2012. In April, the National Renewable Energy Laboratory (NREL) published a series of three reports on the market, technologies, policies, and cost of energy

122

Utility interface requirements for a solar power system  

DOE Green Energy (OSTI)

This study specifies that the southern tier of the US (south of the 36th parallel) should be examined to see what problems might develop with the installation of a Satellite Power System (SPS) in the year 2000. One or more 5-GW SPS units could be installed in the utility systems of the southern states in the year 2000. The 345- and 500-kV transmission systems that will probably exist at that time could be readily extended to accommodate the SPS units. The operation of the units will present the utilities with new and difficult problems in system stability and frequency control. The problems will arise because a somewhat variable 5-GW output will be produced by a generator having no mechanical inertia. The unavoidable time lag in controlling the position of the energy beam at the receiving station may have a very critical effect on the stability of the utility systems. The maintenance problems associated with the energy-receiving device, a continuous structure covering more than 40 mi/sup 2/, must be given careful consideration. Repair of lightning damage while maintaining SPS operation may be the most critical requirement. Acquisition and preparation of the 90 mi/sup 2/ land required for the receiving antenna (rectenna) will create many new and difficult environmental problems.

Donalek, P.J.; Whysong, J.L.

1978-09-01T23:59:59.000Z

123

Performance improvement of a solar heating system utilizing off-peak electric auxiliary  

DOE Green Energy (OSTI)

The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

Eltimsahy, A.H.

1980-06-01T23:59:59.000Z

124

Utility-impacts assessment of residential passive-solar systems. Final report  

SciTech Connect

This report summarizes a project undertaken to provide the electric-utility industry with a tool to use in analyzing the advantages and disadvantages for themselves and their customers of passive-solar residential construction within their service areas. A methodology to accomplish this was created and then tested in cooperation with seven participating utilities. Results indicate that passive solar homes and well-insulated homes are more economic to both utilities and homeowners than conventional homes insulated to ASHRAE 90-75 standards, still the norm for building construction in many parts of the country. Further indications are that passive-solar homes may have lower life-cycle costs for heating and cooling than well-insulated homes in areas of the country where the annual heating load predominates over the annual cooling load, and where there is an adequate amount of sunshine during the heating season. The methodology developed also has the capability of simulating and comparing the performance of a wide variety of non-solar electrical heating and cooling systems. As a result, it can be adapted by utilities for a broad range of residential energy analyses.

Wood, R.A.; Siegel, M.D.

1983-03-01T23:59:59.000Z

125

A Guide to Community Shared Solar: Utility, Private, and Non-Profit Project Development (Book)  

DOE Green Energy (OSTI)

This guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities - businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model.

Coughlin, J.; Grove, J.; Irvine, L.; Jacobs, J. F.; Johnson Phillips, S.; Sawyer, A.; Wiedman, J.

2012-05-01T23:59:59.000Z

126

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

127

Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005  

DOE Green Energy (OSTI)

World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

2005-04-21T23:59:59.000Z

128

Arizona public service utility solar central receiver study: Volume 1, Phase 1 topical report  

Science Conference Proceedings (OSTI)

The Arizona Public Service Company (APS), in association with Black and Veatch (BandV), Babcock and Wilcox (BandW), Solar Power Engineering Company (SPECO), Pitt-DesMoines (PDM), and the University of Houston (UH), has completed Phase I of the Utility Solar Central Receiver Study. This study was co-funded by the US Department of Energy (DOE) under Cooperative Agreement Number DE-FC04-86AL38741. The Phase I effort focused on defining the most cost-effective solar thermal central receiver (STCR) power plant configuration for commercial utility application. A team led by Pacific Gas and Electric (PGandE) performed a similar parallel effort; in addition, the Alternate Utility Team (AUT) under APS management completed work for Phase I to support the overall effort. By the conclusion of Phase I, the utilities had reached consensus on the key technical issues for the STCR technology and had performed assessments of the technology which showed similar and favorable economic potential in the commercial utility market. Furthermore, APS and PGandE have agreed to an integrated approach for Phase II to assess and mitigate key risk issues on the path to commercializing the technology. This topical report documents the Phase I efforts; a separate Phase II report will be submitted upon completion of Phase II. 114 figs., 74 tabs.

Not Available

1988-11-01T23:59:59.000Z

129

Water use and supply concerns for utility-scale solar projects in the Southwestern United States.  

SciTech Connect

As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations&maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara D.; Zemlick, Katie; Macknick, Jordan [National Renewable Energy Laboratory Golden, CO

2013-07-01T23:59:59.000Z

130

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

131

Exposure testing and evaluation of solar utilization materials. Semiannual report, May 1, 1975--October 31, 1975  

DOE Green Energy (OSTI)

The initial efforts of a program of research and experimental testing is described in which the optical performance of materials for use in solar energy utilization devices will be determined before and after exposure to outdoor weathering tests. Materials which are currently in use and others which are being considered or developed for these applications will be characterized and exposed to natural solar radiation. Outdoor testing will be accomplished in Phoenix (Ariz.), Miami (Fla.), and Chicago (Ill.). The results of these tests, primarily the effects of outdoor exposure on optical and physical properties, will be compiled in a handbook, along with cost, availability and other pertinent information. These data are vital to the intelligent selection of solar utilization materials, since a knowledge of the cost performance and lifetime characteristics of candidate materials will greatly assist the design of efficient and reliable solar energy utilization devices. Primary accomplishments include the definition of sample requirements, specification of test samples and test configurations, formulation of acceptance/rejection criteria and contacts with numerous potential materials suppliers.

Gilligan, J.E.; Brzuskiewicz, J.

1975-01-01T23:59:59.000Z

132

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

133

Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power  

DOE Green Energy (OSTI)

The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

Harder, J.E.

1981-04-01T23:59:59.000Z

134

Utility load management and solar energy. Study background and preliminary market potential analysis  

DOE Green Energy (OSTI)

The large-scale use of electrically assisted solar heating and hot water (solar/electric HHW) systems can have a substantial effect on electric utilities. Under some conditions, peak loads may be increased causing electricity generation costs to rise. However, with appropriate control and thermal storage equipment tied to the HHW system, the timing of the delivery of electricity to the HHW system can be controlled so that it is accomplished during those times of the day when utility supply costs are lowest. In this study various load management schemes for these applications are being investigated to determine their effect on the cost of generating the back-up electric power and on the cost of the required control and storage system. Solar/electric HHW systems are compared to electric-only systems for several utilities and several HHW system designs. The issues underlying the study, the methods of investigation, and the results of the first phase of the study are described. In this phase a preliminary analysis of the maximum market potential for night-time precharge electric-only hot water systems in either utilities was conducted. This analysis indicated that if about 20 to 40 percent of the residential customers used these appliances in a load managed mode, the 10 PM--8 AM valley in the utility load curve would be filled. For combined electric heating and hot water, the corresponding fraction is 6 to 12 percent. It is estimated that in each case, roughly twice the number of residential customers could be accommodated in the valley if solar/electric systems were used instead.

Davitian, H; Bright, R N; Marcuse, W

1978-01-01T23:59:59.000Z

135

Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

2011-08-01T23:59:59.000Z

136

Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region  

DOE Green Energy (OSTI)

This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

None

1980-07-01T23:59:59.000Z

137

1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report  

DOE Green Energy (OSTI)

The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

Not Available

1982-01-01T23:59:59.000Z

138

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

139

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

140

ToHajiilee Economic Development, Inc.(TEDI) Feasibility Study for Utility-Scale Solar  

SciTech Connect

ToÃ?Â?Hajiilee Economic Development, Inc. (TEDI) is the economic development entity representing the ToHajiilee Chapter of the Navajo Nation, also known as the CaÃ?Â?oncito Band of Navajo (CBN). Using DOE funding, TEDI assembled a team of qualified advisors to conduct a feasibility study for a utility-scale 30 MW Photovoltaic (PV) solar power generation facility on TEDI trust lands. The goal for this project has been to gather information and practical business commitments to successfully complete the feasibility analysis. The TEDI approach was to successively make informed decisions to select an appropriate technology best suited to the site, determine environmental viability of the site, secure options for the sale of generated power, determine practicality of transmission and interconnection of power to the local grid, and secure preliminary commitments on project financing. The feasibility study has been completed and provides TEDI with a practical understanding of its business options in moving forward with developing a solar project on CBN tribal lands. Funding from DOE has allowed TEDI and its team of professional advisors to carefully select technology and business partners and build a business model to develop this utility-scale solar project. As a result of the positive feasibility findings, TEDI is moving forward with finalizing all pre-construction activities for its major renewable energy project.

Burpo, Rob

2012-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Utility investment in on-site solar: risk and return analysis for capitalization and financing  

DOE Green Energy (OSTI)

A set of financial strategies designed to accelerate the penetration of on-site solar heating and cooling systems are studied. The approach of portfolio theory or the capital asset pricing model (CAPM) is used. The major features of the CAPM is summarized including a survey of those applications which are most relevant to the analysis. These include utility return on equity calculations and project evaluation techniques. How to apply empirical results is discussed based on CAPM methods. In particular, applications to the capitalization variant of the utility investment strategy and the financing variant are distinguished. Subsidization rationales are also discussed. Empirical results to date are summarized, including estimation problems for the various risk measures. The general problem of financial risk assessment for energy technologies is reviewed. (MHR)

Kahn, E.; Schutz, S.

1978-09-01T23:59:59.000Z

142

A degree-day method for residential heating load calculations specifically incorporating the utilization of solar gains  

DOE Green Energy (OSTI)

A simple and well known method of estimating residential heating loads is the variable base degree-day method, in which the steady-state heat loss rate (UA) is multiplied by the degree-days based from the balance temperature of the structure. The balance temperature is a function of the UA as well as the average rate of internal heat gains, reflecting the displacement of the heating requirements by these gains. Currently, the heat gains from solar energy are lumped with those from appliances to estimate an average rate over the day. This ignores the effects of the timing of the gains from solar energy, which are more highly concentrated during daytime hours, hence more frequently exceeding the required space heat and less utilizable than the gains from appliances. Simulations or specialized passive solar energy calculation methods have previously been required to account for this effect. This paper presents curves of the fraction of the absorbed solar energy utilized for displacement of space heat, developed by comparing heating loads calculated using a variable base degree-day method (ignoring solar gains) to heating loads from a large number of detailed DOE-2 simulations. The difference in the loads predicted by the two methods can be interpreted as the utilized solar gains. The solar utilization decreases as the thermal integrity increases, as expected, and the solar utilizations are similar across climates. They can be used to estimate the utilized fraction of the absorbed solar energy and, with the load predicted by the variable base degree-day calculation, form a modified degree-day method that closely reproduces the loads predicted by the DOE-2 simulation model and is simple enough for hand calculations. 6 refs., 6 figs., 2 tabs.

Lucas, R.G.; Pratt, R.G.

1990-09-01T23:59:59.000Z

143

Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy  

Science Conference Proceedings (OSTI)

The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

Bisio, G.; Pisoni, C. [Univ. of Genoa (Italy). Energy Engineering Dept.

1995-11-01T23:59:59.000Z

144

Toward a national plan for the commercialization of solar energy: price/demand scenarios and projections of solar utilization under the National Energy Act  

DOE Green Energy (OSTI)

Three macroeconomic scenarios were developed as an economic backdrop for projecting solar technology market acceptance under various government policies and commercialization programs. These scenarios assume three levels of future world oil prices - $18, $25 and $32 per barrel (1976 $) in the year 2000. This range is intended to encompass the most likely set of energy futures. The scenarios are discussed in terms of their underlying assumptions and changes in fuel and resource consumption by sector of the economy. Estimates of the future utilization of solar technologies for the mid-price scenarios are given. These estimates are based on the solar subsidies and incentive programs in the National Energy Act.

Rebibo, K. K.

1979-05-01T23:59:59.000Z

145

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

DOE Green Energy (OSTI)

7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

146

Preferences and concerns of potential users in the selection of solar thermal systems for industrial and small utility applications  

SciTech Connect

To achieve widespready application in the industrial and utility sectors, solar systems must be economically competitive. Economic viability is, in turn, determined by a number of supporting criteria, ranging from system reliability to dispatch characteristics to how the system supports the main product line. In addition, solar systems possess some inherent attributes that may render some of the traditional supporting criteria inappropriate or require their redefinition. Those criteria and their relation to the solar investments are discussed in three steps. First, the main concerns and preferences of the potential users, as identified in recent SERI studies, are identified. Second, the equitability of the resulting decision criteria for solar investments are examined. Finally, the implications of these criteria for solar energy's penetration into these markets are discussed.

Gresham, J.B.; Kriz, T.A.

1981-03-01T23:59:59.000Z

147

Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

Kearney, D.

2011-05-01T23:59:59.000Z

148

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

of S for On-Site Solar Heating -iv- List of Figures Fig. 1.penetration of on-site solar heating and cooling systems.investment in on-site solar heating cannot easily quantify

Kahn, E.

2011-01-01T23:59:59.000Z

149

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network (OSTI)

of advanced concept solar power plants. For conditions offor the operation of a solar power plant is very small.success of the solar thermal electric power program rests on

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

150

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

by any capital in the utility's rate base. incentive probleminterest equal to the utility's threshold rate of return formarket and composite utilities' index rates of return were

Kahn, E.

2011-01-01T23:59:59.000Z

151

Utility Grid-Connected Distributed Power Systems National Solar Energy Conference  

E-Print Network (OSTI)

OF THE PROPOSED REGULATION REPEAL: UCF-8.002 Solar Thermal Collector and PV Module Testing Standards. (1) The Testing and Standards Program shall apply to solar thermal collectors and PV modules submitted for testing thermal collectors or PV modules in Florida. (3) The criteria for testing the performance of solar thermal

152

Performance improvement of a solar heating system utilizing off-peak electric auxiliary. Semi-annual progress report, June 18, 1979-December 31, 1979  

SciTech Connect

During the period 18 June 1979 through December 1979, a solar assisted heat pump system was designed, installed and operated in the University of Toledo Experimental Solar House. The heat pump system is capable of operating in a wide range of temperatures which is needed in a solar house utilizing off-peak storage from the electric utility. The complete system consists of 584.1 square feet of Libbey-Owens-Ford's flat plate solar collectors, a 5 horsepower compressor (Victaulic Corp.), an evaporator (Dunham-Bush), a condensor (Dunham-Bush), thermal storage units, and associated equipment. During the installation and initial operation of the system, numerous aspects of the feasibility of this system design have been evaluated. Many of these aspects point to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility.

Eltimsahy, A.H.

1979-12-01T23:59:59.000Z

153

Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)  

DOE Green Energy (OSTI)

This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

2011-11-01T23:59:59.000Z

154

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Utilities - Solar Rebate Program Austin Utilities provides...

155

Analysis of the impact of decentralized solar technology on electric utilities: comparison and synthesis of models. Progress report  

DOE Green Energy (OSTI)

The validation of the physical submodels of three solar-electric utility interface models is described. The validation problem is divided into two components, the accuracy of the submodels themselves and the accuracy of the data typically used to run these models. The data set required to study these problems with respect to utility requirements is discussed and its collection in the Philadelphia Metropolitan area described. The instrumentation employed in the gathering of the data is covered. Error statistics of data and submodel accuracy are presented and the current status of the study is presented.

Feldman, S.; Blair, P.

1980-11-20T23:59:59.000Z

156

A Guide to Community Solar: Utility, Private, and Non-profit...  

Open Energy Info (EERE)

Stoel Rives, Bonneville Environmental Foundation Sector Energy Focus Area People and Policy, Solar Phase Evaluate Options, Develop Finance and Implement Projects Resource Type...

157

Utilization of solar radiation by polar animals: an optical model for pelts  

SciTech Connect

A summary of existing passive solar-heat conversion panels provides the basis for a definition of an ideal passive solar-heat converter. Evidence for the existence of a biological greenhouse effect in certain homopolar homeothermic species is reviewed. The thermal and optical properties of homeothermic pelts, in particular those of the polar bear, are described, and a qualitative optical model of the polar bear pelt is proposed. The effectiveness of polar bear and seal pelts as solar-heat converters is discussed, and comparison is made with the ideal converter.

Grojean, R.E.; Sousa, J.A.; Henry, M.C.

1980-02-01T23:59:59.000Z

158

Solar power system utilizing optical fibers each fiber fed by a respective lens  

Science Conference Proceedings (OSTI)

A mosaic of lenses is oriented to face the sun. Each lens focuses a solar image upon the open end of a respective optical fiber. The several fibers converge to form a bundle. The bundle passes to a receiver generally inside a building. The radiation delivered by the bundle may be used for cooking, lighting, operation of a thermodynamic engine, or other similar application. In the preferred system the lens mosaic is a plastic sheet into which lenses have been molded. In a first auxiliary system the lens mosaic is formed on the front surface of a transparent plate. Solar images are formed on the rear surface. Optical fibers are attached where these solar images are formed. This eliminates two reflecting surfaces, thereby increasing efficiency by 19%. In a second auxiliary system mass of the plate is reduced by using truncated cones to transmit the radiation to the solar image positions.

Whitaker, R.O.

1984-11-20T23:59:59.000Z

159

Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices  

SciTech Connect

Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

None

2012-01-25T23:59:59.000Z

160

Reedy Creek Utilities, Lake Buena Vista, Florida, solar energy system performance evaluation, December 1979-March 1980  

DOE Green Energy (OSTI)

The Reedy Creek solar system operated moderately well during the December 1979 through March 1980 heating season. The overall performance of the system was below estimated design performance but the solar system still supplied 47% of the building conditioning loads. The thermal performance is summarized. The system failed to reach design performance levels in the cooling subsystem. Since the cooling load of 40.24 million Btu was nearly three times larger than the space heating and domestic hot water loads of 14.44 million Btu, the overall system performance was significantly reduced. Although collected solar energy exceeds the system load in most months, the solar fraction is necessarily less than 100% due to the normal operating inefficiencies of pumps, heat exchanger, and particularly the absorption chiller. At Reedy Creek, excessive storage losses, presumably due to high storage temperatures, further degrade system performance. Collector array efficiency based on the total incident solar radiation was 11%. This was significantly lower than the 14% collector array efficiency for the 1979 heating season.

Logee, T.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

DOE Green Energy (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

162

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network (OSTI)

A.J.Hunt, "Small Particle Heat Exchangers" Lawrence BerkeleyUtilizing A Small Particle Heat Exchanger ArIon]. Hunt AprilA SMALL PARTICLE HEAT EXCHANGER Arlon J. Hunt Lawrence

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

163

Solar resource-utility load matching assessment: NREL photovoltaic project summary  

DOE Green Energy (OSTI)

Many utility planners may be unfamiliar with the potential for the development of photovoltaics (PV) in their service areas. The goal of the research summarized in this document is to provide information on the match existing between the output of PV powder plants and the load requirements of US utilities. This material indicates whether or not the effective capacity (hence the value) of this renewable resource should be higher than that traditionally assigned to an intermittent resource.

Not Available

1993-11-01T23:59:59.000Z

164

Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon  

DOE Patents (OSTI)

A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

Kaschmitter, J.L.; Sigmon, T.W.

1995-10-10T23:59:59.000Z

165

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

166

Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon  

DOE Patents (OSTI)

A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

Kaschmitter, James L. (Pleasanton, CA); Sigmon, Thomas W. (Beaverton, OR)

1995-01-01T23:59:59.000Z

167

Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines  

DOE Green Energy (OSTI)

The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

Kearney, D.

2013-03-01T23:59:59.000Z

168

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

169

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume III. Appendixes. [10 appendices  

DOE Green Energy (OSTI)

This appendix summarizes building characteristics used to determine heating and cooling loads for each of the five building types in each of the four regions. For the selected five buildings, the following data are attached: new and existing construction characteristics; new and existing construction thermal resistance; floor plan and elevation; people load schedule; lighting load schedule; appliance load schedule; ventilation schedule; and hot water use schedule. For the five building types (single family, apartment buildings, commercial buildings, office buildings, and schools), data are compiled in 10 appendices. These are Building Characteristics; Alternate Energy Sources and Energy Conservation Techniques Description, Costs, Fuel Price Scenarios; Life Cycle Cost Model; Simulation Models; Solar Heating/Cooling System; Condensed Weather; Single and Multi-Family Dwelling Characteristics and Energy Conservation Techniques; Mixed Strategies for Energy Conservation and Alternative Energy Utilization in Buildings. An extensive bibliography is given in the final appendix. (MCW)

None

1977-06-01T23:59:59.000Z

170

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

171

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

DOE Green Energy (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

172

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 City of Tallahassee Utilities - Solar Water Heating Rebate The...

173

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Solar Energy Equipment Loan Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar...

174

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ulm Public Utilities - Solar Electric Rebate Program New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

175

A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp  

SciTech Connect

High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

Siminovitch, M.; Gould, C.; Page, E.

1997-06-01T23:59:59.000Z

176

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

DOE Green Energy (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

177

SOLAR TRA ING SENSORS FOR MAXIMUM SOLAR ON ENTRATOR EFFI IEN Y  

POTENTIAL APPLI ATIONS Parabolic dish & trough solar concentrating collectors Solar energy and renewable energy Electric utility

178

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

179

A Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development (Book), Powered by SunShot, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to to Community Shared Solar: Utility, Private, and Nonpro t Project Development ACKNOWLEDGEMENTS This guide is an updated version of the original Guide to Community Solar, published November 2010 (see www.nrel.gov/docs/fy11osti/49930.pdf), which was developed for the National Renewable Energy Laboratory by Northwest Sustainable Energy for Economic Development, Keyes and Fox, Stoel Rives, and the Bonneville Environmental Foundation. This guide builds on the research and writing from the Northwest Community Solar Guide, published by Bonneville Environmental Foundation and Northwest SEED. AUTHORS Jason Coughlin, Jennifer Grove, Linda Irvine, Janet F. Jacobs, Sarah Johnson Phillips, Alexandra Sawyer, Joseph Wiedman REVIEWERS AND CONTRIBUTORS Dick Wanderscheid, Bonneville Environmental Foundation; Stephen Frantz, Sacramento Municipal

180

Solar Desalination in the Southwest United States: A Thermoeconomic Analysis Utilizing the Sun to Desalt Water in High Irradiance Regions .  

E-Print Network (OSTI)

??Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the Southwest.… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar desalination in the southwest United States| A thermoeconomic analysis utilizing the sun to desalt water in high irradiance regions.  

E-Print Network (OSTI)

?? Water scarcity and high irradiance overlap in the southwestern United States. This thesis explores solar energy as a method to power desalination in the… (more)

Stroud, Matthew

2012-01-01T23:59:59.000Z

182

Scaled Solar | Open Energy Information  

Open Energy Info (EERE)

Product Scaled Solar manufacturers and markets utility-grade, concentrated photovoltaic solar energy systems to commercial customers References Scaled Solar1 LinkedIn...

183

Solar photoproduction of hydrogen. IEA technical report of the IEA Agreement of the Production and Utilization of Hydrogen  

DOE Green Energy (OSTI)

The report was prepared for the International Energy Agency (IEA) Hydrogen Program and represents the result of subtask C, Annex 10 - Photoproduction of Hydrogen. The concept of using solar energy to drive the conversion of water into hydrogen and oxygen has been examined, from the standpoints of potential and ideal efficiencies, measurement of (and how to calculate) solar hydrogen production efficiencies, a survey of the state-of-the-art, and a technological assessment of various solar hydrogen options. The analysis demonstrates that the ideal limit of the conversion efficiency for 1 sun irradiance is {approximately}31% for a single photosystem scheme and {approximately}42% for a dual photosystem scheme. However, practical considerations indicate that real efficiencies will not likely exceed {approximately}10% and {approximately}16% for single and dual photosystem schemes, respectively. Four types of solar photochemical hydrogen systems have been identified: photochemical systems, semiconductor systems, photobiological systems, and hybrid and other systems. A survey of the state-of-the-art of these four types is presented. The four types (and their subtypes) have also been examined in a technological assessment, where each has been examined as to efficiency, potential for improvement, and long-term functionality. Four solar hydrogen systems have been selected as showing sufficient promise for further research and development: (1) Photovoltaic cells plus an electrolyzer; (2) Photoelectrochemical cells with one or more semiconductor electrodes; (3) Photobiological systems; and (4) Photodegradation systems. The following recommendations were presented for consideration of the IEA: (1) Define and measure solar hydrogen conversion efficiencies as the ratio of the rate of generation of Gibbs energy of dry hydrogen gas (with appropriate corrections for any bias power) to the incident solar power (solar irradiance times the irradiated area); (2) Expand support for pilot-plant studies of the PV cells plus electrolyzer option with a view to improving the overall efficiency and long-term stability of the system. Consideration should be given, at an appropriate time, to a full-scale installation as part of a solar hydrogen-based model community; (3) Accelerate support, at a more fundamental level for the development of photoelectrochemical cells, with a view to improving efficiency, long-term performance and multi-cell systems for non-biased solar water splitting; (4) Maintain and increase support for fundamental photobiological research with the aim of improving long-term stability, increasing efficiencies and engineering genetic changes to allow operation at normal solar irradiances; and (5) Initiate a research program to examine the feasibility of coupling hydrogen evolution to the photodegradation of waste or polluting organic substances.

Bolton, J.R. [Dept. of Chemistry, Univ. of Western Ontario, London, Ontario (CA) N6A 5B7

1996-09-30T23:59:59.000Z

184

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar? The Sacramento Municipal Utility District is looking for approximately 70 homeowners with residential solar willing to monitor their energy use. October 25, 2010 Park...

185

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Green Energy Program Incentives Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed...

186

Nanocrystal Solar Cells  

E-Print Network (OSTI)

absorption of the solar spectrum. Also, like branched CdSeonly a fraction of the solar spectrum may be utilized for PVonly part of the solar spectrum. As such, blends should

Gur, Ilan

2006-01-01T23:59:59.000Z

187

Solar Energy and Capacity Value (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy and Capacity Value e Solar Energy Can Provide Valuable Capacity to Utilities and Power System Operators Solar photovoltaic (PV) systems and concentrating solar power...

188

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and must have an electric water heater. October 16, 2013 Clark Public Utilities - Solar Energy Equipment Loan Clark Public Utilities offers financing available to its...

189

Solar-energy-system performance evaluation. Reedy Creek Utility District office building, Lake Buena Vista, Florida, September 1978-February, 1979  

DOE Green Energy (OSTI)

The Reedy Creek site is a two-story office building in Florida whose solar heating system provides space heating and domestic hot water and space cooling. The system consists of an array of parabolic trough collectors, an absorption chiller, a 10,000-gallon hot water tank and a 10,000-gallon cold water tank. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

190

Solar resource: Utility load-matching assessment. Interim subcontract report, 20 September 1991--19 December 1993  

DOE Green Energy (OSTI)

This report describes work performed to estimate the load-matching capability of photovoltaics (PV) for a selected group of utilities in the continental United States. The report provides an initial quantitative estimate of this capability for 20 utilities. This characteristic is important because it may indicate that the effective capacity, hence the value, of PV is higher than is traditionally assigned to such non-controllable, non-dispatchable resources. Load-matching capability is determined experimentally by analyzing the interaction between the load requirements of each utility and the output of locally sited PV systems. This type of investigation requires site- and time-specific insolation data that are not commonly available. Here, the needed data were inferred from geostationary satellite remote sensing of the Earth`s cloud cover. A secondary objective of this study was to evaluate the suitability of this approach. The results of this investigation are presented in this report.

Perez, R.; Seals, R.; Stewart, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1994-03-01T23:59:59.000Z

191

Utility Grid-Connected Distributed Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 Asheville, NC April 1996 Donald E. OsbornDavid E. Collier Sacramento Municipal Utility...

192

Solar Two  

DOE Green Energy (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

Not Available

1998-04-01T23:59:59.000Z

193

Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide  

DOE Patents (OSTI)

In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1979-01-01T23:59:59.000Z

194

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

Incentives Consumer education Utility programs Solar energy in federal facilities Solar energy in state/

Authors, Various

2012-01-01T23:59:59.000Z

195

Solar '94: Technical papers  

Science Conference Proceedings (OSTI)

The Solar 94 Conference of the American Solar Energy Society met in San Jose, California to provide a forum for state-of-the-art work in all the solar technologies. The following topics were included in the proceedings: Photovoltaic Modules and Systems; Wind Energy; Solar Thermal Systems; Utility Programs; Solar Water Heating; Solar Fuels; Resource Assessment; Economics and Education. A total of 83 papers were indexed separately for the data base.

Burley, S.M.; Arden, M.E.; Campbell-Howe, R.; Wilkins-Crowder, B. (eds.)

1994-01-01T23:59:59.000Z

196

Solar energy perspectives for public power  

DOE Green Energy (OSTI)

Perspectives on the utilization of solar energy for electricity production and thermal energy utilization by the public are briefly discussed. Wind energy conversion, biomass conversion, solar thermal, OTEC, photovoltaics, and solar heating and cooling are discussed. (WHK)

Woodley, N. H.

1979-06-01T23:59:59.000Z

197

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

198

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

199

Engineering the Electronic Band Structure for Multiband Solar Cells  

E-Print Network (OSTI)

crucial part of the solar spectrum. The performance of thebetter utilization of the full solar spectrum could be alsostructures obtained under solar spectrum illumination with

Lopez, N.

2011-01-01T23:59:59.000Z

200

Design Considerations for Solar Energy Harvesting Wireless Embedded Systems  

E-Print Network (OSTI)

and J. Schiller, “Utilizing solar power in wireless sensormodule can also learn the solar power availability pattern,routing choices, available solar power at more than just one

Raghunathan, Vijay; Kansal, Aman; Hsu, Jason; Friedman, Jonathan K; Srivastava, Mani B

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Santa Clara Water & Sewer- Solar Water Heating Program  

Energy.gov (U.S. Department of Energy (DOE))

In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water & Sewer Utilities Department supplies,...

202

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

203

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure...

204

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utility bills. | Photo courtesy of the Town of Ocean View. Delaware Community Saves with Solar Thanks to a grant from the Energy Department's Energy Efficiency and Conservation...

205

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facilities that utilize renewable energy, which may include: July 12, 2013 Tax Credit for Solar Energy Systems on Residential Property (Personal) '''''Note: HB 705 of 2013 made...

206

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities...

207

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilities. Net metering is available to customers who generate electricity using solar energy, geothermal energy, wind energy, biomass energy, ocean energy, hydrogen,...

208

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the right to withdraw the program at any time without notice. October 16, 2013 Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy, the municipal utility of...

209

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

measures may apply for loans up to 7,500. July 12, 2013 Clark Public Utilities - Solar Water Heater Rebate Clark Public Utilities offers a rebate of 500 to customers who...

210

Solar America Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar America Initiative. Solar America Initiative More Documents & Publications Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High...

211

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

212

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume I. Executive summary. [Simulation studies using DYNSIM and SUNSIM codes  

DOE Green Energy (OSTI)

Information is presented on the cost effectiveness of a strategy for reducing energy consumption in buildings by combining energy conservation techniques, such as improved building design and thermal insulation with solar heating and cooling systems. It is concluded, from computer simulation studies used to determine building loads and the interaction of the solar system, that energy conservation is the most cost-effective way to save energy in all buildings at any location, and that solar systems are currently not cost-effective. (LCL)

None

1977-06-01T23:59:59.000Z

213

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque  

DOE Green Energy (OSTI)

The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or an energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)

None

1977-06-01T23:59:59.000Z

214

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power "on demand time ever, a utility-scale solar power plant can supply elec- tricity when the utility needs it most achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One

Laughlin, Robert B.

215

February 19, 2013 Webinar: Exploring How Municipal Utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these rebates...

216

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

NONE

1998-04-01T23:59:59.000Z

217

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

Not Available

1998-04-01T23:59:59.000Z

218

Orlando Utilities Commission - Commercial Energy Efficiency Rebate...  

Open Energy Info (EERE)

conditioners, Clothes Washers, DuctAir sealing, Heat pumps, Roofs, Water Heaters, Cool Roofs, Solar Screens, Window Film Active Incentive Yes Implementing Sector Utility Energy...

219

Ashland Electric Utility - Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

Building Insulation, CaulkingWeather-stripping, DuctAir sealing, Heat pumps, Windows, Solar Water Heat Active Incentive Yes Implementing Sector Utility Energy Category...

220

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

DOE Green Energy (OSTI)

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

222

BASIC Solar | Open Energy Information  

Open Energy Info (EERE)

Name BASIC Solar Place Bulgaria Product Project development SPV focused on utility-scale PV projects. References BASIC Solar1 LinkedIn Connections CrunchBase Profile No...

223

FEMP-Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet details solar water heating and how to use the sun to heat domestic water in any climate. Document explains how solar water heating helps to save energy, reduce utility costs, and preserve the environment.

224

California Solar Initiative - Solar Thermal Program (California...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

225

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

E-Print Network (OSTI)

due to wind and solar power. Environmental Science &Integration of Concentrating Solar Power and Utility-ScaleShort- Term Variability of Solar Power Andrew Mills and Ryan

Mills, Andrew

2010-01-01T23:59:59.000Z

226

California Solar Initiative - Low-Income Solar Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Commission (CPUC) voted in October 2011 to create the California Solar Initiative (CSI) Thermal Low-Income program for single and multifamily residential...

227

Commercial & Industrial Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

228

California Solar Initiative - Solar Thermal Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

229

National Utility Rate Database: Preprint  

DOE Green Energy (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

230

Green Tech Solar Inc GTS | Open Energy Information  

Open Energy Info (EERE)

British Columbia-based firm involved in the development of utility-scale solar and bio energy projects in the southwestern United States. References Green Tech Solar Inc...

231

Immersion Cooling of Photovoltaic Cells in Highly Concentrated Solar Beams.  

E-Print Network (OSTI)

??Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in… (more)

Darwish, Ahmed

2011-01-01T23:59:59.000Z

232

Solar Easements & Rights Laws  

Energy.gov (U.S. Department of Energy (DOE))

In Missouri, the right to utilize solar energy is a property right, but eminent domain may not be used to obtain such property rights. Easements obtained for the purpose of construction,...

233

I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO  

SciTech Connect

A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-01-07T23:59:59.000Z

234

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992  

DOE Green Energy (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. [Spire Corp., Bedford, MA (United States)

1993-04-01T23:59:59.000Z

235

Solar air conditioning  

DOE Green Energy (OSTI)

Development of a hybrid solar-assisted air conditioning system that combines a vapor compression section for sensible cooling with a desiccant section for dehumidification and that uses both solar energy and condenser waste heat to drive the dehumidifier has been under way for the last two years (1981 and 1982). The results of this research are included in this report: utilizing solar energy in an economical way has proven quite difficult.

Robison, H.

1981-01-01T23:59:59.000Z

236

Northeast Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus Solar PV Array Size and Type * ~1.0 MW total - Area 1 sized for testing utility-scale inverters * System voltage level of 1,000V * Connected to BNL electrical distribution system * Capability to test multiple panel technologies with crystalline silicon PV modules making up the bulk of the array * Capability to re-configure the array into

237

Workshop title: Transmission and Utility Scale Solar Opportunities "South of Phoenix" (or should we say "in Arizona" if we inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose: A stakeholder communication with transmission customers, Tribes, developers, state Purpose: A stakeholder communication with transmission customers, Tribes, developers, state and federal agencies, and utilities about Western Area Power Administration's (Western) Rocky Mountain Region (RMR) and its Transmission Planning and Business Unit. The workshop will provide an overview of Western RMR's transmission planning and services and provide an opportunity for open discussion on overcoming transmission challenges in the region. The workshop will also meet the local transmission planning process requirements for FERC Order 890 as outlined in Western's Open Access Transmission Tariff.

238

Public Lecture Prospects for Solar  

E-Print Network (OSTI)

Public Lecture Prospects for Solar Energy Utilization 4 p.m., October 8 100 Lindquist Hall Scientific lecture O Thermodynamically Efficient Solar Energy Concentration 2 p.m., October 7 128 Jabara Hall-Merced and director of the California Advanced Solar Technologies Institute. He invented the field of non

239

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

240

Mississippi Public Utility Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

242

Avista Utilities - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

243

"2012 Non-Utility Power Producers- Customers"  

U.S. Energy Information Administration (EIA) Indexed Site

Customers" Customers" "(Data from form EIA-861U)" ,,,"Number of Customers" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",1,".",1 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",1,".",1 "FRV SI Transport Solar LP","AZ","Non_Utility",".",1,".",".",1 "MFP Co III, LLC","AZ","Non_Utility",".",1,".",".",1 "RV CSU Power II LLC","AZ","Non_Utility",".",1,".",".",1

244

Solar information process model  

DOE Green Energy (OSTI)

The MITRE Solar Information Process Model (SIP) is a computerized model that simulates information processes in solar markets. As such, it represents a useful tool in the formulation of solar information outreach programs. For each market investigated, SIP model outputs include prioritized listings of the information needs of key decision makers and other strategically important market participants, and related information flow paths. This report provides macro-descriptions of the model and its logic together with a detailed illustrative example of its application. It also presents the findings and conclusions resulting from utilization of the model in the analysis of information processes in eight solar markets within the residential, commercial and agricultural sectors.

Hewett, R.; Spewak, P.

1978-12-01T23:59:59.000Z

245

Tribal Solar Energy Partnerships  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLAR ENERGY PARTNERSHIPS SOLAR ENERGY PARTNERSHIPS Chairman Timothy Williams - Fort Mojave Indian Tribe Perry Fontana - First Solar Fort Mojave Indian Reservation Fort Mojave Project Site Mohave Generating Station (MGS) RESERVATION FARM LAND HISTORY * DOE funded renewable energy Feasibility Study found wind resource on Fort Mojave reservation marginal, but solar resource significant * Project was to be developed on 640 acres of Fort Mojave land in Arizona * Other parties included Tax and Equity financing entities, and solar developers (NEXT Light) * Group bid the project into the 2007 AZ and CA Utility PPA Request for Offers * Project was not shortlisted by any of the AZ or CA utility companies. * Fort Mojave made more land available in CA and partnered with NextLight to bid a

246

Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?  

E-Print Network (OSTI)

D EVELOPMENT I SSUES Solar Power in the Desert: Are the2 Most of the large-scale solar power projects utilize largethat will be affected by solar power facilities. There are

Allen, Michael F.; McHughen, Alan

2011-01-01T23:59:59.000Z

247

Public Utility Regulation (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

248

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

249

Pyron Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Inc Jump to: navigation, search Name Pyron Solar Inc Place La Jolla, California Zip 92037 Product Developing a high-concentration CPV system targetted at the utility-scale...

250

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

251

Could Solar Energy Storage be Key for Residential Solar? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District This is the silent power storage device the Sacramento Municipal Utility District intends to install in residential homes as part of its distributed solar power storage study. | Photo Courtesy of the Sacramento Municipal Utility District Lorelei Laird Writer, Energy Empowers What are the key facts? SolarSmart Homes storage pilot project gearing up in Sacramento. Pilot project is funded by a $4.3 million Recovery Act grant.

252

Transmission Planning Process and Opportunities for Utility-Scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC) Introduction Market barriers unrelated to...

253

Brainerd Public Utilities- Renewable Incentives Program  

Energy.gov (U.S. Department of Energy (DOE))

Brainerd Public Utilities offers a rebate program for customers that install solar photovoltaic systems. Rebates are $2 per watt, up to $4,000. Systems are limited to 40 kW, in compliance with...

254

Cedarburg Light & Water Utility - Residential Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

255

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

256

NREL: Continuum Magazine - The Utility-Scale Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Future Utility-Scale Future Issue 1 Print Version Share this resource Continuum Magazine Dan Says New Facility to Transform U.S. Energy Infrastructure New Facility to Transform U.S. Energy Infrastructure The nation's electricity infrastructure needs an overhaul. NREL's newest research facility will lead the way. Wind Innovation Enables Utility-Scale Wind Innovation Enables Utility-Scale NREL research will enable wind energy to make major contributions to meeting the nation's electrical demand. Leading Solar Expertise-A Launch Pad to the Future Leading Solar Expertise- A Launch Pad to the Future NREL is speeding solar devices from the lab to utility-scale operation. Paint it Black: One-Step Etch Cuts Solar Cell Costs Paint It Black: One-Step Etch Cuts Solar Cell Costs NREL's technique provides the solar cell manufacturing industry with a

257

CHINA'S DUST AFFECTS SOLAR RESOURCE IN THE U.S.: A CASE STUDY Christian A. Gueymard Nels S. Laulainen  

E-Print Network (OSTI)

a significant im- pact. Concentrating systems such as parabolic troughs and solar tower plants utilize only

Oregon, University of

258

SunShot Initiative: Solar Outreach Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

policies and regulations, financial incentives, workforce training, and utility and community engagement. Solar Powering Your Community: A Guide for Local Governments serves as...

259

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

260

California Solar Initiative - Multi-Family Affordable Solar Housing (MASH)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Multi-Family Affordable Solar Housing California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program California Solar Initiative - Multi-Family Affordable Solar Housing (MASH) Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type State Rebate Program Rebate Amount Track 1: Fully Subscribed Track 2: Closed '''''Track 2 was closed in 2011. Track 1 incentives have been fully subscribed for all three program administrators and waitlists have been established. Contact the appropriate program administrator for up to date information on the status of Track 1. ''''' The California Solar Initiative (CSI) provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

262

Solar Energy for All: How-To Guides Encourage Growth of Solar Communities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy for All: How-To Guides Encourage Growth of Solar Solar Energy for All: How-To Guides Encourage Growth of Solar Communities Solar Energy for All: How-To Guides Encourage Growth of Solar Communities August 21, 2012 - 10:58am Addthis An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems. Rachel Tronstein Deputy Program Manager, SunShot Initiative What is Community Shared Solar? Residents join together to purchase a solar energy system. Each community owner gets a share of the power generated, a credit on their utility bill, or other financial benefit. To learn more, check out A Guide to Community Shared Solar and The Solarize Guidebook. Across the country, solar installations are in demand. Still -- despite

263

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

264

"2012 Non-Utility Power Producers- Sales"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales" Sales" "(Data from form EIA-861U)" ,,,"Sales (Megawatthours)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",33463,".",33463 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",6883,".",6883 "FRV SI Transport Solar LP","AZ","Non_Utility",".",1820,".",".",1820 "MFP Co III, LLC","AZ","Non_Utility",".",9651,".",".",9651

265

"2012 Non-Utility Power Producers- Revenue"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue" Revenue" "(Data from form EIA-861U)" ,,,"Revenue (thousand dollars)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Riceland Foods Inc.","AR","Non_Utility",".",".",1735,".",1735 "Constellation Solar Arizona LLC","AZ","Non_Utility",".",".",798,".",798 "FRV SI Transport Solar LP","AZ","Non_Utility",".",243,".",".",243 "MFP Co III, LLC","AZ","Non_Utility",".",603,".",".",603

266

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

267

Alternative Solar Indices  

SciTech Connect

Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

Lantz, L.J.

1980-07-01T23:59:59.000Z

268

Solar heat collector  

Science Conference Proceedings (OSTI)

A solar heat collector is described that pre-heats water for a household hot water heating system, and also heats the air inside a house. The device includes solar heating panels set into an A-shape, and enclosing an area therein containing a water tank and a wristatic fan that utilize the heat of the enclosed air, and transmit the thermal energy therefrom through a water line and an air line into the house.

Sykes, A.B.

1981-07-28T23:59:59.000Z

269

DOE Solar Decathlon: Solar Village Energy Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

man installing PV panels on the roof of a house. man installing PV panels on the roof of a house. U.S. Department of Energy Solar Decathlon Bookmark and Share - Home About Competition Scores & Standings Teams News Photos Videos Product Directory Village Energy Balance Education Sponsors History FAQs Contacts Solar Decathlon Village Energy Balance The U.S. Department of Energy Solar Decathlon 2013 used a small power grid, or microgrid, to distribute energy safely and reliably among the competition houses and to the utility grid. hen the sun was shining, the solar electric panels on the houses produced energy that was used to power appliances, lights, mechanical systems, and electronics. Excess energy flowed from the houses, through the microgrid, and to the Orange County community when more energy was generated than

270

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

271

Repowering with solar energy  

DOE Green Energy (OSTI)

During the transition phase between today's fossil fuel-based energy markets in the US and the ultimate condition of widespread use of renewable resources, solar energy utilization will become commercialized. One of the more-efficient means to use solar energy is based on direct solar thermal conversion. Since sunlight is a diffuse energy source, the more efficiently it is converted to useful form, the less hardware is needed. Since sunlight is inherently intermittent in nature, providing a useful output that is predictable and steady requires the use of some form of storage - thermal, electric, mechanical, chemical, magnetic or in stored fuel. Further, since there exists a large number of fossil-fuel burning installations and a well-established fuel-distribution system to supply them, the initial use of solar energy will likely be in a repowering mode - retrofit hybrids as fuel savers. This is the fundamental basis for solar-thermal repowering.

Curto, P.

1979-03-01T23:59:59.000Z

272

California Solar Initiative - Multi-Family Affordable Solar Housing...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

273

Homebuyer Solar Option and Solar Offset Program (California)...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

274

California Solar Initiative - Pilot Solar Water Heating Program...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

275

California Solar Initiative - Single-Family Affordable Solar...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

276

California Solar Initiative - Low-Income Solar Water Heating...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

277

A simulation study for single and double effect absorption solar cooling systems operated under Taiwan climate.  

E-Print Network (OSTI)

??Abstract There is much rich solar energy in Taiwan situated at the subtropics;Therefore itâs suitable for solar energy is utilized as the driving energy for… (more)

Shen, Jyun-long

2010-01-01T23:59:59.000Z

278

Concentrating Solar Power (Fact Sheet)  

DOE Green Energy (OSTI)

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

Not Available

2011-10-01T23:59:59.000Z

279

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

280

Abound Solar | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Power | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages...

282

DOE Solar Decathlon: Energy Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Balance (100 points) For the U.S. Department of Energy Solar Decathlon, each team house is equipped with a bidirectional utility meter that enables competition organizers to...

283

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

284

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

285

Georgia Utility Facility Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Safety and Operational Guidelines Siting and Permitting Provider Utilities Protection Center of Georgia The Georgia Utility Facility Protection Act (GUFPA) was established to protect the underground utility infrastructure of Georgia. GUFPA mandates that, before starting any mechanized digging or excavation work, you must

286

Spectral sensitization of nanocrystalline solar cells  

DOE Patents (OSTI)

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01T23:59:59.000Z

287

Solar Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Iowa Program Type Solar/Wind Access Policy Provider Iowa Utilities Board Iowa's solar access easement provision allows for access to sunlight to operate a solar energy system. Those who are unable to obtain a voluntary solar easement from a property owner may apply to the solar access regulatory board for an order granting a solar access easement, if the relevant city council or county board of supervisors has created such a board. In the absence of such a board, the matter is referred to the local district court. Applications for an easement must contain specific information about the size, location, and orientation of the solar energy system, as well as a description of the actions that have been taken to minimize the impact on neighboring estates. Iowa code also grants municipalities the right to issue ordinances

288

Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar...

289

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

290

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

291

Solar power and retail electric competition in Arizona  

Science Conference Proceedings (OSTI)

Arizona`s solar portfolio standard serves a model for utilities and regulators by linking solar power and retail electric competition. Like many states, Arizona is pursuing retail electric competition as a substitute for traditional regulated monopolies. In addition the development of the competitive market is being linked with the development of solar power. Topics covered include the following: a simple solar portfolio standard; cost of the solar portfolio; feasibility of the solar portfolio standard. 4 figs., 1 tab.

Berry, D.; Williamson, R. [Arizona Corp. Commission, Phoenix, AZ (United States)

1997-03-01T23:59:59.000Z

292

Solar energy systems for manufactured housing  

DOE Green Energy (OSTI)

The opportunities for solar energy utilization in manufactured housing such as mobile homes and modular homes are discussed. The general characteristics of the manufactured housing industry are described including market and prices. Special problems of the utilization of liquid heating collectors, air heating collectors, or passive types of solar heating systems in manufactured housing are considered. The market situation for solar energy in manufactured housing is discussed. The design of the Los Alamos Scientific Laboratory mobile/modular home is described.

Balcomb, J.D.

1976-01-01T23:59:59.000Z

293

utility grid | OpenEI Community  

Open Energy Info (EERE)

utility grid utility grid Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

294

Broad spectrum solar cell  

DOE Patents (OSTI)

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

295

NREL Develops Sub-Hour Solar Power Data Set (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sub-Hour Solar Power Data Set NREL data will help utilities incorporate solar energy into their electric power systems. Large-scale deployment of solar energy requires a favorable...

296

Concentrating Solar Power Program overview  

DOE Green Energy (OSTI)

Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

NONE

1998-04-01T23:59:59.000Z

297

Low Cost Solar Water Heater  

SciTech Connect

This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

William Bostic

2005-12-16T23:59:59.000Z

298

Administrative Code Title 83, Public Utilities (Illinois) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) Administrative Code Title 83, Public Utilities (Illinois) < Back Eligibility Commercial Municipal/Public Utility Rural Electric Cooperative Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Training/Technical Assistance Provider Illinois Commerce Commission In addition to general rules for utilities, this article states regulations for the protection of underground utilities, promotional practices of electric and gas public utilities construction of electric power and

299

River Falls Municipal Utilities - Renewable Energy Finance Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program < Back Eligibility Residential Savings Category Other Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Wisconsin Program Type PACE Financing Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The program will also support the installation of energy efficiency measures in connection with a qualifying renewable energy project, provided that the renewable energy

300

IMPROVED METHOD TO MEASURE GLARE AND REFLE TED SOLAR IRRADIAN E  

POTENTIAL TE HNOLOGI AL APPLI ATIONS ENEFITS Concentrated Solar Power Electric Utility Photovoltaics Public Safety Significantly cheaper, faster &

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

FRV SI Transport Solar LP | Open Energy Information  

Open Energy Info (EERE)

FRV SI Transport Solar LP Jump to: navigation, search Name FRV SI Transport Solar LP Place Arizona Utility Id 56827 References EIA Form EIA-861 Final Data File for 2010 -...

302

Sacramento Municipal Utility District Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Municipal Utility District Projects Sacramento Municipal Utility District Projects Sacramento Municipal Utility District Projects November 13, 2013 - 10:45am Addthis The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive renewable energy retail sales goal of 37% by 2020. To help achieve this goal, the U.S. Department of Energy (DOE) provided more than $5 million in funding for five SMUD Community Renewable Energy Deployment (CommRE) projects. Simply Solar SMUD's CommRE portfolio of projects included one solar project. Initially, the utility intended to team with CalTrans and SolFocus to deploy the Sacramento Solar Highways effort. SMUD released a solicitation for a developer for the Solar Highways effort and did not receive an economically

303

Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)  

DOE Green Energy (OSTI)

This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

Not Available

2012-06-01T23:59:59.000Z

304

Solar index generation and delivery  

DOE Green Energy (OSTI)

The Solar Index, or, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978. The purpose was to enhance public awareness to solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80 gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which also has applications to space heating, cooling, and heat pump systems and which supplies economic analyses for such solar energy systems. The Index is generated for approximately 68 geographic locations in the country on a daily basis. The definition of the Index, how the project came to be, what it is at the present time and a plan for the future are described. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST program) and future efforts.

Lantz, L.J.

1980-01-01T23:59:59.000Z

305

Utility Easements (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Easements (Indiana) Utility Easements (Indiana) Utility Easements (Indiana) < Back Eligibility Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Natural Resources A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set aside as a scenic or historic place, or the portion of a public highway passing through one of the aforementioned types of places

306

Removing Barriers to Utility Interconnected Photovoltaic Inverters  

SciTech Connect

The Million Solar Roofs Initiative has motivated a renewed interest in the development of utility interconnected photovoltaic (UIPV) inverters. Government-sponsored programs (PVMaT, PVBONUS) and competition among utility interconnected inverter manufacturers have stimulated innovations and improved the performance of existing technologies. With this resurgence, Sandia National Laboratories (SNL) has developed a program to assist industry initiatives to overcome barriers to UIPV inverters. In accordance with newly adopted IEEE 929-2000, the utility interconnected PV inverters are required to cease energizing the utility grid when either a significant disturbance occurs or the utility experiences an interruption in service. Compliance with IEEE 929-2000 is being widely adopted by utilities as a minimum requirement for utility interconnection. This report summarizes work done at the SNL balance-of-systems laboratory to support the development of IEEE 929-2000 and to assist manufacturers in meeting its requirements.

Gonzalez, S.; Bonn, R.H.; Ginn, J.W.

2000-10-03T23:59:59.000Z

307

Public Utilities Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Act (Illinois) Public Utilities Act (Illinois) Public Utilities Act (Illinois) < Back Eligibility Commercial Industrial Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Safety and Operational Guidelines Provider Illinois Commerce Commission This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports. Every public utility shall furnish to the Commission all information required by it to carry into effect the provisions of this Act, and shall make specific answers to

308

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

309

Solar heated rotary kiln  

SciTech Connect

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, Pamela K. (Tracy, CA)

1984-01-01T23:59:59.000Z

310

SunShot Initiative: High Penetration Solar Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

High Penetration Solar Deployment High Penetration Solar Deployment to someone by E-mail Share SunShot Initiative: High Penetration Solar Deployment on Facebook Tweet about SunShot Initiative: High Penetration Solar Deployment on Twitter Bookmark SunShot Initiative: High Penetration Solar Deployment on Google Bookmark SunShot Initiative: High Penetration Solar Deployment on Delicious Rank SunShot Initiative: High Penetration Solar Deployment on Digg Find More places to share SunShot Initiative: High Penetration Solar Deployment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Solar Utility Networks: Replicable Innovations in Solar Energy High Penetration Solar Deployment Grid Integration Advanced Concepts

311

Energy Efficiency and Conservation Requirements for Utilities | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Energy Efficiency and Conservation Requirements for Utilities Energy Efficiency and Conservation Requirements for Utilities < Back Eligibility Investor-Owned Utility Savings Category Other Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State Pennsylvania Program Type Energy Efficiency Resource Standard Provider Pennsylvania Public Utilities Commission In October 2008 Pennsylvania adopted Act 129, creating energy efficiency and conservation requirements for the state's investor owned utilities with at least 100,000 customers. With this limitation on applicability, the standards apply only to the following utilities: PECO Energy, PPL Electric Utilities, West Penn Power, Pennsylvania Electric (Penelec), Metropolitan

312

Public Utility Regulatory Act, Alternative Energy Providers (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Act, Alternative Energy Providers (Texas) Regulatory Act, Alternative Energy Providers (Texas) Public Utility Regulatory Act, Alternative Energy Providers (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Safety and Operational Guidelines Provider Public Utility Commission of Texas Chapter 35 of the Public Utility Regulatory Act specifically addresses alternative energy providers, and contains provisions designed to aid such providers in selling power in Texas's competitive utility market. The

313

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

314

The State of Solar Power: Benchmarking Solar Technology, Market, and Project Developments  

Science Conference Proceedings (OSTI)

The proliferation of solar projects throughout the world is accelerating the pace of technical and economic change in the sector. In fact, innovation is occurring across all the major solar technologies, including crystalline and thin-film, flat-plate photovoltaics, concentrating photovoltaics, and concentrating solar thermal power (CSP), and is driving greater commercial and utility interest. As the sector matures, benchmarking solar market developments and pioneering project work is becoming increasing...

2010-12-23T23:59:59.000Z

315

Central Lincoln People's Utility District - Renewable Energy Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Lincoln People's Utility District - Renewable Energy Central Lincoln People&#039;s Utility District - Renewable Energy Incentive Program (Oregon) Central Lincoln People's Utility District - Renewable Energy Incentive Program (Oregon) < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $2,000 PV (Commercial): $5,000 Solar Water Heating: $800 Wind: $5,000 Hydro Electric: $5,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount PV and Wind: $500/kW-DC Solar Water Heating: $800/system Hydro Electric: $0.50/kWh (first year) Provider Central Lincoln People's Utility District Central Lincoln People's Utility District provides financial incentives for

316

Microprocessor controlled solar collector system. Technical progress report No. 3  

SciTech Connect

The strategy and initial results of a microprocessor control system for a solar water heating system are described. Two hot water storage tanks are utilized. (WHK)

1979-11-15T23:59:59.000Z

317

Walton EMC - Residential Solar Water Heating Rebate Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate 200 Program Information Georgia Program Type Utility Rebate Program Rebate Amount Solar Water Heater: 200 per location Walton Electric Membership Corporation (WEMC) is an...

318

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

59. City of San Diego and California Center for SustainablePOLICIES AND FUNDING FOR THE CALIFORNIA SOLAR INITIATIVE.San Francisco, California Public Utilities Commission: 44.

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

319

Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Neutrinos at the Conclusion of the Sudbury Neutrino Observatory Noah Oblath April 22, 2008 The study of solar neutrinos began with the idea that one could use the neutrinos...

320

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

322

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Idaho’s solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

323

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State District of Columbia Program Type Mandatory Utility Green Power Option Provider Washington State Department of Commerce In May 2001, Washington enacted legislation (EHB 2247) that requires all electric utilities serving more than 25,000 customers to offer customers the option of purchasing renewable energy. Eligible renewables include wind, solar, geothermal, landfill gas, wave or tidal action, wastewater treatment gas, certain biomass resources, and "qualified hydropower" that is fish-friendly. Beginning January 1, 2002, each electric utility must inform its customers

324

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

325

Solar collectors  

SciTech Connect

Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

Cassidy, V.M.

1981-11-01T23:59:59.000Z

326

Solar project  

SciTech Connect

A solar laundry was installed on a college campus in South Carolina, including two separate systems installed in parallel. (LEW)

1983-01-01T23:59:59.000Z

327

Online National Solar Energy Directory and 2005 Solar Decathlon Product Directory  

SciTech Connect

The Solar Electric Power Association (SEPA), in partnership with the American Solar Energy Society, developed an online National Solar Energy Directory with clear, comprehensive information on suppliers and purchasing options. The site was originally located at FindSolar.com, but has recently been moved to Find-Solar.org. The original FindSolar.com domain name has been taken by the American Solar Energy Society (a partner in this project) and utilized for a similar but different project. This Find-Solar.org directory offers the rapidly growing base of potential solar customers a simple, straightforward destination to learn about their solar options. Members of the public are able to easily locate contractors in their geographic area and verify companiesâ?? qualifications with accurate third-party information. It allows consumers to obtain key information on the economics, incentives, desirability, and workings of a solar energy system, as well as competing quotes from different contractors and reviews from customers they have worked with previously. Find-Solar.org is a means of facilitating the growing public interest in solar power and overcoming a major barrier to widespread development of U.S. solar markets. In addition to the development of Find-Solar.org, SEPA developed a separate online product directory for the 2005 DOE Solar Decathlon to facilitate the communication of information about the energy efficiency and renewable energy products used in each university teamâ??s home.

Julia Hamm; Mike Taylor; America Solar Energy Society

2005-07-01T23:59:59.000Z

328

Utility Rebate Program | Open Energy Information  

Open Energy Info (EERE)

Utility Rebate Program Utility Rebate Program Jump to: navigation, search States, local governments and utilities offer rebates to promote the installation of renewable energy systems and energy efficiency measures. The majority of rebate programs that support renewable energy are administered by states, municipal utilities and electric cooperatives; these programs commonly provide funding for solar water heating and/or photovoltaic (PV) systems. Most rebate programs that support energy efficiency are administered by utilities. Rebate amounts vary widely based on technology and program administrator. [1] Utility Rebate Program Incentives CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1718) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

329

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

330

New Braunfels Utilities - Energy Efficiency and Water Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unit AC & Heat Pump: 200 - 500 Washing Machine: 100 Solar ScreenFilm: up to 300 LED Exit Sign: 20 Shade Tree: 25 New Braunfels Utilities offer a variety of programs...

331

Bowling Green Municipal Utilities - Net Metering (Ohio) | Open...  

Open Energy Info (EERE)

to investor-owned utilities.) A standard interconnection permit is available for wind, solar, hydro, fuel cells and microgenerators up to 25 kilowatts (kW) in capacity. Larger...

332

Cedarburg Light & Water Utility - Commercial Shared Savings Loan...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

333

Solar Water Heating: What's Hot and What's Not  

E-Print Network (OSTI)

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management program designed to reduce system demand during peak summer hours. Solar hot water has the potential to generate significant savings during periods of high solar intensity. For summer peaking utilities, these periods of high solar intensity coincide with the overall system peak. This paper discusses the basics of analyzing solar water heaters as a demand-side management measure. In addition, four utility solar water heater incentive programs are studied in detail. The paper describes each program and notes the stage of development. Where such information is available, incentive amounts and cost-effectiveness calculations are included.

Stein, J.

1992-05-01T23:59:59.000Z

334

Energy Programs | Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Harnessing the Sun's Power for Fuel and Electricity Page 1 of 2 Solar Panels Featured Publication: Artificial Photosynthesis The average power need of the world's energy economy is 13 terawatts - a thousand trillion watts of power - and by 2050, that amount is expected to double. Fossil fuels and other nonrenewable sources are not the answer to the world's ever-expanding need for energy. Also, burning oil, coal or natural gas pollutes the atmosphere and contributes to global warming, which threatens the long-term viability of the earth and its inhabitants. Efficient utilization of energy from the sun may provide a solution to this important problem. The amount of clean, renewable energy derived from the sun in just one hour would meet the world's energy needs for a year. If

335

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

336

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

337

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

1997-01-01T23:59:59.000Z

338

SMUD - Residential Solar Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Loan Program Solar Loan Program SMUD - Residential Solar Loan Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $30,000 Program Info State California Program Type Utility Loan Program Rebate Amount Secured: $30,000 Unsecured: $5,000 Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Residential Loan Program provides 100% financing to customers who install solar water heating systems. All solar water heating systems must meet standards set by the Solar Rating and Certification Corporation (SRCC), must be installed by a SMUD-approved solar water heating contractor, and must pass inspection by SMUD representatives. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA13F

339

SMUD - Solar Water Heater Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program Solar Water Heater Rebate Program SMUD - Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State California Program Type Utility Rebate Program Rebate Amount 500 - 1,500 per system, depending on energy savings Provider Sacramento Municipal Utility District The Sacramento Municipal Utility District's (SMUD) Solar Domestic Hot Water Program provides rebates and/or loan financing to customers who install solar water heating systems. The amount of the rebate depends on how much electricity the system will offset annually: * 800 - 1,399 kWh: $500 * 1,400 - 2,199 kWh: $1,000 * 2,200 kWh or greater: $1,500 . All solar water-heating units must meet standards set by the Solar Rating

340

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Helio Micro Utility Inc | Open Energy Information  

Open Energy Info (EERE)

Helio Micro Utility Inc Helio Micro Utility Inc Address 1827A Fifth Street Place Berkeley, California Zip 94710 Sector Solar Product Contracts with solar installers to build and maintain solar power systems Website http://www.heliomu.com/ Coordinates 37.8695067°, -122.2994149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8695067,"lon":-122.2994149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

343

Solar Optics  

DOE Green Energy (OSTI)

Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

Rozsnyai, B.F.

2000-10-04T23:59:59.000Z

344

Solar energy collector  

SciTech Connect

Structural plastic materials are normally not resistant to elevated temperatures, and accordingly presently have only limited applications in solar energy collection devices despite their decided cost advantages. The present invention enables the widespread use of such plastic materials, in fact enables the essentially complete construction of solar collection devices thereof. An optically dense radiant heat absorbable fluid is passed through the device and utilized to collect solar energy from such devices. Should such fluid not be present within the device for any reason, e.g. upon pump failure, sunlight entering in positively directed outwardly thereof. Preferably the outward direction of sunlight from the fluid receiving chamber is accomplished by providing one of the surfaces forming such chamber with a highly reflective surface so that the sun's rays are outwardly deflected. In certain embodiments, as when the device is used as an architectural window, when such fluid is not present within the device, the solar energy is directed entirely through the device. In this manner, the chamber temperature may be held within tolerable levels for the particular plastics utilized.

McClintock, M.

1979-01-16T23:59:59.000Z

345

Solar thermal repowering  

SciTech Connect

Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

1980-08-01T23:59:59.000Z

346

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

347

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

348

Solar Energy: The Chicago Connection  

DOE Green Energy (OSTI)

Utilization of solar energy was significantly advanced with the invention of nonimaging solar concentrators. This has enabled practical uses of solar energy for such purposes as heating and cooling of buildings and power generation without the requirement for complicated tracking. What began as a method for efficiently collecting cerenkov light in high energy physics has become the means for producing from solar energy, high temperature for many societal applications as well as ultra-high temperature for research. This talk will describe the optical principles underlying the technology and illustrate with projects and laboratories from around the world. Examples will be drawn from a number of areas: cooling a commercial building in Sacramento, California, advanced collector development in China, NASA's plans for space propulsion by heating hydrogen, and from our own City of Chicago, a commitment to be a global leader in renewable energy production and manufacturing including solar power.

Winston, Roland (University of Chicago)

2002-05-15T23:59:59.000Z

349

Tessera Solar | Open Energy Information  

Open Energy Info (EERE)

Tessera Solar Tessera Solar Name Tessera Solar Address 2600 10th Street Place Berkeley, California Zip 94710 Sector Solar Product Developer of utility scale solar power plants based on dish-Stirling engine designs Website http://www.tesserasolar.com/ Coordinates 37.8590887°, -122.2901937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8590887,"lon":-122.2901937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

SOLAR REFLE TION PANELS  

Unlike other solar collectors that are known to lose solar reflectivity due to issues with their design, the solar collector

351

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O' Gallagher, J.J.

1991-04-09T23:59:59.000Z

352

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O' Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

353

Bulb mounting of solar cell  

SciTech Connect

An energy converting assembly is provided for parasiting of light from a fluorescent light bulb utilizing a solar cell. The solar cell is mounted on a base member elongated in the dimension of elongation of the fluorescent bulb, and electrical interconnections to the cell are provided. A flexible sheet of opaque material having a flat white interior reflective surface surrounds the fluorescent bulb and reflects light emitted from the bulb back toward the bulb and the solar cell. The reflective sheet is tightly held in contact with the bottom of the bulb by adhesive, a tie strap, an external clip, or the like.

Thompson, M.E.

1983-04-05T23:59:59.000Z

354

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

355

Solar energy legal bibliography. Final report. [160 references  

DOE Green Energy (OSTI)

The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

1979-03-01T23:59:59.000Z

356

Austin Energy - Value of Solar Residential Rate (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info Start Date 10/01/2012 State Texas Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and approved by Austin City Council in June 2012, will be available for all past, present and future residential solar customers beginning October 1, 2012. This tariff replaces net billing for residential solar PV systems no larger than 20 kilowatts (kW). Under this new tariff, residential customers will be credited monthly for their solar generation based on the Value of Solar energy generated from

357

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 California Solar Initiative - Single-Family Affordable Solar...

359

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 Solar Energy Resources Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be...

360

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

362

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from - Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

363

Solar Easements (Alaska) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

364

Solar Construction Permitting Standards (Arizona) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

365

Solar and Wind Rights | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

366

Solar Energy Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages...

367

Solar Contractor Licensing (Arizona) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

368

Solar Energy Equipment Certification (Arkansas) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

369

Solar Light for Africa | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

370

California Solar Initiative - PV Incentives (California) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

371

Solar Rights (Arizona) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

372

Commercial & Industrial Solar Rebate Program (New Hampshire)...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

373

Solar Mechanic Licensing (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

374

Solar Energy Option Requirement for Residential Developments...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

375

Solar & Wind Equipment Certification (Arizona) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

376

Solar Star NAFB LLC | Open Energy Information  

Open Energy Info (EERE)

Star NAFB LLC Jump to: navigation, search Name Solar Star NAFB LLC Place Nevada Utility Id 56203 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

377

Commonwealth Solar Hot Water Residential Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

378

Azusa Light & Water - Solar Partnership Program (California)...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

379

Commonwealth Solar Hot Water Commercial Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

380

Rating of Solar Energy Devices (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Utility Commission has regulatory authority over solar energy devices installed and used in the state of Texas. The Commission can choose to adopt standards pertaining to the rating of...

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy and Utility Project Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Utility Project Review and Utility Project Review Energy and Utility Project Review < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the

382

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

383

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

384

The DOE Solar Thermal Electric Program  

DOE Green Energy (OSTI)

The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

Mancini, T.R.

1994-06-01T23:59:59.000Z

385

Solar applications in Arizona's energy mix  

Science Conference Proceedings (OSTI)

The paper captures the essence of the cause and effect of the successful growth of solar installations in Arizona, including affect on utilities, covering the period from 1974, when solar tax incentives were initiated, through present. Forecasts are made to the year 2000. Policy is defined for research and development, transfer of developed technologies to the market, and information services. Quality assurance program is outlined. Incentives for installation of solar devices and resulting costs and benefits to the state are discussed.

Sears, R.L.; Warnock, J.F.

1984-01-01T23:59:59.000Z

386

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

387

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Mandatory Utility Green Power Option Provider Iowa Utilities Board All electric utilities operating in Iowa, including those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow customers to make voluntary contributions to support the development of renewable energy sources in Iowa. Utilities must file their program plans and tariff schedules with the IUB; however, the filings for non-rate-regulated utilities are intended to be for informational purposes only. This policy

388

System integration issues of residential solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this study is to evaluate the economic effects of residential solar PV systems on the utility's revenue, capacity, and energy requirements from the electric utility's perspective and to estimate the price that it might pay for surplus energy compared to what it would charge for deficits. The power and energy generated by the solar PV systems reduce the capital and operating costs that would otherwise be incurred by the utility. These avoided costs suggest what the utility might pay for surplus solar PV energy. The avoided costs are evaluated under three integration hypotheses, namely: (1) the utility has no system storage, (2) the utility has system storage, and (3) the solar PV systems are supported by dedicated storage devices, the purpose of which is to minimize sales to and purchases from the utility. Findings are reported in detail. (WHK)

Yamayee, Z.A.; Peschon, J.

1980-03-01T23:59:59.000Z

389

Solar Two Performance Evaluation Methodology  

Science Conference Proceedings (OSTI)

Solar Two is a 10-MWe prototype central-receiver plant east of Barstow, California. Solar Two, which is sponsored by a consortium of utilities and industry in partnership with the U.S. Department of Energy, began regular electricity production in February 1997. The objective of Solar Two's performance evaluation activity is to understand the plant's performance and to use the evaluation information for the following purposes: optimize plant performance, extrapolate Solar Two's performance to general performance of molten-salt central-receiver technology, and recommend revisions to predictive models and engineering design methods for Solar Two and future-generation molten-salt central-receiver technology. The primary aspect of the performance evaluation is the lost-electricity analysis. This analysis compares the actual generation with the generation predicted by the Solar Two model. (SOLERGY, a computer program designed by Sandia National Laboratories to simulate the operation and power output of a solar central-receiver power plant is the code used to model Solar Two.) The difference between the predicted and the actual generation (i.e., the lost electricity) is broken down into the different efficiency and availability categories responsible for the loss. Having the losses broken down by system and in terms of electricity is useful for understanding and improving the plant's performance; it provides a tool for determining the best operating procedures for plant performance and the allocation of operation and maintenance resources for the best performance payback.

Mary Jane Hale

1999-11-01T23:59:59.000Z

390

Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

391

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar ...

392

Solar News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

393

Maximizing efficiency of solar-powered systems by load matching  

Science Conference Proceedings (OSTI)

Solar power is an important source of renewable energy for many low-power systems. Matching the power consumption level with the supply level can make a great difference in the efficiency of power utilization. This paper proposes a source-tracking power ... Keywords: load matching, photovoltaics, power management, power model, solar energy, solar-aware

Dexin Li; Pai H. Chou

2004-08-01T23:59:59.000Z

394

Inverter Eligibility Listing Procedure for Solar Electric Incentive Programs Updated 8/24/11 Senate Bill 1 (SB1) defines the solar incentive programs for California, and inverters must be listed on  

E-Print Network (OSTI)

/24/11 Senate Bill 1 (SB1) defines the solar incentive programs for California, and inverters must be listed two staterun programs, the California Solar Initiative and the New Solar Homes Partnership, as well as solar incentive programs administered by publicly owned utilities. The California Solar Initiative

395

Sunshot Initiative High Penetration Solar Portal  

DOE Data Explorer (OSTI)

The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [copied from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

396

Utilizing Renewable Energy in Cluster-based Sensor Networks  

E-Print Network (OSTI)

Energy conservation plays a crucial in wireless sensor networks since such networks are designed to be placed in hostile and non-accessible areas. While battery-driven sensors will run out of battery sooner or later, the use of renewable energy sources such as solar power or gravitation may extend the lifetime of a sensor. We propose to utilize solar power in wireless sensor networks and extend LEACH a well-known cluster-based protocol for sensor networks to become solar-aware. The presented simulation results show that making LEACH solar-aware significantly extends the lifetime of sensor networks.

Thiemo Voigt; Hartmut Ritter; Jochen Schiller

2003-01-01T23:59:59.000Z

397

Guidelines for Solar and Wind Local Ordinances (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Solar Buying & Making Electricity Wind Program Info State Virginia Program Type Solar/Wind Permitting Standards In March 2011, the Virginia legislature enacted broad guidelines for local ordinances for solar and wind. The law states that any local ordinance related to the siting of solar or wind energy facilities must:

398

Western Wind and Solar Integration Study (Fact Sheet)  

DOE Green Energy (OSTI)

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

399

DOE Solar Decathlon: Solar Decathlon Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

400

SunShot Initiative: Deployable Commercial Rooftop Solar Electric System  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployable Commercial Rooftop Deployable Commercial Rooftop Solar Electric System to someone by E-mail Share SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Facebook Tweet about SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Twitter Bookmark SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Google Bookmark SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Delicious Rank SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on Digg Find More places to share SunShot Initiative: Deployable Commercial Rooftop Solar Electric System on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Solar Utility Networks: Replicable Innovations in Solar Energy

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar Energy of the North  

SciTech Connect

The concept of this project was to design a solar array that would not only provide electricity for the major classroom building of the campus but would also utilize that electricity to enhance the learning environment. It was also understood that the project would be a research and data gathering project.

Davis St. Peter Director of Faclities ( retired) Charles Bonin Vice President of Administration & Finance

2012-01-12T23:59:59.000Z

402

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

403

EIS-0403: Solar Energy Development in Six Southwestern States | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Solar Energy Development in Six Southwestern States 03: Solar Energy Development in Six Southwestern States EIS-0403: Solar Energy Development in Six Southwestern States Summary The BLM and DOE have jointly prepared this PEIS to evaluate actions that the agencies are considering taking to further facilitate utility-scale solar energy development in six southwestern states. For the BLM, this includes the evaluation of a new Solar Energy Program applicable to solar development on BLM-administered lands. For DOE, it includes the evaluation of developing new guidance to further facilitate utility-scale solar energy development and maximize the mitigation of associated potential environmental impacts. This Solar PEIS evaluates the potential environmental, social, and economic effects of the agencies' proposed actions and alternatives. For additional information, please

404

Mandatory Utility Green Power Option | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Mandatory Utility Green Power Option < Back Eligibility Investor-Owned Utility Municipal Utility Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Energy Sources Solar Wind Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Maine Public Utilities Commission Legislation enacted in 2009 directed the Maine Public Utilities Commission (PUC) to develop a program offering green power as an option to residential and small commercial customers in the state. The PUC issued rules in October 2010 and issued an RFP. The PUC selected a company, 3 Degrees, to manage the statewide green power program for Maine's transmission and distribution territories. The program includes community-based renewable

405

Mandatory Utility Green Power Option | Open Energy Information  

Open Energy Info (EERE)

Mandatory Utility Green Power Option Mandatory Utility Green Power Option Jump to: navigation, search Several states require certain electric utilities to offer customers the option of buying electricity generated from renewable resources, commonly known as “green power.” Typically, utilities offer green power generated using renewable resources that the utilities own (or for which they contract), or they buy renewable energy credits (RECs) from a renewable energy provider certified by a state public utilities commission [1] Mandatory Utility Green Power Option Incentives CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active DEMEC - Green Power Program (Delaware) Mandatory Utility Green Power Option Delaware Municipal Utility Solar Water Heat

406

SOLAR POWER  

DOE Green Energy (OSTI)

Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

PROJECT STAFF

2011-10-31T23:59:59.000Z

407

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

408

Boston, Massachusetts: Solar in Action (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

Not Available

2011-10-01T23:59:59.000Z

409

Colorado Springs Utilities - Renewable Energy Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Rebate Program Renewable Energy Rebate Program Colorado Springs Utilities - Renewable Energy Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $15,000 PV (Commercial): $37,500 Wind (Residential): $3,750 Wind (Commercial): $12,500 Program Info Start Date 1/1/2006 State Colorado Program Type Utility Rebate Program Rebate Amount PV: $1.50 per watt Wind: $1.25 per watt Solar Water Heating (Residential): $1,500 - $3,000 depending on heating capacity Solar Water Heating (Commercial): 30% of installed cost, up to $15,000 Provider Colorado Springs Utilities Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected

410

FEMP--Solar Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than 1 million homeowners and 200,000 busi- More than 1 million homeowners and 200,000 busi- nesses in the United States are using the sun to heat domestic water efficiently in almost any climate. In summer, a solar system properly sized for a resi- dential building can meet 100% of the building's water-heating needs in most parts of the country. In winter, the system might meet only half of this need, so another source of heat is used to back up the solar system. In either case, solar water heating helps to save energy, reduce utility costs, and preserve the environment. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector-the device that actually captures the sun's energy.

411

Solar Renewable Energy Credits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Renewable Energy Credits Solar Renewable Energy Credits Solar Renewable Energy Credits < Back Eligibility Commercial Construction Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Benchmarks set by procurement administrators Program Info Start Date 2012 State Illinois Program Type Performance-Based Incentive Rebate Amount Negotiated with procurement administrators In August 2007, Illinois enacted legislation (Public Act 095-0481) that created the Illinois Power Agency (IPA). The agency's purpose is to develop electricity procurement plans for investor-owned electric utilities (EUs) supplying over 100,000 Illinois customers to ensure "adequate, reliable, affordable, efficient, and environmentally sustainable electric

412

NREL: Concentrating Solar Power Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL develops publications, including technical reports and papers, about its R&D activities in concentrating solar power, as well as related information. Below you'll find a list of selected NREL publications concerning these activities. Also see TroughNet's publications on parabolic trough technology, and market and economic assessment. For other NREL concentrating solar power publications, you can search NREL's Publications Database. Selected Publications These publications are available as Adobe Acrobat PDFs. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines NREL Subcontract Report Author: David Kearney - Kearney & Associates Publication Date: March 2013 Simulating the Value of Concentrating Solar Power with Thermal Energy

413

Active and passive solar heating of buildings  

SciTech Connect

An overview of both active and passive solar heating approaches for buildings is presented. Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Results of simulation analyses are presented for a variety of climates. Active systems utilizing both liquid-heating collectors and air-heating collectors are described. Trends in the recent development of solar heating are discussed.

Balcomb, J.D.

1977-01-01T23:59:59.000Z

414

HUD Residential Solar Demonstration Program data. Data file  

Science Conference Proceedings (OSTI)

The Residential Solar Data Center (SDC) at the National Bureau of Standards was responsible for the establishment and operation of a computerized data base containing data collected from the DOE/HUD Solar Heating and Cooling Demonstration Program. This card-image tape contains the files which comprised the solar data base including: grant, grantee reports, technical descriptions, technical concerns, marketing survey; and utility consumption. NBSIR 81-2369, Residential Solar Data Center: Data Resources and reports, describes these files in detail.

Christopher, P.M.; Freeborne, W.

1981-01-01T23:59:59.000Z

415

U.S. Solar Market Trends  

SciTech Connect

2010 marked the emergence of the utility sector photovoltaic market. Utility sector photovoltaic installations quadrupled over 2009 installations. The share of utility sector installations of all U.S. grid-connected PV installations grew from virtually none in 2006 to 15 percent in 2009 and 32 percent in 2010. In addition, 2010 saw installation of a 75 MWAC concentrating solar power plant, the largest installed in the U.S. since 1991. In 2010, annual distributed grid-connected PV installations in the United States grew by 62 percent, to 606 MWDC. Photovoltaic arrays were installed at more than 50,000 sites in 2010, a 45 percent increase over the number of installations in 2009. Solar water heating installations increased by 6 percent in 2010, compared with 2009. Solar water heating has shown only two years of higher growth in the last 10 years. Solar pool heating installations increased by 13 percent in 2010, the largest growth in five years.

Larry Sherwood

2011-04-01T23:59:59.000Z

416

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

417

National Energy Act statutes and solar energy  

DOE Green Energy (OSTI)

The National Energy Act of 1978 contains many provisions that will significantly affect solar technology commercialization and solar energy users. Four of the five statutes that comprise the National Energy Act deserve close attention. The National Energy Conservation Policy Act will promote residential solar installations. The Energy Tax Act will accelerate both residential and commercial solar system applications. The Public Utilities Regulatory Policies Act promotes efficient use of utility resources as well as decentralized power production. And, the Power Plan and Industrial Fuel Use Act places severe restrictions on future burning of petroleum and natural gas, which should lead some operators to build or convert to solar energy systems. Each of the preceding acts are considered in separate sections of this report. Federal regulations issued pursuant to the various provisions are also identified and discussed, and some of the problems with the provisions and regulations are noted.

Howard, J.

1980-02-01T23:59:59.000Z

418

R.Perez, K.Zweibel, T.Hoff Solar Power Generation in the US  

E-Print Network (OSTI)

© R.Perez, K.Zweibel, T.Hoff Solar Power Generation in the US: Too expensive, or a bargain that solar electric power plants deliver to utilities' rate payers and society's tax payers. Benefits. Introduction "Economically viable" solar power generation remains a remote and elusive goal for the solar

Perez, Richard R.

419

Southern California Edison's Solar Rooftop Program  

Science Conference Proceedings (OSTI)

SCE’s Solar Rooftop Program is, in many respects, a trailblazing utility-owned distributed PV initiative that other utilities across the country are either emulating or using as a basis for informing their own projects. A review of SCE’s program demonstrates a number of best practices that can be applicable to other similar efforts.

2012-10-24T23:59:59.000Z

420

Solar Advisor Model User Guide for Version 2.0  

Science Conference Proceedings (OSTI)

The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

422

Solar ponds  

DOE Green Energy (OSTI)

The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

Jayadev, T.S.; Edesess, M.

1980-04-01T23:59:59.000Z

423

Solar Index generation and delivery  

DOE Green Energy (OSTI)

The Solar Index, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978 with direction from a US Government interoffice agency committee which was headed by the Department of Energy. The purpose was to enhance public awareness of solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80-gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which in addition to solar service hot water systems, has the ability to estimate thermal performance of space heating, cooling, and heat pump systems. It also supplies economic analyses for these solar energy systems. The Index is generated daily for most large metropolitan locations in the country. The definition of the Index, how the project came to be, what it is at the present time, and a plan for the future are presented. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST Program), and future efforts.

Lantz, L.J.

1980-01-01T23:59:59.000Z

424

Utilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

425

SOLTECH 92 proceedings: Solar Process Heat Program  

SciTech Connect

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

1992-03-01T23:59:59.000Z

426

SOLTECH 92 proceedings: Solar Process Heat Program  

DOE Green Energy (OSTI)

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

Not Available

1992-03-01T23:59:59.000Z

427

Solar PST | Open Energy Information  

Open Energy Info (EERE)

Solar PST Jump to: navigation, search Name Solar PST Place Bergondo, Spain Zip 15 165 Sector Solar Product Spanish company producing thermodynamic solar panels. References Solar...

428

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

project deployment scale, the least-cost option for solar PVcost suppliers from other countries, the government of India has imposed some mandates for domestic content for its utility-scale solar power projects

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

429

Solar paraphotons  

E-Print Network (OSTI)

I revisit the question of production of paraphotons, or hidden photons, in the Sun and suggest that a simultaneous observations of solar flares by conventional instruments and by axion helioscopes may provide a discovery channel for paraphotons.

Troitsky, Sergey V

2011-01-01T23:59:59.000Z

430

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In Kentucky, solar easements may be obtained for the purpose of ensuring access to direct sunlight. Easements must be expressed in writing and will become an interest in real property that may be...

431

DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies Activity  

E-Print Network (OSTI)

During fiscal year (FY) 1991, the U.S. Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing fiat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government.

Russell Hewett; Price Microfiche A

1992-01-01T23:59:59.000Z

432

Numerical modeling and experimental testing of a solar grill  

SciTech Connect

The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization of solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.

Olwi, I.; Khalifa, A. (King Abdulaziz Univ., Jeddah (Saudi Arabia))

1993-02-01T23:59:59.000Z

433

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

434

Mandatory Green Power Option for Large Municipal Utilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Power Option for Large Municipal Utilities Green Power Option for Large Municipal Utilities Mandatory Green Power Option for Large Municipal Utilities < Back Eligibility Municipal Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Colorado Program Type Mandatory Utility Green Power Option Provider Colorado Public Utilities Commission Municipal electric utilities serving more than 40,000 customers in Colorado must offer an optional green-power program that allows retail customers the choice of supporting emerging renewable technologies. This policy complements Colorado's renewable portfolio standard (RPS), which requires municipal utilities serving more than 40,000 customers to use renewable energy and energy recycling to account for 10% of retail sales by 2020.

435

Agua Caliente Solar Project | Open Energy Information  

Open Energy Info (EERE)

Agua Caliente Solar Project Agua Caliente Solar Project Facility 290-megawatt photovoltaic solar generating facility Sector Solar Facility Type Utility scale solar Owner First Solar Location Yuma County, Arizona Coordinates 32.9658°, -113.5272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9658,"lon":-113.5272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Solar thermal power systems. Summary report  

DOE Green Energy (OSTI)

The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

Not Available

1980-06-01T23:59:59.000Z

437

Gulf Power - Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

438

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

439

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program Clay Electric Cooperative, Inc - Energy Smart Solar Water Heater Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $600 Program Info State Florida Program Type Utility Rebate Program Rebate Amount 0.01 per BTU output Provider Clay Electric Co-op Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per system, or $600. Eligible solar water heaters can be either passive or active systems. The proposed solar system must meet Florida Solar Energy Center (FSEC) specifications and be installed by a contractor certified to install solar water heating

440

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

442

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

The University of Wisconsin Interactive Solar Heating DesignProgram, , , , c, Solar Heating of Buildings and DomesticProperty Standards for Solar Heating and Domestic Hot Water

Berdahl, P.

2010-01-01T23:59:59.000Z

443

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Program, , , , c, Solar Heating of Buildings and DomesticR.L. (1976): Solar Heating of Buildings and Domestic Hotthe costs. c. SOLAR HEATING OF BUILDINGS AND DOMESTIC HOT

Berdahl, P.

2010-01-01T23:59:59.000Z

444

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Energy - Value of Solar Residential Rate (Texas) Austin...

445

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Commonwealth Solar Hot Water Commercial Program Feasibility study...

446

DOE Solar Decathlon: Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Solar Decathlon 2013 at the Orange Country Great Park in Irvine, California The Solar Decathlon houses and surrounding Solar Decathlon village are open to...

447

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 8, 2009 DOE Announces 87 Million in Funding to Support Solar Energy Technologies Projects Aim to Accelerate Adoption of Solar Energy and Develop Solar Workforce September...

448

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contracts which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain...

449

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Solar Energy Technologies Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes,...

450

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, and Energy Efficiency Easements and Rights Laws Colorado's solar access laws, which date back to 1979, prohibit any residential covenants that restrict solar access....

451

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

loans for renewable energy and energy efficiency projects. Eligible renewable energy technologies include solar thermal, solar space heat, solar process heat,...

452

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plan. October 16, 2013 Residential Solar and Wind Energy Systems Tax Credit Arizona's Solar Energy Credit is available to individual taxpayers who install a solar or wind...

453

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is joining America's solar revolution. January 13, 2010 San Antonio is using these unique solar energy systems. | Photo courtesy CPS Energy San Antonio spurs increase in solar...

454

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)for supplementing solar radiation network data,” FinalEstimating incident solar radiation at the surface from geo-

Inman, Richard Headen

2012-01-01T23:59:59.000Z

455

Solar forecasting review  

E-Print Network (OSTI)

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

456

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Power, Inc. - Solar Energy System Rebate Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar...

457

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a...

458

Solar powered desalination system  

E-Print Network (OSTI)

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

459

Santa Clara Water and Sewer - Solar Water Heating Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water and Sewer - Solar Water Heating Program Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program < Back Eligibility Commercial Local Government Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Commercial Heating & Cooling Program Info State California Program Type Leasing Program Provider City of Santa Clara Water and Sewer Utility In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. Solar equipment is available from the city for heating swimming pools,

460

By-Products Utilization  

E-Print Network (OSTI)

for rapid identification of buried utilities, blended coal ash, and non-spec./off-spec. aggregates and fly

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Survey of state approaches to solar energy incentives  

DOE Green Energy (OSTI)

A comprehensive survey is presented of state statutes designed to encourage the application of solar technology. A large majority of the states have enacted financial incentives designed to stimulate solar energy use. Commonly, these incentives include preferential property tax treatment of solar systems, and income tax benefits to solar users. There are a wide variety of other tax breaks as well, including excise and franchise tax incentives. Some states have recently developed loan or grant programs for solar installations. Other states have addressed aspects of real property and land-use planning law, which have served as barriers to either the installation of solar technology or access to sunlight. In addition to removing such obstacles as restrictive convenants and zoning limitations, the legislation of several states provides affirmative recognition of the potential of real property law to serve as a spur to solar development, through solar easements, planning and zoning, and public nuisance. A small number of states have legislated in the field of utility regulation, addressing important questions of (1) nondiscriminatory rates for utility backup to solar systems and public utility commissions, and (2) utility involvement in solar energy applicatons.

Johnson, S. B.

1979-07-01T23:59:59.000Z

462

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

463

Improved solar heating systems  

DOE Patents (OSTI)

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

464

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

465

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

466

Solar Energy Development Planning for the U.S. Southwest  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Planning for the Southwest Solar Energy Planning for the Southwest EVS is supporting a federal program for managing utility-scale solar energy development in six Southwestern states. Argonne's EVS Division is supporting the U.S. Department of the Interior (DOI) and Department of Energy (DOE) in efforts to facilitate solar energy development in six southwestern states. Speaking of this important renewable energy initiative, EVS director John Krummel said, "We are pleased to support efforts to identify areas that are most suitable for future solar energy development in the Southwest. Developing a blueprint for future solar energy development will help facilitate faster and more efficient utility-scale solar development on America's public lands." In July 2012, the Bureau of Land Management of the DOI, in partnership with

467

Solar-heated rotary kiln  

DOE Patents (OSTI)

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, P.K.

1982-04-14T23:59:59.000Z

468

Utilization of Renewables in Bangladesh: Case Studies | OpenEI  

Open Energy Info (EERE)

Utilization of Renewables in Bangladesh: Case Studies Utilization of Renewables in Bangladesh: Case Studies Dataset Summary Description (Abstract): Three case studies in (1) Solar market electrification, (2) Wind-solar hybrid system in Kuakata Sea Beach and (3) Micro hydro power plant of Aung Thuwi Khoi. (Purpose): SWERA Documentation Source Renewable Energy Research Centre Date Released December 02nd, 2003 (11 years ago) Date Updated October 20th, 2007 (7 years ago) Keywords Bangladesh case studies documentation GEF renewable energy small hydro solar SWERA UNEP wind Data application/pdf icon Download Document (pdf, 566.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2002 License License Other or unspecified, see optional comment below Comment Please cite publication as follows: RERC,2003. Utilization of Renewables in Bangladesh: Case Studies. Renewable Energy Research Centre, Dhaka University, Bangladesh. GEF UNEP SWERA. Available from http://swera.unep.net on 2 December 2003.

469

NREL: Distributed Grid Integration - Solar Distributed Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Distributed Grid Integration Projects Solar Distributed Grid Integration Projects NREL provides grid integration support, system-level testing, and systems analysis for DOE's Solar Distributed Grid Integration Projects supported by the SunShot Initiative. These projects address technical issues and develop solutions for high penetration grid integration of solar technologies into the electric power system to meet the following goals: Reduce cost: reduce interconnection costs by developing streamlined procedures including advanced integration models for utility interconnection of photovoltaics (PV) Reduce market barriers: work with utilities and system integrators to reduce market barriers by providing research on impacts of integration of high penetration of PV systems and developing solutions.

470

Innovative Systems for Solar Air Conditioning of Buildings  

E-Print Network (OSTI)

Solar air conditioning is an attractive technology to achieve comfortable room conditions, especially in hot and sunny climates. In particular air conditioning systems based on sorption technologies offer several advantages as they can be designed for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance of each air conditioning system is evaluated under Abu Dhabi design conditions.

Kessling, W.; Peltzer, M.

2004-01-01T23:59:59.000Z

471

Solar-climatic statistical study  

DOE Green Energy (OSTI)

The Solar-Climatic Statistical Study was performed to provide statistical information on the expected future availability of solar and wind power at various nationwide sites. Historic data (SOLMET), at 26 National Weather Service stations reporting hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Information of this nature are intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems. Presented in this volume are probability estimates of solar insolation and wind power, alone and in combination, occurring and persisting at or above specified thresholds, for up to one week, for each of the 26 SOLMET stations. Diurnal variations of wind power were also considered. Selected probability data for each station are presented graphically, and comprehensive plots for all stations are provided on a set of microfiche included in a folder in the back of this volume.

Bray, R.E.

1979-02-01T23:59:59.000Z

472

The Texas Solar D House  

E-Print Network (OSTI)

The Solar Decathlon provided a national forum for competition among fourteen university student teams, each of which designed, built, and operated a totally solar-powered home with a home office and their transportation needs using a solar-charged vehicle. The competition took place on the National Mall in Washington D.C., where each house was constructed and operated from September 18 to October 10, 2002. The competition consisted of ten contests focusing on energy production, energy-efficiency, design, thermal comfort, refrigeration, lighting, communication and transportation Professor Michael Garrison of the School of Architecture directed the University of Texas at Austin (UT) Solar Decathlon team along with Pliny Fisk, codirector of the non-profit Center for Maximum Potential Building Systems in Austin, Texas. The graduate student team developed a design that features an open building system using a reusable kit of parts that sits lightly on the land and forms the superstructure around a mobile utility environment. Our investigations suggest that progressive technologies offer solutions to the serious emerging challenges of energy efficiency and sustainable development and thereby become a strong design shaping force. These progressive technologies: photovoltaic (PV) power, passive solar heating, daylighting, natural ventilation, and solar hot water heating were integrated with concepts of affordability and energy conservation to help promote an ideology of sustainable architecture.

Garrison, M.

2004-01-01T23:59:59.000Z

473

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Constant Solar Noon Solar Time Sun Cha rt Sunshine Hours Seeof people and sun creates a high potential for solar energyposition of the sun, The relationship between solar time and

Berdahl, P.

2010-01-01T23:59:59.000Z

474

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Radiation in Canada. Solar Energy ~, p.153. Threlkeld, J.L.pool. As the use of solar energy becomes more widespread,a high potential for solar energy use. Solar-heated swimming

Berdahl, P.

2010-01-01T23:59:59.000Z

475

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Solar Information. . . . A. Solar Spectrum. . . . . . .measure a part of the solar spectrum, usually the red andin Fig. 1 shows the solar spectrum Q Ii! N til SEA-LEVEL

Berdahl, P.

2010-01-01T23:59:59.000Z

476

DOE Solar Decathlon: Solar Decathlon China  

NLE Websites -- All DOE Office Websites (Extended Search)

China Logo of SD China. Solar Decathlon China is the most recent addition to the international family of Solar Decathlon competitions. Solar Decathlon China is the result of a...

477

California Solar Initiative - Low-Income Solar Water Heating Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » California Solar Initiative - Low-Income Solar Water Heating Rebate Program California Solar Initiative - Low-Income Solar Water Heating Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-Family Low-Income: $3,750 Multi-Family Low-Income: $500,000 Program Info Funding Source Ratepayer Funds Start Date 3/29/2012 State California Program Type State Rebate Program Rebate Amount Step 1 Incentive Rates (contact utility to determine current incentive levels): Single-Family Low-Income: $25.64 per therm displaced Multi-Family Low-Income: $19.23 per therm displaced The California Public Utilities Commission (CPUC) voted in October 2011 to

478

Solar ADEPT: Efficient Solar Energy Systems  

DOE Green Energy (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

479

Concentrating Solar Power  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

480

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "utility questa solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar forecasting review  

E-Print Network (OSTI)

ASME Journal of Solar Energy Engineering (in press), 2012. [ASME Journal of Solar Energy Engineering (in press), 2012. [

Inman, Richard Headen

2012-01-01T23:59:59.000Z

482

Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power  

E-Print Network (OSTI)

B. , 2007. Utility wind integration and operating impact2010. Western wind and solar integration study. Tech. rep. ,is commonly used in wind integration studies. Murata et

Mills, Andrew

2010-01-01T23:59:59.000Z

483

Implications of geographic diversity for short-term variability and predictability of solar power.  

E-Print Network (OSTI)

B. Parsons, “Utility wind integration and operating impactReport: 2006 Minnesota Wind Integration Study, Volume I.detailed solar and wind integration studies. V. C ONCLUSIONS

Mills, Andrew

2013-01-01T23:59:59.000Z

484

Standards applicable to performance measurement of solar heating and cooling systems  

DOE Green Energy (OSTI)

The advantage of the utilization of existing standards in the performance monitoring of solar heating and cooling systems is discussed. Existing applicable measurement standards and practices are listed.

Lior, N.

1978-01-01T23:59:59.000Z

485

New EIA data show total grid-connected photovoltaic solar capacity ...  

U.S. Energy Information Administration (EIA)

Using new information, EIA combines data on utility-scale solar photovoltaic (PV) capacity with customer-sited PV capacity, as reported in the graphic.

486

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

tax incentives, state renewable energy rebate and incentiveIncentive Program and Nevada Energy’s SolarGenerations Program). Finally, utilities and state

Wiser, Ryan

2010-01-01T23:59:59.000Z

487

Simulation study for an absorption solar cooling system operated under Taiwan climate.  

E-Print Network (OSTI)

??In this thesis, solar energy is utilized as the driving energy for an absorption cooling system, and a TRNSYS computer code is employed to simulate… (more)

Chiu, Yi-ying

2008-01-01T23:59:59.000Z

488

Orlando Utilities Commission - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Utilities Commission - Residential Energy Efficiency Rebate Orlando Utilities Commission - Residential Energy Efficiency Rebate Program Orlando Utilities Commission - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Ventilation Heat Pumps Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Energy Star Heat Pump Water Heater:$650 Duct Repair/Replacement: $160 Contact OUC for more information on maximum incentive levels Program Info State Florida Program Type Utility Rebate Program Rebate Amount Window Film or Solar Screen : $1/sq.ft. Energy Star Windows : $2/sq.ft. Cool Roof: $0.14/sq. ft.

489

MDU Solar Energy Project Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MDU Solar Energy Project MDU Solar Energy Project Case Study A Partnership between Ellsworth AFB and MDU Resources Group, Inc.  Based in Bismarck, North Dakota  Celebrated our 85 th year in 2009  NYSE - MDU for over 60 years  Over $4B market cap  Fortune 500 Company  Member of the S&P MidCap 400 Index  Over 8,000 employees in 44 states  Business Lines:  Energy  Utility Resources  Construction Materials  Construction Materials  Energy  Oil and Gas Production  Utility Resources  Natural Gas Pipelines  Construction Services  Electric / Natural Gas Utilities  Utility Resources  Montana - Dakota Utilities Co.  Cascade Natural Gas Co.  Intermountain Gas Corporation  Great Plains Natural Gas Co.  About 950,000 customers  ND, SD, WY, MT, WA, OR, ID, MN

490

Solar heater  

SciTech Connect

The invention is a solar heater which may function as a humidifier and which has a reflector that is constructed to provide a window, and external thermal insulation. The window has a cover that is positioned to transmit solar radiation to the reflector. The top portion of the reflector has an opening, and a container is removably positioned in the opening. The reflector has a geometry that reflects a high percentage of solar energy to the container, which has a surface with high absorptance. The container has a removable lid for confining heat within the container for certain functions, such as boiling water or drying clothes. When used as a humidifier, the container is filled with water and the lid is removed.

Hill, C.W.

1981-06-23T23:59:59.000Z

491

Solar Neutrinos  

DOE R&D Accomplishments (OSTI)

The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

Davis, R. Jr.; Harmer, D. S.

1964-12-00T23:59:59.000Z

492

Solar Energy Technologies Program: Solar Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy EERE Home Programs & Offices Consumer Information Solar Multimedia search Home EERE » SunShot Initiative » Solar Multimedia Printable Version Bookmark and Share Feature Photo of 3 solar dishes, which have reflective, square-shaped material that creates a mirror image of the sky and clouds. Each dish is anchored to the ground by a vertical pole. Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Photovoltaics Concentrating Solar Power Concentrating Solar Power Solar Applications Residential Residential Commercial Commercial Large Installations Large Installations City and County City and County Federal Federal Manufacturing Manufacturing Development and Testing

493

Solar Energy Systems - Research - Biomimetic Solar Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

using renewable resources such as sunlight. They also offer an enticing way to store solar energy in a very c